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a b s t r a c t 

The aim of this study is to propose a modified Susceptible-Exposed-Infectious-Removed 

(SEIR) model that describes the time behaviour of symptomatic, asymptomatic and hospi- 

talized patients in an epidemic, taking into account the effect of the demographic evolu- 

tion. Unlike most of the recent studies where a constant ratio of new individuals is consid- 

ered, we consider a more correct assumption that the growth ratio is proportional to the 

total population, following a Logistic law, as is usual in population growth studies for hu- 

mans and animals. An exhaustive theoretical study is carried out and the basic reproduc- 

tion number R 0 is computed from the model equations. It is proved that if R 0 < 1 then the 

disease-free manifold is globally asymptotically stable, that is, the epidemics remits. Global 

and local stability of the equilibrium points is also studied. Numerical simulations are used 

to show the agreement between numerical results and theoretical properties. The model 

is fitted to experimental data corresponding to the pandemic evolution of COVID-19 in the 

Republic of Cuba, showing a proper behaviour of infected cases which let us think that can 

provide a correct estimation of asymptomatic cases. In conclusion, the model seems to be 

an adequate tool for the study and control of infectious diseases. 
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1. Introduction 

Mathematical models have been a very important tool to study the evolution of epidemics since the early papers of 

Kermack and Mackendrick [1] . Since then, a lot of research has been developed in this area of knowledge [2] . Recently, the

COVID-19 epidemic [3,4] has motivated new studies. This epidemic characterizes by the large number of pre-symptomatic 

and asymptomatic patients [5] , which makes difficult to take effective governmental measures that control the disease [6] ,

and the classical epidemic models have been extended so that more compartments of individuals (asymptomatic, hospital- 

ized, etc.) have been taken into account [7,8] . 

In many studies of epidemics a constant population is assumed and neither new individuals (births) nor deaths are con- 

sidered as in [9] where a multiregional model is considered to study the spatio temporal heterogeneity of an epidemic. In

others it is included the variation of the population due to COVID-19 fatalities, but no births or natural deaths are con-

sidered. This is the case for example in [10] where the transmissibility of superspreaders individuals is studied. In [11] , an

individual reaction and governmental action based on some parameters of 1918 influenza pandemic is investigated. In that 

study, natural deaths are considered but no new individuals are introduced. 

The assumption that the total population is constant and neither births nor deaths are taken into account is reasonable,

for modeling epidemics in which the disease spreads rapidly through the population and eradicates in a short time. However, 

when the population growth or decrease is significant or the disease cause enough deaths, the assumption of constant 

population is not realistic. One of the most usual ways to include births and natural deaths is to assume that they are

proportional to the total population. If N(t) is the population, � is the birth ratio and μ is the death ratio, then 

N 

′ = ( � − μ) 

(
1 − N 

N max 

)
N. 

If � − μ > 0 , the population grows initially exponentially and it tends to the carrying capacity N max . If � − μ < 0 , the

population decreases exponentially and if � = μ the population stays constant. If N(0) = 0 , there can not be new individuals

and the population stays zero forever (it is an equilibrium point). 

Even though this is the most accepted model for population growth, and it had been used in previous models [12] , in

most of the recent studies of COVID-19, a constant ratio of birds has usually been assumed as in [13] where a theoretical

study of a SAIRS compartmental model with vaccination is made. In [14] the dynamical behaviour of SIRS epidemic models 

were studied. In [15] the individual behavioural response due to information regarding proper precaution is analyzed, in 

[16] a model for evaluating a possibility to prevent, or delay, the local outbreaks of COVID-19 through restriction on travel

form is implemented, in [17] it is analyzed how immigration, protection, death rate, exposure, cure rate and interaction 

of infected people with healthy people affect the population and in [18] it is proposed a hybrid computation technique to

construct an epidemic model. These papers are a few of many others were it is assumed that the population evolves (in

absence of infection) according to the equation 

N 

′ = � − μN, 

that has a solution N(t) = 

[
N(0) − �

μ

]
e −μt + 

�
μ . With this model, if N(0) < �/μ, the population always grows up (even if

N(0) = 0 ) to the maximum value �/μ. This is not realistic if for example the birth ratio is smaller than the death ratio.

This model represents in fact a population where a constant ratio of new people is introduced, as for example in [19] that

studied an experiment with mice in laboratory. 

In this paper we consider a model for the evolution of the epidemics that extends SEIR model by adding asymptomatic

and hospitalized groups and includes terms for the demography evolution (births and deaths), in which the ratio of new 

individuals is proportional to the total population, according to a Logistic law. We analyze the differences in the behaviour 

of the solution with respect to models with constant growth ratio, that can be relevant. Thus, in the case of constant ratio

it is usual the existence of a unique disease free equilibrium point and the origin is not an equilibrium point, whereas with

ratio proportional to the total population, there can be a manifold of disease-free equilibrium points and the origin is always

an equilibrium point. 

In Section 2 , we present the mathematical model with “correct” demographic term and analyze it theoretically. We prove 

the positivity of the solutions. Next,we obtain the basic reproductive number R 0 and we prove that the disease free manifold

is globally asymptotically stable if R 0 < 1 . Then, we analyze the stability of the equilibrium points of the system, showing its

dependence with the value of R 0 . In Section 3 , we present some numerical simulations showing the dependency between

numerical and theoretical results. In Section 4 , we fit the parameters of the model with real data from Cuba showing that

this model can reproduce the time behaviour of symptomatic and hospitalized cases. Then, we do the discussions of results 

and finally we present the conclusions. 

2. Methods 

2.1. Mathematical model 

We consider an extended SEIR model with six states: susceptible ( S(t) ), exposed ( E(t) ), infected symptomatic ( I(t) ),

infected asymptomatic ( A (t) ), hospitalized-isolated ( H(t) ) and recovered ( R (t) ) as shown in Fig. 1 . 
2
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Fig. 1. Schematic representation for the formulation of the mathematical model for COVID-19 epidemic. 

 

 

 

 

 

 

 

In the model, β (in days −1 ) is the transmission rate, μ (in days −1 ) the natural death rate, � (in days −1 ) the birth rate,

σ−1 (in days) the latent time, γ −1 (in days) the time between symptom onset to hospitalization, p the ratio between symp- 

tomatic and asymptomatic patients, k −1 
1 

(in days) the average recovery time of asymptomatic patients, k −1 
2 

(in days) the 

average recovery time of hospitalized patients and δ−1 (in days) is the average time that an hospitalized patient dies. 

Ramírez-Torres et al. [20] report that β changes over time and depends on transmission rate of SARCoV-2 strain, government 

measures, risk perception and social responsibility. For simplicity, we will assume that β is constant. 

The relationships between these states are represented by the following system of ordinary differential equations ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d S 

d t 
= �N − βS(I + A ) 

N 

− (� − μ) 
N 

2 

N max 
− μS 

d E 

d t 
= 

βS(I + A ) 

N 

− (σ + μ) E 

d I 

d t 
= pσE − (γ + μ) I 

d A 

d t 
= (1 − p) σE − (k 1 + μ) A 

d H 

d t 
= γ I − k 2 H − (δ + μ) H 

d R 

d t 
= k 1 A + k 2 H − μR 

(1) 

where N is the total population, N(t) = S(t) + E(t) + I(t) + A (t) + H(t) + R (t) . Let us note that in this model, since we are

considering births and deaths, the total population N changes with time. 

We have not included in system (1) the evolution of the dead people since the analysis of the system can be done

without it. Nevertheless, we can easily obtain the evolution of the dead people by adding the equation D 

′ = μN + δH. 

As mentioned in the introduction, unlike other models [7,8,13–18] where the ratio of new individuals is considered con- 

stant, we are considering it as �N, proportional to the total population, in agreement with the usual models of population

growth. This can be more realistic than constant growth ratio, where, instead of the first equation of system (1) it would

read 

S ′ = � − βS 
(I + A ) 

N 

− μS. 

Denoting P = (S, E, I, A, H, R ) T , the system can be formulated in compact form as 

d P 

d t 
= F (P ) . 

The vector field F (P ) is well defined whenever N ≥ 0 . Moreover, variables of the differential system (1) have biological

interpretation only when all of them are non negative. Thus, we will consider the domain 

D = { P ∈ R 

6 such that S, E, I, A, H, R ≥ 0 } . (2) 

If P ∈ D, we will write P ≥ 0 . 

Note that the differential system is autonomous and we can assume, without loss of generality, that the initial time is

t = 0 . 
0 

3 
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2.2. Positivity of the solution 

Theorem 1. The proposed system of differential Eq. (1) has a unique solution in D. Moreover, if the initial condition of the system

is such that all the variables are non-negative, P (0) ∈ D, then all variables remain non negative over time. In other words, if the

initial condition is in the positive hyperquadrant, the solution remains in this hyperquadrant. 

Proof. The vector field F is continuous in D, and also differentiable (except at the zero point). The partial derivatives are

uniformly bounded and therefore, the vector field is Lipschitz in the domain D. This guarantees the existence and uniqueness

of solution. 

Now, to prove the positivity of the solutions, let us suppose that all variables are non negative at a certain time t ∗.

Obviously, N(t ∗) > 0 since otherwise we would be in the null equilibrium solution. We will show that if at t ∗ a variable, let

us name it generically X(t ∗) , becomes zero, the first derivative that does not vanish at t ∗ must be positive, X (k ) (t ∗) > 0 and

therefore X(t) > 0 for t � t ∗. 

First, if the S variable vanishes at t ∗ and N(t ∗) > 0 , then S ′ (t ∗) > 0 and necessarily S(t) is positive for t ≥ t ∗. 

It is observed that if E(t ∗) = I(t ∗) = A (t ∗) = 0 , their derivatives also vanish at that point and therefore, it would be E(t) =
I(t) = A (t) = 0 for all t (equilibrium point of this subsystem, regardless of the values that S, H, R have). Furthermore, in this

case, H 

′ = −(δ + k 2 + μ) H and R ′ = k 2 H − μR , consequently both are non negative for all t > t ∗. 

