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Abstract

Chronic kidney disease (CKD), a condition defined by a gradual decline in kidney function

over time, has become a global health concern affecting between 11 and 13% of the world

population [1]. As renal function declines, CKD patients gradually lose their ability

to maintain normal values of potassium concentration ([K+]) in their blood. Elevated

serum [K+], known as hyperkalemia, increases the risk for life-threatening arrhythmias

and sudden cardiac death [2].

An increase in serum [K+] outside the physiological range is commonly silent and is

only detected when hyperkalemia is already very severe or when a blood test is performed.

Maintenance and monitoring of [K+] in the blood is an important component in the

treatment of CKD patients because therapies for hyperkalemia management in CKD

patients are designed to prevent arrhythmias and to immediately lower serum [K+] to safe

ranges. However, this is currently only possible by taking a blood sample and is associated

with a long analysis time. Therefore it is useful to have a simple, noninvasive method to

estimate serum [K+], particularly using the electrocardiogram (ECG). Indeed, variations

in serum electrolyte levels have been shown to alter the electrical behavior of the heart

and to induce changes in the ECG [3–6]. However, large inter-individual variability exists

in the relationship between ion concentrations and ECG features. Previous attempts

to estimate serum [K+] from the ECG have therefore shown limitations [7–9], such as

not being applicable to some common types of ECG waveforms or relying on specific

ECG characteristics that may present large variations not necessarily associated with

hyperkalemia.

The aim of this thesis is to develop novel estimates of serum [K+] that are robust

enough to detect hypokalemia (reduced [K+]) or hyperkalemia in a timely manner to

provide life-saving treatment. Additionally, the effect of changes in other electrolyte

levels, like calcium concentration ([Ca2+]), and in heart rate are investigated. These aims

are achieved by combining novel ECG signal processing techniques with in silico modeling

and simulation of cardiac electrophysiology.

The specific objectives are:

1. Characterization of hypokalemia or hyperkalemia and hypocalcemia (reduced

[Ca2+]) or hypercalcemia (elevated [Ca2+])-induced changes in ventricular repolar-

ization from ECGs (T wave) of CKD patients. This is addressed in chapter 3 and

2



ABSTRACT 3

chapter 4. In these chapters, we describe how T waves are extracted from ECGs

and how we characterize changes in T waves at varying potassium, calcium and

heart rate using analyses based on time warping and Lyapunov exponents. Next,

univariable and multivariable regression models including markers of T wave non-

linear dynamics in combination with warping-based markers of T wave morphology

are built and their performance for [K+] estimation is assessed.

2. Characterization of hypo- or hyperkalemia and hypo- or hypercalcemia-induced

changes in ventricular depolarization from the QRS complex of CKD patients. This

is reported in chapter 5. In this chapter, we present how QRS complexes from ECGs

of CKD patients are processed and how we measure changes at varying [K+], [Ca2+]

and heart rate. Univariate and multivariate regression analyses including novel

QRS morphological markers in combination with T wave morphological markers are

performed to assess the contribution of depolarization and repolarization features

for electrolyte monitoring in CKD patients.

3. Identification of potential sources underlying inter-individual variability in ECG

markers in response to changes in [K+] and [Ca2+]. In silico investigations of

cardiac electrophysiology are conducted and ECG features are computed. Simu-

lation results are compared with patient data. This is explained in chapter 3 using

one-dimensional (1D) fibers and in chapter 6 using three-dimensional (3D) human

heart-torso models. Chapter 6 includes the development of a population of realis-

tic computational models of human ventricular electrophysiology, based on human

anatomy and electrophysiology, to better understand how changes in individual

characteristics influence the ECG (QRS and T wave) markers that we introduced

in previous chapters. ECG waveforms are characterized by their amplitude, dura-

tion and morphology. Simulations are performed with the most realistic available

techniques to model the electrophysiology of the heart and the resulting ECG. We

establish mechanisms that contribute to inter-individual differences in the charac-

terized ECG features.

In conclusion, we identify several markers of ECG morphology, including depolar-

ization and repolarization features, that are highly correlated with serum electrolyte

(potassium and calcium) concentrations. ECG morphological variability markers vary

significantly with [K+] and [Ca2+] in both simulated and measured ECGs, with a wide

range of patterns observed for such relationships. The proportions of endocardial, midmy-

ocardial and epicardial cells have a large impact on ECG markers, particularly for serum

electrolyte concentrations out of their physiological levels. This suggests that transmural

heterogeneities can modulate ECG responses to changes in electrolyte concentrations in

CKD patients. Agreement between actual potassium and calcium levels and their es-

timates derived from the ECG is promising, with lower average errors than previously
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proposed markers in the literature. These findings can have major relevance for noninva-

sive monitoring of serum electrolyte levels and prediction of arrhythmic events in these

patients.



Resumen y conclusiones

La enfermedad renal crónica (ERC), una afección definida por una disminución gradual de

la función renal a lo largo del tiempo, se ha convertido en un problema de salud mundial

que afecta a entre el 11 y el 13% de la población mundial [1]. A medida que disminuye la

función renal, los pacientes con ERC pierden gradualmente su capacidad para mantener

valores normales de concentración de potasio ([K+]) en la sangre. La [K+] sérica elevada,

conocida como hiperpotasemia, aumenta el riesgo de arritmias potencialmente mortales

y muerte card́ıaca súbita [2].

Un aumento de la [K+] sérica fuera del rango fisiológico suele ser silencioso y solo

se detecta cuando la hiperpotasemia ya es muy grave o cuando se realiza un análisis de

sangre. El mantenimiento y monitoreo de [K+] en la sangre es un componente importante

en el tratamiento de pacientes con CKD porque las terapias para el control de la hiper-

potasemia en pacientes con CKD están diseñadas para prevenir arritmias y para reducir

inmediatamente el [K+] sérico a rangos seguros. Sin embargo, actualmente esto solo es

posible tomando una muestra de sangre y está asociado con un tiempo de análisis prolon-

gado. Por lo tanto, es útil contar con un método simple y no invasivo para estimar [K+]

sérico, en particular mediante electrocardiograma (ECG). De hecho, se ha demostrado

que las variaciones en los niveles de electrolitos séricos alteran el comportamiento eléctrico

del corazón e inducen cambios en el ECG [3–6]. Sin embargo, existe una gran variabilidad

interindividual en la relación entre las concentraciones de iones y las caracteŕısticas del

ECG. Por lo tanto, los intentos anteriores de estimar [K+] en suero a partir del ECG han

mostrado limitaciones [7–9], como no ser aplicable a algunos tipos comunes de formas de

onda del ECG o depender de caracteŕısticas espećıficas del ECG que pueden presentar

grandes variaciones no necesariamente asociadas con hiperpotasemia.

El objetivo de esta tesis es desarrollar estimadores novedosos de [K+] en suero que

sean lo suficientemente robustos para detectar hipopotasemia ([K+] reducido) o hiper-

potasemia en el momento oportuno para proporcionar tratamientos que puedan salvar

vidas. Se investigan además los efectos de cambios en otros electrolitos, como la concen-

tración de calcio ([Ca2+]), y en la frecuencia card́ıaca. Estos objetivos se logran mediante

la combinación de nuevas técnicas de procesamiento de señales electrocardiográficas con

el modelado in silico y la simulación de electrofisioloǵıa card́ıaca.

Los objetivos espećıficos son:
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1. Caracterización de cambios inducidos por hipopotasemia o hiperpotasemia e

hipocalcemia ([Ca2+] reducido) o hipercalcemia ([Ca2+] elevado) en la repolarización

ventricular a partir de ECG (onda T) de pacientes con ERC. Esto se aborda en el

caṕıtulo 3 y el caṕıtulo 4. En ellos describimos cómo se extraen las ondas T del ECG

y cómo caracterizamos los cambios en las ondas T a niveles variables de potasio,

calcio y frecuencia card́ıaca utilizando análisis basados en la distorsión del tiempo

y en los exponentes Lyapunov. A continuación, se construyen modelos de regresión

univariables y multivariables que incluyen marcadores de dinámica no lineal de on-

das T en combinación con marcadores basados en la deformación de la morfoloǵıa

de ondas T y se evalúa su rendimiento para la estimación de [K+].

2. Caracterización de hipo o hiperpotasemia y cambios inducidos por hipo o hipercal-

cemia en la despolarización ventricular del complejo QRS de pacientes con ERC.

Esto se describe en el caṕıtulo 5. En este caṕıtulo, presentamos cómo se procesan

los complejos QRS de los ECG de pacientes con ERC y cómo medimos los cambios

frente a variaciones en [K+], [Ca2+] y frecuencia cardiaca. Se realizan análisis de

regresión univariante y multivariante que incluyen nuevos marcadores morfológicos

del QRS en combinación con marcadores morfológicos de la onda T para evaluar la

contribución de las caracteŕısticas extráıdas de la despolarización y repolarización

card́ıacas para el control de electrolitos en pacientes con ERC.

3. Identificación de fuentes potenciales subyacentes a la variabilidad interindividual

en los marcadores de ECG en respuesta a cambios en [K+] y [Ca2+]. Mediante

la utilización de modelos computacionales se llevan a cabo investigaciones de elec-

trofisioloǵıa card́ıaca y se obtienen las caracteŕısticas del ECG. Los resultados de

las simulaciones se comparan con los datos de los pacientes. Esto se explica en el

caṕıtulo 3, en el que se emplean fibras unidimensionales (1D), y en el caṕıtulo 6, en

el que se usan modelos tridimensionales (3D) de corazón-torso humano. Además, el

caṕıtulo 6 incluye el desarrollo de una población de modelos computacionales real-

istas de ventŕıculo humano, basados en la anatomı́a y la electrofisioloǵıa humanas,

para comprender mejor cómo los cambios en las caracteŕısticas individuales influyen

en los marcadores de ECG (QRS y onda T) que presentamos en los caṕıtulos an-

teriores. Las formas de onda del ECG se caracterizan por su amplitud, duración y

morfoloǵıa. Las simulaciones se realizan con las técnicas más realistas disponibles

para modelar la electrofisioloǵıa del corazón y el ECG resultante. Partiendo de

dichas simulaciones, se establecen los mecanismos que contribuyen a las diferencias

interindividuales en las caracteŕısticas del ECG analizadas.

En conclusión, identificamos varios marcadores de la morfoloǵıa del ECG, incluidas las

caracteŕısticas de despolarización y repolarización, que están altamente correlacionados

con las concentraciones de electrolitos séricos (potasio y calcio). Los marcadores de vari-

abilidad morfológica de ECG vaŕıan significativamente con [K+] y [Ca2+] tanto en ECG
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simulados como medidos, con una amplia gama de patrones observados para tales rela-

ciones. Las proporciones de células endocárdicas, miocárdicas medias y epicárdicas tienen

un gran impacto en los marcadores de ECG, particularmente para las concentraciones de

electrolitos séricos fuera de sus niveles fisiológicos. Esto sugiere que las heterogeneidades

transmurales pueden modular las respuestas del ECG a los cambios en las concentraciones

de electrolitos en pacientes con ERC. La concordancia entre los niveles reales de potasio

y calcio y sus estimaciones derivadas del ECG es prometedora, con errores promedio más

bajos que los marcadores propuestos previamente en la literatura. Estos hallazgos pueden

tener una gran relevancia para la monitorización no invasiva de los niveles de electrolitos

séricos y la predicción de eventos arŕıtmicos en estos pacientes.



Résumé

L’insuffisance rénale chronique (IRC), caractérisée par un déclin graduel de la fonction

rénale, est devenu un problème sanitaire important, affectant entre 11 et 13% de la pop-

ulation mondiale [1]. Lorsque leur fonction rénale décline, les patients affectées d’IRC

perdent graduellement leur capacité de maintenir une concentrations sanguine de potas-

sium ([K+]) normale. Une [K+] sanguine élevée, nommée hyperkaliémie, augmente le

risque d’arythmie cardiaque engageant le pronostic vital et de mort subite cardiaque [2].

Une augmentation de la [K+] sanguine hors de sa plage physiologique reste le plus

souvent inaperçue et n’est détectée que si elle est très sévère ou si un prélèvement san-

guin est effectué. La maintenance et la surveillance de la [K+] sanguine est un élément

important de la prise en charge des patients affectés d’IRC, les thérapies pour la mâıtrise

de l’hyperkaliémie dans ces patients visant la prévention des arythmies et la réduction

immédiate de la [K+] vers des valeurs inoffensives. Cependant, de nos jours une telle

surveillance n’est possible que par des prélèvements sanguins associées avec un temps

d’analyse long. Il serait donc utile d’avoir une méthode simple et noninvasive pour

l’estimation de la [K+], notamment en utilisant l’électrocardiogramme (ECG). En ef-

fet, il a été démontré que les variations des niveaux d’électrolytes dans le sérum sanguin

modifient le comportement électrique du cœur et donc l’ECG [3–6]. Malheureusement,

la rélation entre les concentrations d’électrolytes et les caractéristiques de l’ECG est très

variable d’une personne à l’autre. Des travaux antérieurs [7–9] ont donc montré des

limitations, tels que l’exclusion de certains types d’ECG ou la dépendance sur des car-

actéristiques présentant une variabilité large et non nécessairement corrélée avec l’hyper-

kaliémie.

L’objectif de cette thèse est de développer des nouveaux marqueurs de la [K+] san-

guine suffisamment robustes pour détecter l’hypokaliémie ([K+] anormalement bas) et

l’hyperkaliémie assez rapidement pour permettre des interventions potentiellement salva-

teures. En plus, les effets de changements d’autres concentrations d’électrolytes, tels que

le calcium ([Ca2+]) et de la fréquence cardiaque sont étudiés. Ces objectifs sont atteints

en combinant des nouvelles techniques de traitement de signal avec la modélisation in

silico de l’électrophysiologie cardiaque.

Les objectifs spécifique sont les suivantes.

1. Caractérisation des effets de l’hypokaliémie, de l’hyperkaliémie, de l’hypocalcémie

8
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([Ca2+] réduit) et de l’hypercalcémie ([Ca2+] élevé) sur la repolarisation cardiaque,

observés dans l’onde T de l’ECG chez des patients atteints d’IRC. C’est l’objet

des chapitres 3 et 4. Dans ces chapitres, nous décrivons comment les ondes T

sont extraits des ECGs et comment nous caractérisons les changements dans les

ondes T dues à la variation de [K+], [Ca2+], et la fréquence cardiaque, en utilisant

des analyses basées sur la distorsion du signal dans le temps et sur les exposants de

Liapounov. Ensuite, des modèles de régression linéaire simples et multiples incluant

des marqueurs de la dynamique nonlinéaire de l’onde T combinés aux marqueurs

basées sur la distorsion dans le temps sont construits et leur capacité à estimer la

[K+] est évaluée.

2. Caractérisation des effets de l’hypokaliémie, de l’hyperkaliémie, de l’hypocalcémie

et de l’hypercalcémie sur la dépolarisation ventriculaire, observés dans le complexe

QRS de l’ECG chez des patients atteints d’IRC. C’est l’objet du chapitre 5. Dans

ce chapitre, nous présentons comment le complexe QRS est traité et comment nous

mesurons les changements dus à la variation de [K+], de [Ca2+], et de la fréquence

cardiaque. Des modèles de régression linéaire simples et multiples incluant des

nouveaux marqueurs morphologiques du complexe QRS combinés aux marqueurs

morphologiques de l’onde T sont mis en œuvre afin d’analyser la contribution des

marqueurs de dépolarisation et repolarisation à la surveillance des concentrations

d’électrolytes chez des patients atteints d’IRC.

3. Identification des sources potentielles de la variabilité inter-individuelle de la

réponse des marqueurs électrocardiographiques aux changements de [K+] et [Ca2+].

Des études in silico sont conduites et des marqueurs électrocardiographiques sont

calculés. Les résultats sont comparés avec des données issues de patients. Ces

travaux sont décrits dans le chapitre 3, concernant des fibres unidimensionnelles,

et dans le chapitre 6, concernant des modèles cœur-torse tridimensionnels. Ce

dernier chapitre inclut le développement d’une population de modèles réalistes,

basées sur l’anatomie et électrophysiologie humaine, afin de mieux comprendre

comment les changements de caractéristiques individuelles influencent les mar-

queurs (du complexe QRS et de l’onde T) de l’ECG introduits dans les chapitres

précédents. Les composants des ECGs sont caractérisés par leur amplitude, durée

et morphologie. Des simulations sont conduites utilisant les techniques les plus

réalistes pour la modélisation de l’électrophysiologie cardiaque et de l’ECG. Nous

établissons des mécanismes contribuant aux différences inter-individuelles des mar-

queurs électrocardiographiques.

