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Abstract
We take advantage of a new data set on Belgian cities to test random growth, that 
is, Gibrat’s law. This unique data set provides annual population estimates for all 
Belgian municipalities (2680 cities) from 1880 to 1970. The use of panel data meth‑
odology and unit root tests can provide a precise test of Gibrat’s law (a unit root 
is equivalent to random growth). We run both time series and panel data unit root 
tests, thus obtaining strong support for random growth in the long term. Results hold 
when allowing for the presence of one and two structural breaks in the mean, with 
the timing of the breaks coinciding with some major historical events, such as the 
World Wars and the economic crisis of 1929–1933.

JEL Classification C12 · C22 · N93 · O18 · R11 · R12

1 Introduction

Urban growth literature has a long tradition. Why some cities grow while others 
decline is still an open question, although several theoretical explanations have 
been proposed. These theories can be summarised into three main drivers of growth 
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(Davis and Weinstein 2002): the existence of increasing returns to scale, the impor‑
tance of locational fundamentals, and random growth.

Each of these drivers of urban growth involves different theoretical mechanisms. 
The existence of increasing returns suggests the presence of endogenous mecha‑
nisms in city growth that can lead to multiple equilibria (Davis and Weinstein 2002; 
Bosker et  al. 2007), depending on the initial conditions. Locational fundamental 
theory highlights the role played by geographical characteristics: the presence of a 
natural harbour, a specific climate, or access to the sea, among many other physical 
characteristics, can determine cities’ populations (for instance, Ellison and Glaeser 
(1999) stated that natural advantages can explain at least half of the observed geo‑
graphic concentration in the US). Finally, random urban growth postulates that pop‑
ulation growth in cities is a random variable.

Studies testing the influence of increasing returns to scale and locational funda‑
mentals have usually relied on parametric (cross‑sectional or panel data) growth 
regressions, applying an instrumental variable approach in most cases. The latest 
advances in this literature have come from the use of plant‐level data (Holmes and 
Stevens 2002; Barrios et al. 2006) and case studies using an identification strategy 
of instruments that reveals the influence of some historical events on cities’ growth 
path (e.g., Bleakley and Lin 2012; Garcia‑López et  al. 2015). However, most of 
these studies have adopted a short‑term perspective, and even panel data analyses 
have considered a few decades at most.

The approach taken in the random growth literature is different. First, from the 
theoretical point of view, random growth can only hold as a long‑run average,1 while 
the influence of other factors, like locational fundamentals and increasing returns, 
may change (or even disappear) over time. With random urban growth, the growth 
process of cities tends to be multiplicative and independent of their initial size, a 
proposition that has become known in urban economics as Gibrat’s law.2 Several 
theoretical models (Gabaix 1999; Duranton 2007; Córdoba 2008) were developed 
to explain the fulfilment of Gibrat’s law in the context of external urban local effects 
and productive shocks, associating it directly with an equilibrium situation. There‑
fore, city‑level variables can explain temporal variation in growth rates across cit‑
ies, but random growth theory provides an appropriate explanation for the long‑term 
growth.

Second, on the empirical side, although seminal contributions (e.g., Eaton and 
Eckstein 1997) have also used parametric growth regressions to test Gibrat’s law, 
since the 2000s, several studies have proposed alternative methodologies to para‑
metric growth models. González‑Val et al. (2014) reviewed this literature, conclud‑
ing that most studies today use nonparametric estimates of urban growth or unit root 
tests. Nonparametric estimates of growth have become popular in this literature, 

1 Quoting Gabaix and Ioannides (2004, p. 2353), “the casual impression of the authors is that in some 
decades, large cities grow faster than small cities, but in other decades, small cities grow faster.”
2 Formally,“Gibrat’s Law states that the growth rate of an economic entity (firm, mutual fund, city) of 
size S has a distribution function with mean and variance that are independent of S” (Gabaix and Ioan‑
nides 2004, p. 2346).



1 3

Urban growth in the long term: Belgium, 1880–1970  

providing estimates of growth that vary with the initial population over the entire 
distribution of city sizes. However, these kernel regressions estimate the uncondi‑
tional relationship between growth and size; city and time fixed effects and any other 
control variables are omitted. Thus, authors have carried out nonparametric analyses 
for cross‑sectional data (Eeckhout 2004) as well as for a pool of growth rates from 
different time periods (Ioannides and Overman 2003; González‑Val 2010).

The use of the panel data methodology and unit root tests in the analysis of urban 
growth, first suggested by Clark and Stabler (1991), can provide a more precise 
test of Gibrat’s law. This idea was emphasized by Gabaix and Ioannides (2004, p. 
2358), who expected “that the next generation of city evolution empirics could draw 
from the sophisticated econometric literature on unit roots.” Recently, new methods 
have been proposed to test random growth using unit root tests. Lalanne and Zumpe 
(2019, 2020) apply an integrated model selection/unit root test protocol with three 
different model specifications (pure random growth, random growth with drift, and 
random growth with drift and trend) to a large sample of high‑quality French decen‑
nial census data, on how the rejection of the random growth hypothesis accounts for 
less than one third of tested cities.