If E(t ∗) = 0 , then 

E ′ (t ∗) = β
S(t ∗)(I(t ∗) + A (t ∗)) 

N(t ∗) 
− (σ + μ) E(t ∗) , 

E ′′ (t ∗) = S ′ (t ∗) β
(I(t ∗) + A (t ∗)) 

N(t ∗) 
+ (I ′ (t ∗) + A 

′ (t ∗)) β
S(t ∗) 
N(t ∗) 

− βS(t ∗)(I(t ∗) + A (t ∗)) 
N 

′ (t ∗) 
N(t ∗) 2 

− (σ + μ) E ′ (t ∗) . 

If S(t ∗)(I(t ∗) + A (t ∗)) > 0 , then E ′ (t ∗) > 0 . If S(t ∗) = 0 but (I(t ∗) + A (t ∗)) > 0 then E ′ (t ∗) = 0 , S ′ (t ∗) > 0 and E ′′ (t ∗) > 0 .

If (I(t ∗) + A (t ∗)) = 0 , then E(t ∗) = I(t ∗) = A (t ∗) = 0 . In conclusion, E(t) > 0 for t � t ∗. 

If this analysis is performed with the other variables and proceeding in a similar way to the E(t ∗) case, it is proved that

these variables remain non negative at t ≥ t ∗ if they cancel out at t ∗. �

The positivity of the solutions can also be proved in a similar way in the case of considering a constant growth ratio. 

2.3. Stability of disease free manifold 

If E = I = A = 0 , the system (1) reduces to 

S ′ = �(S + H + R ) − μS − (� − μ) 
(S + H + R ) 2 

N max 
. 

Note that by the uniqueness of solution of system (1) , if some of E(0) , I(0) or A (0) are not zero there cannot be any

time t at witch these three variables vanish simultaneously. 

The contagion-free manifold will be defined as the set 

CF M = { (S, 0 , 0 , 0 , H, R ) T , S, H, R ≥ 0 } , (3)

and as we have observed, it is an invariant manifold. 

Let us consider a point Q 

∗ in the CF M. The Jacobian matrix of the vector field at Q 

∗ can be written as follows 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

A B B − βS ∗
N ∗ B − βS ∗

N ∗ B B 

0 −(σ + μ) βS ∗

N ∗
βS ∗

N ∗ 0 0 

0 pσ −(γ + μ) 0 0 0 

0 (1 − p) σ 0 −(k 1 + μ) 0 0 

0 0 γ 0 −(k 2 + δ + μ) 0 

0 0 0 k 1 k 2 −μ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

with 

A = (� − μ) 

[
1 − 2 

N 

∗

N max 

]
, B = � − 2(� − μ) 

N 

∗

N max 
and N 

∗ = S ∗ + H 

∗ + R ∗. 

This matrix has the eigenvalue (�−μ)(N max −2 N ∗) 
N max 

, and its associated eigenvector is (1 , 0 , . . . , 0) T . This means that the com-

ponent of the fundamental solution associated with the eigenvalue (�−μ)(N max −2 N ∗) 
N max 

only affects the first variable S. The 

behaviour of the other variables will depend on the remaining five eigenvalues. The eigenvalue −μ has the eigenvector 

(−1 , . . . , 0 , 1) T . The component associated with the eigenvalue −μ affects the variables S and R . Another eigenvalue is
4 
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−(k 2 + δ + μ) , whose eigenvector is 

(
δ(�N max −2(�−μ) N ∗) 

k 2 (N max (k 2 + δ+�) −2(�−μ) N ∗) 
, 0 , 0 , 0 , − k 2 + δ

k 2 
, 1 

)T 

. The component of the solution associ- 

ated with this eigenvalue affects the variables S, H and R . This means that the behaviour of the variables E, I and A around

the point Q 

∗ depends only on the three remaining eigenvalues. 

The remaining three eigenvalues are those of the main submatrix of J of dimension 3 obtained by eliminating the first 

and the last two rows and columns. The trace of this submatrix is clearly negative and a necessary condition for the equi-

librium point not to be unstable is that its determinant is negative, that is, 

βσ

[
S ∗

S ∗ + H 

∗ + R 

∗

]
( (1 − p)(γ + μ) + p(k 1 + μ) ) − (k 1 + μ)(γ + μ)(μ + σ ) < 0 , (4) 

that can be written in the form 

S ∗

S ∗ + H 

∗ + R 

∗R 0 < 1 , (5) 

with 

R 0 = 

β(k 1 pσ + pμσ + (1 − p)(γ + μ) σ ) 

(γ + μ)(k 1 + μ)(μ + σ ) 
. (6) 

Applying the Routh-Hurwitz criterion to the submatrix of J associated to the variables E, I, A , we obtain that the eigen-

values of this submatrix have negative real part if and only if Eq. (5) is satisfied. If we impose the condition to be satisfied

for all points Q 

∗ in the CF M, then it must be R 0 < 1 , that is, the CF M is locally stable if R 0 < 1 . 

If we apply the new generation matrix method reported in [21,22] at a point Q 

∗ in the CF M, we obtain the matrices 

F = 

( 

0 

βS ∗

S ∗+ H ∗+ R ∗
βS ∗

S ∗+ H ∗+ R ∗
0 0 0 

0 0 0 

) 

, 

V −1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 

(μ + σ ) 
0 0 

σ p(k 1 + μ) 

(k 1 + μ)(γ + μ)(μ + σ ) 

1 

(γ + μ) 
0 

− (p − 1) σ

(k 1 + μ)(μ + σ ) 
0 

1 

(k 1 + μ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

The basic reproduction number is given by the maximum absolute value of the eigenvalues of the matrix FV −1 , that is,

its spectral radius. In this case we obtain the expression Eq. (5) and if we consider the maximum value in S ∗, H 

∗, R ∗, that is

in the whole CF M, we obtain R 0 in Eq. (6) as the basic reproductive number. 

Let’s analyze when this variety is globally asymptotically stable, that is, under what conditions on the parameters E(t) →
0 , I(t) → 0 , A (t) → 0 regardless of the values taken by S, H, R . Consider the equations associated with E, I and A , given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dE 

dt 
= 

βS(I + A ) 

N 

− (σ + μ) E 

dI 

dt 
= pσE − (γ + μ) I 

dA 

dt 
= (1 − p) σE − (k 1 + μ) A 

. (7) 

These three equations can be rewritten as 

y ′ = My − v , (8) 

where 

y = (E, I, A ) T , (9) 

and 

M = 

( −(σ + μ) β β
pσ −(γ + μ) 0 

(1 − p) σ 0 −(k 1 + μ) 

) 

, v = 

( 

g(t) 
0 

0 

) 

, (10) 

with 

g(t) = β(I(t) + A (t)) 

(
1 − S(t) 

N(t) 

)
. 

It is clear that g(t) ≥ 0 ∀ t . 
5 
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In order to prove the global stability, we will make use of the following comparison Theorem 

Theorem 2. Let us suppose that 

• x = (x 1 . . . , x n ) 
T is a vector of R n . 

• f (t, x ) is a Lipschitz continuous function in [ t 0 , ∞ ] × E , E open subset of R n , which is quasi monotonic, non decreasing, that

is, each component of f i (t, x 1 , . . . , x n ) is monotonic non decreasing in the variables x j with j 	 = i . 
• y (t) is a differentiable function in R with y (t) ∈ E . 
• z(t) is a solution of z ′ = f (t, z) . 
• y i (t 0 ) ≤ z i (t 0 ) ∀ i . 
• y ′ 

i 
(t) ≤ f i (t, y ) ∀ i and ∀ y ∈ E . 

Then y i (t) ≤ z i (t) , i = 1 , 2 , . . . , n ∀ t. 

Proof. This result is a particular case of Corollary 1.7.1 in [23] and also of comparison Theorems in [24] . �

Then, we can state the following stability result. 

Theorem 3. If R 0 < 1 , then E(t) → 0 , I(t) → 0 and A (t) → 0 and disease free manifold is globally stable. 

Proof. Let us apply Theorem 2 with y (t) the solution of (8) and f (t, y ) = My . It is clear that My is a quasi monotonic non

decreasing function since the non diagonal elements of M are non negative. It is also clear that y ′ 
i 
≤ f i (t, y ) because g(t) is

greater or equal to zero. Taking y (0) = z(0) we conclude that y i (t) ≤ z i (t) for all t > 0 . Now let us note that the matrix M is

in fact the submatrix of J obtained by eliminating the first and the last two rows and columns and putting H 

∗ = R ∗ = 0 . Then

if R 0 < 1 , the three eigenvalues of M have real part smaller than 0 and z(t) → 0 . Consequently, y (t) → 0 (note that y i (t) ≥ 0 ).

This proves the global stability of the contagious free manifold. Additionally, if we include in Eq. (8) the equation (linear)

of system (1) corresponding to H(t) , with the same reasoning we obtain that H(t) → 0 , and the disease free contagious

manifold is globally asymptotically stable. �

Remark 1. The above results are also true for the case of considering a constant growth ratio. There is however a relevant

difference in the evolution of the susceptible population. Whereas in the case of constant growth ratio S always tends to its

maximum value �/μ ( S tends to be equal to N if μ > 0 ), when the growth ratio is proportional to the total population, S

tends to zero if � < μ, or tends to a constant if � ≥ μ, as we will see in the next subsections. 