En conclusion, nous identifions plusieurs marqueurs morphologiques de l’ECG, inclu-

ant des caractéristiques de dépolarisation et de repolarisation, qui sont fortement corrélées

avec [K+] et [Ca2+]. Cette corrélation est présente aussi bien dans les ECGs simulées que
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dans les ECGs mesurées, avec une gamme de morphologies telle qu’observée chez les pa-

tients. Les proportions de cellules de type endocardique, mi-myocardique, et épicardique

ont un effet important sur les marqueurs de l’ECG, particulièrement pour des concentra-

tions électrolytiques hors de leurs plages physiologiques. Cette observation suggère que ces

hétérogénéités peuvent moduler la réponse de l’ECG aux changements des concentrations

électrolytiques chez des patients atteints d’IRC. La concordance entre les concentrations

estimées et celles mesurées est prometteuse, avec des erreurs moyennes moins grands que

celles obtenues avec les méthodes de la littérature. Ces résultats peuvent avoir une grande

importance pour la surveillance noninvasive des concentrations d’électrolytes dans le sang

et pour la prévision d’arythmies chez les patients atteints d’IRC.
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Chapter 1

Introduction

1.1 Motivation

Chronic kidney disease (CKD) includes a gradual decrease in kidney function over time,

which leads to kidney failure when kidneys stop working, i.e. when they lose the ability

to filter waste from the blood. CKD involves high associated economic cost, increased

mortality risk and decreased quality of life for affected patients [1]. Sudden cardiac death,

myocardial infarction and other types of cardiac arrhythmias are the main causes of mor-

tality among CKD patients undergoing hemodialysis (HD), all together accounting for

43% of deaths [10]. Most of these deaths correspond to end-stage CKD patients and

are associated with elevated serum potassium, i.e. hyperkalemia [2]. As renal function

declines, CKD patients present with an increasingly impaired ability to maintain potas-

sium homeostasis, thus increasing the risk for life-threatening arrhythmias and sudden

cardiac death. Therapies for hyperkalemia management in CKD patients are designed

to target prevention of arrhythmias and to immediately lower serum potassium levels to

safe ranges.

Since elevation in serum potassium outside the physiological range is commonly silent,

it is only detected when a blood test is performed. Therefore the possibility of having

a simple, noninvasive method to estimate serum potassium before the patient presents

with serious consequences is of major importance. Previous attempts to estimate serum

potassium levels from the electrocardiogram (ECG) have been made. Although promis-

ing, those attempts present limitations, such as not being applicable to some common

types of ECG waveforms or relying on specific ECG characteristics that may present large

variations not necessarily associated with hyperkalemia.

1.2 Thesis aim

Variations in serum electrolyte levels, mainly potassium, [K+], and calcium, [Ca2+], have

been shown to alter ventricular depolarization and repolarization in the ECG [3–5], sug-
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gesting that it could indeed be possible to infer [K+] and [Ca2+] from the ECG. However,

large inter-individual variability exists in the relationship between [K+] or [Ca2+] and

ECG manifestations.

The aim of this PhD thesis is to propose and assess ECG-based estimators of serum

[K+] and [Ca2+] that are robust enough to detect hypokalemia (reduced [K+]) or hyper-

kalemia (elevated [K+]) and hypocalcemia (reduced [Ca2+]) or hypercalcemia (elevated

[Ca2+]) in a timely manner to provide lifesaving treatment. Additionally, the effects of

changes in heart rate (HR) on ECG ventricular depolarization and repolarization are

investigated. These aims are achieved by combining ECG signal processing techniques

with in silico modeling and simulation of cardiac electrophysiology. Specifically, we pro-

cess 12-lead ECGs of CKD patients undergoing HD, we evaluate ECG characteristics

related to [K+] and [Ca2+] and we conduct in silico simulations using developed models

of human cardiac electrical activity to uncover sources of inter-individual variability in

ECG response to serum electrolyte variations. This investigation could help in improving

current therapies and risk stratification tools for CKD patients.

1.3 The heart

1.3.1 Anatomy

The heart is a fist-sized organ that pumps blood throughout the body. Anatomically,

the heart is divided into different parts, walls, chambers, valves, blood vessels and the

electrical conduction system. Heart walls have three layers, endocardium (inner layer),

midmyocardium (middle layer) and epicardium (outer layer), which contract and relax.

The heart consists of four chambers. The upper chambers (right and left atria) receive

incoming blood and the lower chambers (right and left ventricles) pump blood out of the

heart. The heart has four valves named the tricuspid, mitral, aortic and pulmonary valve,

which prevent blood from flowing backwards when the chambers contract. The tricuspid

valve opens so that blood flows from the right atrium to the right ventricle. The mitral

valve opens to allow blood flow from the left atrium to the left ventricle. The aortic valve

opens to pump blood out of the left ventricle to the aorta, which carries blood to the

body. The pulmonary valve opens to allow blood pumping from the right ventricle to

pulmonary arteries, which carry blood to the lungs. Blood vessels include arteries, veins

and capillaries, whose main function is to deliver and carry back blood to the organs and

tissues throughout the body.

The electrical conduction system mainly includes the sinoatrial (SA) and atroventric-

ular (AV) nodes, bundle of His (left and right bundle branch) and Purkinje fibers. The SA

node generates electrical impulses, thereby setting the normal heartbeat (sinus rhythm).

The AV node carries electrical signals from the atria to the ventricles. The bundle of His

serves to transmit electrical impulses from the AV node to the Purkinje fibers that carry
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cardiac impulses to the ventricles of the heart and cause them to contract, where the left

bundle branch carries electrical impulses to the left ventricle and the right bundle branch

carries signals to the right ventricle [11,12] (see Figure 1.1 for the anatomy of heart).

Figure 1.1: Anatomy of the heart. Adapted from [13].

1.3.2 Electrophysiology

The wall of the heart is called the myocardium, and is composed of muscle cells (my-

ocytes) that control the contraction and relaxation of the heart. The heart is surrounded

by a double-layered membrane (pericardium), which lubricates the heart to protect it

from friction with tissues around it. Each cardiac myocyte is bounded by a thin phos-

pholipid membrane or sarcolemma, which acts as a barrier between the extracellular and

intracellular parts of the muscle cells. The intracellular space is encapsulated in this

membrane and the space that lies outside the sarcolemma is called extracellular space.

The voltage difference between inside and outside of the myocardial cell is called the

membrane potential. It is negative at resting state (when the cell is not electrically

excited). The main ions in the intracellular and extracellular spaces are calcium (Ca2+),

chloride (Cl−) and sodium (Na+), whereas potassium (K+) is mainly found inside the

cell. The movement of ions across the cell membrane is responsible for the opening and

closing of ion channels (protein complexes in the membranes of individual cells). These

ions are primarily involved in the generation of cardiac action potential (AP), which

represents the electrical activity of a single cell, where the shape and duration of each

AP are determined by the activity of ion channel [14].

The cardiac AP has five phases (phase 0–4) as follows (see Figure 1.2):

1. Phase 0 refers to “rapid depolarization”, which is due to the opening of the fast
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inward Na+ channels that allow rapid influx of Na+ ions into the cell.

2. Phase 1 relates with “early repolarization”, which occurs with the inactivation of

the fast Na+ channels. The transient outward K+ current contributes to it and is

also responsible for the “notch” in some AP morphologies.

3. Phase 2 corresponds to the “plateau” phase of the cardiac AP, which is sustained

by a balance between inward movement of calcium Ca2+ through L-type calcium

channels and outward movement of K+ through the slow delayed rectifier potas-

sium channels. The “plateau” pattern is produced because the voltage-sensitive

Ca2+ channels are opened to facilitate the influx of positively-charged Ca2+ ions to

activate the contraction mechanism.

4. Phase 3 is the “rapid repolarization” phase, which occurs with the closing of the L-

type Ca2+ channels while the slow delayed rectifier K+ channels are still open. This

ensures a net outward current, corresponding to a negative change in membrane

potential, thus allowing more types of K+ channels to open. These are primarily

the rapid delayed rectifier K+ channels and the inwardly rectifying K+ current. The

inwardly rectifying K+ current remains conducting throughout phase 4 to set the

resting membrane potential. However, the delayed rectifier K+ channels close when

the membrane potential is restored to about −80 to −85 mV.

5. Phase 4 is the “slow diastolic depolarization or resting” phase, and occurs when

the cell is at rest. The resting membrane potential is stable due to the balanced

ions (ions flowed into, e.g. Na+, and out, e.g. K+ and Cl−, of the cell are perfectly

balanced). This process prepares the cell for the next AP cycle.

1.3.3 The Electrocardiogram

The electrocardiogram (ECG) is a signal that represents the electrical events of the cardiac

cycle and is measured on the body surface by placing electrodes on the chest. ECGs can

be used to monitor and diagnose conditions affecting the heart, particularly to identify

arrhythmias, myocardial ischemia, myocardial infarction, pericarditis, hypertrophy, drug

toxicity and electrolyte disturbances, i.e. hypokalemia or hyperkalemia and hypocalcemia

or hypercalcemia.

ECG leads ECG leads are used to measure the difference in electrical potential between

two points. They are divided into bipolar, difference between two points on the body,

and unipolar leads, which measure the difference in electrical potential with one point on

the body and another point on a virtual reference point, i.e. Wilson’s Central Terminal.

The standard 12-lead (see Figure 1.3) ECG consists of 3 standard limb leads (I, II,

III), 3 augmented limb leads (aVF, aVR, aVL) and 6 precordial leads (V1–V6). The 12
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Figure 1.2: Phases (0–4) of cardiac AP. Phase 0, rapid depolarization; Phase 1, early
repolarization; Phase 2, plateau; Phase 3, rapid repolarization; Phase 4, slow diastolic
depolarization or resting phase.

leads of the ECG can be divided intro two groups of six leads based on the plane that

is used to analyze the electrical events in the heart. The six chest leads, also referred

to as the precordial leads, V1 to V6, examine these electrical events in the horizontal or

transverse plane (Figure 1.3 (right)), while the remaining six frontal leads (I, II, III, aVF,

aVR and aVL) examine the flow of depolarization and repolarization through the heart

in the vertical, or frontal, plane (Figure 1.3 (left)) [13].

Among the twelve standard leads, it would be enough to consider only eight leads

(two limb and six precordial leads) to represent all the information that can be extracted

from them [13].

ECG waves The deflections from “isoelectric line”, which is a flat line with no net

current flowing in its direction, are named with letters in an alphabetical order [15].

The depolarizing wavefront moving towards the positive terminal of the lead produces a

positive deflection on the ECG signal above the isoelectric line, while the depolarizing

wavefront moving away from the the positive terminal of the lead produces a negative

deflection below the isoelectric line. The repolarizing wavefront has the opposite polarity

to the depolarizing wavefront [13].

The atrial depolarization wavefront produces a positive deflection on the ECG signal

because it moves towards the chest leads, which is the P wave of the ECG, and the

atria are completely depolarized when the P wave ends. The ECG signal then returns
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Figure 1.3: Three-dimensional representation of cardiac electrical activity. Adapted from
[13].

to baseline and an AP spreads to the AV node and bundle of His where it triggers

the ventricular depolarization. Thus, the right and left ventricles begin to depolarize,

resulting in what is called the QRS complex, with Q (first negative deflection), R (large

positive deflection) and S (negative deflection after R wave) waves. The atria repolarize

simultaneously with the QRS complex.

After the completion of ventricular depolarization, the onset of ventricular repolar-

ization begins. The deflection produced by the ventricular repolarization is termed the

T wave, which has a very different morphology than the QRS complex.

ECG intervals and segments The notable regions in the ECG waveform consists of

PQ interval, PR interval, RR interval (inverse of instantaneous HR), QT interval, PR

and ST segments. The PQ or PR intervals are measured from the onset of the P wave

to the onset of the QRS complex when its first deflection is, respectively, negative or

positive. The RR interval is the time interval measured between two successive R waves.

The QT interval is measured from the onset of QRS complex to the end of the T wave.

The PR segment corresponds to the region from the end of the P wave to the beginning

of the QRS complex. The ST segment refers to the region between the end of the S wave

and the beginning of the T wave (see Figure 1.4).
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Figure 1.4: ECG signal for two beats with their waves and time intervals. Adapted
from [13].

1.4 Chronic kidney disease

1.4.1 Definition

The function of the kidneys is to purify the blood from waste products, ensuring elec-

trolyte levels are normal and regulating the overall amount of water. To measure how

well the kidneys are filtering, Glomerular filtration rate (GFR) is used, which is normal

if greater than 90 mL/min/1.73m2, but it might decrease with age or by kidney disease.

When kidneys are damaged (with an GFR of less than 60 mL/min/1.73m2 [16]) for more

than 3 months and unable to properly filter blood the way they should, CKD may be

caused. A dialysis or a kidney transplant may be required at a very low GFR. All stages of

this disease, but particularly the late, most severe ones, so called end-stage renal disease

(ESRD), are associated with increased mortality risk and decreased quality of life, thus

involving high economic costs [1, 17]. An estimated 843.6 million individuals worldwide

(approximately 1 in 10) may have CKD, among which all-age mortality rate attributed

to CKD increased by 41.5% between 1990 and 2017 [18]. Millions of people die each year

because they do not have access to affordable treatment [19]. Between five and seven

million ESRD patients need renal replacement therapy worldwide [17].

1.4.2 Stages of CKD

There are five stages of CKD [20,21], which can be determined by GFR (see Table 1.1).
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Table 1.1: Stages of CKD.

Stage
GFR

(mL/min/1.73m2)
Description

1 > 90 Normal kidney or with very mild damage
2 60 − 89 Mild decrease in kidney function but kidneys remain healthy

3 30 − 59 Moderate decrease in kidney function and some damage to kidneys,
which do not properly filter waste, toxins and fluids

4 15 − 29 Severe decrease in kidney function and severely damaged kidneys,
cause to build up waste, toxins, and fluids in the body

5 < 15 Kidney failure, with buildup of waste and toxins becoming life threatening.
It is termed as ESRD

1.4.3 Hemodialysis

Hemodialysis (HD) is also called “artificial kidney”, which is used to remove waste prod-

ucts from the blood through a process called dialysis. HD cleans the patient’s blood

outside the body when the kidneys are not able to do this work. The blood is routed

through a dialyzer (filter) to clean it and then returned to the patient. The whole process

is controlled by a HD machine, which also removes fluid excess using anticoagulants and

regulates the entire cleaning process (see Figure 1.5).

Figure 1.5: Diagram of the complete hemodialysis process. Adapted from [22].

HD is a common treatment for patients in whom the disease has progressed to ESRD.

The main causes of death among ESRD patients undergoing HD are cardiovascular dis-

eases, all together accounting for 43% of mortality [10]. Many of these deaths are due to

ventricular arrhythmias and sudden cardiac death (SCD) [2].
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1.5 ECG waveforms and electrolyte variations

ESRD patients show impaired ability to maintain electrolyte balance in the bloodstream.

Serum potassium ([K+]) and calcium ([Ca2+]) levels outside normal ranges, in the form

of hypo- or hyperkalemia and hypo- or hypercalcemia, are known to increase the risk

for life-threatening arrhythmias [6, 23–25]. HD can even enhance arrhythmic risk due to

changes in volume and electrolyte concentrations associated with the intermittent nature

of the treatment [26]. ESRD patients undergoing HD frequently have serum electrolyte

levels outside normal ranges, which can increase the risk for life-threatening arrhythmias

and SCD [6, 23–25]. Non-invasive ambulatory monitoring of these electrolyte levels can

be useful for risk prediction and triggering of early warnings.

Electrolyte levels can be monitored using blood tests, but their ambulatory measure-

ment is currently not feasible. Therefore, the use of alternative techniques that can pro-

vide information on serum concentration electrolyte levels becomes necessary. Changes

in the concentration level of electrolytes cause visible variations on the ECG, making it

a suitable tool for extracting the required information (see Figure 1.6).

Figure 1.6: Processed average ECG signals before (red) and after HD (blue). Panel (a)
shows the waveforms related to the electrical activation of the heart ventricular muscle
(the ‘QRS complex’ of the ECG) and panel (b) the signals related to the subsequent
electrical relaxation (‘T wave’ of the ECG). Due to the applied signal processing, the
traces are smoother than the original ECGs.