However, some empirical limitations have reduced the spread of these techniques. 
While several papers applied panel data unit root tests to analyse urban growth (e.g., 
Black and Henderson 2003; Resende 2004; Henderson and Wang 2007; González‑
Val and Lanaspa 2016), the list of studies looking for unit roots in individual time 
series of cities’ populations is quite short. Why? Unit root tests need large sample 
sizes (at least 40 observations) to have reasonable power (Clark and Stabler 1991). 
However, long time series of year‑by‑year city populations are usually not available, 
and studies on the temporal evolution of city sizes have considered decennial census 
data in most cases. Therefore, the lack of annual data for a sample of cities over 
a long time period on a consistent basis has limited the use of unit root testing in 
empirical work.

To our knowledge, only five studies consider annual city populations to test 
Gibrat’s law using unit root tests: Clark and Stabler (1991), Resende (2004), Sharma 
(2003), Bosker et al. (2008) and Chen et al. (2013). Clark and Stabler (1991) used 
data on the seven largest cities in Canada from 1975 to 1984 (10 temporal observa‑
tions by city), while Resende (2004) used a panel data set with annual data for 497 
municipalities in the state of São Paulo (Brazil) for the 1980–2000 period. Sharma 
(2003) considered a sample of 100 Indian cities for the period 1901–1991 (90 years), 
Bosker et  al. (2008) used a dataset of 62 West German cities from 1925 to 1999 
(except for five missing years during the Second World War), and Chen et al. (2013) 
considered 210 Chinese cities from 1984 to 2006 (23 temporal observations).

Although the efforts of these authors to obtain annual city population data and 
exploit the properties of the unit root tests fully are worthy, these studies still show 
an important limitation: they focused on the largest cities. Nevertheless, some stud‑
ies have confirmed the different patterns of growth of small cities (Partridge et al. 
2008; Devadoss and Luckstead 2015) and, thus, the behaviour of the largest cities 
cannot be extrapolated to the whole distribution of cities. Another reason to consider 
all cities is that some studies found differences in growth patterns between different 
regions within the same country. Lalanne (2014) studied the hierarchical structure of 
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the Canadian urban system, splitting the territory into two parts (east and west), thus 
allowing for the identification of different dynamics.

In this paper, we take advantage of Ronsse and Standaert’s (2017) new data set of 
Belgian cities. This unique data set provides annual estimates of the population for 
all Belgian municipalities from 1880 to 1970. Thus, it allows us to carry out a robust 
long‑term analysis of urban growth because the time dimension is long (90 temporal 
observations by city) and, at the same time, it contains information for all cities, 
covering the whole city size distribution. Therefore, as far as we know, this is the 
most comprehensive test of Gibrat’s law using unit root tests ever conducted.

Moreover, the Belgian case is interesting because of some specific historical char‑
acteristics of the country. As a relatively young country on the European continent, 
the Belgian state came into existence following a liberal revolution in 1830. Set up 
as a parliamentary democracy, headed by a monarch with limited powers, the Bel‑
gian state quickly became a haven for political liberalism in 19th‑century Europe. 
At the same time, however, the young nation wanted to ensure that it had the most 
up‑to‑date information about the population living within its borders. Following the 
newest scientific methods, the state apparatus created a highly developed statistical 
department, which, whilst not unique, was well ahead of its time. The continuous 
efforts of this department have led to a richness of statistical data spanning the entire 
history of the country.3

When studying the trends of population growth in this small state, surrounded 
by giants, it is also important to note that Belgium was the first industrialized coun‑
try on the European continent. A combination of technological knowhow, labour, 
capital and readily available natural resources led to a quick‑paced industrialization 
process, initially concentrated in the city of Ghent and in the southern part of the 
country (Caestecker 2015, pp. 101–103). Only after the Second World War did the 
industrial centre of gravity move to the north, with the arrival of many multinational 
companies that wanted to make use of the vicinity of sea harbours and the excellent 
road infrastructure of the region (Witte and Meynen 2006; Ryckewaert 2011).

Akin to this industrialization, but equally motived by political interests and goals, 
Belgium also became the centre of an expansive railway network from the late nine‑
teenth century onwards. The construction of the railway had already begun in the 
1830s, but the connections were initially limited to those between major urban and 
industrial hubs. From the 1880s onwards, however, there was a massive effort to 
expand the railway network to even the smallest towns. In a country of only 30,528 
 km2, the main rail network grew from 3000 km in 1870 to almost 5000 km in 1910. 
Concurrently, a 3000 km network of light rail was established that “meander within 
the landscape, from village to village, collecting as many intermediary passengers 
and goods as possible” (De Block and Polasky 2011, p.318).

The high degree of connectivity resulting from this extensive network – as well as 
a system of cheap train tickets for workers – ensured a steady flow of labour from the 
still densely populated countryside to the industrial centres of the country, without 
the large‑scale urbanization – and accompanying politicization of the labour force 

3 LOKSTAT, accessed on 23 September 2020 via https:// lokst at. ugent. be/ lokst at_ over_ doels telli ng. php.

https://lokstat.ugent.be/lokstat_over_doelstelling.php
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– that characterized the industrialization process in Belgium’s neighbouring coun‑
tries (De Meulder et al. 1999). Before the end of the twentieth century, more than 
one in three Belgians commuted to and from work every day (De Decker 2011).

These factors affected the distribution of economic activity and population in 
Belgium during the course of the twentieth century, and set the grounds for a new 
long‑term equilibrium of the distribution of population. However, as both industri‑
alization and completion of transport infrastructures took place at the beginning of 
our sample period (in the late nineteenth and early twentieth centuries) that covers 
almost one century, we expect to capture not the short‑term transitional periods of 
higher or lower growth, but rather the long‑term growth that may follow a random 
growth pattern.