2.4. Stability of the equilibrium points 

2.4.1. Case � > μ
If parameters of the system (1) are all positive, this system of equations has two critical points, P ∗1 = (N max , 0 , 0 , 0 , 0 , 0) T 

and P ∗
2 

= (0 , 0 , 0 , 0 , 0 , 0) T . Moreover, denoting 

α = 

δγμpσ (R 0 − 1) 

R 0 (� − μ) [ (γ + μ)(μ + σ )(δ + k 2 + μ) − δγ pσ ] 
, (11) 

when R 0 > 1 and 0 ≤ α ≤ 1 there exist a third equilibrium point P ∗
3 

= (S ∗, E ∗, I ∗, A 

∗, H 

∗, R ∗) T given by 

S ∗ = 

N 

∗

R 0 

, (12) 

E ∗ = 

(γ + μ)(k 2 + δ + μ)(� − μ)(α(1 − α) N max ) 

pσγ δ
, (13) 

I ∗ = 

(k 2 + δ + μ)(� − μ)(α(1 − α) N max ) 

γ δ
, (14) 

A 

∗ = 

(1 − p)(γ + μ)(k 2 + δ + μ)(� − μ)(α(1 − α) N max ) 

pγ δ(k 1 + μ) 
, (15) 

H 

∗ = 

(� − μ)(α(1 − α) N max ) 

δ
, (16) 

R 

∗ = 

(� − μ)(α(1 − α) N max ) 

μδ

[
k 1 (1 − p)(γ + μ)(k 2 + δ + μ) 

pγ (k 1 + μ) 
+ k 2 

]
, (17) 

and 

N 

∗ = N max (1 − α) . (18) 
6 
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Concerning P ∗1 , the Jacobian matrix of the system is 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−(� − μ) −(� − 2 μ) −(� − 2 μ) − β −(� − 2 μ) − β −(� − 2 μ) −(� − 2 μ) 

0 −(μ + σ ) β β 0 0 

0 pσ −(γ + μ) 0 0 0 

0 (1 − p) σ 0 −(k 1 + μ) 0 0 

0 0 γ 0 −(δ + k 2 + μ) 0 

0 0 0 k 1 δ −μ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (19) 

This matrix has the eigenvalue −(� − μ) and its associated eigenvector is ( 1 , 0 , . . . , 0 , 0 ) . This means that the compo- 

nent of the fundamental solution associated with the eigenvalue −(� − μ) affects the variables S. The behaviour of the 

other variables will depend on the remaining five eigenvalues. The eigenvalue −μ has the eigenvector (−1 , . . . , 0 , 1) T . The

component associated with the eigenvalue −μ affects the variables S and R . Another eigenvalue is −(δ + δ + μ) , and has

the eigenvector (− k 2 (�−μ) 
δ(k 2 + δ+2 μ−�) 

, 0 , 0 , 0 , − k 2 + δ
δ

, 1) T . This means that the component of the fundamental solution associated

with the eigenvalue −(δ + δ + μ) affects the variables S, H and R . This means that the behaviour of the variables E, I and A

around the point P ∗1 depends only on the three remaining eigenvalues. 

The remaining three eigenvalues are those of the main submatrix of J of dimension 3 obtained by eliminating the first 

and the last two rows and columns. The trace of this submatrix is clearly negative and a necessary condition for the equi-

librium point not to be unstable is that its determinant is negative, that is, 

βσ ((1 − p)(γ + μ) + p(k 1 + μ)) − (k 1 + μ)(γ + μ)(μ + σ ) < 0 , (20) 

There we concluded that the system (1) is stable if three eigenvalues of submatrix J have negative real part and this is

fulfilled if and only if R 0 < 1 , with R 0 given by Eq. (6) . This value coincides with the one obtained by the new generation

matrix method [21,22] . 

For equilibrium point P ∗
2 

the Jacobian matrix of the system has some components with the term 

βS(S + E + A + H + R ) 

( S + E + I + A + H + R ) 
2 
, 

which is not continuous when variables tend to zero. Therefore, we cannot use linearization to study the local stability of

the origin. 

We will obtain next some conditions on the parameters of the model and the initial conditions for which the population

tends globally to the equilibrium point P ∗
1 

and the origin can not be stable. 

Theorem 4. If � > μ and R 0 < 1 , there exist a constant K such that if N(0) > K, then the total population N(t) tends to N max 

when t → ∞ , that is, P ∗1 is globally asymptotically stable. 

Proof. Let us consider the linear system ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d ̂  E 

dt 
= β ˆ I + β ˆ A − (σ + μ) ̂  E 

d ̂ I 

dt 
= pσ ˆ E − (γ + μ) ̂ I 

d ̂  A 

dt 
= (1 − p) σ ˆ E − (k 1 + μ) ̂  A 

d ̂  H 

dt 
= γ ˆ I − k 2 ̂  H − (δ + μ) ̂  H 

. (21) 

whose general solution has the form 

ˆ P (t) = C 1 � v 1 e λ1 t + C 2 � v 2 e λ2 t + C 3 � v 3 e λ3 t + C 4 � v 4 e λ4 t , (22) 

where λ1 , λ2 , λ3 are the eigenvalues of the matrix M in (10) , λ4 = −(k 2 + δ + μ) and v i are the corresponding eigenvectors.

Proceeding as in Theorem 3 , the components E, I, A, H of the solution of system (1) are upper bounded by the ones of

Eq. (21) and in particular 

H(t) ≤ ˆ H (t) = B 1 e 
λ1 t + B 2 e 

λ2 t + B 3 e 
λ3 t + B 4 e 

λ4 t . (23) 

where B i are constants that depend on the eigenvectors v i and the initial conditions. 

Denoting u = max i Reλi , if R 0 < 1 , then u < 0 , H(t) goes to zero and there exists a constant B such that 

H(t) ≤ Be ut , u < 0 , (24) 
7 
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Adding the equations of system (1) , we get 

d N/ d t = (� − μ) 

[
1 − N 

N max 

]
N − δH. (25) 

If the bound (24) is substituted in Eq. (25) we get 

dN 

dt 
≥ (� − μ) 

[
1 − N 

N max 

]
N − δBe ut . (26) 

If there exist a constant ˆ N < N max such that 

N(t) ≤ ˆ N < N max , ∀ t, (27) 

then 

dN 

dt 
≥ (� − μ) αN − δBe ut , (28) 

where 

α = 

[
1 −

ˆ N 

N max 

]
, (29) 

which implies 

N(t) ≥
[

N(0) − δB 

u − (� − μ) α

]
e (�−μ) αt + 

δB 

u − (� − μ) α
e ut , (30) 

and since � − μ > 0 , if N(0) > 

δB 
u −(�−μ) α

, N(t) would tend to infinity, which contradicts that N(t) ≤ ˆ N . 

Note that the constant B depends on the initial conditions E(0) , I(0) , A (0) , H(0) and therefore S(0) + R (0) must be large

enough with respect to the other initial conditions. �

The above result let us know that the population grows with time if R 0 < 1 and the initial population is large enough.

We will see next that under a little more restrictive condition on R 0 , the total population grows with time whatever the

initial population is. 

Theorem 5. If � − μ > 0 and 

ˆ R 0 = 

βσ [ k 1 p + (1 − p) γ ] 

γ k 1 σ
< 1 , (31) 

then S(t) tends to N max when t → ∞ . 

Proof. From system (1) we have 

R 

′ (t) = k 1 A + K 2 H − μR (t) ≥ −μR (t) , (32) 

There exist a point t 0 for which R (t 0 ) > 0 (note that if R (0) = 0 , from Theorem 1 R (t) > 0 in a neighbourhood of 0). Then,

we have the bound 

R (t) ≥ R (t 0 ) e 
−μt , ∀ t ≥ t 0 , (33) 

Now, note that R 0 is a decreasing monotone function with respect to μ. Therefore R 0 ≤ ˆ R 0 < 1 for any μ > 0 and

Theorem 3 applies. There exist a constant K such that 

I(t) + A (t) ≤ Ke ut , ∀ t ≥ t 0 , (34) 

u being the maximum real part of the eigenvalues of matrix M in Eq. (10) . Let us suppose again that N(t) ≤ ˆ N < N max . Using

Eq. (33) and Eq. (34) in the first equation of system (1) , we obtain 

S ′ (t) ≥ (� − μ) αS − Sβ
I + A 

I + A + R 

, 

S ′ (t) ≥ S 

[
(� − μ) α − β

Ke ut 

Ke ut + R (t 0 ) e −μt 

]
, ∀ t ≥ t 0 . 

(35) 

Since ˆ R 0 < 1 , then u < −μ and consequently 

Ke ut 

Ke ut + R (t 0 ) e −μt 
→ 0 . (36) 
8 
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Table 1 

Parameters for numerical study of stability of 

system (1) . 

Parameters Values 

N 10000 

N max 100000 

p 0.5500 

k −1 
1 

(days) 14.0000 

σ−1 (days) 5.1000 

k −1 
2 

(days) 20.0000 

δ−1 (days) 15.0000 

γ −1 (days) 3.0000 

β 1.000 

R 0 6.7824 

 

 

 

 

 

 

 

 

 

 

 

 

 

There will exist a time t ∗ and a positive constant C such that 

(� − μ) α − β
Ke ut 

Ke ut + R (t 0 ) e −μt 
≥ C > 0 , ∀ t ≥ t ∗. (37) 

Therefore, 

S ′ (t) ≥ CS(t) , ∀ t ≥ t ∗, (38) 

which would imply that S(t) tends to infinity. This contradicts that N(t) < = 

ˆ N and therefore N(t) tends to N max . This means

that S(t) tends to N max . 

Recall that u = max Reλi , where λ1 , λ2 , λ3 are the eigenvalues of M and λ4 = −(k 1 + δ + μ) < μ. Then, the condition

u < −μ is equivalent to say that the real parts of the eigenvalues of M are smaller than −μ. But, the eigenvalues of M are

precisely the eigenvalues of the matrix M with μ = 0 minus μ, that is 

λi (μ) = λi (μ = 0) − μ, which implies that u < −μ if Reλi (mu = 0) < 0 . 

The eigenvalues λi (μ = 0) have real part smaller than 0 if and only if ˆ R 0 = R 0 (μ = 0) < 1 and this proves the

theorem. �

Remark 2. If a constant growth ratio is considered, it can be proved that if R 0 < 1 , the total population tends to �/μ
whatever the values of � and μ are. 

Concerning the critical points P ∗
2 

and P ∗
3 

, a theoretical analysis is complex and we have not been able to prove their

stability. However, an exhaustive numerical study has led us to the following conclusion. 

Conjecture 1. If R 0 > 1 

• And α ∈ (0 , 1) , then P (t) → P ∗
3 

. 
• And α ≥ 1 , then P (t) → P ∗

2 
. 

In order to show numerically these results, an experimental simulation is presented here for three different initial con- 

ditions P ∗11 (8520 , 10 0 0 , 10 0 , 80 , 20 0 , 0) , P ∗22 (6310 , 50 0 , 50 , 40 , 10 0 , 0) , and P ∗33 (3740 , 20 0 0 , 20 0 , 160 , 40 0 , 150 0) . We calculate

numerically the phase portraits of the system (1) and found that all trajectories end at the conjectured equilibrium points

for the parameters shown in Table 1 . These phase portraits ( Appendix A ) suggest that the system (1) can be asymptotically

stable. 

2.4.2. Case � < μ
First, by adding the equations of system (1) , we get 

d N/ d t = (� − μ) 

[
1 − N 

N max 

]
N − δH. 