Changes in [K+] and [Ca2+] affect cardiac electrical activity and are reflected in the

ECG, both in ventricular depolarization (QRS complex) and repolarization (T wave)

[3–6,23,27]. Because of its noninvasive nature and ease of use, markers derived from the

ECG are useful tools for continuous monitoring of [K+] and [Ca2+] and, thus, for risk

assessment and triggering early-warning alerts, which could facilitate timely therapies for

ESRD patients.
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1.5.1 ECG changes induced by electrolyte variations

Several markers have previously been published in the literature to characterize ECG

changes induced by [K+] and [Ca2+] variations, but there are some limitations in terms

of sensitivity and specificity, as discussed below:

Width of T wave The T wave width, Tw, is the time from T wave onset to T wave

end [28]. Although Tw shows high correlation with [K+] or [Ca2+], the correlation is

remarkably diminished after controlling for additional effects occurring during HD [29].

Amplitude of T wave The amplitude of the T wave is computed as the difference in

millivolts between the T wave peak and end. Previous studies have described that ECGs

recorded under hyperkalemic conditions commonly have more peaked T waves than those

recorded under normal levels of [K+] [4, 23, 25, 30]. Also, some studies have reported a

moderate or strong relationship between [K+] and the T wave amplitude in simulated

ECGs [7]. However, a change in the T wave amplitude with variations in [K+] could not

be consistently measured in all patients due to large inter-individual variability in the

relationship between [K+] and T wave amplitude.

Slope of T wave Some studies have computed the final slope of the T wave as the

mean first derivative of the T wave from its peak to its end [8]. A tight relationship

between [K+] and T wave slope has been shown in simulated ECGs [7]. Nevertheless, the

trend in the relationship between this marker and [K+] was not consistent in different

ECG databases.

Slope-to-amplitude ratio of T wave (TS/A) TS/A represents the ratio between the

maximal downward slope (in absolute value) and the amplitude of the T wave, expressed

in 1/ms [9, 31]. A strong correlation has been reported between TS/A and [K+], but the

correlation was reduced after removing other covariates during HD [29].

Slope-to-square root of amplitude of T wave (TS/
√
A) TS/

√
A represents the ratio

between the maximal downward slope (in absolute value) and the square root of the

amplitude of the T wave [32]. The reported high association between TS/
√
A and [K+] was

remarkably reduced after controlling for additional effects occurring during HD [29].

T wave amplitude-to-R wave amplitude ratio (T/R) T/R is the ratio between

the amplitude of the T wave and the amplitude of the R wave. It has been reported to

present high association with [K+] [8].

Morphology Combination Score (MCS) of T wave Regarding the analysis of the

T wave shape, a morphology combination score (MCS) based on T wave asymmetry,
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flatness and notching has been used to analyze its relationship with [K+] in a primary

care population [33–36]. A clear association between MCS and [K+] could only be found

among individuals with [K+] in the range 2–4.1 mM, but not among those with [K+] in

the range 4.2–6 mM [36].

Width of QRS complex The QRS complex width, QRSw, represents QRS duration

calculated from QRS onset to end [28]. QRS complex duration has rendered inconsistent

results, with some works reporting widened QRS complex [23, 37] and others reporting

narrowed QRS complex at high [K+] [6, 38].

Amplitude of QRS complex The QRS complex amplitude, QRSa, represents

QRS amplitude calculated from maximum to minimum values of the QRS complex. QRSa

has been described to be strongly negatively correlated with [K+], i.e. QRSa increases

with decreasing [K+] [38].

Slope of QRS complex The upward slope, IUS, and the downward slope, IDS, are

defined as the maximum (between Q wave and R wave) and minimum (between R wave

and S wave) values of the QRS complex derivative, respectively [39, 40]. Both markers

have been found to be strongly correlated with [K+] and [Ca2+] [41].

QT interval The QT interval is the time interval from the start of the Q wave (QRS on-

set) to the end of the T wave (T end). Although the QT interval has long been used to

monitor CKD patients during HD [42–47], contradictory findings have been presented,

with many studies reporting QT prolongation [44, 45, 47–49] and others showing QT

shortening or no effects on QT with electrolyte variations along HD [50,51].

1.5.2 Estimation of electrolyte levels from the ECG

A large number of studies have been proposed in the literature to estimate [K+] and

[Ca2+] from ECG, as discussed below:

1. In [32], a single-lead ECG estimator of [K+] based on the ratio of the T wave down-

ward slope and the square root of T wave amplitude was proposed and validated

in 19 HD patients, yielding a mean absolute error of 0.36±0.34 mM. The proposed

method was also applied to data from a handheld device by the same group [52].

ECG was obtained using a commercially available ECG electrode system measuring

the signal between two fingertips of both hands, yielding an error of 0.38±0.32 mM.

2. On a similar basis, a multi-lead ECG estimator of [K+] based on the ratio of the

downward slope and amplitude of the T wave was proposed and validated in 45

HD patients [9,31,53] using leave-one-patient-out cross validation, yielding a mean

absolute error of 0.46±0.39 mM.
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3. In [54], an ECG-based [K+] estimator was designed using QRS duration in addition

to T wave markers, but QRS duration was found not to be highly correlated with

[K+], in agreement with our present results for QRSw.

4. Pilia et al. [27] reviewed a large number of studies evaluating QRS amplitude and

width features, but no improved serum electrolyte prediction by incorporating these

features into repolarization-based estimators was provided.

5. In a deep learning-based study, Lin et al. [55] proposed a deep learning model,

ECG12Net, based on 66321 ECGs with a [K+] measurement within one hour before

and after ECG recording, from different ECG features such as P wave axis, RS wave

axis, T wave axis, HR, PR, QRS, QT intervals and QTc, yielding a mean absolute

error of 0.531 mM.

1.5.3 Limitations of previously proposed ECG markers

Although the above mentioned studies suggest that it is possible to monitor changes in

[K+] and [Ca2+] based on ECG analysis, further investigation is needed to demonstrate

the feasibility of such approach. On the one hand, most of the proposed ECG markers

rely on only one specific ECG interval duration or wave amplitude that may present large

variations not necessarily associated with electrolyte levels. Also, some of the proposed

ECG markers cannot always be robustly measured due to difficulties in the delineation

of low amplitude waves, which could hinder their use for ambulatory monitoring. Im-

portantly, the physiological underpinnings of changes in the proposed ECG markers in

association with electrolyte variations have not been well established.

Another main limitation of these ECG markers is that, even if some of them may

show a high degree of correlation with the level of [K+], their changes cannot be exclu-

sively attributed to [K+] variations, as confirmed in our study by including additional

confounders like variations in [Ca2+] or HR [29]. Some of them were strongly correlated

with [K+] but not in a wide range of values. Some of these features are very sensitive

to T wave or QRS complex delineation and thus could be more prone to errors when

measured in ambulatory recordings.

Some recent studies have investigated changes in markers of sympathetic activity-

related T wave instability along HD [56] and in model-based descriptors of T wave mor-

phology along the interdialytic interval [57], but these studies either have not been able to

establish a clear correlation between the values of the evaluated indices and [K+] or have

reported moderate correlation coefficients, thus limiting ambulatory [K+] monitoring.

Assessment of the whole morphology of ventricular depolarization and repolarization

for serum electrolyte estimation has been less explored. Similarly to QT studies, research

on QRS complex duration has rendered inconsistent results. Other works have assessed

the time voltage area, amplitude and sine wave shape of the QRS complex, but limitations
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in terms of their significance or their dependence on blood volume have been acknowledged

[27,58–60].

In this thesis, we evaluated markers accounting for the whole T wave and QRS com-

plex morphology that can more robustly characterize repolarization and depolarization

changes associated with different [K+] and [Ca2+] and, thus, be better suited for nonin-

vasive electrolyte estimation.

1.6 Computational modeling of cardiac electrophys-

iology

1.6.1 Why cardiac modeling

Cardiovascular diseases are the leading cause of death in the world, taking an estimated

17.9 million lives each year, representing 32%, of all global deaths [61]. It causes death of

one person in every 36 seconds in the United States (source: Centers for Disease Control

and Prevention. Underlying Cause of Death, 1999–2018). In spite of intense research

efforts in the past years, the mechanisms underlying the initiation and maintenance of a

number of cardiovascular diseases remain yet to be fully elucidated. In the last decades,

mathematical modeling and simulation of cardiac activity has proved to be a powerful

approach to describe heart function in health and disease and understand the mechanisms

involved in cardiac pathologies.

Although in vitro and in vivo analyses are being used to shed light on biophysical and

biochemical processes involved in cardiac activity, there are several practical and ethical

limitations and restrictions when performing experimental and clinical investigations in

humans and animal species. Because of this, computational models have become funda-

mental tools to understand the function of the heart, the commonly observed inter-patient

variability and the underlying mechanisms, in all cases without any ethical constraint.

In particular, computational models of the human heart are being used to aid in the

detection and treatment of cardiac arrhythmias [62].

The electrical activity of the heart (cellular to tissue or whole heart levels) can be

simulated using cardiac electrophysiological models, which could further ease to enhance

knowledge on cardiac electrophysiology, assist in decision making and reduce animal

experimentation.

1.6.2 Electrophysiological models of human ventricular electro-

physiology

Alan L. Hodgkin and Andrew F. Huxley proposed the first computational model of the

AP [63], which described the electrical activity of the squid giant axon obtained using the

voltage clamp technique. In this model, the cell was described as an electrical circuit in
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which the cell membrane acts as a capacitor while ionic currents flow through ion channels,

which are modeled as resistors. Most of the electrophysiological models developed after

Hodgkin and Huxley, including cardiac models, mainly include the formalism introduced

by them [63].

Several mathematical models of electrical and ionic homeostasis in human ventricu-

lar myocytes have been proposed in recent years. Among all, the most studied human

model is proposed by ten Tusscher and Panfilov (TP06) [64], which is an improved ver-

sion of the ten Tusscher-Noble-Noble-Panfilov (TNNP04) model [65]. In this model, the

slow delayed rectifier potassium current, the L-type calcium current and the calcium

dynamics were reformulated. Both the TNNP04 and the TP06 models were based on ex-

perimental human data for most of the main ionic currents. The TP06 model can more

accurately reproduce restitution of the APD than previously proposed human ventricular

models. Another human ventricular model was proposed by Iyer et al. (IMW04) [66],

which includes description of calcium homeostasis and reproduces diverse aspects of the

excitation-contraction coupling (ECC). A more recent model of human ventricular AP

was proposed by Grandi et al. (GPB) [67], which includes new definitions of kinetics and

ionic current densities according to experimental data on human myocytes. The GPB

model relies on the framework of the rabbit ECC model proposed by Shannon et al. [68].

Based on the GPB model, a new model was proposed by Carro et al. (CRLP) [69] in-

cluding modifications and reformulations of various currents based on human data. Then,

O’Hara et al. proposed the O’Hara-Rudy dynamic (ORd) model [70], which is based on

a extensive dataset of undiseased human cells to characterize the steady-state rate de-

pendence and restitution of the ventricular AP. This model also incorporates the effects

of Ca2+/calmodulin-dependent protein kinase II (CAMKII) on ionic currents. Later on,

Himeno et al. [71] proposed a human ventricular membrane excitation contraction model,

which includes a more detailed description of the ECC than previously described models

and was proved to reproduce calcium-induced calcium release and membrane excitation

characteristics.

In the last years, a large number of studies were published to include the formalism of

previously proposed human ventricular AP models and to modify them based on specific

requirements. In Dutta et al. [72], the authors assess the ability of four human ventricular

AP models (TP06, GPB, CRLP and ORd) to simulate key electrophysiological conse-

quences of acute myocardial ischemia in single cell and tissue simulations. They observed

that these models, particularly GPB and ORd, have limitations with respect to the simu-

lation of hyperkalemic effects in tissues, as these models do not reproduce propagation of

excitation for [K+], especially for values larger than 6 mM. Therefore, they modified the

intracellular potassium concentration in the GPB model and the sodium current in the

ORd model to reproduce the electrophysiological alterations in repolarization, refractori-

ness, and conduction velocity caused by acute myocardial ischemia. They also concluded

that the TP06 and ORd models show the closest agreement to experimental data.
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Based on that, first, we decided to use the modified version of the ORd model [70] as

proposed by Dutta et al. [72], but we observed this model was not able to reproduce the

inverse relationship between APD and [Ca2+] described in several in vitro and in vivo

studies [73–75]. Even a more recently proposed modified version of ORd model by Jakub

et al. [76] was not able to reproduce a physiological APD-[Ca2+] relationship. Therefore,

to adequately represent the relationship between APD and [Ca2+], the updates to the

Ten Tusscher-Panfilov model published in [77] were incorporated. They modified the for-

mulation for voltage-dependent inactivation gate and an inactivation gate dependence on

the calcium concentration (in the dyadic space) for the L-type calcium current. Another

recently proposed model, by Bartolucci et al. (BPS2020) [78], which is a modification of

the ORd model [70], can reproduce APD-[Ca2+] relationship, but this model still needs to

be tested in 3D tissues. They mainly changed the description of L-type calcium current

inactivation, sarcoplasmic reticulum and calcium release. However, in future studies, the

BPS2020 model could be a good addition in order to reproduce physiological APD-[Ca2+]

relationship. In this thesis, we used the modified version of TP06 model proposed by Sev-

eri et al. [77] because it can better reproduce a physiological APD-[Ca2+] relationship in

less computational time than ORd model.

1.6.3 In silico analysis to assess electrolyte variations

Computational modeling has particularly been used to assess the effects of changes in

[K+], [Ca2+] and sodium concentration ([Na+]) on simulated APs and ECGs [7,79,80]. A

strong relationship between [K+] and [Ca2+] with simulated ECG intervals, particularly

QT and RT intervals, has been reported, with negligible effects of [Na+] changes on those

intervals [79]. In [80], prolongation of the RT interval has been shown in response to

increased [K+], which is acknowledged by the authors to be in contrast with clinical data

and possibly explained by factors other than [K+]. In some studies from the ventricular

electrophysiology and a torso model [9, 79, 81, 81, 82], reductions in QT interval and Tw

have been observed by increasing [K+] and [Ca2+], respectively.

The above discussed results show that in silico modeling and simulation can help

to gain insight into the ECG changes observed in response to electrolyte abnormalities.

Simulation of ECGs from a set of human ventricular tissue models representing potential

inter-patient differences could help to explain inter-patient variability in ECG response

to [K+] and [Ca2+] and could be used to shed light on the inter-individual differences in

the relationships between ECG markers and [K+] or [Ca2+].
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1.7 Objectives, outline and publications derived

from the thesis

The main objective of this work is to characterize changes in T wave and QRS complex

morphology, both in the time and amplitude domains, and in nonlinear dynamics in re-

lation to [K+] and [Ca2+] variations in ESRD patients and human-specific computational

ventricular models. Since HR may play a role in those relationships, the effects of its

variations are also assessed in this thesis.

The specific objectives of this PhD research are:

1. Characterization of hypo- or hyperkalemia and hypo- or hypercalcemia-induced

changes in ventricular depolarization and repolarization from ECGs of ESRD pa-

tients.

2. Proposal of a method for noninvasive estimation of serum potassium and calcium

levels based on ECG ventricular depolarization and repolarization features.

3. Establishment of sources explaining inter-individual differences in the characterized

ECG features using in silico ventricular electrophysiology models.

The contents of the thesis are organized as follows:

Chapter 2 In this chapter, general materials and methods used in the following chap-

ters are described. In particular, we present details of the patient population, ECG signal

processing, methodology for time-warping markers and statistical analysis.

Chapter 3 In this chapter, we characterize changes in T wave amplitude, duration and

morphology, the latter both in the time and amplitude domains, during HD in relation

to [K+], [Ca2+] and HR variations in patients and simulated ECGs. We discuss new

proposed T wave markers and compare them with previously proposed markers. The

following publications are based on the results described in this chapter:

• H. A. Bukhari, F. Palmieri, D. Ferreira, M. Potse, J. Ramı́rez, P. Laguna, C.

Sánchez, E. Pueyo. Transmural Ventricular Heterogeneities Play a Major Role

in Determining T-Wave Morphology at Different Extracellular Potassium Levels.

Computing in Cardiology, 2019, article no. 404.

• H. A. Bukhari, F. Palmieri, J. Ramı́rez, P. Laguna, J. E. Ruiz, D. Ferreira, M.