The remainder of the paper is organized as follows. In Sect. 2, we describe the 
data set used. Section 3 explains the different unit root tests carried out, distinguish‑
ing between time series analysis of unit roots allowing for structural breaks and 
panel data unit root tests, and presents the main results. Section 4 concludes.

2  Data

As far as we know, only a few studies have provided long‑term estimates of annu‑
ally and spatially disaggregated populations at the city level: Sharma (2003), 
Bosker et al. (2008) and González‑Val and Silvestre (2020), for Indian (100 cities, 
1901–1991), West German (62 cities, 1925–1999 period with some gaps) and Span‑
ish cities (49 capital cities, 1900–2011), respectively.

In this paper, we use the new data set by Ronsse and Standaert (2017). They 
constructed a data set of 2680 Belgian municipalities for the period 1880–1970. 
Their dataset ends in 1970, as this is the last decade in which administrative borders 
remained relatively constant. Specifically, in 1970 and 1971, the number of munici‑
palities first dropped by 200. This decrease was followed by the main administra‑
tive redrawing of the municipalities in 1976, which reduced the number of munici‑
palities by three quarters. In all, the total number of municipalities dropped from 
2675 in 1970 to a mere 596 six years later (Vrienlinck, 2000). Further redrawing of 
municipal maps followed in 1983 and 2019 and resulted in the current total of 581 
municipalities, although this value is set to change again in 2025. Given the impact 
of these changes on the continuity of their dataset, the authors chose 1970 as the 
final year.4

To compose this data set, they combined the population census data, which 
are collected every ten years, with the yearly data on births, deaths and migra‑
tion from the city population registers (the movement data). The less centralized 

4 The unit of analysis of this database are municipalities as defined by their administrative borders. 
Amalgamating these into metropolitan areas is difficult for many reasons, the main problem being that 
the entirety of Belgium is described as one big metropolitan area. As noted in Van Meeteren et al. (2016, 
p. 3) the Flemish region is often described as a ‘nebular city’ and Belgium as an “hourglass‑shaped met‑
ropolitan area whose (Walloon) base is less developed than its (Flemish) roof.”
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nature of the latter, in combination with a tendency to underreport outward 
migration, means that these series cannot easily be combined without creating 
breaks in the data with every new census. This is illustrated quite well in Fig. 1, 
in which the dotted red lines show what the population estimate would be if we 
added the cumulative changes to the population to the last set of census data. 
The population in Brussels is overestimated by as many as a 100,000 people in 
1900. At other times, especially in the later years of the data set, the quality of the 
population registers can be much higher.

To reconcile the two data series, Ronse and Standaert (2017) used a state‑space 
approach, which models the mouvement data as a noisy signal of the true change 
in the population growth. As the mouvement is collected by each city individually, 
the noisiness of its signal is allowed to differ for each city. Furthermore, the model 
incorporates information on the changes to the administrative borders of the cit‑
ies, allowing the population data to change more drastically in those years (see e.g. 
Brussels in 1921 in Fig. 1). The results of the models are also shown in Fig. 1, with 
the thick black lines showing the estimated population and the blue shaded area its 
95% confidence interval. The estimated population data clearly follow the change 
indicated by the mouvement data as much as possible while remaining consistent 
with the census data.

As we noted, the period of analysis in the dataset was chosen so that the adminis‑
trative borders remain consistent. Included in the sample, however, is the first wave 
of administrative changes of 1964, that reduced the number of municipalities from 
2675 to 2586. In addition to these large‑scale changes, information from Vrienlinck 
(2000) was used to identify smaller, ad‑hoc changes to the administrative borders of 
municipalities. As a robustness check, cities with more than a 30% change in land 
area in the period considered were excluded from the analysis.

For illustrative purposes, Table  1 shows the number of cities and the descrip‑
tive statistics in census years. The minimum values of each decade indicate that we 
are considering all municipalities, without size restrictions, even the smallest units. 
Although their urban character might be debatable, Eeckhout (2004) suggested con‑
sidering the whole distribution. The mean population grows over time and, at the 
same time, the number of cities remains stable, which points to an urbanization pro‑
cess. Moreover, although the standard deviation increases from 1880 to 1910, indi‑
cating increasing inequality in city sizes, it remains quite stable in the last decades, 
which suggests stability in the city size distribution.

Municipalities comprise the country’s total land area and, therefore, the entire 
population. During the period considered (almost a century), there was an impor‑
tant increase (71.2%) in the Belgian total population in our sample, from 5,517,017 
in 1880 to 9,443,985. One might expect that such a huge increase also generated 
important changes in the city size distribution. Figure 2 shows the empirical density 
functions for three representative periods (1880, 1930 and 1970) estimated using 
adaptive kernels for our sample of all Belgian municipalities. We define the relative 
size of a city as the quotient between the city’s population and the contemporary 
average population. The graph shows the distribution of these cities’ relative sizes in 
log scale, with the zero value in the x‑axis representing medium‑sized cities.
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The shape of the city size distribution changed dramatically from 1880 to 1970. 
In 1880, we can observe a very leptokurtic distribution with a great deal of density 
concentrated in the central values. However, by 1930, the distribution had lost kurto‑
sis and the concentration had decreased. In 1970, we find a more uneven distribution 
with heavier tails than in previous periods, indicating the presence of more small 
and large cities than in earlier years. The temporal evolution of the city size distribu‑
tion suggests a divergence pattern in the growth of Belgian cities, thus apparently 
discarding the idea random growth.