If parameters of the system (1) are all positive, this system of equations has two critical point P ∗1 = (N max , 0 , 0 , 0 , 0 , 0) T 

and P ∗
2 

= (0 , 0 , 0 , 0 , 0 , 0) T . For P ∗
1 

the jacobian matrix of the system (1) is calculated in Section 2.4.1 by Eq. (19) . For this

equilibrium point at least one of the eigenvalues has a positive real part therefore, the system is unstable. The Jacobian

matrix of the system for point P ∗2 is not continuous at zero and we can not use linearization to study the local stability.

Nevertheless it is possible to see that this point is globally stable. 

Theorem 6 (Global stability of P ∗
2 

). If at t = 0 , all variables are non negative and � < μ, they tend to zero when t → ∞ . 

Proof. As � < μ, if H ≥ 0 , the total population N decreases and tends to zero as t tends to infinity. By Theorem 1 , H(t) ≥ 0 ,

which implies that N 

′ (t) ≤ (� − μ) 
[
1 − N 

N max 

]
N. Therefore, N(t) → 0 when t → ∞ , and since all variables are non negative,

they must tend to zero. �
9 
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This result confirms that the proposed model is consistent with the biological system, because all variables in system 

(1) tend to zero, but does not provide information on the epidemic behaviour. In practice, the values of � and μ are small.

If � < μ, total population will tend to die after a long time, but what we want to know is if the epidemic remits ( E, I, A, H

tend to zero) in a reasonable period of time, leaving only the S and R populations, or the epidemic becomes endemic

( E, I, A, H tend to zero slowly, at a speed similar to that of S), or if the epidemic affects the entire population ( S, E, I, A, H

tend to zero in a reasonable period of time). According to Theorem 3 if the basic reproduction number R 0 is smaller than

1, the infection remits exponentially at least as e ut , u being the largest real part of matrix M in (8) . If u < −μ, the infection

remits faster than the natural dead speed, that is, the disease remits (see (35) and use (36) ). Nevertheless, if u is close to

−μ, the infection can stay active for a long time. Additional information can be obtained by studying the cases � = μ and

� = μ = 0 . 

Note that if we compute R 0 by applying the new generation matrix methods reported in [21,22] at the null equilibrium

point we obtain again the value (6) . 

2.4.3. Case � = μ
In this case, the total population satisfies 

d N/ d t = −δH, 

which implies that N(t) is non negative and decreases if H ≥ 0 . This means that N(t) has a limit N 

∗ ≥ 0 when t → ∞ . 

If parameters of the system (1) are positive, any point P ∗ = (S ∗, 0 , 0 , 0 , 0 , 0) T is an equilibrium point. The Jacobian matrix

of the system at the equilibrium point (limit of the Jacobian matrix at a point P when it tends to P ∗) with S ∗ > 0 can be

written as follows 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 −β −β 0 0 

0 −(σ + μ) β β 0 0 

0 pσ −(γ + μ) 0 0 0 

0 (1 − p) σ 0 −(k 1 + μ) 0 0 

0 0 γ 0 −(k 2 + δ + μ) 0 

0 0 0 k 1 k 2 −μ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

This matrix has the eigenvalue 0, the eigenvector associated with this eigenvalue is (1 , 0 , . . . , 0) T . This means that

the component of the fundamental solution associated with the eigenvalue 0 only affects the first variable S. The be-

haviour of other variables will depend on the remaining five eigenvalues. The eigenvalue −(k 2 + δ + μ) has the eigenvector

(0 , 0 , 0 , 0 , − k 2 + δ
δ

, 1) T . The component associated with the eigenvalue −(k 2 + δ + μ) only affects the variables H and R . An-

other eigenvalue is −μ, whose eigenvector is (0 , 0 , 0 , . . . , 1) T . The component of the solution associated with this eigenvalue

only affect the variable R . This means that the behaviour of the variables E, I and A depends on the three remaining eigen-

values. 

The remaining three eigenvalues are those of the main submatrix of dimension 3 obtained by eliminating the first and 

the last two rows and columns. But this submatrix is the same as the one studied in Section 2.3 , but with H 

∗ = R ∗ = 0 . There

we concluded that their three eigenvalues have negative real part (u < 0) if and only if R 0 < 1 , with R 0 given by Eq (6) . This

value coincides with that obtained by the new generation matrix method [21,22] . 

If R 0 > 1 , all the equilibrium points (except possibly the zero point) are unstable. If R 0 < 1 , since the Jacobian matrix has

an eigenvalue zero, we can not conclude their stability. 

Note that at the origin the Jacobian matrix of the system (1) is not defined (there is no limit when all variables tend to

zero) and the linearization theorem cannot be applied. The following results give some insight about their stability. 

Lemma 1. Let f (t) be a twice differentiable function, with a second derivative bounded at [0 , ∞ ) . If lim t→∞ 

| f (t) | = f ∗ < ∞
then lim t→∞ 

f ′ (t) = 0 . 

Proof. First, if f ′ (t) does not vanish when t → ∞ , we can ensure that for large t
∣∣ f ′ (t) 

∣∣ > M that implies that f (t) cannot 

be bounded. If f ′ (t) has no limit, the upper and lower limit are real numbers, not equal to each other and there exist a

constant α such that, 

lim inf 
t→∞ 

f ′ (t) < α < lim sup 

t→∞ 

f ′ (t) 

In addition, lim inf f ′ (t) · lim sup f ′ (t) ≤ 0 because otherwise we ensure that 
∣∣ f ′ (t) 

∣∣ > M for large enough t . From the def-

inition of upper limit, there exists a sequence of values of f (t) approaching the upper limit, and another sequence of values

of f (t) approaching the lower limit. Let us suppose that α > 0 (the case α < 0 is similar). There exist infinite sequences { t k }
10 
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and { s k } , such that, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

k = 1 , 2 , 3 , 4 . . . . 

t 1 < s 1 < t 2 < s 2 < . . . → ∞ 

f ′ (t k ) > α

f ′ (s k ) = 

α

2 

f ′ (t) ≥ α

2 

t ∈ [ t k , s k ] . 

The second derivative is bounded by a positive constant K and applying the mean value theorem, we obtain 

α

2 

≤
∣∣ f ′ (t k ) − f ′ (s k ) 

∣∣ ≤ K | t k − s k | , 
therefore, 

| t k − s k | ≥ α

2 K 

. 

Applying again the mean value theorem, for some c ∈ (t k , s k ) 

| f (t k ) − f (s k ) | = f ′ (c) | t k − s k | ≥ α2 

4 K 

. 

But this inequality contradicts the Cauchy condition, which states that 

lim t→∞ 

| f (t) − f (s ) | = 0 , 

s > t 

and consequently, 

lim inf 
t→∞ 

f ′ (t) = 0 , lim sup 

t→∞ 

f ′ (t) = 0 . �

Lemma 2. If the initial conditions are non negative, P (0) ∈ D, and � = μ, then S(t) , E(t ) , I(t ) , A (t ) , H(t ) , R (t ) are bounded

and have two bounded derivatives in [ t 0 , ∞ ] . 

Proof. It is a direct consequence of the form of system (1) , the boundedness of N and Theorem 3 . �

Lemma 3. If the initial conditions are non negative, P (0) ∈ D, and � = μ, then N(t) has a limit N 

∗ ≥ 0 when t → ∞ and

lim t→∞ 

N 

′ (t) = 0 . 

Proof. It is consequence of Lemma 1 . �

Lemma 4. If � = μ 	 = 0 and lim t→∞ 

S(t) = 0 , then lim t→∞ 

N(t) = 0 and all variables tend to zero when t tends to infinity. 

Proof. From Lemma 1 , if S(t) tends to zero, then S ′ (t) tends to zero, and using the first equation in (1) , N(t) tends to

zero. �

Theorem 7. Let us consider the system (1) with initial condition P (0) ∈ D, and � = μ 	 = 0 . Then 

• Any solution tends to an equilibrium point (S ∗, 0 , 0 , 0 , 0 , 0) when t → ∞ . 
• If (31) is satisfied, then any solution whose initial condition does not vanish tends to an equilibrium point with S ∗ > 0 . The

origin is unstable. 
• If R 0 > 1 , then N(t) → 0 when t → ∞ . The origin (equilibrium point with S ∗ = 0 ) is globally asymptotically stable. 
• If R 0 < 1 , then the equilibrium points P ∗ with S ∗ > 0 are stable. 

Proof. According to Lemma 3 , N(t) has limit N 

∗ ≥ 0 and its derivative tends to zero when t tends to infinity. Therefore,

H(t) also tends to zero, and since its second derivative is bounded at [ t 0 , ∞ ] , we can ensure that H 

′ (t) → 0 . This implies

that I(t) tends to zero and therefore also I ′ (t) → 0 . From the third of the differential equations, E(t) should tend to zero, so

that E ′ (t) → 0 , and hence either S(t) → 0 , which implies (by Lemma 4 ) that the solution tends to the origin, or A (t) → 0 .

In this case, E(t) , I(t) , A (t) and H(t) → 0 , so R (t) → 0 . This implies that the solution tends to an equilibrium point P ∗. 

From the first equation of system (1) it is clear that 

S ′ ≥ �R − β(I + A ) . (39) 

Proceeding as in Theorem 5 and using the bounds (33) and (34) , we obtain 

S ′ ≥ R (t 0 ) e 
−μt 

[
� − β

ke ut 

R (t 0 ) e −μt 

]
, (40) 

where u is again the maximum real part of the eigenvalues of the matrix M in (10) . 
11 
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If Eq. (31) is satisfied, then | u | > | μ| and 

ke ut 

R (t 0 ) e −μt 
→ 0 . (41) 

There will exist a time t ∗ such that [
� − β

ke ut 

R (t 0 ) e −μt 

]
≥ D > 0 , ∀ t ≥ t ∗, (42) 

Therefore, for t > t ∗, S(t) is an increasing and upper bounded function that must have a limit S ∗ > 0 . If R 0 > 1 , then all

the equilibrium points with S ∗ > 0 are unstable. 