Potse, C. Sánchez, E. Pueyo. Characterization of T Wave Amplitude, Duration and

Morphology Changes During Hemodialysis: Relationship With Serum Electrolyte

Levels and Heart Rate. IEEE Transactions on Biomedical Engineering, vol. 68, no.

8, pp. 2467-2478, 2021.
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• F. Palmieri, P. Gomis, D. Ferreira, JE. Ruiz, B. Bergasa, A. Mart́ın-Yebra, H. A.

Bukhari, E. Pueyo, J. P. Mart́ınez, J. Ramı́rez, P. Laguna. T-Wave Morphology

Changes as Surrogate for Blood Potassium Concentration in Hemodialysis Patients.

Computing in Cardiology, 2019, article no. 109.

• F. Palmieri, P. Gomis, D. Ferreira, JE. Ruiz, B. Bergasa, A. Mart́ın-Yebra, H.

A. Bukhari, E. Pueyo, J. P. Mart́ınez, J. Ramı́rez, P. Laguna. Monitoring blood

potassium concentration in hemodialysis patients by quantifying T-wave morphol-

ogy dynamics. Scientific Reports, vol. 11, no. 1, 2021.

Chapter 4 Multivariable prediction of serum potassium in ESRD patients using non-

linear dynamics and T wave morphology markers are presented in this chapter. T wave

nonlinear dynamics markers are proposed and evaluated to assess the extent to which

they provide information that is complementary to the already evaluated T wave am-

plitude, duration and morphology markers (explored in chapter 3). In particular, the

nonlinear dynamics markers are used to analyze physiological beat-to-beat repolarization

variability at varying [K+] in ESRD patients. A synthetic analysis is also performed to

further explore the key concepts behind its functionality. The following publications are

based on the research described in this chapter:

• S. Srinivasan, HA. Bukhari, P. Laguna, C. Sánchez and E. Pueyo. Analysis of T

Wave Nonlinear Dynamics for Serum Potassium Monitoring in End-Stage Renal

Disease Patients. Computing in Cardiology, 2020, article no. 461.

• HA. Bukhari, C. Sánchez, S. Srinivasan, F. Palmieri, M. Potse, P. Laguna and E.

Pueyo. Estimation of potassium levels in hemodialysis patients by T wave nonlinear

dynamics and morphology markers. Computers in Biology and Medicine, vol. 143,

2022.

Chapter 5 Ambulatory monitoring of serum potassium and calcium levels in ESRD

patients by ECG depolarization morphology analysis is discussed in this chapter. The aim

of this chapter is to quantify changes in the QRS amplitude, duration and morphology,

the latter both in the time and amplitude domains, at varying [K+], [Ca2+] and HR in

ESRD patients. Furthermore, univariable and multivariable [K+] and [Ca2+] estimators,

including novel QRS morphological markers in combination with already proposed T

wave markers, are devised and the contribution of depolarization analysis to [K+] and

[Ca2+] monitoring is assessed.

The following publications are based on the research described in this chapter:

• HA. Bukhari, P. Laguna, M. Potse, C. Sánchez and E. Pueyo. QRS Slopes for

Potassium and Calcium Monitoring in End-Stage Renal Disease Patients. Comput-

ing in Cardiology, 2021, article no. 221.
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• HA. Bukhari, C. Sánchez, M. Potse, P. Laguna and E. Pueyo. Estimación del nivel

de potasio en sangre mediante las pendientes del QRS del electrocardiograma en

pacientes renales crónicos. X Jornada de Jóvenes Investigadores e Investigadoras

del I3A, vol. 9, 2021.

• HA. Bukhari, C. Sánchez, JE. Ruiz, M. Potse, P. Laguna, E. Pueyo. Monitoring

of Serum Potassium and Calcium Levels in End-Stage Renal Disease Patients by

ECG Depolarization Morphology Analysis. Sensors, vol. 22, no. 8, 2022.

Chapter 6 A 3D torso model based analysis is performed in this chapter using a re-

alistic anatomy. The aim of this chapter is to characterize ECG features, including

several markers for [K+] and [Ca2+], in models with different proportions of endocardial,

midmyocardial and epicardial myocytes at varying [K+] and [Ca2+], and compare the

results to measurements in 29 ESRD patients. In addition to that, a sensitivity analy-

sis is performed to investigate the extent to which different proportions of endocardial,

midmyocardial and epicardial cells contribute to explain inter-individual differences in

QRS complex and the T wave amplitude, time and morphology, particularly for [K+] and

[Ca2+] values outside normal ranges.

The following publications are based on the research described in this chapter:

• HA. Bukhari, P. Laguna, M. Potse, C. Sánchez and E. Pueyo. Inter-individual

differences in cell composition across the ventricular wall may explain variability in

ECG response to serum potassium and calcium variations. Computing in Cardiol-

ogy, 2022, article no. 166.

• HA. Bukhari, C. Sánchez, M. Potse and E. Pueyo. Accelerating stabilization of

whole-heart models after changes in cycle length. Computing in Cardiology, 2022,

article no. 388.

• HA. Bukhari, C. Sánchez, P. Laguna, M. Potse, and E. Pueyo. Investigation of

inter-patient variability in ECG response to serum potassium and calcium variations

using 3D and Torso Models. Submitted to Frontiers in Physiology, 2022.

Chapter 7 This chapter contains the main achievements, limitations, possible future

work and the main conclusions of this PhD thesis.

1.8 Collaborations and research secondments

All the research presented in this thesis was conducted within the cotutelle Ph.D. pro-

gram in Biomedical Engineering at University of Zaragoza, Spain and Mathematics &

Computer Sciences at University of Bordeaux, France, under the supervision of Prof.

Esther Pueyo, Dr. Carlos Sánchez and Dr. Mark Potse. Moreover, we collaborated with
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researchers and clinicians from other institutions for data collection and interpretation,

including Dr. Julia Ramı́rez (Queen Mary University of London, UK and currently at Uni-

versity of Zaragoza, Spain), D. José Esteban Ruiz and Dr. Beatriz Bergasa (Nephrology

Ward, Hospital Cĺınico Universitario Lozano Blesa, Zaragoza, Spain).

During my progress review meetings, I learned from the suggestions of different re-

searchers such as Prof. Pablo Laguna, Prof. Juan Pablo Mart́ınez and Dr. Alba Mart́ın

(University of Zaragoza, Spain), Prof. Pedro Gomis (Universitat Politécnica de Catalunya,

Barcelona, Spain), Prof. Blanca Rodriguez (external expert from Oxford University, UK),

Prof. Pablo Lamata (external mentor from King’s College London, UK), Prof. Jean-Marc

Couveignes and Dr. Afaf Bouharguane (monitoring committee members from University

of Bordeaux, France).

During my stays in the CARMEN team at the Inria center in Bordeaux, I learnt new

computational methodologies to simulate the electrical behavior of the human heart with

realistic 3D models of the torso, which was used to compute ECG features in a more

realistic way, so that they can be compared with patient data, under the supervision of

Dr. Mark Potse.



Chapter 2

General Materials and Methods

In this chapter, general materials and methods used in following chapters are presented.

The materials section includes the patient population and clinical measurements, whereas

the methods section includes ECG signal processing, methodology for the quantification

of T wave and QRS complex morphological descriptors, statistical analysis, and sensitivity

analysis. All those methods will be further discussed in each chapter with respect to the

specific applications.

2.1 Materials

48-hour 12-lead ECGs, with 3.75 µV resolution and 1 kHz sampling frequency (H12+,

Mortara Instruments, Milwaukee, WI, USA), were collected from 29 ESRD patients un-

dergoing HD at Hospital Cĺınico Universitario de Zaragoza (HCUZ). Concurrently, six

blood samples were taken, five during the HD session and one 48 hours after HD start,

with patients in supine position. The first blood sample was taken at the HD onset (h0)

and the next three samples (h1, h2 and h3), every hour during the HD session (Fig. 2.1

in red). The fifth sample (h4) was taken at the end of the session (minute 215 or 245,

depending on the patient) and the sixth sample, 48 hours after the start, immediately

before the next session (h48). [K+] and [Ca2+] were measured from the extracted blood

samples using a Cobas 6000 c501 analyzer (Roche Diagnostic, Germany) by an indirect

ion selective electrode method. The Research Ethics Committee of Aragón approved

the study protocol (CEICA, ref. PI18/003) on February 14, 2018, and all patients gave

signed informed consent. Table 2.1 shows demographic population characteristics, [K+]

and [Ca2+] values, as well as HD duration and dialysate composition.

41
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Figure 2.1: Diagram of the study protocol. h0 to h4 and h48 are the time stages cor-
responding to blood sample extraction, with indication of the time in minutes from the
start of the ECG acquisition.

Table 2.1: Characteristics of the ESRD study population. Values are expressed as
number (%) for categorical variables and median (interquartile range) for continuous
variables.

Characteristics Quantity
Age [years] 75 (12)
Gender [male/female] 20 (69%) / 9 (31%)

Electrolyte concentrations
[K+] [Pre HD] (mM) 5.05 (1.57)
[K+] [End HD] (mM) 3.35 (0.62)
[Ca2+] [Pre HD] (mM) 2.15 (0.18)
[Ca2+] [End HD] (mM) 2.32 (0.20)

#Patients (%)

HD session duration
240 min 26 (90%)
210 min 3 (10%)

Dialysate composition
Potassium (1.5 mM) 21 (73%)
Potassium (3 mM) 5 (17%)
Potassium (variable mM) 3 (10%)
Calcium (3 mg/dL) 8 (28%)
Calcium (2.5 mg/dL) 21 (72%)

2.2 Methods

2.2.1 ECG Pre-processing

ECG signals were filtered to remove baseline wander, powerline interference and muscular

noise for subsequent ECG waveform analysis. A detailed analysis to perform ECG pre-

processing can be found in [13]:

Baseline wander Baseline wander is a narrow band low-frequency component in the

ECG which may be caused by respiration, body movements and poor electrode contact.

It may affect the ECG signal analysis. In this thesis, baseline wander was removed
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with a high-pass, forward-backward 6-th order Butterworth filter with 0.5 Hz cut-off

frequency [83].

Powerline interference and Muscular noise Powerline interference is a common

noise source in the ECG that can be characterized by 50 or 60 Hz sinusoidal interference,

possibly accompanied by a number of harmonics. Powerline interference increases the

difficulty in analyzing and interpreting the ECG, which may result in poor delineation

of low-amplitude waveforms [83]. Muscle activity is another source of noise that is more

challenging to handle because of the substantial spectral overlap between the muscle noise

and ECG as briefly described in [83]. A low-pass 6-th order Butterworth filter with 40 Hz

cut-off frequency was applied to remove powerline interference and muscular noise.

2.2.2 ECG waveform detection and delineation

QRS detection and wave delineation were performed in each ECG lead using a wavelet-

based delineation method as fully described in [28, 84]. The wavelet transform (WT)

decomposed the signal in the time-scale domain, allowing its representation at different

resolutions [84].

Here, the discrete dyadic WT [28, 84] is implemented to keep temporal resolution at

different scales. The detection of the fiducial points is carried out across the adequate

WT scales, depending on their frequency content. Q, R and S waves correspond to scales

21–22, while the T and P waves affect mainly scales 24 or 25 [28, 84]. ECG maximum

slopes correspond to maxima and minima of the WT, and ECG wave peaks correspond

to zero crossings in the WT. A wave morphology is assigned and boundaries are located

using threshold-based criteria, depending on the number and polarity of the slopes found.

The onset of a wave occurs before the first significant slope and the end occurs after the

last significant slope associated with the wave [28,84].

2.2.3 Spatial principal component analysis

A lead space reduction by principal component analysis (PCA) was performed. PCA

is a robust spatial transformation that emphasizes waveform signal-to-noise ratio (SNR)

[85,86].

In this thesis, to highlight the T waves and QRS complexes, spatial principal com-

ponents (PCs) were derived from the T waves and QRS complexes of 8 independent

leads [85,86] in a stable 10-minute ECG segment at the end of the HD session. This seg-

ment was selected because it corresponded to the time when the patient was discharged

from hospital with restored serum [K+] or [Ca2+]. PCA was spatially applied over the

T waves and QRS complexes of the 8 independent leads, and resulting in 8 PCs or trans-

formed leads. The coefficients defining the PCA transformation were obtained from the
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eigenvectors of the 8 × 8 interlead auto-correlation matrix computed over the T-waves

and QRS complexes in a 10-min wide window at the end of the HD session [86,87].

The full ECG recording was then projected onto the direction of the first PC (PC1)

and used for further analysis that involves evaluation of different segments along the

recording. The onset, peak and end of the T waves and QRS complexes were delineated

on the projection onto the PC1 using the same wavelet-based delineation method [28]

and the obtained delineation marks were used in all subsequent analysis (see Figure 2.2).

Figure 2.2: Illustration of original ECG signal from three leads (I, V3 and V4), selected
from the 12 standard leads, followed by a filtering step as described in section 2.2.1 before
spatial PCA analysis (PC1) from 8 independent leads is applied. Adapted from [86].

2.2.4 Time, amplitude and morphology-based T wave and

QRS complex descriptors

2.2.4.1 T wave and QRS complex markers based on morphological charac-

teristics

Morphology-based T wave and QRS complex descriptors were computed using the time-

warping methodology described previously [87, 88]. For the patients’ ECGs, reference

T waves and QRS complexes were calculated from the mean warped T wave (MWTW)

and mean warped QRS complex (MWQRS), respectively, at the end of the HD session,

as this is the time when the patient was discharged from hospital with restored serum

ion levels, thus being an acceptable reference for ambulatory monitoring. To obtain a
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MWTW or MWQRS, which is an optimal representative average both in temporal and

amplitude domains [88], two-minute ECG segments at the end of each HD hour were an-

alyzed. The two-minute ECG segment was short enough to maintain the assumption of

stability for both electrolyte and HR values [84]. Predominant T wave and QRS complex

polarities were defined as the most frequent in the analyzed two-minute window. T waves

and QRS complexes having the predominant polarity were aligned with respect to their

center of gravity so that the calculated MWTW and MWQRS were not affected by po-

tential outlier T wave or QRS complex polarities and morphologies, respectively [88], and

used to compute an initial MWTW [88] or MWQRS [87]. After removing outliers from

the selected T waves and QRS complexes, the remaining T waves and QRS complexes

presenting strong correlation (Spearman’s correlation coefficient > 0.98) with the pre-

vious initial MWTW and MWQRS, respectively, were considered to compute the final

MWTW and MWQRS.

Note: QRS complexes and T waves in each analyzed two-minute window that pre-

sented the dominant polarity were considered for MWQRS and MWTW calculation, with

the polarity defined as:

p0 =

 1, if max
n

{|f(n)|} = max
n

{f(n)}

−1, if max
n

{|f(n)|} = −min
n

{f(n)},
(2.1)

where f(n) represents the QRS complex or T wave under analysis. An average of 92%

of QRS complexes and 90% of T waves in each analyzed two-minute ECG segment were

found to present such dominant polarity (see Fig. 2.3).

Figure 2.3: QRS complexes (left panel) and T waves (right panel), including selected
dominant and non-dominant polarity QRS complexes and T waves from a particular
patient at a particular time.

The T wave and QRS complex for a given HD time point from a patient’s ECG

were expressed as f s(ts) = [f s(ts(1)), ..., f s(ts(Ns))]
⊤, and the reference T wave and
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QRS complex as f r(tr) = [f r(tr(1)), ..., f r(tr(Nr))]
⊤, where tr = [tr(1), ..., tr(Nr)]

⊤, ts =

[ts(1), ..., ts(Ns)]
⊤ and Nr and Ns are the total durations of tr and ts, which are the

uniformly sampled time vectors corresponding to the T waves and QRS complexes f s and

f r, respectively. Fig. 2.4 (a) shows T waves f r and f s, with their respective time domains,

tr and ts. Let γ(tr) be the warping function that relates tr and ts, such that f s(γ(tr))

denotes the time-domain warping of f s(ts) using γ(tr). The square-root slope function

(SRSF) transformation was used to find the optimal warping function by warping the

SRSFs of the original T waves or QRS complexes [88]. This transformation is defined as:

qf (t) = sign(ḟ(t))|ḟ(t)|
1
2 . (2.2)

The optimal warping function was determined as the one minimizing the SRSF amplitude

difference:

γ∗ (tr)=arg min
γ(tr)

(∥∥∥qfr (tr) − qfs (γ (tr))
√

γ̇ (tr)
∥∥∥). (2.3)

A dynamic programming algorithm was used to obtain the function γ∗(tr) that optimally

warps f r(tr) into f s(ts). This function is shown in Fig. 2.4 (d). The warped T wave,

f s(γ∗(tr)), is shown in Fig. 2.4 (b), together with the reference T wave, f r(tr).