Fig. 1  The population of the four biggest cities in Belgium from 1880 to 1970. The estimated level of the 
population is indicated by the thick black line and its 95% confidence interval by the blue shaded area. 
The source data are plotted using the red crosses (census) and dotted line (population registers). Admin‑
istrative changes to the city borders are indicated by the black asterisks. Source: Ronsse and Standaert 
(2017)
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3  Methodology and results

3.1  Unit roots in city sizes

Our basic hypothesis for the long‑term growth of Belgian cities is random growth 
(Gabaix and Ioannides 2004; González‑Val et al. 2014). As mentioned above, ran‑
dom growth can hold as a long‑run average, while the effect of other factors may 
change or dissipate over time. Traditional theoretical models of random growth 
(Champernowne 1953; Simon 1955) are based on stochastic growth processes 
and probabilistic models. Recent urban economic theories (Gabaix 1999; Duran‑
ton 2007; Córdoba 2008) include economic factors driving random shocks (e.g., 
external urban local effects or productive shocks), and these models are able to 
reproduce two empirical regularities that are well known in urban economics: 
Zipf’s and Gibrat’s laws (or the rank‑size rule and the law of proportionate growth, 
respectively).

Table 1  Summary of the descriptive statistics

Descriptive statistics in census years

Year Cities Mean population Standard deviation Minimum Maximum

1880 2580 2138.379 6629.206 25 169,112
1890 2594 2338.707 7877.252 23 224,012
1900 2616 2558.284 8919.119 28 272,831
1910 2628 2824.463 9677.538 24 301,766
1920 2637 2807.940 9627.061 37 302,058
1930 2670 3030.319 10,033.540 35 284,373
1940 2629 3154.683 9926.479 37 267,903
1950 2668 3243.136 9894.130 34 261,412
1960 2662 3447.499 9957.616 27 256,619
1970 2526 3738.711 10,031.170 31 224,543

Fig. 2  Empirical density func‑
tions. Adaptive kernels of the 
relative size of the Belgian cities 
(ln scale)
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We follow the methodology proposed by Clark and Stabler (1991), who suggested 
that testing for random growth is equivalent to testing for the presence of a unit root. 
Starting from a simple autoregressive (AR) growth model, they assumed that the 
relationship between the size of a city in time period t and that in time period t − 1 is

where Sit is the city share of city i defined as the quotient derived from dividing 
the city’s population ( Popit ) by the contemporary total population of the coun‑
try, Sit = Popit

/

Country popt because, from a long‑term temporal perspective, 
it is necessary to use a relative measure of size (Gabaix and Ioannides 2004). �it 
is the growth rate of city i over the period t − 1 to period t . This growth rate can 
be decomposed into two (Clark and Stabler 1991) or three components (Bosker 
et al. 2008): a random component, a non‑stochastic component relating the current 
growth rate to a (possibly time‑varying) constant and past growth rates, and the ini‑
tial city size. Then, after some algebra, Clark and Stabler (1991) obtained the fol‑
lowing expression:

where sit = ln
(

Sit
)

 is the log‑city share of city i in year t, Δsit = sit − sit−1 , ci is a 
constant, �ij is a parameter measuring the influence of past growth rates on current 
city growth and k is the number of lags added to ensure that the residuals, �it , are 
Gaussian white noises. Θi is the key parameter that captures the effect of the initial 
city size on growth. Random growth would imply Θi = 0 , meaning that the growth 
of a particular city does not depend on its initial city size. Then, the city share would 
be a non‑stationary time series, and any sudden shock would have permanent effects 
on the long‑run level of the population of the city (Davis and Weinstein 2002). This 
shows that testing for random growth (Gibrat’s law) is equivalent to testing for a unit 
root in city sizes. Evidence supporting a unit root (if Θi is not significant) means that 
city i ’s growth rate is independent of the initial size. By contrast, when Θi < 0 , the 
path of city i will be a stationary process (mean reversion). By using Eq. (2), Clark 
and Stabler (1991) apply the standard Dickey and Fuller (1979) t‑statistic, failing to 
reject random growth for the seven largest cities in Canada from 1975 to 1984.

To test for the presence of unit roots, we run the Augmented Dickey–Fuller (ADF) 
test (Dickey and Fuller 1979, 1981).5 The ADF test for non‑trending data is carried out 
by running Eq. (2). Following Ng and Perron (1995), we choose the optimal k using a 
“general‑to‑specific procedure” based on the t‑statistic. The null and alternative hypoth‑
eses are, respectively, H0 ∶ Θi = 0 , HA ∶ Θi < 0 . If Θi is found to be equal to 0, then 
the city share series follows a random walk and, on the other hand, if Θi is found to be 
significantly smaller than 0, the city share is stationary around ci.

(1)Sit = �itSit−1,

(2)Δsit = ci + Θisit−1 +

k
∑

j=1

�ijΔsit−j + �it,

5 Lalanne and Zumpe (2019) propose a new test‑protocol for testing three different random growth pro‑
cesses (pure random growth, random growth with drift, and random growth with drift and trend) also 
based on the ADF statistic.
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Table 2 (second column) reports a summary of the results of the individual city 
unit root tests. We find that the null hypothesis of a unit root in the city share is not 
rejected for most of the cities in the sample. In particular, for 207 of the 2680 Bel‑
gian cities (8%), the unit root is rejected at the 10% level, thus strongly supporting 
the random growth hypothesis. However, a possible concern with these results is 
that the overall non‑rejection of the unit root hypothesis may be because the stand‑
ard ADF tests are biased (Perron 1989). It is possible that what we identified as 
a unit root process could be better modelled as a stationary process around highly 
permanent shocks, especially when such a long period is considered. In their study 
of German cities, Bosker et al. (2008) addressed this issue by allowing for the pres‑
ence of a one‑time structural break when testing for unit roots, using the unit root 
test suggested by Perron and Vogelsang (1992). Here, we follow the same approach.