To prove the stability of P ∗, let us see that there exists ε > 0 for δ > 0 , such that if ‖ P (0) − P ∗ ‖ < ε, then ‖ P (t) − P ∗ ‖ < δ,

∀ t . Let us consider the maximum norm and ‖ P (0) − P ∗ ‖ < ε. We must see that ‖ S(t) − S ∗ ‖ < δ, and that for any other

variable X , | X (t) | < δ. Comparing the solution of system (1) with the one of the linear system (21) , as in Theorem 5 , we

obtain that 

X (t) ≤ ke − min {| u | ,μ} t max { E(0) , I(0) , A (0) , H(0) , R (0) } . (43) 

Since ‖ P (0) − P ∗ ‖ < ε, we have that 

X (t) ≤ kεe − min {| u | ,μ} t ≤ kε, (44) 

and in particular 

I(t) + A (t) ≤ 2 kεe − min {| u | ,μ} t . (45) 

Now, from the first equation of system (1) 

−β(I(t) + A (t)) ≤ S ′ (t) ≤ �(I(t) + A (t)) , (46) 

which implies that 

| S ′ (t) | ≤ max { β, �} 2 kεe − min {| u | ,μ} t . (47) 

Using the fundamental theorem of calculus 

| S(t) − S(0) | = 

∣∣∣∣
∫ t 

0 

S ′ (x ) dx 

∣∣∣∣ ≤ max { β, �} 2 kε

∫ t 

0 

e − min {| u | ,μ} x dx = 

max { β, �} kε 1 

min {| u | , μ} 
(
1 − e − min { μ} t ) ≤ 2 k 

max { β, �} 
min {| u | , μ} ε = Lε. 

(48) 

Taking ε < 

δ

L + 1 
and ε < 

δ

k 
, we deduce 

| S(t) − S ∗| ≤ | S(t) − S(0) | + | S(0) − S ∗| ≤ (L + 1) ε < δ, (49) 

and 

| x (t) | < δ, (50) 

which proves the stability. �

Theorem 7 proves that if R 0 > 1 all the equilibrium points with S ∗ > 0 are unstable, but the origin is a globally stable

point. The COVID-19 disease has a high transmission (due to SARS-CoV-2 virus is very contagious) and S goes to zero quickly

or well the infection remains active for a long time. 

If R 0 < 1 , the theorem states the stability of the equilibrium points with S ∗ > 0 , but does not states the stability or the

unstability of the origin. However, if (31) is satisfied, the origin is unstable. The infection disappears with time and the

population tends to a stable value N 

∗ = S ∗. 

2.4.4. Case � = μ = 0 

This is a particular case of � = μ, so the total population obeys the following equation 

d N/ d t = −δH. 

Total population N decreases if H ≥ 0 , this means that N(t) has a limit N 

∗ ≥ 0 . The difference with the general case � = μ
is that in this case the critical points are P ∗ = (S ∗, 0 , 0 , 0 , 0 , R ∗) T at which the Jacobian matrix of the system (1) is 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 − βS ∗

S ∗+ R ∗ − βS ∗

S ∗+ R ∗ 0 0 

0 −(σ ) βS ∗

S ∗+ R ∗
βS ∗

S ∗+ R ∗ 0 0 

0 pσ −(γ ) 0 0 0 

0 (1 − p) σ 0 −(k 1 ) 0 0 

0 0 γ 0 −(k 2 + δ) 0 

0 0 0 k 1 k 2 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 
12 
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This matrix has the eigenvalue 0 double. The eigenvectors associated with this eigenvalue are (0 , 0 , . . . , 1) T and

(1 , . . . , 0 , 0) T . This means that the component of the fundamental solution associated with the eigenvalue 0 only affects

the first variable S and the last variable R . The behaviour of other variables will depend on the remaining four eigenvalues. 

Another eigenvalue is −(δ + k 2 ) , whose eigenvector is (0 , 0 , 0 , 0 , − k 2 + δ
k 2 

, 1) T . This means that the behaviour of the vari-

ables E, I and A depends on the three remaining eigenvalues, which are those of the main submatrix of dimension 3 obtained

by eliminating the first and the last two rows and columns. This submatrix was already studied in Section 2.3 , where we

concluded that their three eigenvalues have negative real part if and only if 

ˆ R 0 
S ∗

S ∗ + R 

∗ < 1 , (51) 

with 

ˆ R 0 the basic reproductive number with μ = 0 , that is 

ˆ R 0 = R 0 (μ = 0) = 

β[ γ (1 − p) + k 1 p] 

k 1 γ
, (52) 

which means that the equilibrium point is stable if 

S ∗ + R 

∗

S ∗
> 

ˆ R 0 . (53) 

The global stability of the equilibrium points is studied in a similar way to the case � = μ, so the following theorem can

be stated. 

Theorem 8. All solution of the differential system (1) with � = μ = 0 , whose initial condition has all its components non nega-

tive, tends to an equilibrium point (S ∗, 0 , 0 , 0 , 0 , R ∗) T when t tends to infinity. 

In this case, if we apply the method employed in Section 2.3 we obtain precisely the condition (51) . 

Taking into account the local stability result, given an equilibrium point, the limit point S ∗ and R ∗ will be such that

Eq. (53) is satisfied. In other words, the solution of system (1) will tend to an equilibrium point P ∗ for which S ∗ and R ∗

satisfy Eq. (53) . As R 0 increases, S ∗ decreases and Eq. (53) is satisfied. 

3. Results 

3.1. Statistics 

We use the simulation annealing algorithm for model fitting [25] , in this process the sum of the squared errors between

the original data and predicted values by model are minimized to obtain the best parameters for this fit. The quality of

model fitting is verified by criteria for model assessment: r 2 , SSE, RMSE [26] and relative error (RE) [3] , given by 

SSE = 

n ∑ 

j=1 

(
x j − x jre f 

)2 
, (54) 

1 − r 2 = 

∑ n 
j=1 

(
x j − x jre f 

)2 

∑ n 
j=1 

(
x jre f 

)2 − 1 

n 

∑ n 
j=1 

(
x jre f 

)2 
, (55) 

RMSE = 

√ ∑ n 
j=1 

(
x j − x jre f 

)2 

n 

, (56) 

RE = 

√ ∣∣| x − x re f | 
∣∣

2 ∣∣| x re f | 
∣∣

2 

. (57) 

In Eq. (54) –(57) , x re f are data daily provided by the Ministry of Health, whereas x are those obtained from the model

fitting, and n is the number of experimental data. 

3.2. Simulation 

In this section, we will validate the theoretical results obtained in Section 2 by considering several cases: the case where

� > μ with � = 0 . 015 and μ = 0 . 01 , the case where � < μ with � = 0 . 008 and μ = 0 . 01 , the case where � = μ 	 = 0 with

� = 0 . 008 , and the case where � = μ = 0 . For each case we assume N max = 10 0 0 0 0 and an initial population around 10 0 0 0,

ensuring that we are far from the carrying capacity N max . Additionally, we choose three values of β such that the corre-

sponding values of R (see Eq. 6 and 52 ) are smaller than, approximately equal to or grater than 1 ( Table 2 ). 
0 
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Table 2 

Values of basic reproduction numbers R 0 for simulation of 

system (1) . 

β (days −1 ) � > μ � < μ � = μ � = μ = 0 

R 0 R 0 R 0 R 0 

0.05 0.3391 0.3391 0.3496 0.3975 

0.20 1.3565 1.3565 1.3983 1.5910 

1.00 6.7824 6.7824 6.9915 7.9500 

Table 3 

Value of each parameter for simulation and cal- 

culation of R 0 . 

Parameters Values 

Population 11380 

S(t = 0) = S(0) 8520 

E(t = 0) = E(0) 1000 

I(t = 0) = I(0) 100 

A (t = 0) = A (0) 80 

H(t = 0) = H(0) 200 

R (t = 0) = R (0) 0 

p 0.5500 

k −1 
1 

(days) 14 

σ−1 (days) 5.1000 

k −1 
2 

(days) 20 

δ−1 (days) 15 

γ −1 (days) 3 

Fig. 2. Simulation of system (1) for � = 0 . 015 , μ = 0 . 01 , β = 0 . 05 days −1 and R 0 = 0 . 3391 . a) Infected symptomatic (blue line), hospitalized (red line) and 

infected asymptomatic (dashed green line) cases b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 

 

 

 

 

 

 

The other parameters of the model and the initial conditions for those exposed, infected, infected asymptomatic, hospi- 

talized and recovered cases are kept constant ( Table 3 ). 

Parameters values in Table 2 are taken arbitrarily, except σ−1 (in days) and k −1 
1 

(in days) that are those reported in [27] .

Parameter values are kept constant to perform the calculation of R 0 and simulations of temporal behaviour of symptomatic 

(blue line), asymptomatic (dashed green line), hospitalized patients (red line), susceptible (magenta line) and recovered 

(black line) cases, as shown in Fig. 5 to Fig. 12 . For numerical solution of the system (1) , the ODE45 algorithm implemented

in the Matrix Laboratory (MATLAB) is used [28] . 

3.2.1. Case � > μ
Figures 2 a, 3 a and 4 a show the temporal behaviour of infected symptomatic (blue line), hospitalized (red line) and in-

fected asymptomatic (dashed green line) cases while in Figs. 2 b, 3 b and 4 b the susceptible (magenta line), recovered (black

line), and the total populations (dashed blue line) are shown. 

The simulations reveal that the total population and the number of susceptible people grow with time, and the infected, 

asymptomatic and hospitalized cases tend to zero when R 0 < 1 , in agreement with Theorems 3, 4 and 5 , respectively. When

R > 1 , the susceptible tend to the carrying capacity and the infected, asymptomatic and hospitalized grow with time. The
0 
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Fig. 3. Simulation of system (1) for � = 0 . 015 , μ = 0 . 01 , β = 0 . 2 days −1 and R 0 = 1 . 3565 . a) Infected symptomatic (blue line), hospitalized (red line) and 

infected asymptomatic (dashed green line) cases b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 

Fig. 4. Simulation of system (1) for � = 0 . 015 , μ = 0 . 01 , β = 1 days −1 and R 0 = 6 . 7824 . a) Infected symptomatic (blue line), hospitalized (red line) and 

infected asymptomatic (dashed green line) cases b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 

 

 

 

 

 

 

 

 

 

 

number of infected people increases and the growth velocity of susceptible people decreases faster as R 0 increases. The 

number of hospitalized cases depends on the values of γ , β and R 0 , showing different scenarios. First, hospitalized cases 

depend on the symptomatic and asymptomatic cases, as show in Figs. 2 a, 3 a and 4 a. Second, the number of hospitalized

cases is lower than that the asymptomatic cases when R 0 ≥ 1 ( Figs. 3 a and 4 a). 