The T wave descriptor, du
w,T, shown in Fig. 2.4 (d), was used to quantify the level of

warping required to optimally align the T waves f s(ts) and f r(tr):

du
w,T =

1

Nr

Nr∑
n=1

|γ∗(tr(n)) − tr(n)|. (2.4)

For the signed version of du
w,T, the descriptor dw,T [86] was computed as:

dw,T =

(
sd
|sd|

)
1

Nr

Nr∑
n=1

|γ∗ (tr (n)) − tr (n) |, (2.5)

where sd =
∑Nu

r
n=1(γ

∗ (tr (n)) − tr (n)) +
∑Nr

n=Nu
r +1(t

r (n) − γ∗ (tr (n))) is used to account

for the sign, with Nu
r denoting the number of samples in the T wave upslope. Similarly,

du
w,Q was quantified from QRS complexes (see Fig. 2.5).

The T wave amplitude descriptor, da,T, was computed from the area contained between

f r(tr) and f s(γ∗(tr)) normalized by the L2-norm of f r(tr), thus quantifying amplitude

differences after time warping the two T waves:

da,T =
sa
|sa|

∥f s(γ∗(tr)) − f r(tr)∥
∥f r(tr)∥

× 100, (2.6)

where sa =
Nr∑
n=1

(f s(γ∗(tr(n))) − f r(tr(n))) is used to account for the sign.
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The QRS complex amplitude descriptor, da,Q, was computed from the area contained

between f r(tr) and f s(γ∗(tr)) normalized by the L2-norm of f r(tr), thus quantifying

amplitude differences after time warping the two QRS complexes:

da,Q = p0
sa
|sa|

∥f s(γ∗(tr)) − f r(tr)∥
∥f r(tr)∥

× 100, (2.7)

with only QRS complexes in each analyzed case that presented the dominant polarity

being considered for the calculation, with the polarity as defined in Eq. 2.1.

The marker du
w,T incorporates information from the linear and non-linear warping

required to fit the two T waves in the time domain. The non-linear component of du
w,T

can be quantified as:

dNL
w,T =

1

Nr

Nr∑
n=1

|γ∗(tr(n)) − γ∗
l (tr(n))|, (2.8)

where γ∗
l (tr) (black line in Fig. 2.4 (d)) was derived by linearly fitting γ∗(tr) through the

least absolute residual method.

The marker dNL
a,T was defined by computing the L2 norm of the difference between

L2-normalized versions of f r(tr) and f s(γ∗(tr)):

dNL
a,T =

∥∥∥∥ f r(tr)

∥f r(tr)∥
− f s(γ∗(tr))

∥f s(γ∗(tr))∥

∥∥∥∥× 100. (2.9)

Analogously, dNL
w,Q and dNL

a,Q were computed from QRS complexes. Fig. 2.5 shows linear

and non-linear time warping for QRS complexes.

The set of all morphology-based T wave and QRS complex markers analyzed in this

thesis included:

• du
w,T, representing temporal variations in T wave morphology (expressed in ms),

• dw,T, representing signed version of temporal variations in T wave morphology (ex-

pressed in ms),

• da,T, representing amplitude variations in T wave morphology (expressed as a per-

centage),

• dNL
w,T, representing non-linear temporal variations in T wave morphology (expressed

in ms),

• dNL
a,T, representing non-linear amplitude variations in T wave morphology (expressed

as a percentage).

• du
w,Q, representing temporal variations in QRS morphology (expressed in ms),

• da,Q, representing amplitude variations in QRS morphology (expressed as a percent-

age),
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Figure 2.4: Linear and non-linear time warping of T waves from a patient. Panel (a) shows
reference (blue) and investigated (red) T waves obtained from an ECG segment during
HD. Panel (b) shows the warped T waves, which have the same duration while keeping
the original amplitude. Panel (c) depicts the warped T waves after normalization by their
L2-norms. The area (yellow region) between both T waves in panel (d) represents du

w,T,
which quantifies the total amount of warping. The green solid line is the linear regression
function γ∗

l (tr) best fitted to γ∗(tr). The marker dNL
w,T quantifies the non-linear warping

by computing the area of the dashed magenta region between γ∗(tr) and γ∗
l (tr).

• dNL
w,Q, representing nonlinear temporal variations in QRS morphology (expressed in

ms),

• dNL
a,Q, representing nonlinear amplitude variations in QRS morphology (expressed as

a percentage).

Note: The warping parameter dw,T has a positive sign if the analyzed T wave is globally

widened during the warping procedure to fit the reference T wave, and a negative sign if

the T wave is compressed. In the amplitude domain, da,T is positive if the warped T wave

has larger amplitude than the reference T wave, and negative if the T wave has smaller

amplitude.
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Figure 2.5: Time warping of QRS complexes from a patient. Panel (a) shows the reference
(blue) and investigated (red) QRS complexes obtained from an ECG segment during HD.
Panel (b) shows the warped QRS complexes, which had the same duration whilst keeping
the original amplitude. Panel (c) depicts the warped QRS complexes after normalization
by their L2-norms. The yellow area in panel (d) represents du

w,Q, which quantified the
total amount of warping. The green solid line is the linear regression function γ∗

l (tr) best
fitted to γ∗(tr). The marker dNL

w,Q quantifies the non-linear warping by computing the area
between γ∗(tr) and γ∗

l (tr).

2.2.4.2 Time and amplitude T wave markers

Time- and amplitude-based T wave descriptors computed from MWTWs included:

• Tw, representing T wave width calculated from T wave onset to T wave end (ex-

pressed in ms) [28].

• TSA, representing the ratio between the maximal downward slope (in absolute value)

and the amplitude of the T wave (expressed in 1/ms) [9, 31].

• TS/
√

A, representing the ratio between the maximal downward slope (in absolute

value) and the square root of the amplitude of the T wave [32].
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2.2.4.3 T wave nonlinear dynamics markers

T wave nonlinear dynamics were characterized by computing markers based on maximum

Lyapunov exponents computed using Rosenstein’s method [89] and another divergence-

related marker, as follows.

Lyapunov exponent-based markers λt and λwt Let’s consider 2-minute ECG seg-

ments as defined above for each analyzed patient and HD stage. The sequence of con-

catenated T waves for each of these segments, after having tilted the waves to make their

onset and end have zero amplitude, is denoted by:

f = [f⊤1 , f
⊤
2 , . . . , f

⊤
B ]⊤ = [f(1), f(2), . . . , f(N)]⊤ (2.10)

with fk=[fk(1), fk(2), . . . , fk(Nk)]⊤ denoting the k-th T wave of Nk samples (i.e. of du-

ration Nk ms, since the sampling frequency is 1 kHz), B the number of beats in the

segment and N=
B∑

k=1

Nk the number of samples of sequence f . Fig. 2.6, panels (a)–(c),

shows T waves in three analyzed segments of an ECG recording.

The reconstructed trajectories for delay values of τ were represented by vectors

f (τ)(j) = [f(j), f(j + τ), . . . , f(j + (m− 1)τ)]⊤ (2.11)

with j ∈ {1, 2, ...,M} and M = N− (m−1)τ , where m is the embedding dimension, here

set to 30, and τ the delay in ms, here set to ⌈N1/(m− 1)⌉, where N1 is the duration of

the first T wave, in ms. For each f (τ)(j), its nearest neighbor f (τ)(ȷ̂) was searched for by

minimizing

dj(0) = min
f (τ)(ȷ̂)

∣∣∣∣f (τ)(j) − f (τ)(ȷ̂)
∣∣∣∣ , (2.12)

with |j − ȷ̂| > p, and p set to 25. The notation || · || represents the L2 norm.

Next, the distance between the nearest neighbors f (τ)(j) and f (τ)(ȷ̂) was computed

after i steps as:

dj(i) =
∣∣∣∣f (τ)(j + i) − f (τ)(ȷ̂ + i)

∣∣∣∣ , (2.13)

where i = 1, 2, . . . , I, and I = ⌈N/5⌉.
For each value of i, the average y(i) of the logarithm of the functions dj(i) for j =

1, 2, . . . ,M − I, was computed as:

y(i) =
1

M − I

M−I∑
j=1

ln(dj(i)). (2.14)

The largest Lyapunov exponent λt was estimated as the slope of the least-squares

fit to the initial linear portion of y(i), i = 1, . . . , cp, with cp being the point where the

signal changes most rapidly in mean and slope [90]. Despite being computed from the
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linear portion of y(i), this index accounts for nonlinear dynamics of the T wave, as can

be observed from equations (2.10)–(2.14).

Figure 2.6, panels (d)–(f), shows λt from a patient at three different HD stages

(h0, h1, h48) and the corresponding functions y(i) for varying i together with its linear

fit for i = 1, . . . , cp.

Figure 2.6: Panels a–c: A few T waves from 2-minute ECG segments for a particular
patient at different HD stages (h0, h1, h48). Panels d–f: y(i) versus index i varying from
1 to I as described in the text. Values of λt obtained as the slope of y(i) are shown for
each HD time point.

Additionally, another marker, denoted by λwt, was estimated from the same sequence

of T waves in the analyzed 2-minute segments but after warping. The procedure used to

calculate λwt was the same as above but with f representing the sequence of concatenated

warped T waves in the 2-minute segment. The calculation of λwt and its comparison

with λt serves to analyze the contribution of amplitude variability, separately from time

variability, to the maximum Lyapunov exponent.

Divergence-related marker η T wave nonlinear dynamics were further evaluated by

computing the marker η based on the divergence of trajectories from the inter-MWTW

difference defined in equation (2.15) and shown in Fig. 2.7. The figure shows warped

T waves for a patient, with reference f r(tr) (blue) and investigated f s(γ∗(tr)) (red)

T waves obtained from an ECG segment during HD. The signal shown in black was

computed as the difference between the MWTW f s(γ∗(tr)) and the reference f r(tr):

fd(tr) = f s(γ∗(tr)) − f r(tr). (2.15)
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Figure 2.7: Warped T waves (reference f r(tr) (blue) and investigated f s(γ∗(tr)) (red)),
which have the same duration while keeping the original amplitude, and the difference
between them (black) for a patient.

Specifically, η was computed by averaging yd(i) from i = cp + 1 to i = I:

η =
1

I − cp

I∑
i=cp+1

yd(i), (2.16)

where yd(i) was computed as y(i) in (2.14) but for the inter-MWTW fd rather than for

f . In the calculation of yd(i), M = N − (m− 1)τ , where m = 22, τ = 3 ms and p = 25,

with N the duration of the inter-MWTW fd in ms.

Fig. 2.8 shows η for inter-MWTW fd from a patient at different HD stages (h0, h1, h48)

as well as the corresponding functions yd(i) for varying i.

For calculation of η, inter-MWTW at h4 was computed by taking the difference be-

tween the reference T wave and a MWTW computed from the 2-minute ECG segment

just before the segment taken at the end of the HD session.

2.2.4.4 QRS slope markers

From each MWQRS (see section 2.2.4.1 for the computation of MWQRS), the upward

slope, IUS, and the downward slope, IDS, were computed [39, 40]. IUS and IDS were

defined as the maximum and minimum value of the MWQRS complex derivative denoted

by x′
QRS(n), respectively:

IUS = max
n

{x′
QRS(n)}, n ∈ {Q + 1, ..., R− 1}, (2.17)

IDS = min
n

{x′
QRS(n)}, n ∈ {R + 1, ..., S − 1}, (2.18)

with

x′
QRS(n) = 0.5 · (xQRS(n + 1) − xQRS(n− 1)), (2.19)
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(a)

(c)

(b) (e)

(f)

(d)c
p

Figure 2.8: Panels a–c: Inter-MWTWs from a particular patient at different HD stages
(h0, h1, h48). Panels d–f: yd(i) computed as described in the text, with indication of the
corresponding η values from i = cp + 1 to i = I as denoted by double-arrows.

and Q, R and S being the sample locations of the onset, peak and end of the MWQRS,

respectively (see Figure 2.9). For time samples n at the limits of the QRS upward and

downward intervals, the derivative computation in equation (2.19) requires values outside

the interval. In such cases, those values are replaced with the ones at the interval limit.

Both slopes are expressed in mV/ms.

From the values of IUS and IDS along HD, we quantified the change in QRS slopes

with respect to the end of the HD session (h4) and we denoted them as ∆IUS and ∆IDS.

2.2.4.5 QRS Duration and Amplitude Markers

For each MWQRS, the following descriptors were computed:

• QRSw, which represented the QRS width calculated from QRS onset to end (ex-

pressed in ms) [28].

• QRSa, which represented the QRS amplitude calculated from the minimum to

maximum amplitude of the QRS complex (expressed in mV).

2.2.5 Statistical Analysis

To assess the effects of [K+], [Ca2+] and RR on each investigated T wave or QRS complex

marker at different time points during and after HD, linear correlation analysis was
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S

R

Q

Figure 2.9: MWQRS from a patient’s ECG at the start of HD (h0). Locations of Q
(onset of MWQRS), R (peak of MWQRS) and S (end of MWQRS) waves are marked, as
well as the locations of maximum and minimum QRS complex derivative (red and blue
asterisks, respectively).

performed [91,92]. Let X represent [K+], [Ca2+] or RR and let Y be one of the markers.

The correlation coefficient between X and Y was then computed as:

ρXY =

∑
(X − X̄)(Y − Ȳ )√∑

(X − X̄)2 ·
∑

(Y − Ȳ )2
. (2.20)

where X̄ and Ȳ are the sample means.

To independently quantify the effects of [K+], [Ca2+] and RR on each T wave or

QRS marker, linear partial correlation analysis was performed [93, 94]. The correlation

coefficient after removing the effects of Z in both X and Y was calculated as:

ρXY ·Z =
ρXY − ρXZρY Z√

(1 − ρ2XZ) · (1 − ρ2Y Z)
. (2.21)

The correlation coefficient between X and Y after removing the effects of two variables

Z0 and Z1 was calculated as:

ρXY ·Z0Z1
=

ρXY ·Z0
− (ρXZ1·Z0

) · (ρY Z1·Z0
)√

(1 − ρ2XZ1·Z0
) · (1 − ρ2Y Z1·Z0

)
, (2.22)

where Z0,Z1 ∈ {[K+], [Ca2+],RR}.

To test for significant differences in [K+], [Ca2+], RR, and each marker at different

HD time points, Wilcoxon signed-rank tests were performed [95] and p-values (p) were
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computed. The use of a non-parametric statistical test was based on the lack of normality

of the data distributions according to Shapiro-Wilk test.

Also, to test whether Pearson correlation between each T wave or QRS complex

marker and [K+], [Ca2+] or RR was significantly different from 0 in mean over the pop-

ulation, Student’s t-test was performed after converting the statistical distribution of ρ

into a normal distribution by application of Fisher’s z transform [96].
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3.1 Introduction

As discussed in section 1.5, [K+] and [Ca2+] variations are known to influence the ECG

[3–6]. In a recent large-scale study on unselected individuals, shorter QT intervals were

associated with higher [K+] and [Ca2+] [6]. In [32], a single-lead ECG estimator of [K+]

based on the ratio of the T wave downward slope and the square root of T wave amplitude

was proposed and validated in 19 HD patients. On a similar basis, a multi-lead ECG

estimator of [K+] based on the ratio of the downward slope and amplitude of the T wave

was proposed and validated in 45 HD patients [9, 31,53].

As explained in section 1.6, computational modeling has also been used to assess the

effects of changes in [K+], [Ca2+] and sodium ([Na+]) concentrations on simulated APs

and ECGs [7,79,80]. An inverse relationship between [K+] and [Ca2+], on the one hand,

and simulated QT and RT intervals, on the other, was reported, with negligible effects of

[Na+] changes on those intervals. These in silico studies were, however, based on a single

56
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ventricular model not accounting for potential inter-individual variability.

Although the mentioned studies suggest that it is possible to monitor changes in

[K+] and [Ca2+] based on ECG analysis, further investigation is needed to demonstrate

the feasibility of such approach. On the one hand, most of the proposed markers rely

on only one specific ECG interval duration or wave amplitude that may present large

variations not necessarily associated with electrolyte levels. On the other hand, some

of the proposed ECG markers cannot always be robustly measured due to difficulties

in the delineation of low-amplitude waves, which could hinder their use for ambulatory

monitoring. Importantly, the physiological underpinnings of changes in the proposed

ECG markers in association with electrolyte variations have not been well established.