Following Bosker et al. (2008), we estimate additive outlier (AO) models, allow‑
ing for a sudden change in mean (crash model). The AO model is appropriate when 
the change is assumed to take effect instantaneously (for instance, because of war‑
fare destruction). This model is estimated by way of a two‑step procedure. The first 
step removes the deterministic part of the series by estimating the regression

where DUt = 0 if t ≤ TB(the break date) and 1 otherwise. The resulting residuals are 
then tested for the presence of a unit root by estimating

where �it is the estimated residual from Eq. (3), TB is the break date and DTBit = 1 
if t = TB + 1 and 0 otherwise. Both equations are estimated using OLS for each 
break year TB = k + 2, ..., T − 1 , with T being the number of observations and k 
being the truncation lag parameter. The null hypothesis of a unit root is rejected 
if the t‑statistic for � is significant. In this case, the city share will be a stationary 
time series around a structural break. All but one shock (the break) would cause 

(3)sit = �i + �iDUt + �it,

(4)�it =

k
∑

j=0

�jDTBit−j + ��it−1 +

k
∑

j=0

cjΔ�it−j + �it,

Table 2  Results of unit root tests on city shares: All Belgian cities

The null hypothesis is in all cases a unit root in city shares. Following the suggestion by Ng and Perron 
(1995), we choose the optimal number of lagged growth rates to be included in the regression to control 
for autocorrelation using a “general‑to‑specific procedure” based on the t‑statistic. The maximum lag 
length to start off this procedure is set at 11

City‑specific tests (N = 2680)

Alternative hypothesis Trend stationary Trend stationary 
with one break

Trend stationary 
with two breaks

Significance level (%) % unit root rejected % unit root rejected % unit root rejected
1 1 3 2
5 4 8 3
10 8 15 4
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temporary movements of the city’s share. By contrast, if the t‑statistic for � is not 
significant, the city share will be a non‑stationary time series and any sudden shock 
will have permanent effects on the long‑run level of the city share.

The results of applying the AO‑model to test for a unit root in city shares under 
the null of a unit root versus stationarity around a possibly shifting mean under the 
alternative are also summarized in Table  2 (third column). Although the percent‑
ages of rejection of a unit root increase slightly, the results do not vary substantially 
from those of the ADF test. At the 10% level, the unit root null hypothesis cannot be 
rejected in favour of a stationary city share with a one‑time break for roughly 85% 
of the cities (2274 of 2680 cities). Moreover, the breaks are significant in almost all 
cases; only for 51 cities is the break not significant. Therefore, evidence supporting 
random growth persists.

The previous analysis only captures the single most significant break in each city 
share series. However, since the period considered is quite long (almost one century) 
and variables rarely show just one break, we also attempt to determine whether the 
city share series show a double change in the mean. We use the test developed by 
Clemente et al. (1998), who based their approach on Perron and Vogelsang (1992), 
but allowing for two breaks. Formally, (3) and (4) change to:

and

where DUjt = 1 if t > TBj (j = 1, 2) and 0 otherwise. DTBijt sets equal 1 if t = TBj + 1 
and 0 otherwise (j = 1, 2) . TB1 and TB2 are the time periods when the mean is being 
modified. Like Clemente et  al. (1998), we suppose that TBj = �jT  (j = 1, 2) , with 
0 < 𝜆j < 1 , which implies that the test is not defined at the limits of the sample, 
and that 𝜆2 > 𝜆1 , which eliminates those cases in which breaks occur in consecutive 
periods. To test for the unit root null hypothesis, Eq. (5) is first estimated using OLS 
to remove the deterministic part of the variable, and then the test is carried out by 
searching for the minimal pseudo t‑ratio for the � = 1 hypothesis in Eq. (6) for all the 
break time combinations. The null hypothesis of a unit root is rejected if the t‑sta‑
tistic for � is significant. In this case, the city share will be a stationary time series 
around two structural breaks. Most shocks would cause temporary movements of the 
city’s share, but two shocks (the breaks) would cause permanent effects. Unlike the 
situation in which the t‑statistic for � is not significantly different from zero, the city 
share will be a non‑stationary time series and any sudden shock will have permanent 
effects on the long‑run level of the city’s share of the population.

We would expect that allowing for the possibility of two endogenous break points 
could provide further evidence against the unit root hypothesis (Lumsdaine and 
Papell, 1997; Ben‑David et al. 2003), especially because both breaks are significant 
in most of the cases: only in 45 and 49 cases (of 2680) are the first and the second 
break, respectively, not significant. However, the percentage of unit roots rejected 

(5)sit = �i + �i1DU1t + �i2DU2t + �it,

(6)�it =

k
∑

j=0

�1jDTB1t−j +

k
∑

j=0

�2jDTB2t−j + ��it−1 +

k
∑

j=0

cjΔ�it−j + �it,
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at the 10% level is lower than that for the one‑break test (see Table 2, fourth col‑
umn). Furthermore, at the 5% and 10% significance levels, the percentage of rejec‑
tion is even lower than that of the ADF test (no‑break scenario). There is no clear 
pattern in the size of the cities for which the unit root is rejected; their mean popula‑
tion is slightly above the average size for all cities from 1880 to 1890, but it slowly 
decreases over time, and, over the whole period, these city sizes are on average only 
12% below the mean population of all cities. Therefore, on average, these cities tend 
to be slightly below the mean city size but certainly are not the smallest units in our 
sample.