3.2.2. Case � < μ
Figures 5 a, 6 a and 7 a show the temporal behaviour of infected symptomatic (blue line), hospitalized (red line) and in-

fected asymptomatic (dashed green line) cases while in Figs. 5 b, 6 b and 7 b the susceptible (magenta line), recovered (black

line), and the total populations (dashed blue line) are shown. 

The simulation results reveal that the total population tends to zero in all the cases, in agreement with Theorem 6. Note

that population decreases quickly initially, but after some time it decreases exponentially as e −μt and since μ is small, the

decreasing is very slow. It can be verified that with a larger value of μ the population tends to zero much faster. For the

shake of brevity we have not included this simulation in the paper and we have included the most realistic cases. The

number of infected people increases and the value of susceptible people decreases faster as R 0 increases. The number of

hospitalized cases depends on the values of γ , β and R 0 , and two possible scenarios appear. First, hospitalized cases depend

on infected symptomatic and asymptomatic cases with prevalence of asymptomatic patients ( Figs. 5 a, 6 a and 7 a). Second,

the number of hospitalized patients is always less than the asymptomatic when R ≥ 1 ( Figs. 6 a and 7 a). 
0 
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Fig. 5. Simulation of system (1) for � = 0 . 008 , μ = 0 . 01 , β = 0 . 05 days −1 and R 0 = 0 . 3391 . a) Infected symptomatic (blue line), hospitalized (red line) and 

infected asymptomatic (dashed green line) cases b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 

Fig. 6. Simulation of system (1) for � = 0 . 008 , μ = 0 . 01 , β = 0 . 2 days −1 and R 0 = 1 . 3565 . a) Infected symptomatic (blue line), hospitalized (red line) and 

infected asymptomatic (dashed green line) cases b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 

Fig. 7. Simulation of system (1) for � = 0 . 008 , μ = 0 . 01 , β = 1 days −1 and R 0 = 6 . 7824 . a) Infected symptomatic (blue line), hospitalized (red line) and 

infected asymptomatic (dashed green line) cases b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 
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Fig. 8. Simulation of system (1) for � = 0 . 008 , μ = 0 . 008 , β = 0 . 05 days −1 and R 0 = 0 . 3496 . a) Infected symptomatic (blue line), hospitalized (red line) 

and infected asymptomatic (dashed green line) cases b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 

Fig. 9. Simulation of system (1) for � = 0 . 008 , μ = 0 . 008 , β = 0 . 2 days −1 and R 0 = 1 . 3983 . a) Infected symptomatic (blue line), hospitalized (red line) and 

infected asymptomatic (dashed green line) cases b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 

Fig. 10. Simulation of system (1) for � = 0 . 008 , μ = 0 . 008 , β = 1 days −1 and R 0 = 6 . 9915 . a) Infected symptomatic (blue line), hospitalized (red line) and 

infected asymptomatic (dashed green line) cases b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 
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Fig. 11. Simulation of system (1) for � = 0 , μ = 0 , β = 0 . 05 days −1 and R 0 = 0 . 3975 . a) Infected symptomatic (blue line), hospitalized (red line) and 

infected asymptomatic (dashed green line) cases b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 

Fig. 12. Simulation of system (1) for � = 0 , μ = 0 , β = 0 . 2 days −1 and R 0 = 1 . 5910 . a) Infected symptomatic (blue line), hospitalized (red line) and infected 

asymptomatic (dashed green line) cases b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3. Case � = μ
Figures 8 a, 9 a, 10 a show the temporal behaviour of infected symptomatic (blue line), hospitalized (red line) and infected

asymptomatic (dashed green line) cases while in Figs. 8 b, 9 b, 10 b the susceptible (magenta line), recovered (black line) and

the total populations (dashed blue line) are shown. 

The simulation results reveal that the solution of system (1) tends to an equilibrium point (S ∗, 0 , 0 , 0 , 0 , 0) , in all the

cases, in agreement with Theorem 7 . The value of S ∗ depends on R 0 and decreases as R 0 increases. For R 0 > 1 , the infected,

asymptomatic and hospitalized tend to zero, very slowly, and S ∗ is zero, in agreement with Theorem 7 . The total population

N tends to zero faster as R 0 increases. The number of hospitalized cases depends on the values of γ , β y R 0 , showing

different possible scenarios. First, hospitalized cases depend on the symptomatic and asymptomatic infected, as shown in 

Figs. 8 a, 9 a, 10 a. Second, the number of hospitalized patients is always lower than the asymptomatic when R 0 ≥ 1 , as can

be seen in the Figs. 9 a, 10 a. 

3.2.4. Case � = μ = 0 

Figures 11 a, 12 a, 13 a show the temporal behaviour of infected symptomatic (blue line), hospitalized (red line) and in-

fected asymptomatic infected (dashed green line) cases while in Figs. 11 b, 12 b, 13 b the susceptible (magenta line), recovered

(black line) and the total populations (dashed blue line) are shown. 

The simulation results reveal that the solution tends in all the cases to an equilibrium point (S ∗, 0 , 0 , 0 , 0 , R ∗) , in agree-

ment with Theorem 8 . For R 0 < 1 , the value S ∗ is not far from the initial value S 0 and most of the people do not suffer

the infection. The total population decreases due to the infection, but not much. The effect of the disease is moderated.

For R 0 ≈ 1 , the values of S ∗ and R ∗ are smaller and larger respectively than the ones for R 0 < 1 . The population decreases a

little more and the effect of the disease is more important than in the previous case. For R 0 > 1 , S ∗ is close to zero, which

means that almost the whole population gets infected (the recovered people is practically equal to the total population). The 
18 
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Fig. 13. Simulation of system (1) for � = 0 , μ = 0 , β = 1 days −1 and R 0 = 7 . 9500 . a) Infected symptomatic (blue line), hospitalized (red line) and infected 

asymptomatic (dashed green line) cases. b) Susceptible (magenta line), recovered (black line) and total populations (dashed blue line). 

Table 4 

Parameters obtained from model fitting COVID- 

19 data of Republic of Cuba. 

Parameters Values 

Population 11201549 

� 2.68x10 −5 

μ 2.67x10 −5 

β 0.2027 

p 0.5995 

k −1 
1 

(days) 14.0000 

σ−1 (days) 5.1000 

k −1 
2 

(days) 10.8342 

δ−1 (days) 19.6516 

γ −1 (days) 1.4384 

R 0 1.3107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

population is clearly reduced and the effect of the epidemic is remarkable. The number of hospitalized cases depends on 

the values of γ , β y R 0 . These show different possible scenarios. First, hospitalized cases depend on the symptomatic and

asymptomatic infected as shown in Figs. 11 a, 12 a, 13 a. Second, the number of hospitalized patients is always lower than the

asymptomatic when R 0 ≥ 1 , as can be seen in the Figs. 12 a and 13 a. 

4. Model fitting 

To fit system (1) , we used official data of accumulated, infected, hospitalized and eliminated cases of COVID-19 in Cuba

provided by the Ministry of Public Health (MINSAP) that displayed on the web platform ( https://covid19cubadata.github.io ). 

We chose data reported for 429 days of pandemic from March 12, 2020 to May 15, 2021 for Cuba. The total population

(N(0)) , the birth rate ( �) and death rate ( μ) are calculated from the data reported in the MINSAP statistical yearbook

[29] . Values of latent time, σ−1 (in days), and the average recovery time of asymptomatic patients ( k −1 
1 

, in days) are taken

from Lauer et al. [27] . Initial values of infected ( I(0) ) and hospitalized ( H(0) ) cases are taken from official data. The initial

susceptible ( S(0) ) and recovered ( R (0) ) are assumed equal to 99% of total population and zero, respectively. Finally, the

values of initial asymptomatic patient ( A (0) ), initial exposed patient ( E(0) ), �, β , p, δ−1 , γ −1 and k −1 
2 

are estimated from

model. 

Fitting the model to the data by a least squares approach, we obtain the parameters shown in Table 4 . Figure 14 shows

experimental data (for symptomatic and hospitalized cases), model fitting (for symptomatic and hospitalized cases) and 

simulation of infected asymptomatic cases. We can see from this figure that the model fits data of number of infected

symptomatic cases but not for hospitalized cases. It is important to point out that all the infected (symptomatic and asymp-

tomatic) cases and suspected individuals of COVID-19 are hospitalized in the Republic of Cuba. Nevertheless, in the model 

the hospitalized are a fraction of these infected cases. 

The value of R 0 = 1 . 3107 obtained from model fitting is close to that reported from experimental data corresponding

to March 13, 2020 ( R 0 = 1 . 3457 ). Both R 0 values corroborate our simulations corresponding to the case R 0 ≈ 1 and � = μ.

Values of criteria for model assessment proposed in Section 3.1 are shown in Table 5 . 
19 
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Fig. 14. Fit of system (1) from March 12, 2020 to May 15, 2021. 

Table 5 

Parameter values of quality of the model fitting. 

Parameters Symptomatic cases Hospitalized cases 

r 2 
a 

0.8533 0.8917 

SSE b 1.1751x10 3 4.4926x10 3 

RMSE c 1.600x10 3 4.4348x10 3 

RE d 0.3825 0.3287 

a Goodness of fit, b Sum of squares error, c Root mean square error, d Relative error 

 

 

 

 

 

 

 

 

5. Discussion 

The modified SEIR model fits well to the reported COVID-19 data with r 2 in the range 0 . 85 − 0 . 89 . It is plausible that

the supplied data, has many fluctuations and likely subject to a large uncertainty. It may be mentioned: 1) fluctuacting 

behaviours in the number of active and hospitalized cases due to unwanted epidemiological events in the Republic of Cuba. 