We hypothesize that markers accounting for the whole T wave morphology can more

robustly characterize repolarization changes associated with different [K+] and [Ca2+]

levels and, thus, be better suited for non-invasive electrolyte estimation. Additionally,

simulation of ECGs from a set of human ventricular tissue models representing potential

inter-patient differences can help in the interpretation of the obtained results.

In this chapter, we characterize changes in T wave amplitude, duration and morphol-

ogy, the latter both in the time and amplitude domains using the time warping analysis

as fully described in section 2.2.4.1, during HD in relation to [K+] and [Ca2+] varia-

tions. Since HR may play a role in those relationships, its effects are also assessed. To

uncover potential cellular mechanisms underlying differential T wave responses to vari-

ations in [K+], [Ca2+] and RR, a set of transmural ventricular fibers covering a wide

range of cellular heterogeneities is simulated and pseudo-ECGs (pECGs) are computed.

A sensitivity analysis is performed to investigate the extent to which different proportions

of endocardial, midmyocardial and epicardial cells contribute to explain inter-individual

differences in T wave amplitude, time and morphology, particularly for [K+] and [Ca2+]

values outside normal ranges.

3.2 Materials and Methods

3.2.1 Study population and ECG pre-processing

In this chapter, the study population included 20 ESRD patients from HCUZ out of the

29 patients of the study population described in section 2.1. 48-hour 12-lead ECGs were

acquired as fully briefly described in 2.1.

Pre-processing of ECG signals from ESRD patients was performed as described in

section 2.2.1. A wavelet-based single-lead delineation method was used for QRS detection

and wave delineation of each of the twelve leads [28] as briefly described in section 2.2.2.

As described in section 2.2.3, the first PC was computed in a stable ECG segment

at the end of the HD session and the full ECG recording was projected onto that direc-

tion and used for subsequent ECG analysis. This was based on the fact that it is the
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transformed lead where the T waves have maximal energy, thus allowing better morpho-

logical characterization. The T waves in the first PC were delineated using the single-lead

delineation algorithm described in [28]. The onset, peak and end of the T waves were de-

termined [28] and used for subsequent computation of T wave markers, as fully described

in section 2.2.3.

3.2.2 Time, amplitude and morphology-based T wave descrip-

tors

Time and amplitude-based T wave descriptors, Tw and TSA, were computed from

MWTWs as fully described in section 2.2.4.2.

Morphology-based T wave descriptors were computed using the time-warping method-

ology described previously [88] as fully described in section 2.2.4.1. For the patients’

ECGs, reference T waves were calculated from the MWTW at the end of the HD session,

as this is the time when the patient was discharged from hospital with restored serum

ion levels, thus being an acceptable reference for ambulatory monitoring. Fig. 2.4 shows

reference, f r, and studied, f s, T waves from a patient, with their respective time domains,

tr and ts. The linear and nonlinear time and amplitude morphological descriptors, dw,T,

da,T, dNL
w,T and dNL

a,T, were computed as described in section 2.2.4.1.

3.2.3 Relationship between T wave markers and [K+], [Ca2+] and

HR variations

To assess and quantify the effects of [K+], [Ca2+] and RR on each investigated T wave

marker at different time points during HD, linear correlation and linear partial correlation

analysis was performed [91–94] as described in section 2.2.5. For partial correlation, the

correlation coefficient was computed after removing the effects of other covariates.

To test for significant differences in [K+], [Ca2+], RR, Tw, TSA, dw,T, da,T, dNL
w,T and dNL

a,T

at different HD time points, Wilcoxon signed-rank tests were performed [95] and p-values

(p) were computed.

Student’s t-test was performed to test the significance of Pearson correlation between

each T wave marker and [K+], [Ca2+] or RR as described in section 2.2.5.

3.2.4 In silico population of human ventricular fibers

In this chapter, transmural electrical propagation from ventricular endocardium to epi-

cardium was simulated using one-dimensional fibers of 1.65 cm in length [9,97]. Cellular

electrophysiology was represented by the human ventricular AP model proposed by Ten

Tusscher and Panfilov [64]. To adequately represent the relationship between APD and

[Ca2+], the updates to the Ten Tusscher-Panfilov model published in [77] were incorpo-
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rated. The L-type calcium current was described as:

ICaL = GCaL d f f2 fCass 4
(Vm − 15)F 2

RT

[Ca2+] − 0.25 [Ca2+]ss e
2(Vm−15)F/(RT )

1 − e2(Vm−15)F/(RT )
, (3.1)

where GCaL is the maximal ICaL conductance, d is a voltage-dependent activation gate,

f and f2 are voltage-dependent inactivation gates, fCass is an inactivation gate depen-

dent on the calcium concentration in the dyadic space (in mM), denoted by [Ca2+]ss,

F is the Faraday constant, R is the gas constant, T is the temperature and Vm is the

transmembrane potential (in mV). The updated formulations for f2 and fCass of [77] read

dfCass

dt
= k

fCass,inf − fCass

τfCass

, (3.2)

where k = 0 if fCass,inf > fCass and V > −60 mV, and k = 1 otherwise,

fCass,inf =
0.9

1 + exp

(
[Ca2+]ss − 1.95

0.15

) + 0.1, (3.3)

τfCass
=

80

1 +

(
[Ca2+]ss

0.05

)2 + 1, (3.4)

and

f2,inf =
0.3

1 + e(
Vm+35

7 )
+ 0.7. (3.5)

Different proportions of endocardial, midmyocardial and epicardial cells were simu-

lated in a total of 22 combinations with 10% variations in the proportion of each cell

type: endocardial layer ranging from 10% to 50%, midmyocardial layer from 10% to 50%

and epicardial layer from 20% to 80%. We used the notation Cuvw, where C stands

for the word “case” and u, v and w denote the first digit of the proportions of endocar-

dial, midmyocardial and epicardial cells, respectively (e.g. C334 represents the case with

30%, 30% and 40% of endocardial, midmyocardial and epicardial cells, respectively). The

combinations of transmural heterogeneities used in this study are shown in Table 3.1.

Table 3.1: Simulated transmural distributions of cell types.

%
Endo\Epi

20 30 40 50 60 70 80

10 C154 C145 C136 C127 C118
20 C253 C244 C235 C226 C217
30 C352 C343 C334 C325 C316
40 C442 C433 C424 C415
50 C532 C523 C514
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A train of 10 stimuli was applied to the first cell of each fiber with a basic cycle length

of 1000 ms and amplitude equal to 1.5 times the diastolic threshold. The initial state for

each simulation was pre-calculated from a single cell simulation, where the values of the

model state variables after 1000 paced beats were considered as representative of the cell

at steady state. To compute electrical propagation, a finite element-based software [98]

was used with a time step of 0.01 ms and space discretization of 0.01 cm.

Unipolar pECGs were computed as described in previous studies [97] using the ex-

pression:

Ve(x
′, y′, z′) = ϵ

∫
∂V (x, y, z)

∂x

(
∂

∂x

(
1

r(x, y, z)

))
dx, (3.6)

where ϵ is a constant proportional to the ratio of intracellular and extracellular con-

ductivities, V (x, y, z) is the transmembrane potential and r(x, y, z) is the distance be-

tween each source point (x, y, z) in the 1D fiber and the virtual electrode (x′, y′, z′) lo-

cated, in this study, 2 cm away from the epicardium in the fiber direction: r(x, y, z) =(
(x− x′)2 + (y − y′)2 + (z − z′)2

)1/2
, where y = y′ and z = z′ are constant.

3.2.5 Effects of [K+], [Ca2+] and HR variations on simulated

T waves

To assess the extent of the contribution of each investigated factor, i.e. [K+], [Ca2+] and

RR, to T wave characteristics, simulations were conducted for each ventricular fiber under

varying values of those factors and the corresponding pECGs were computed. The range

of simulated [K+] values included the default level in the Ten Tusscher-Panfilov model,

i.e. [K+] = 5.4 mM, as well as other levels below and above it: [K+] ∈ {3, 4, 5.4, 6.2}
mM. In the case of [Ca2+], the range of simulated values included the default level of 2

mM, and values around it: [Ca2+] ∈ {1.4, 2, 2.6, 3.2} mM. For RR, the variations were in

accordance to the range measured from the ECGs of the patients: RR ∈ {0.6, 0.8, 1, 1.2}
s. In the following, the notation F{[K+], [Ca2+] ,RR} is used to represent simulated cases

with varying [K+], [Ca2+] and RR.

The last pECG beat of each simulated condition was delineated using the same de-

lineation method mentioned above [28]. The time-, amplitude- and morphology-based

T wave descriptors of section 6.2.3 were measured over those pECGs. For warping-

based markers, reference T waves were calculated from the simulated beats generated

for minimum [K+] (3 mM) and maximum [Ca2+] (3.2 mM) and RR (1.2 s), that is

F{3 mM; 3.2 mM; 1.2 s}.

3.2.6 Sensitivity analysis for assessment of inter-individual vari-

ability

Sensitivity analysis was performed to assess how the proportion, a, of endocardial, mid-

myocardial and epicardial cell layers, c, modulated T wave or QRS complex morphology
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descriptors, Y , at different [K+], [Ca2+] or RR levels. For each T wave descriptor at

each given concentration of [K+] ([Ca2+] or RR, respectively), the percentage of change

(DY ;c;ai) and its sensitivity (SY ;c;a1,a2) to changes in the proportion of cells of each ven-

tricular layer were computed as follows [99]:

DY ;c;ai =

(
Yc;ai − YC334

YC334

)
· 100, i ∈ {1, 2} (3.7)

SY ;c;a1,a2 =
(DY ;c;a2−DY ;c;a1)100

a2 − a1
=

(Yc;a2−Yc;a1)1002

YC334 (a2 − a1)
, (3.8)

where Yc;a is the average value of the T wave marker Y from all possible combinations

Cuvw sharing a proportion a, at the c layer of endocardial, midmyocardial or epicardial

cells, c ∈ {Endo,Mid,Epi}, with respect to case C334, which was used as a reference [100].

The values of a1 and a2 were taken as the minimum and maximum proportions of cells

in each layer, respectively: 10% and 50% for endocardial and midmyocardial cells, and

20% and 80% for epicardial cells.

YC334 is the value of the T wave descriptor for reference case C334. Thus, DY ;c;ai

measures the mean percentage of change in the T wave marker Y when varying the

proportion of cells in layer c to a percentage ai, i ∈ {1, 2}, with respect to that in C334.

SY ;c;a1,a2 measures the sensitivity of Y when varying the proportion of cells in layer c

from a1 to a2.

3.3 Results

3.3.1 Characterization of T wave changes during HD

Fig. 3.1, panels (a–f), presents the results for all the T wave markers during the HD

session for the 20 analyzed patients, while panels (g–i) present the evolution of [K+],

[Ca2+] and RR during the session. In all these panels, significant differences between

consecutive HD time points are indicated. The bottom panels illustrate variations in

T waves for one patient during the session, with the reference T wave at the end of the

HD session shown in blue and each investigated T wave shown in red. [K+] and [Ca2+]

vary strongly during the session, whereas the RR interval varies much less.

A decreasing trend of TSA, dw,T, dNL
w,T da,T and dNL

a,T and an increasing trend of Tw

during the HD session can be observed, with significantly different values along time. In

the bottom panels, significant changes in the T wave morphology are seen to accompany

the fluctuations of [K+], [Ca2+] and RR during the session. In the example shown in

the bottom panels of Fig. 3.1 for a particular patient, tall and narrow peaked PCA-

transformed T waves are observed at the start of the HD session (h0) corresponding to

maximal [K+].
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Figure 3.1: Panels a-f: Dynamics of Tw, TSA, dw,T, da,T, dNL
w,T and dNL

a,T during the HD
session. Panels g-i: Evolution of [K+], [Ca2+] and RR during the session. In panels
a-i, * indicates p < 0.05 and ** indicates p < 0.01 in the comparison of each marker
between consecutive time points. In each panel, the central line (red) indicates the
median, whereas bottom and top edges show the 25th and 75th percentiles, respectively.
Each purple dot corresponds to an individual patient. In the bottom panels, red T waves
illustrate the PCA-transformed T waves of a patient from the start to the end of the HD
session, with ∆ denoting the change in [K+] with respect to the end of the HD session
(h4). The blue line indicates the reference T wave at the end of the HD session used in
the computation of time-warping markers.

3.3.2 In silico assessment of T wave changes due to [K+] varia-

tions

T wave markers computed from simulated pECGs at varying [K+] are shown in Fig. 3.2.

Panels (a-d) show the simulated APs along the 1-D fiber for the simulated case C154 and

F{[K+]; 2.0 mM; 1.0 s} when [K+] is varied from 6.2 mM to 3 mM. The range of simu-

lated [K+] values approximately corresponds to the maximum and minimum [K+] range

calculated from the patients’ blood data. The corresponding changes in the simulated

pECGs are shown in panels (e-h). It can be observed from the figure that a variation

in [K+] causes AP shortening or prolongation in endocardial, midmyocardial and epicar-

dial cells and therefore shorter or longer QT intervals as well as variations in the width,
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amplitude and morphology of the T wave.

T wave markers computed from the simulated pECGs are presented in panels (i-n)

for the different levels of [K+]. All T wave markers present clear variations with [K+],

reproducing the behavior observed in the patients (Fig. 3.1). A decreasing trend of dw,T

and dNL
a,T from the maximum to the minimum level of [K+] was observed in all the simulated

cases (panels j and n). Monotonic trends of Tw, TSA, da,T and dNL
w,T were observed in most

of the simulated cases (panels i, l, m and n).

The bottom panels in Fig. 3.2 illustrate variations in T waves for simulated fiber C154

from the maximum to the minimum level of [K+] corresponding to the average value of

[K+] during HD in the analyzed patients, with the reference T wave (blue) and each

investigated T wave (red) being displayed. More peaked T waves with varying width and

morphology are observed with increasing [K+] levels for the case shown.

3.3.3 In silico assessment of T wave changes due to [Ca2+] and

HR variations

APs and T wave markers computed from pECGs at varying [Ca2+] and RR are shown

in Fig. 3.3. Panels (a and b) illustrate changes in APs for simulated case C154 and

F{5.4mM; [Ca2+]; 1.0s} under varying [Ca2+] while panels (e and f) present APs for

F{5.4mM; 2.0mM; RR} under varying RR for endocardial (black), midmyocardial (green)

and epicardial (red) cells of a simulated fiber. Simulated pECGs, and specifically T waves,

are presented for varying [Ca2+] and RR in panels (c, d, g, h, i and j).

From panels (a-d), it can be observed that lower [Ca2+] causes AP prolongation in

all the cell types and, consequently, longer QT intervals. Panel (i) shows that the width

and amplitude of the T wave increase with decreasing [Ca2+] and the morphology varies

too. From panels (e-h) it can be seen that an increase in the RR interval causes AP

prolongation and, thus, longer QT intervals (panels e-h). In the middle panel (j), the

width and amplitude of the T wave are shown to increase with increasing RR, which is

accompanied by changes in the T wave shape.

Changes in the T wave markers when varying [Ca2+], F{5.4mM; [Ca2+]; 1.0 s} (red

bar), and when varying RR, F{5.4mM; 2.0mM; RR} (green bar), are presented for the 22

simulated cases in panels (k-p) and compared with the changes measured after varying

[K+] F{[K+]; 2.0mM; 1.0s} (blue bar). A monotonic rise in dw,T and dNL
w,T (panels l and m)

as well as decreasing trends in da,T and dNL
a,T (panels o and p) are observed from the

minimum to the maximum levels of [Ca2+]. However, Tw and TSA do not show a clear

trend at varying levels of [Ca2+] (panels k and n). As for the effects of increasing RR,

trends towards lower TSA, dw,T, dNL
w,T and dNL

a,T can be observed (panels l, m, n and p).

Similarly, an increasing trend of da,T and a monotonic rise in Tw at increasing RR (panels

k and o) are shown.