Regarding the dates of the breaks, Fig. 3 displays the distribution of the breaks’ 
timing. The y‑axis shows the frequency (i.e., the total number of significant breaks 
detected) by year (the x‑axis). It shows both the one‑ and two‑break cases; only 
significant breaks are included in the graph. Across the one‑ and two‑break cases, 
three distinct major events stand out: the First World War, the economic crisis of 
1929–1933 and the Second World War. Most distinctly present in the one‑break 
case, the Great Depression of the early 1930s, following the crash of the Ameri‑
can stock exchange in 1929, undoubtedly carries with it a lot of explanatory weight 
(Caestecker 2015, pp. 133–134). As unemployment soared, so did the mobility of 
those people who were looking for alternative ways to make a living.

A decade earlier, the impact of the First World War is clearly visible in both the 
one‑break and the two‑break first‑break cases. In Belgium, the onset of the war 
caused an enormous stream of refugees to flee their home towns and settle in other 
places, both within the Belgian territory and abroad. Some 1.5 million Belgian refu‑
gees left the country to settle temporarily in the Netherlands, France and Great Brit‑
ain (Amara 2008). During and in the aftermath of the war, there was an enormous 
drop in the Belgian population, caused by a fall in the number of births and a peak in 
the number of deaths due to both the war and the Spanish flu that directly followed it 
(Caestecker and Vanhaute 2011, pp. 94–96). That the break in population growth is 
only visible in the aftermath of the war is probably related to the fact that, during the 
war, administrative services were severely disrupted.

Even though there was no internal displacement on such a large scale during the 
Second World War, the onset and aftermath of the war present a clear break in popu‑
lation growth, visible both in the one‑break cases and in the two‑break cases’ sec‑
ond break. The onset of the war, however, did cause some people to flee abroad, 
and, just before the outbreak, many thousands of refugees from Nazi Germany and 
the occupied territories arrived in Belgium, looking for shelter (Debruyne 2007, pp. 
75–76). In the aftermath of the war, as Belgian refugees returned home, thousands 
of displaced persons found themselves on Belgian territory. Most of them were for‑
mer prisoners of war, brought to Belgium by the Nazi occupants to perform forced 
labour (Luyckx 2010). The fast economic recovery of Belgium in the immediate 
aftermath of the war might also have led to internal migration towards the revived 
industrial centres, where plenty of jobs were to be found (Witte and Meynen 2006, 
pp. 35–36).

Two more important moments of change can only be deduced in a meaningful 
way from the two‑break case. In the two‑break case, for the first break, we can see 
a clear break around the turn of the nineteenth century. The last two decades of 



1 3

Urban growth in the long term: Belgium, 1880–1970  

that century heralded a period of economic crisis, resulting in growing unemploy‑
ment and poverty. In these turbulent times, thousands of people moved to another 
town, where they hoped to find a more secure income. Thousands of others wan‑
dered around the country, looking for work. Finally, Belgium also experienced a 

Fig. 3  Distribution of the timing 
of the breaks
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demographic boom at the end of the nineteenth century, due to a spectacular rise 
in life expectancy (Caestecker and Vanhaute 2011, pp. 89–94). This certainly forms 
part of the explanation for the sudden break in population growth that we can dis‑
cern at the fin de siècle.

The final break in growth, which we can only meaningfully discern in the two‑
break case, as the 2nd break, is noticeable around the year 1955. For this change in 
the pattern, we can find no immediate explanation. The 1950s were a period of slow 
economic growth in Belgium, characterized by relatively high unemployment. Com‑
pared with the following years, the Golden Sixties, the mid‑1950s can be seen as a 
last moment of high mobility before a long decade of relative stability, connected to 
a boom in economic growth and a historically low unemployment rate (Witte and 
Meynen 2006).

Finally, we run several robustness checks. First, we consider a sub‑sample of 
cities. The geographic boundaries of cities could change over such a long time 
period and, thus, in some cases, the city growth or the structural break may only be 
reflecting the change in city boundaries. We have information about administrative 
changes to the boundaries of Belgian cities and the size of the municipalities from 
1865 to 1970 (every 10 or 15 years). Using this historical information, we can cal‑
culate the change in land area by city and, following Glaeser and Shapiro (2003), 
we can set a threshold for the change in land area and exclude all cities above it. In 
particular, we exclude all cities with more than a 30% change (positive or negative) 
in land area, thus reducing the sample size to 2476 cities.6 This correction elimi‑
nates extreme cases in which the city in 1880 is very different from the city in 1970. 
Then, we rerun all the unit root tests; the results are reported in Table 3. The first 
conclusion is that the results are quite similar to those shown in Table 2, which indi‑
cates that the issue of changing in boundaries was not driving our main results. The 
second implication of these results is that the support for a unit root in city shares 
is even stronger when we exclude changing boundary units; although the percent‑
ages of unit roots rejected for the no‑break scenario test are the same as in Table 2, 
when one or two breaks are allowed, these percentages decrease slightly to very low 
figures. For instance, only in 1% of the cases is the unit root rejected at the 5% confi‑
dence level under the two‑break specification.