These unwanted epidemiological events are due to native transmission and transmission by travellers originating in other 

countries with high COVID-19 transmission and new strains of SARS-CoV-2. 2) Introduction of new strains of SARS-CoV- 

2, as South Africa (variant B.1.551), United Kingdom (variant B.1.1.7), California (variant B.1.429), Brazil (variants B.1.1.28.1 

and B.1.2.28.2), and India (variant B.1.617 or delta strain). These strains have higher transmission rates than original Wuhan 

strain (variant D614G), which prevails in the Republic of Cuba from March 2020 up to April 2021. 3) Seven new protocols for

confrontation to COVID-19 that have been introduced according to epidemiological situation. 4) Clinical trials (Phases I-III) 

of Abdala and Soberana-02 vaccine candidates. These reasons explain why model fitting system (1) of experimental data is 

not totally good in the study period selected, one of limitations of this study. Another limitation of this study is that β and

R 0 are considered constants in our model; nevertheless, epidemiological studies evidence that these two parameters change 

over time [21,22,30–32] . 

These two above-mentioned limitations may be solved if this study period is analyzed by section, taking into account 

the protocol, transmission rate of SARS-CoV-2 strain type, government measures, perception risk of individuals and social 

responsibility of individuals. For this, a further study is being carried out. 

Despite these two limitations, β , p and R 0 values obtained from model fitting to experimental data ( Table 4 ) agree with

epidemiological data reported every week to MINSAP, from November 2020 up to the end May 2021. β = 0 . 2027 days −1 

agrees with its β values (0 . 2 ≤ β ≤ 0 . 4) reported in [20,33] . R 0 = 1 . 3107 belongs to interval [0 . 068 , 2 . 85] , agrees with re-

ported daily by MINSAP. 

Simulations and model fitting to experimental data corroborate that the propagation of the COVID-19 disease depends 

on R 0 ( Eq. (6) and (52) ), which is directly proportional to β and p parameters, in agreement with the definition itself of R 0 
[30–32] . If the time behaviour of β (named β(t) ) reported in [20] is introduced in Eq. (6) and (52) , we would corroborate

that R 0 depends also on t , in agreement with [21,22,30–32] . 

On the other hand, R 0 is directly related to p and its value may contribute to speed up COVID-19 propagation (see

Eqs. (6) and (52) ). The value obtained for p = . 5995 is consistent with the rapid spread of COVID-19 and prevalence of

symptomatic cases in the period March 2020 - May 2021. This does not mean that asymptomatic cases become infected 

later and/or they are capable of infecting other susceptible individuals. This depends on the type of dominant and circulat- 
20 
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ing SARS-CoV-2 strain, strenght of immune system (immunodeficient and immunocompetent patients), and environmental 

conditions. It should be noted that these asymptomatic patients are not hospitalized because they have no symptoms or are 

mild. Furthermore, none of them die. Nevertheless, some unvaccinated cases with comorbidities die when they are infected 

with the Delta variant. These deceased cases are reported from June 2021. 

From epidemiological point of view, p = . 5995 means that more than half of the infected cases are detected, indicating

that the government policy in the COVID-19 confrontation is correct. Furthermore, this p value agrees with the number of 

asymptomatic cases reported in the Republic of Cuba (55.0%) in this observation period, in agreement with [34] . 

The values of k −1 
2 

, δ−1 and γ −1 obtained from model fitting of experimental data ( Table 4 ) allow to consider that μ can

be neglected respect to k 1 , γ and σ in Eqs. (6) and (52) . As μ is very small, R 0 does not change significantly with σ . This

confirms that R 0 does not depend on incubation time of any SARS-CoV-2 strain in the host but infected individual that has

associated an average number of infected contacts (definition of R 0 ) [30–32] . Furthermore, the definition itself of R 0 justifies

that it does not depend on δ and k 2 either. This is also expected because in our model it is assumed that a hospitalized

person does not contribute to generate new infected. Nevertheless, δ value is very important because it directly affects the 

number of deaths due to the infection. In these situations, R 0 is dominated by β and p, as expected. Additionally, results of

Table 4 and μ very small allow to obtain an expression for R 0 when p = 0 proportional to β/ k 1 
, this suggest that when p is

small the progression of the disease depends on the recovery time average of asymptomatic patients k −1 
1 

. On the other hand,

if p = 1 we can obtain an expression for R 0 proportional to β/ γ , this suggest that for p large (close to 1) the progression

of the disease will depend on the time between symptoms onset to hospiltalization γ −1 . Taking into account that 1 / k 1 
is

larger than 1 /γ , we conclude that p large will give smaller values of R 0 . Consequently, policies tending to get p as large as

possible, and making γ as large as possible ( k 1 depends on the disease and can not be modified) will reduce the value of

R 0 . 

From temporal behaviour of symptomatic, asymptomatic and hospitalized cases, it can be observed that these take their 

maximum value depending on the β , γ and R 0 values, as shown in the Figs. 5 to 13 . For case � < μ, the number of Infected

cases ( I) always reaches its minimum value at zero and its quick growth depends strongly on R 0 . Nevertheless, the number

of infected cases for � = μ and � = μ = 0 always reaches a minimum value at zero and this depends on the R 0 value,

being remarkable for � = μ. 

The simulation and fit of proposed model, resulted in that if the time between symptom onset to hospitalization ( γ −1 )

increases, the average of hospitalization time ( k −1 
2 

) and average of time that an hospitalized patient died ( δ) also increases.

This fact, suggests that the earlier the treatment protocol is started, the less time the patient is hospitalized, as suggested in

[35] . Nevertheless, if we analyse the pandemic in two periods of time the average of time that an hospitalized patient died

( δ) should increase due to the development of new treatment protocols [36] but did not vary much. This may be justified by

the presence of new SARS-CoV-2 strains with higher virulence, pathogenicity, invasiveness, and diffusibility, as delta variant. 

The number of symptomatic cases higher than that hospitalized cases is not observed in Republic of Cuba. Simulations 

reveal this unfavourable scenery when the time between symptom onset to hospitalization ( γ −1 ) increases. This suggest, 

that the active search of infected can help to control the pandemic. 

6. Conclusion 

We have proposed a modified SEIR mathematical model that explicitly includes asymptomatic and hospitalized cases, 

to help the epidemiological study of infectious diseases, as evidenced for COVID-19. We have also included the effect of 

demography in the model, considering that the population grows proportionally to the total population, which leads to 

solutions with behavior that differs from those obtained in models where the ratio is considered constant. We have studied 

the stability of the model and we have verified these stability results with some numerical simulations. We computed and 

verified the basic reproduction number corresponding to the model and showed that this number determines the qualitative 

evolution of the disease. This model was fitted with experimental data from Republic of Cuba and we have shown that it

model reproduces the evolution of the experimental data. This suggest that the model can be a useful tool. Nevertheless, this

model is adequate only for one peak, and this is the reason why research is continuing to obtain an algorithm to improve

these results. 

Data availability 

Data will be made available on request. 
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Fig. A.1. Phase portrait of system (1) for different initial conditions (blue line) and equilibrium point (red). 

22 



A.R.S. Castañeda, E.E. Ramirez-Torres, L.E. Valdés-García et al. Applied Mathematics and Computation 456 (2023) 128122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 

[1] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London Ser.A 115 (772) (1927) 700–721, doi: 10.

1098/rspa.1927.0118 . 

[2] M. Martcheva, An Introduction to Mathematical Epidemiology, Vol. 61, Springer, 2015, doi: 10.1007/978- 1- 4899- 7612- 3 . 
[3] L. Peng, W. Yang, D. Zhang, C. Zhuge, L. Hong, Epidemic analysis of COVID-19 in China by dynamical modeling, arXiv preprint arXiv:2002.06563 (2020).

[4] A.G. Neves, G. Guerrero, Predicting the evolution of the COVID-19 epidemic with the A-SIR model: Lombardy, Italy and Sao Paulo State, Brazil, Physica
D 413 (2020) 132693, doi: 10.1016/j.physd.2020.132693 . 

[5] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, J. Shaman, Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus
(SARS-CoV-2), Science 368 (6490) (2020) 489–493, doi: 10.1126/science.abb3221 . Publisher: American Association for the Advancement of Science 

[6] W. McKibbin, R. Fernando, The global macroeconomic impacts of COVID-19: seven scenarios, Asian Econ. Pap. 20 (2) (2021) 1–30, doi: 10.1162/asep _ a _

00796 . 
[7] E. Estrada, COVID-19 and SARS-CoV-2. modeling the present, looking at the future, Phys. Rep. 869 (2020) 1–51, doi: 10.1016/j.physrep.2020.07.005 .

COVID-19 and SARS-CoV-2. Modeling the present, looking at the future 
[8] F. Saldaña, J.X. Velasco-Hernández, Modeling the COVID-19 pandemic: a primer and overview of mathematical epidemiology, SeMA J. (2021) 1–27, 

doi: 10.1007/s40324- 021- 00260- 3 . 
[9] L. Brugnano, F. Iavernaro, P. Zanzottera, A multiregional extension of the SIR model, with application to the COVID-19 spread in Italy, Math. Methods

Appl. Sci. 44 (6) (2021) 4414–4427, doi: 10.1002/mma.7039 . 

[10] F. Ndaïrou, I. Area, J.J. Nieto, D.F. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos Solitons
Fractals 135 (2020) 109846, doi: 10.1016/j.chaos.2020.109846 . 

[11] Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S.S. Musa, M.H. Wang, Y. Cai, W. Wang, L. Yang, A conceptual model for the coronavirus disease 2019 (COVID-
19) outbreak in wuhan, china with individual reaction and governmental action, Int. J. Infect. Dis. 93 (2020) 211–216, doi: 10.1016/j.ijid.2020.02.058 .

Publisher: Elsevier 
[12] J. Mena-Lorcat, H.W. Hethcote, Dynamic models of infectious diseases as regulators of population sizes, J. Math. Biol. 30 (7) (1992) 693–716, doi: 10.

10 07/BF0 0173264 . 
[13] S. Ottaviano, M. Sensi, S. Sottile, Global stability of SAIRS epidemic models, Nonlinear Anal. Real World Appl. 65 (2022) 103501, doi: 10.1016/j.nonrwa.

2021.103501 . 

[14] Z. Hu, Z. Teng, H. Jiang, Stability analysis in a class of discrete SIRS epidemic models, Nonlinear Anal. Real World Appl. 13 (5) (2012) 2017–2033,
doi: 10.1016/j.nonrwa.2011.12.024 . 