It can be noted from the figure that T wave markers, particularly morphology-based



CHAPTER 3. T WAVE CHARACTERIZATION 64

Figure 3.2: Panels a-d: Simulated endocardial (black), midmyocardial (green) and epicar-
dial (red) APs for simulated fiber C154, and F{[K+]; 2.0 mM; 1.0 s}. Panels e-h: ECGs
for varying [K+]. Panels i-n: Changes in Tw, TSA, dw,T, da,T, dNL

w,T and dNL
a,T for simulated

fibers when varying [K+]. Central red lines indicate the median, whereas bottom and
top edges show the 25th and 75th percentiles, respectively. Each purple dot corresponds
to an individual simulated fiber. In the bottom panels, red traces indicate the T waves
of a simulated fiber from an initial (maximum) to a final (minimum) value of [K+] cor-
responding to average [K+] values in the analyzed patients. The blue line indicates the
reference T wave used when computing time-warping markers.

ones, show remarkable variations at varying [K+], [Ca2+] and RR. However, [K+]-induced

variations are more visible than those induced by [Ca2+] and RR.
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Figure 3.3: Panels a, b: Simulated endocardial (black), midmyocardial (green) and epicar-
dial (red) APs for simulated fiber C154, F{5.4mM; [Ca2+]; 1.0 s} under varying [Ca2+].
Panels c, d, i: ECGs and T waves for [Ca2+] variations. Panels e, f: Simulated en-
docardial (black), midmyocardial (green) and epicardial (red) APs for simulated fiber
C154, F{5.4mM; 2.0mM; RR}, under varying RR. Panels g, h, j: ECGs and T waves
for RR variations. Panels k-p: Changes in Tw, TSA, dw,T, da,T, dNL

w,T and dNL
a,T for varying

[K+], F{[K+]; 2.0mM; 1.0 s} (blue boxplots), [Ca2+], F{5.4mM; [Ca2+]; 1.0 s} (red box-
plots), and RR, F{5.4mM; 2.0mM; RR} (green boxplots), in the horizontal axis for the
22 simulated fibers. Central lines indicate the median, whereas bottom and top edges
show the 25th and 75th percentiles, respectively. Values of [K+] ∈ {3.0, 4.0, 5.4, 6.2} mM,
[Ca2+] ∈ {1.4, 2.0, 2.6, 3.2} mM, and RR ∈ {0.6, 0.8, 1.0, 1.2} s are used.
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3.3.4 Contribution of [K+], [Ca2+] and HR variations to T wave

changes in vivo and in silico

To assess the relationship between electrolyte or RR variations and the corresponding

changes in T wave markers, a correlation analysis was performed, both for ECG recordings

from the patients and simulated pECGs. Results are presented in Fig. 3.4. The three

graphics in panel (a) illustrate the linear correlation coefficients ρ between [K+], [Ca2+]

or RR and each of the analyzed T wave markers computed from the patients’ ECGs.

Panel (b) shows the corresponding linear partial correlation coefficients after removing

the effects of the other two covariates ([K+], [Ca2+] or RR). Panel (c) shows the linear

correlation coefficients in the simulated cases at varying [K+], [Ca2+] and RR.

Most of the analyzed T wave markers strongly correlated with [K+]. Tw, TSA, dw,T

and dNL
a,T were the most highly correlated ones, with median ρ of −0.94, 0.87, 0.88 and

0.80, respectively, in the patients, and −0.97, 0.86, 0.97 and 0.95, respectively, in the

simulations. However, only dNL
a,T was strongly correlated with [K+] when the effects of

[Ca2+] and RR in the patient’s data were removed (median value of partial correlation

coefficient of 0.75).

Similarly, Tw, TSA, dw,T and dNL
a,T were strongly correlated with [Ca2+] (median value of

ρ of 0.79, −0.82, −0.80 and −0.74, respectively, in the patients, and −0.75, 0.91, 0.42 and

−0.99, respectively, in the simulations). In this case, only dw,T was strongly correlated

with [Ca2+] when removing the effects of [K+] and RR (median value of partial correlation

coefficient of −0.74) in the patients’ data.

As for the relationship between T wave markers and RR, only da,T presented a strong

correlation in both patients’ and simulated ECGs (median ρ of −0.67 for Pearson correla-

tion and −0.90 for partial correlation in the patients, and of 0.99 for Pearson correlation

in the simulations).

Table 3.2 shows the p-values from the Student’s t-test applied to assess the statisti-

cal significance of non-zero mean Fisher’s z-transformed Pearson correlation coefficients

between T wave markers and each of [K+], [Ca2+] and RR in the patient population. As

can be seen from the table, all the analyzed T wave markers, except for da,T, correlated

strongly with [K+] and [Ca2+]. On the other hand, only da,T correlated strongly with RR.

3.3.5 Mechanisms for inter-individual differences in the effects

of [K+], [Ca2+] and RR on T wave changes

The results of the linear regression analysis performed to investigate how different propor-

tions of endocardial, midmyocardial and epicardial cells contribute to explain individual

T wave responses when varying [K+] are presented in Fig. 3.5 for a commonly used T wave

marker, Tw, and a morphology-based marker, dNL
a,T. Cell proportions are represented in

the x-axis, with solid lines showing fitted linear regression models for Tw and dNL
a,T for all

simulated cases.
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Figure 3.4: Panel a: Pearson correlation coefficients between each T wave marker (Tw,
TSA, dw,T, da,T, dNL

w,T and dNL
a,T) and [K+] (left), [Ca2+] (middle) or RR (right) for the an-

alyzed patients. Panel b: Partial correlation coefficients between each T wave marker
(Tw, TSA, dw,T, da,T, dNL

w,T and dNL
a,T) and [K+] (left), [Ca2+] (middle) or RR (right) for the

analyzed patients after removing the effects of the other two variables among [K+], [Ca2+]
and RR. Panel c: Pearson correlation coefficients between each T wave marker (Tw, TSA,
dw,T, da,T, dNL

w,T and dNL
a,T) and [K+] (left), [Ca2+] (middle) or RR (right) for the simulated

fibers under varying [K+], F{[K+]; 2.0mM; 1.0 s} (left), [Ca2+], F{5.4mM; [Ca2+]; 1.0 s}
(middle) and RR, F{5.4mM; 2.0mM; RR} (right). Each purple dot represents the corre-
lation coefficient for an individual patient or simulated fiber. Central red lines indicate
the median, whereas bottom and top edges show the 25th and 75th percentiles, respec-
tively.

Both Tw and dNL
a,T present clear relationships with transmural heterogeneities, being

such relationships more or less accentuated depending on the [K+] level. The highest sen-

sitivities, shown in Table 3.3, and coefficients of determination, R2 shown in Fig. 3.5, of

the time-based marker Tw are with respect to variations in the proportion of endocardial

(positive correlation) and midmyocardial cells (negative correlation), with a more notable

dependence for low [K+] values. In the case of the morphology-based marker dNL
a,T, the

highest sensitivity and R2 are observed for midmyocardial (positive correlation) and epi-

cardial (negative correlation) variations, particularly under high [K+] values. Sensitivity

results for all the analyzed T wave markers at varying [Ca2+] and RR are presented in

Tables 3.4 and 3.5.
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Table 3.2: P-values from Student’s t-test to evaluate statistical significance of non-zero
mean Fisher’s z-transformed Pearson correlation coefficient between T wave markers and
each of [K+], [Ca2+] and RR in the patient population.

p-values Tw TSA dw,T da,T dNL
w,T dNL

a,T

ρ ms 1/ms ms % ms %

[K+] < 0.01 < 0.01 < 0.01 0.25 < 0.01 < 0.01
[Ca2+] 0.03 0.01 0.01 0.73 0.01 < 0.01
RR 0.59 0.79 0.75 0.02 0.98 0.92

Figure 3.5: Panels a-c: Fitted regression lines for the average values of Tw for all simu-
lated cases sharing the same proportion of endocardial, midmyocardial or epicardial cells
at different [K+] levels. Panels d-f: Fitted regression lines for the average values of dNL

a,T

for all simulated cases sharing the same proportion of endocardial, midmyocardial or epi-
cardial cells at different [K+], with the reference value for [K+] = 3 mM. Coefficients of
determination (R2), estimated as the square of the linear correlation coefficient between
the analyzed T wave markers and each cell type (endocardial, midmyocardial or epicar-
dial), are indicated.
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Table 3.3: Results of the sensitivity analysis, SY ;c;a1,a2 , for different values of [K+], when
varying cell proportions in layer c from a1 to a2.

SY ;c;a1,a2 Y Tw TSA dw,T da,T dNL
w,T dNL

a,T

c, a1, a2
[K+]

(mM)
% % % % % %

Endo, 10, 50
4.0 2.9 7.2 108.3 21.9 97.7 0.4
6.2 2.2 7.2 78.7 16.2 3.1 9.7

Mid, 10, 50
4.0 4.5 1.4 41.5 43.5 9.2 10.9
6.2 0.3 11.1 10.7 53.7 8.2 11.8

Epi, 20, 80
4.0 1.3 8.2 102.3 16.7 86.1 10.1
6.2 1.1 12.4 41.6 36.8 2.6 17.2

Table 3.4: Results of the sensitivity analysis, SY ;c;a1,a2 , for different values of [Ca2+], when
varying cell proportions in layer c from a1 to a2.

SY ;c;a1,a2 Y Tw TSA dw,T da,T dNL
w,T dNL

a,T

c, a1, a2
[Ca2+]
(mM)

% % % % % %

Endo, 10, 50
1.4 4.5 −11.4 45.0 −22.2 34.2 10.4
2.6 4.5 −11.6 7.5 −3.9 1.5 10.9

Mid, 10, 50
1.4 0.3 −12.3 39.0 42.3 −11.7 14.1
2.6 −0.2 −10.4 9.0 63.6 11.2 16.2

Epi, 20, 80
1.4 −0.8 12.7 −84.3 −21.7 −26.5 −19.3
2.6 0.2 11.1 −14.4 −25.6 −7.0 −25.6

Table 3.5: Results of the sensitivity analysis, SY ;c;a1,a2 , for different values of RR, when
varying cell proportions in layer c from a1 to a2.

SY ;c;a1,a2 Y Tw TSA dw,T da,T dNL
w,T dNL

a,T

c, a1, a2 RR (s) % % % % % %

Endo, 10, 50
0.6 0.5 −0.8 −7.3 −8.4 50.5 4.6
1.0 0.1 −1.7 −76.7 −11.6 −40.6 −11.1

Mid, 10, 50
0.6 −2.7 −5.2 19.6 32.6 82.2 26.6
1.0 0.1 −11.3 −29.0 20.6 −1.9 8.7

Epi, 20, 80
0.6 0.3 7.5 −9.3 −16.2 −13.5 −29.9
1.0 −0.9 12.2 65.7 −7.9 32.6 −14.8
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3.4 Discussion

Serum [K+] and [Ca2+] levels outside the normal range are associated with increased

mortality [2,4,101–105]. The availability of non-invasive tools to monitor serum [K+] and

[Ca2+] concentrations, particularly in ESRD patients, might have a significant impact on

clinical practice. In this chapter, we characterized changes in ECG markers measuring

duration, amplitude and morphology of the T wave during HD in ESRD patients and

we assessed their relationship with [K+], [Ca2+] and HR variations. In addition, we

simulated human transmural ventricular fibers to unravel potential underpinnings of the

high inter-individual differences in T wave responses observed in the patients in response

to electrolyte and heart rate variations.

3.4.1 T wave analysis in ESRD patients during HD

We evaluated commonly used markers describing T wave time and amplitude character-

istics, like its width (Tw) and its downward slope-to-amplitude ratio (TSA), as well as

more recently proposed markers describing morphological characteristics computed by

warping-based techniques (dw,T, da,T, dNL
w,T and dNL

a,T). Those markers were measured at

sequential time points during HD because large changes in serum electrolyte concentra-

tions can be expected during this period. We showed that such an analysis indeed allows

to provide a characterization of T wave changes for a wide range of [K+], [Ca2+] and HR

variations, with dNL
a,T, dw,T and da,T being the markers most strongly correlated with [K+],

[Ca2+] and RR, respectively, after removing the effects of the other covariates. These re-

sults emphasize the importance of considering more complex markers to fully characterize

the ECG repolarization response during HD.

Variations in serum electrolyte levels, mainly [K+] and [Ca2+], have been shown to

alter ventricular properties in the ECG [4–6, 106, 107]. In particular, previous studies

have described that ECGs recorded under hyperkalemic conditions commonly have more

peaked T waves than those recorded under normal levels of [K+] [4, 23, 25, 30]. In this

study, we could observe such behavior in some of the ESRD patients’ recordings, as

illustrated in the bottom panels of Fig. 3.1. However, a decrease in T wave amplitude

could not be consistently measured for all patients, but large inter-individual variability

was noted in the relationship between [K+] and T wave amplitude. Other studies have

analyzed the effects of [K+] changes on the width, slope and amplitude-to-slope ratio

of the T wave as well as the ratio of the T wave amplitude to the R wave amplitude

[7–9, 31, 108]. The main limitation of these descriptors is that, even if some of them

may show a high degree of correlation with the level of [K+], their changes cannot be

exclusively attributed to [K+] variations, as confirmed in our study by including in the

analysis additional confounders like variations in [Ca2+] or HR.

Regarding the analysis of the T wave shape, a MCS based on T wave asymmetry,

flatness and notching [33–35] has been used to analyze its relationship with [K+] in a
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primary care population [36]. A clear association between MCS and [K+] could only be

found among individuals with [K+] in the range 2–4.1 mM, but not among those with

[K+] in the range 4.2–6 mM. In ESRD patients, we found that morphological variability,

specifically quantified by our analyzed T wave marker dNL
a,T was closely related to serum

[K+] in a wide range of values, covering both hyper- and hypokalemic values.

As for the effects of [Ca2+] variations on the ECG, a recent large-scale study has found

that low [Ca2+] values are associated with clinically relevant QT prolongation in the

general population [6]. In chronic patients undergoing HD, changes in [Ca2+] have been

found to be negatively correlated with changes in the last part of the ECG repolarization

measured by the T-peak to T-end interval [50]. In this chapter, we showed that the

full repolarization duration measured by Tw indeed presents an inverse relationship with

[Ca2+] after removing the effects of other confounders. Nevertheless, such a relationship

between Tw and [Ca2+] was not as strong as that of other markers like dw,T reflecting

temporal variations in T wave morphology.

3.4.2 T wave analysis in simulated ventricular tissues at varying

[K+], [Ca2+] and HR

All the T wave markers analyzed in this chapter showed a diversity of patterns in their

relationship with electrolyte variations during HD. Both the general trend of such rela-

tionships and the high inter-individual variability were well reproduced by our simulated

ventricular fibers for most of the markers. This can be explained by the fact that we

simulated 22 different transmural fibers accounting for proportions of endocardial, mid-

myocardial and epicardial cells varying within plausible limits, as reported in previous

studies [82,97,100,109]. We are not aware of other in silico studies investigating morpho-

logical variability in the T wave of the ECG in relation to electrolyte variations such as

those occurring during HD, but there are different in silico studies characterizing T wave

duration and amplitude as a function of electrolyte concentrations [9, 79].

In agreement with our ECG data, an increase in [K+] led to shortening of the repolar-

ization time quantified by Tw in our transmural fibers. Other computational studies have

shown divergent results in this regard. In [80], prolongation of the RT interval has been

reported in response to increased [K+], which is acknowledged by the authors to be in

contrast with clinical data but possibly explained by factors other than [K+]. In [9,81], a

simulated increase in [K+] has been shown to lead to QT shortening, which would be in

line with our results. Our results on Tw reduction with increasing [Ca2+] are concordant

with the shortening of the repolarization time reported by others [79, 81, 82]. Also, our

results at the cellular level are aligned with those obtained with the human ventricular

AP model recently proposed by Bartolucci et al. [78], which, in contrast to most AP

models, is able to reproduce a physiological APD-[Ca2+] relationship.

Moreover, in our simulations, the marker TSA quantifying the T wave slope-to-



CHAPTER 3. T WAVE CHARACTERIZATION 72

amplitude ratio was shown to correlate strongly with [K+] and [Ca2+]. These results

are in agreement with previous studies [9,31], in which TSA was proposed as an index to

monitor [K+] during HD and a cause-effect sequence for the observed decrease in TSA was

provided through computational simulations.

The above discussed results show that in silico modeling and simulation can help to

gain insight into the ECG changes observed in response to electrolyte abnormalities. In

contrast to other computational studies, which used one single cell or tissue electrophys-

iological model, we simulated a population of human ventricular tissue fibers, which can

be used to shed light on the highly inter-individual relationships between ECG markers

and [K+] or [Ca2+].