Second, we re‑run the time series analysis considering the generalised supre‑
mum ADF (GSADF) test statistic for explosive behaviour proposed by Phillips et al. 
(2011, 2015). This recursive test does not assume exogenous structural breaks. For 
all the cities, the percentage of unit roots rejected at the 5% level increases up to 
the 36% (976 cities out of 2680). Nevertheless, the main result holds, as we cannot 
reject a unit root for most cities (64%).

6 Alternative values of the threshold yield similar results, as the change in land area in most cities is 
negligible: for 82% of our Belgian cities, the change in land area is lower than 1%, for 86% the change is 
lower than 5%, and for 89% the change in land area is lower than 10%.
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3.2  Panel unit root test

Most theories proposed for the underlying mechanisms that govern the city size 
distribution are dynamic, and they make predictions of how particular cities will 
behave in a panel. To take full advantage of the panel dimension of our data set, we 
also test for a unit root in a panel.

Some authors have also tested for the presence of a unit root using growth equa‑
tions and panel data (Black and Henderson 2003; Resende 2004; Henderson and 
Wang 2007; Chen et al. 2013). Nevertheless, this approach has some problems and 
limitations (Gabaix and Ioannides 2004; Bosker et al. 2008). As Chen et al. (2013) 
point out, panel unit root tests with short temporal dimension can suffer from low 
power. Although our time dimension is higher than that in previous studies (91 tem‑
poral observations for most cities), it may be still a low number, in contrast to the 
number of cities in the panel.7

Our annual data overcome one of the common limitations in this literature, 
namely the use of census data and decade‑by‑decade city populations, but an econo‑
metric issue persists: the presence of cross‑sectional dependence across the cities 
in the panel can give rise to estimations that are not very robust (González‑Val and 
Lanaspa 2016). Cross‑sectional dependence implies that the cities are interdepend‑
ent. The causes of cross‑sectional dependence in the errors can be the presence of 
common shocks and unobserved components that ultimately become part of the 
error term, spatial dependence and idiosyncratic pair‑wise dependence in the dis‑
turbances with no particular pattern of common components or spatial dependence 
(Baltagi et al. 2007). The econometric literature has established that the panel unit 

Table 3  Robustness check: Results of unit root tests on city shares excluding cities with more than 30% 
of change in land area

The null hypothesis is in all cases a unit root in city shares. Following the suggestion by Ng and Perron 
(1995), we choose the optimal number of lagged growth rates to be included in the regression to control 
for autocorrelation using a “general‑to‑specific procedure” based on the t‑statistic. The maximum lag 
length to start off this procedure is set at 11

City‑specific tests (N = 2476)

Alternative hypothesis Trend stationary Trend stationary 
with one break

Trend stationary 
with two breaks

Significance level (%) % unit root rejected % unit root rejected % unit root rejected
1 1 2 1
5 4 7 1
10 8 14 3

7 Some authors (Lalanne and Zumpe 2019) argue that panel unit root testing is far from being a panacea 
for the low test power problem. Indeed, as shown by Karlsson and Löthgren (2000), what most contrib‑
utes to the increase of test power is the extension of the panel’s temporal dimension. Consequently, the 
only extension of the cross‑sectional dimension, as commonly practised in the urban growth literature, is 
not a viable solution.
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root and stationarity tests that do not explicitly allow for this feature among indi‑
viduals present size distortions that can lead to misleading inference (Banerjee et al. 
2005). Moreover, Baltagi et al. (2007) examined the performance of several panel 
unit root tests under spatial dependence, and found that tests assuming cross‑section 
independence perform better.

Therefore, following González‑Val and Lanaspa (2016), among all tests avail‑
able in the literature especially developed to deal with this issues (Breitung and Das 
2005; Breitung and Pesaran 2008; Gengenbach et al. 2010), we use Pesaran’s (2007) 
test for unit roots in heterogeneous panels with cross‑sectional dependence.8 The 
test of the unit root hypothesis is based on the t‑ratio of the OLS estimate of bi in the 
following cross‑sectional augmented Dickey–Fuller (denoted by CADF) regression:

where sit is again the log‑city share of city i in year t, ai is the individual city‑spe‑
cific average growth rate and st is the cross‑section mean of sit , st = N−1

∑N

j=1
sjt . To 

eliminate cross‑dependence, standard Dickey–Fuller (or augmented Dickey–Fuller) 
regressions are augmented with the cross‑section averages of lagged levels and the 
first differences of the individual series, such that the influence of the unobservable 
common factor is asymptotically filtered. The null hypothesis assumes that all series 
are non‑stationary, and Pesaran’s CADF is consistent under the alternative that only 
a fraction of the series is stationary. Nevertheless, the test does not allow for struc‑
tural breaks in the series.

Unfortunately, due to computational limitations, we cannot run the test using the 
full sample of cities; we must restrict our analysis to a sub‑sample of the largest 
cities considering groups from the 50 to the 500 largest cities. Nevertheless, this 
sample of largest cities represents around two‑thirds of the total country population 
in all years. Black and Henderson (2003) and González‑Val and Lanaspa (2016) 
highlighted one potential issue of sample selection in a dynamic framework: if the 
sample of cities is defined according to the largest units in the latest year, the analy‑
sis may be biased because these are the “winning” cities, namely those that have 
presented the highest growth rates over time. To deal with this potential problem, we 
define the groups of cities using two samples including the largest cities in the first 
(1880) and last (1970) years. Although the latter group may only include winning 
cities, the former group can also include information about cities that were impor‑
tant in 1880 but declined over time.