[15] S. Saha, G. Samanta, J.J. Nieto, Epidemic model of COVID-19 outbreak by inducing behavioural response in population, Nonlinear Dyn. 102 (1) (2020)
455–487 . 

[16] C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng. 17 (3) (2020) 2708–2724, doi: 10.3934/
mbe.2020148 . 

[17] K. Shah, R.U. Din, W. Deebani, P. Kumam, Z. Shah, On nonlinear classical and fractional order dynamical system addressing COVID-19, Results Phys. 24

(2021) 104069, doi: 10.1016/j.rinp.2021.104069 . 
[18] M. Shoaib, M.A.Z. Raja, M.T. Sabir, A.H. Bukhari, H. Alrabaiah, Z. Shah, P. Kumam, S. Islam, A stochastic numerical analysis based on hybrid NAR-

RBFS networks nonlinear SITR model for novel COVID-19 dynamics, Comput. Methods Programs Biomed. 202 (2021) 105973, doi: 10.1016/j.cmpb.2021. 
105973 . 

[19] R.M. Anderson, R.M. May, Population biology of infectious diseases: Part I, Nature 280 (5721) (1979) 361–367, doi: 10.1038/280361a0 . 
[20] E.E. Ramirez-Torres, A.S. Castaneda, Y. Rodríguez-Aldana, S.S. Domínguez, L.V. García, A. Palú-Orozco, E.R. Oliveros-Domínguez, L. Zamora-Matamoros, 

R. Labrada-Claro, M. Cobas-Batista, Mathematical modeling and forecasting of COVID-19: experience in Santiago de Cuba province, Revista Mexicana 

de Física 67 (1 Jan-Feb) (2021) 123–136, doi: 10.31349/RevMexFis.67.123 . 
[21] O. Diekmann, J.A.P. Heesterbeek, M.G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface 7

(47) (2010) 873–885, doi: 10.1098/rsif.2009.0386 . Publisher: The Royal Society 
[22] A. Perasso, An introduction to the basic reproduction number in mathematical epidemiology, ESAIM Proc. Surv. 62 (2018) 123–138, doi: 10.1051/proc/

201862123 . Publisher: EDP Sciences 
[23] V. Lakshmikantham, S. Leela, Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations, Academic press, 

1969 . 

[24] A. McNabb, Comparison theorems for differential equations, J. Math. Anal. Appl. 119 (1) (1986) 417–428, doi: 10.1016/0022-247X(86)90163-0 . 
[25] L. Ingber, Simulated annealing: practice versus theory, Math. Comput. Model. 18 (11) (1993) 29–57 . Publisher: Elsevier 

[26] M.M. González, J.A.G. Joa, L.E.B. Cabrales, A.E.B. Pupo, B. Schneider, S. Kondakci, H.M.C. Ciria, J.B. Reyes, M.V. Jarque, M.A.O. Mateus, Is cancer a pure
growth curve or does it follow a kinetics of dynamical structural transformation? BMC Cancer 17 (1) (2017) 1–14, doi: 10.1186/s12885-017-3159-y .

Publisher: BioMed Central 
[27] S.A. Lauer, K.H. Grantz, Q. Bi, F.K. Jones, Q. Zheng, H.R. Meredith, A.S. Azman, N.G. Reich, J. Lessler, The incubation period of coronavirus disease 2019

(COVID-19) from publicly reported confirmed cases: estimation and application, Ann. Intern. Med. 172 (9) (2020) 577–582, doi: 10.7326/M20-0504 . 

Publisher: American College of Physicians 
[28] R. VRÁBEL’, V. LIŠKA, J. Vaclav, Remark on sensitivity of simulated solutions of the nonlinear dynamical system to the used numerical method, Int. J.

Math. Anal. 9 (43) (2015) 2749–2754, doi: 10.12988/ijma.2015.59236 . 
[29] MINSAP, ANUARIO ESTADÁSTICO DE SALUD, 2019, http://files.sld.cu/bvscuba/files/2020/05/Anuario-Electrónico-Espa ∼nol-2019-ed-2020.pdf . 

[30] C. Fraser, C.A. Donnelly, S. Cauchemez, W.P. Hanage, M.D. Van Kerkhove, T.D. Hollingsworth, J. Griffin, R.F. Baggaley, H.E. Jenkins, E.J. Lyons, T. Jombart,
W.R. Hinsley, N.C. Grassly, F. Balloux, A.C. Ghani, N.M. Ferguson, A. Rambaut, O.G. Pybus, H. Lopez-Gatell, C.M. Alpuche-Aranda, I.B. Chapela, E.P. Zavala,

D.M.E. Guevara, F. Checchi, E. Garcia, S. Hugonnet, C. Roth, T.W.R.P.A. Collaboration, Pandemic potential of a strain of influenza a (H1N1): early findings,

Science 324 (5934) (2009) 1557–1561, doi: 10.1126/science.1176062 . 
[31] K.T.L. Sy, L.F. White, B.E. Nichols, Population density and basic reproductive number of COVID-19 across United States counties, PLoS ONE 16 (4) (2021)

1–11, doi: 10.1371/journal.pone.0249271 . 
[32] P.L. Delamater, E.J. Street, T.F. Leslie, Y.T. Yang, K.H. Jacobsen, Complexity of the basic reproduction number (R0), Emerg. Infect. Dis. J. 25 (1) (2019),

doi: 10.3201/eid2501.171901 . 
[33] N.C. Bizet, A.C.M. de Oca, Modified SIR models for the evolution of COVID-19, Ciencias Matemáticas (2020) 73–87 . https://reliefweb.int/sites/reliefweb. 

int/files/resources/20210622 _ Weekly _ Epi _ Update _ 45.pdf 
[34] R. Subramanian, Q. He, M. Pascual, Quantifying asymptomatic infection and transmission of COVID-19 in New York city using observed cases, serology,

and testing capacity, Proc. Natl. Acad. Sci. 118 (9) (2021), doi: 10.1073/pnas.2019716118 . 

[35] I.F.-N. Hung, K.-C. Lung, E.Y.-K. Tso, R. Liu, T.W.-H. Chung, M.-Y. Chu, Y.-Y. Ng, J. Lo, J. Chan, A.R. Tam, H.-P. Shum, V. Chan, A.K.-L. Wu, K.-M. Sin, W.-
S. Leung, W.-L. Law, D.C. Lung, S. Sin, P. Yeung, C.C.-Y. Yip, R.R. Zhang, A.Y.-F. Fung, E.Y.-W. Yan, K.-H. Leung, J.D. Ip, A.W.-H. Chu, W.-M. Chan, A.C.-K. Ng,

R. Lee, K. Fung, A. Yeung, T.-C. Wu, J.W.-M. Chan, W.-W. Yan, W.-M. Chan, J.F.-W. Chan, A.K.-W. Lie, O.T.-Y. Tsang, V.C.-C. Cheng, T.-L. Que, C.-S. Lau,
K.-H. Chan, K.K.-W. To, K.-Y. Yuen, Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted

to hospital with COVID-19: an open-label, randomised, phase 2 trial, The Lancet 395 (10238) (2020) 1695–1704, doi: 10.1016/S0140- 6736(20)31042- 4 .
Publisher: Elsevier 

[36] N. Hossein-Khannazer, B. Shokoohian, A. Shpichka, H.A. Aghdaei, P. Timashev, M. Vosough, Novel therapeutic approaches for treatment of COVID-19, J.

Mol. Med. 98 (2020) 789–803, doi: 10.10 07/s0 0109- 020- 01927- 6 . Publisher: Springer 
23 

https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1007/978-1-4899-7612-3
http://arxiv.org/abs/arXiv:2002.06563
https://doi.org/10.1016/j.physd.2020.132693
https://doi.org/10.1126/science.abb3221
https://doi.org/10.1162/asep_a_00796
https://doi.org/10.1016/j.physrep.2020.07.005
https://doi.org/10.1007/s40324-021-00260-3
https://doi.org/10.1002/mma.7039
https://doi.org/10.1016/j.chaos.2020.109846
https://doi.org/10.1016/j.ijid.2020.02.058
https://doi.org/10.1007/BF00173264
https://doi.org/10.1016/j.nonrwa.2021.103501
https://doi.org/10.1016/j.nonrwa.2011.12.024
http://refhub.elsevier.com/S0096-3003(23)00291-6/sbref0014
https://doi.org/10.3934/mbe.2020148
https://doi.org/10.1016/j.rinp.2021.104069
https://doi.org/10.1016/j.cmpb.2021.105973
https://doi.org/10.1038/280361a0
https://doi.org/10.31349/RevMexFis.67.123
https://doi.org/10.1098/rsif.2009.0386
https://doi.org/10.1051/proc/201862123
http://refhub.elsevier.com/S0096-3003(23)00291-6/sbref0022
https://doi.org/10.1016/0022-247X(86)90163-0
http://refhub.elsevier.com/S0096-3003(23)00291-6/sbref0024
http://refhub.elsevier.com/S0096-3003(23)00291-6/sbref0024
https://doi.org/10.1186/s12885-017-3159-y
https://doi.org/10.7326/M20-0504
https://doi.org/10.12988/ijma.2015.59236
http://files.sld.cu/bvscuba/files/2020/05/Anuario-Electrcenico-Espa~nol-2019-ed-2020.pdf
https://doi.org/10.1126/science.1176062
https://doi.org/10.1371/journal.pone.0249271
https://doi.org/10.3201/eid2501.171901
https://reliefweb.int/sites/reliefweb.int/files/resources/20210622_Weekly_Epi_Update_45.pdf
https://doi.org/10.1073/pnas.2019716118
https://doi.org/10.1016/S0140-6736(20)31042-4
https://doi.org/10.1007/s00109-020-01927-6

	Modified SEIR epidemic model including asymptomatic and hospitalized cases with correct demographic evolution
	1 Introduction
	2 Methods
	2.1 Mathematical model
	2.2 Positivity of the solution
	2.3 Stability of disease free manifold
	2.4 Stability of the equilibrium points
	2.4.1 Case 
	2.4.2 Case 
	2.4.3 Case 
	2.4.4 Case 


	3 Results
	3.1 Statistics
	3.2 Simulation
	3.2.1 Case 
	3.2.2 Case 
	3.2.3 Case 
	3.2.4 Case 


	4 Model fitting
	5 Discussion
	6 Conclusion
	Acknowledgments
	Appendix A
	References