Table  4 shows the results of applying Pesaran’s panel unit root test.9 Panel A 
reports the results for the sample of largest cities in 1880. We find that the null 
hypothesis of a unit root is not rejected in most of the cases. The unit root is only 
rejected in two cases, for the groups including the 50 and 100 largest cities in 1880, 
when three lags and a trend are added. Panel B shows the results using a sample 
of the largest cities in 1970. In this case, the unit root hypothesis is not rejected in 

(7)Δsit = ai + bisi,t−1 + cist−1 + diΔst + eit,

8 Baltagi et al. (2007) concluded that Pesaran and Phillips–Sul tests seem to be the least affected by spa‑
tial dependence among units.
9 The test is calculated using the ‘pescadf’ Stata package.
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any case, even at the 10% significance level. Overall, both panels present strong evi‑
dence supporting a unit root in these samples of large cities, in line with the results 
obtained using time series analysis in the previous section. As a robustness check, 
we re‑estimated the test using 500 random samples of cities. For each sample, we 
draw 500 cities without replacement from the full sample of 2680 Belgian cities 
regardless of their size. We could not reject the null hypothesis of a unit root in any 
case for any model specification. Again, these results (not shown) strongly support 
random growth.10

Finally, in Table 5 we report the results from the Pesaran’s (2004) test for cross‑
sectional dependence (CD) for the same subsamples considered in Table 4. Results 
using the Frees’ (1995) test (not shown) are similar. The null hypothesis of cross‑
sectional independence is rejected in all cases, confirming the need for using a panel 
unit root test controlling for cross‑sectional dependence.

4  Conclusions

We examine urban growth in Belgium from 1880 to 1970 using unit root tests to 
check random growth in the long term. Our results add to the scarce literature on unit 
root testing in city sizes (Clark and Stabler 1991; Sharma 2003; Bosker et al. 2008), 
and, to our knowledge, this is the most comprehensive test of Gibrat’s law using unit 
root tests ever carried out as we consider annual data for all municipalities.

Using both time series and panel data unit root tests, we obtain strong valida‑
tion of the random growth hypothesis, that is, Gibrat’s law, which implies that urban 
growth is independent of the initial city size. This evidence supports a multiplicative 
growth process of cities in Belgium, and this kind of growth is consistent with many 
theoretical urban economics models (Gabaix 1999; Eeckhout 2004; Duranton 2007; 
Córdoba 2008). Nevertheless, even if city shares follow a unit root, this growth 
process is compatible with a degree of convergence in the evolution of city growth 
rates; that is, with some kind of mean‑reverting component (Gabaix and Ioannides 
2004).

The long‑term pattern of random growth does not imply that the city size distri‑
bution has remained static over the years. On the contrary, a unit root implies that all 
shocks have had permanent effects on the city share, and, in particular, when allow‑
ing for structural breaks, we find that exogenous historical shocks had a permanent 
effect on city shares: the timing of the structural breaks coincides with some major 
historical events, such as the World Wars and the economic crisis of 1929–1933.

The alternative explanations for random growth considered in the literature are, 
basically, locational fundamental theories and increasing returns to scale (Davis and 
Weinstein 2002). Although our results are not specifically a test of random growth 
versus locational fundamentals or random growth versus increasing returns to scale, 
the strong support obtained for random growth clearly cast some doubts on the rel‑
evance of the two alternative theories in the Belgian case in the long‑term.

10 These results are available from the authors upon request.
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This evidence is consistent with previous research for other countries. To give 
some examples, González‑Val et al. (2014) found that random growth (i.e., Gibrat’s 
law) holds for most cities in the US, Spain, and Italy, and Chauvin et  al. (2017) 
concluded that Brazil and the US both appear to adhere broadly to Gibrat’s law, but 
China and India do not. As random growth is a long‑term pattern, it involves that 
the city size distribution reaches a dynamic steady state. For this reason, Chauvin 
et al. (2017) explained that Gibrat’s law holds in Brazil and the US because both are 
moderately sized places, which have long been largely urban, while China and India 
are much larger, and many of their cities are newer. In terms of our study using Bel‑
gian cities, it is natural that random growth emerges as the pattern of growth in the 
long‑term, considering similar arguments. First, Belgium is a small‑sized country. 
Second, as explained in the Introduction, both the industrialization and the comple‑
tion of transport infrastructures took place at the beginning of the sample period (in 
the late nineteenth and early twentieth centuries), implying that urbanization of the 
country began in the early twentieth century. Third, as in many European countries, 
most Belgian cities date from ancient times, so the urban system is consolidated.

However, our results raise new research questions. Our analysis captures the 
long‑term pattern of growth, but omits the dynamics towards steady state. In the 
short‑term, agglomeration economics and locational fundamentals may have been 
important in the transition to spatial equilibrium. In Chauvin et al. (2017) aspects 
such as mobility, rent‑earnings relationships or skill‑related factors can influence the 
steady state configuration. Further study on these economic factors could help to 
improve our knowledge about urbanization in Belgium and shed some light on the 
population dynamics in countries currently experiencing the urbanization process.
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