3.4.3 Potential mechanisms for inter-individual T wave re-

sponses to electrolyte and HR variations

We computed T wave marker sensitivities to explain how different transmural hetero-

geneities can contribute to explain distinct T wave responses to variations in [K+], [Ca2+]

and HR. The morphological descriptors dw,T, dNL
w,T, da,T and dNL

a,T generally showed higher

sensitivity to variations in the proportions of the ventricular layers than the time and

amplitude markers Tw and TSA. Previous experimental and theoretical studies have de-

scribed how cell distributions across the ventricular wall affect ECG repolarization and, in

particular, T wave morphology [88, 110–115]. Our study, in this chapter, confirms these

observations on the impact of transmural heterogeneities on T wave width, amplitude

and shape characteristics, not only at physiological electrolyte concentrations but also

at high and low [K+] and [Ca2+] levels and at different heart rates. Even if transmural

heterogeneities can contribute to inter-individual differences in the T wave response to

electrolyte and HR variations, other ventricular heterogeneities, like interventricular, api-

cobasal or anteroposterior, may play a relevant role, which should be assessed in further

studies.

Our results on the sensitivity of T wave morphological markers with respect to varia-

tions in transmural heterogeneities, and more specifically to the proportion of epicardial

cells within the ventricular wall, are aligned with computational findings presented by

Janusek et al. [110], which demonstrated the influence of epicardial cells on the develop-

ment of T wave alternans, a form of repolarization variability [110]. The contribution of

variations in the midmyocardial layer to T wave morphology has been shown in a recent

study too [112].

3.4.4 Study limitations and future research

In this chapter, 20 ECG recordings of ESRD patients during an HD session, with 5

blood samples available along HD, are investigated. Future studies should investigate

the application of the proposed methods to larger numbers of patients and, if possible,
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with more available blood samples during the full 48-hour ECG recording. This would

allow more robust assessment of the relationship between changes in T wave markers and

specific variations in [K+], [Ca2+] or HR, potentially using nonlinear regression statistical

techniques [116, 117]. In chapters 4 and 5, we included a few more patients with an

additional HD point 48 hours after the start of the HD.

In this chapter, electrophysiological simulations were performed for human transmural

ventricular 1D fibers. In chapter 6, we extended the investigations of the present study to

include simulations in bi-ventricular models embedded in patient-specific torso models,

from which more realistic ECGs can be computed. This research could additionally allow

exploring the role of other types of ventricular heterogeneities, on top of transmural ones,

on the T wave response to electrolyte and HR variations.

3.5 Conclusions

We showed that descriptors of T wave width (Tw), slope-to-amplitude ratio (TSA) and

morphological variability (dw,T, da,T, dNL
w,T and dNL

a,T) vary remarkably with varying [K+],

[Ca2+] and HR, but a wide range of patterns is observed for such relationships. Among

the proposed descriptors, dNL
a,T dw,T and da,T are the ones that best correlate with [K+],

[Ca2+] and HR, respectively. The proportion of midmyocardial and epicardial cells has

a large impact on T wave markers, particularly for serum electrolyte concentrations and

HR out of their physiological levels. This suggests that transmural heterogeneities can

modulate patient-dependent T wave responses to changes in electrolyte concentrations

and HR in ESRD patients. These findings can have major relevance for non-invasive

monitoring and prediction of arrhythmic events in these patients.
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4.1 Introduction

In chapter 3, T wave morphology markers derived from the ECG, obtained by applying

time warping analysis, were used to characterize ECG repolarization changes during HD

in ESRD patients and to relate them with variations in [K+], [Ca2+] and HR. In this

chapter, we propose to characterize nonlinear dynamics of the T wave using markers based

on maximum Lyapunov exponents and a divergence-related marker. We hypothesize that

elevated [K+] at the start of HD and 48 hours later is associated with higher variability in

the form of dynamical instabilities, which will be reflected in larger values of the quantified

nonlinear dynamics markers [118, 119]. In particular, larger repolarization variability at

elevated [K+] would be expected to lead to larger rates of divergence of phase space

trajectories associated with T waves and, consequently, higher Lyapunov exponents. This

type of [K+]-related changes in nonlinear dynamics could be complementary to other types

of T wave morphology, duration and amplitude changes previously described in chapter 3.

Next, in this chapter, we evaluate the degree of correlation between each of the ana-

lyzed markers and [K+] in ESRD patients during and after HD. Univariable and multivari-

able regression models including markers of T wave nonlinear dynamics in combination

with warping-based markers of T wave morphology are built and their performance for

74
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[K+] estimation is assessed.

4.2 Methods

4.2.1 Study population and ECG pre-processing

In this chapter, 48-hour 12-lead ECGs were collected from 29 ESRD patients undergoing

HD at HCUZ as fully described in section 2.2.1.

ECG signals were pre-processed as described in section 2.2.1. The onset, peak and

end of the T waves were delineated [28] as described in section 2.2.2.

A flow chart from ECG pre-processing to the determination of the estimators is shown

in Fig. 4.1.

Figure 4.1: Flow chart showing the ECG processing steps performed in this study, from
the collection of raw ECGs to the estimation of [K+].

4.2.2 T wave morphology and nonlinear dynamics markers

Two-minute ECG segments at the HD start (h0), at the end of each HD hour (h1 to h4)

and at 48 hours (h48) were analyzed to compute MWTWs, which are optimal represen-

tative averages obtained after time-warping all the T waves in the analyzed segment [88],
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which was fully described in section 3.2.2. The predominant T wave polarity was identified

as the most frequent polarity in the analyzed 2-minute window, with an average of 90%

of T waves in each analyzed segment found to present such predominant polarity [29,86]

(see Fig. 2.3). For MWTW computation, only the T waves having the predominant po-

larity were considered after alignment with respect to their center of gravity [88] so that

the calculated MWTW was not affected by potential outlier T waves.

In this chapter, dw,T, da,T and dNL
a,T based T wave morphological descriptors and λt, λwt

and η based T wave nonlinear dynamics markers were calculated, as described in section

2.2.4.

4.2.3 Synthetically generated T waves

In this chapter, the ability of nonlinear dynamics markers, λt, λwt η, and time-warping

markers, dw,T, da,T and dNL
a,T, to capture gradual linear and nonlinear T wave time and

amplitude variations along time, both in the absence and presence of temporal inter-beat

variability, was assessed by generating sets of synthetic T waves in which changes were

simulated according to specifically defined functions, as described in the following.

4.2.3.1 Simulation of T wave duration and amplitude changes

We considered a pre-processed PCA-transformed T wave obtained from a particular pa-

tient as a reference T wave, f r(tr). We defined nonlinear T wave amplitude changes

by:

fkNL(tr) = f r(tr) + c(k) sin

(
2π

1

4Nr

tr
)
, (4.1)

where c(k) = 25 sin [π(BT + k)/(2BT)] being k = 1, . . . , BT the index of a T wave and

BT the total number of simulated beats, which was set to the number of beats during

the whole HD session in the patient from whom the reference T wave was selected. The

simulated T waves in the first 2-minute segment were identified as representative of h0,

while the simulated T waves for beats in 2-minute segments at the end of the first, second,

third and fourth hours were taken as representative of h1, h2, h3 and h4, respectively.

Additional linear T wave amplitude changes were generated on top of the nonlinear

amplitude changes:

fkl (tr) = fkNL(tr)b(k) (4.2)

where b(k) = 1 + 0.25 sin(π(BT + k)/(2BT)).

Nonlinear T wave duration changes were generated as follows:

tkNL = tr + g(k)
Nr

Nk

sin

(
2π

1

Nr

tr
)
, (4.3)

where g(k) = 10 k−1
BT−1

− 10.
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Additional linear T wave duration changes were simulated on top of the nonlinear

duration changes:

tkl = γk(tkNL), (4.4)

where γk(tkNL) stretches tkNL according to a downsampling factor a(k) = 0.25 k−1
BT−1

+ 0.75.

Combined simulated T wave duration and amplitude changes were defined according

to:

fkS (tk)= fkl (tkl ). (4.5)

In this study, we used six different cases, C#, which corresponded to linear and

nonlinear duration and amplitude changes in the T waves:

• C1 considered the reference T wave and maintained its duration and amplitude

along the whole simulation

• C2, defined by nonlinear amplitude changes,

• C3, defined by linear amplitude changes on top of nonlinear amplitude ones,

• C4, defined by nonlinear duration changes,

• C5, defined by linear duration changes on top of nonlinear duration ones, and

• C6, corresponding to the combined effects of linear and nonlinear amplitude and

duration modulations in the T waves.

4.2.3.2 Simulation of temporal inter-beat variability

Realistic variability signals were obtained from an ESRD patient, with index q0, for each

2-minute segment representative of each stage during and after HD. Variability signals

were defined as the difference of each individual aligned T wave and the corresponding

average in the 2-minute window:

fkv = fkv,q0 = fk − 1

B

B∑
k=1

fk. (4.6)

To make the magnitude of temporal inter-beat variability be representative of the

averaged variability over patients rather than representative of an individual patient, the

following factors were computed for each patient in a 2-minute window around each HD

stage point and the median over all patients was calculated. Two different approaches

were used to compute the factors associated with variability modulation in each patient.

On the one hand, inter-beat variability factors at a given HD stage were defined for each
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patient q as:

αInter
v,q =

1

N Inter

N Inter∑
n=1

f Inter
IQRv,q

(n), (4.7)

f Inter
IQRv,q

(n) = IQR{f 1
v,q(n), f 2

v,q(n), . . . , fB
v,q(n)}, (4.8)

where IQR represents the interquartile range operation, B is the number of beats in the

2-minute segment and N Inter is the number of samples in the f InterIQRv
.

Similarly, intra-beat variability factors at a given HD stage were defined for each

patient q as:

αIntra
v,q =

1

B

B∑
k=1

fk
IQRv,q

, (4.9)

fk
IQRv,q

= IQR{fk
v,q(1), fk

v,q(2), . . . , fk
v,q(Nk)}. (4.10)

Representative scaling factors accounting for information from all patients, denoted

by α̃Inter
v and α̃Intra

v , were calculated by taking the median of the variability factors αInter
v,q

and αIntra
v,q over all patients. The calculated factors were applied to the variability signal,

fkv , and added to the synthetic T wave, fkS , obtained as described in section 4.2.3.1, to

have representative variability in the simulation:

fkS+vInter
=

α̃Inter
v

αInter
v,q0

· fkv,q0 + fkS , (4.11)

and

fkS+vIntra
=

α̃Intra
v

αIntra
v,q0

· fkv,q0 + fkS , (4.12)

where αInter
v,q0

and αIntra
v,q0

were computed from the variability signals of the particular patient

q0.

For each analyzed HD stage, the generated T waves with added variability, i.e. fkS+vInter

and fkS+vIntra
, were concatenated for all simulated beats k = 1, 2, . . . , B.

Additionally, MWTWs and inter-MWTWs were computed from simulated T waves in

2-minute segments to assess the response of dw,T, da,T, dNL
a,T and η to the simulated duration

and amplitude changes, both with and without additional scaled intra-beat variability.

Inter-beat variability was used to assess the performance of λt and λwt.

4.2.4 Correlation analysis and statistical comparisons

To assess the relationship between each investigated T wave marker and [K+] during and

after HD, Pearson, Spearman and linear partial correlation analyses (the latter to account

for the influence of other factors affecting the T wave) were performed for each patient

as described in section 2.2.5.
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The duration of the ECG recordings was 48 hours for all patients, except for a few that

ended some minutes earlier, mainly due to electrode detachment or battery exhaustion.

However, given the small expected drift of [K+] in this short time period, we assumed

that the end of the ECG recording corresponded to the blood sample taken at 48 hours.

For this reason, correlation coefficients were computed using the six values of [K+] at HD

stages hi, i ∈ {0, 1, 2, 3, 4, 48}.

Wilcoxon signed-rank tests were performed to test for significant differences in λt, λwt,

η, dw,T, da,T and dNL
a,T at different time stages during and after HD and Student’s t-test was

applied to test the significance of Pearson correlation coefficient r between each T wave

marker and [K+] as fully described in section 2.2.5.

The performance of our investigated T wave markers was compared with that of the

previously proposed T wave markers TS/A [9, 31] and TS/
√
A [32], which were computed

from MWTWs at time points h0, h1, h2, h3, h4 and h48 during and after HD as described

in section 2.2.4.2.

In this chapter, all statistical analyses were performed using MATLAB version R2020a

for Windows (MathWorks Inc., MI, USA).

4.2.5 Univariable and multivariable estimation of [K+]

To estimate [K+] from the analyzed T wave markers, univariable and multivariable linear

regression models were built. The univariable models included either η or dw,T and the

multivariable model included both.

The univariable estimators [K+]dw,T and [K+]η and the multivariable estimator [K+]m

were defined as:

[K+]η = βη

0 + βη

1 · η , (4.13)

[K+]dw,T = β
dw,T

0 + β
dw,T

1 · dw,T , (4.14)

[K+]m = βm
0 + βm

1 · η + βm
2 · dw,T . (4.15)

For the univariable models, the coefficients β =
[
βη

0 βη

1

]T
or β =

[
β
dw,T

0 β
dw,T

1

]T
were computed as:

β̂ = (XTX)−1XTyT , (4.16)

with X =
[
jT xT

b

]
. The definition of jT , xT

b and y is different for time- and patient-

specific estimators, as described in the following.

For a given HD stage i, the stage-specific estimator β̂ was calculated from equation

(4.16) by considering j = [1, 1, . . . , 1] of dimension 1×Q, with Q the number of patients.

The vector xb = [bi,1, bi,2, . . . , bi,Q] contained the values of the marker b, being either η

or dw,T, at the considered HD stage i from all the patients q = 1, . . . , Q. The vector

y = [[K+]i,1, [K
+]i,2, . . . , [K

+]i,Q], contained the measured values of [K+] at the HD stage

i for all patients.
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For a given patient q, the patient-specific estimator β̂ was calculated by considering

j = [1, 1, . . . , 1] of dimension 1× 6. The vector xb = [b0,q, b1,q, b2,q, b3,q, b4,q, b48,q] contained

the values of b, either η or dw,T, for patient q at all HD stages i = 0, 1, 2, 3, 4, 48. The vec-

tor y = [[K+]0,q, [K
+]1,q, [K

+]2,q, [K
+]3,q, [K

+]4,q, [K
+]48,q] contained the measured values of

[K+] values for patient q at all HD stages i.

For the multivariable model, β = [βm
0 , β

m
1 , β

m
2 ]T was calculated from equation (4.16),

now using X = [jT ,xT
b(1)

,xT
b(2)

], with xb(1) containing the values of η and xb(2) containing

the values of dw,T and defined as described above for either HD-stage- or patient-specific

estimators.

Leave-one-out cross validation was used to assess the performance of the [K+] estima-

tors:

• Stage-specific estimators: The estimator was trained with Q−1 patients for each HD

stage individually and then tested for the Q-th patient. This process was repeated

for all HD stages.

• Patient-specific estimators: The estimator was trained with five HD stage points for

each patient individually and tested for the 6th stage. This process was repeated

for all patients.

The error ϵ between measured and estimated [K+] values was computed as

ϵ = [K+]a − [K+]e, (4.17)

where [K+]a is [K+] measured from blood test and [K+]e is the estimated [K+]. The

relative error Rv was computed as

Rv =
[K+]a − [K+]e

[K+]D
, (4.18)

where [K+]D was defined, for each patient, as the difference between maximum and min-

imum [K+]a values across HD stage. The relative error Rr was computed as

Rr =
[K+]a − [K+]e

[K+]R
, (4.19)

where [K+]R was defined as the difference between maximum 75th and minimum 25th

percentiles of [K+] across patients at each HD stage.

To assess the agreement between actual and estimated [K+] values, Bland-Altman

analysis was performed [120] to show the difference vs the mean of actual and estimated

[K+] for all patients at all HD time points.

It should be noted that a [K+] estimator was not computed at the end of the HD

session (h4) since the morphological T wave marker dw,T was zero by definition, as the

reference was taken at that time stage.
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4.3 Results

4.3.1 Robust calculation of T wave nonlinear dynamics markers

Fig. 4.2 shows λt, λwt and η for variations in the values of the parameters p, τ and m

around their default values so as to assess the sensitivity of these markers to their param-

eters. The individual T waves in a 2-minute window from a particular patient at a given

HD stage were used for the computation of λtand λwt, whereas the corresponding inter-

MWTW was used for the computation of η. Thus, the default values of the parameters

p, τ and m were different for λt and λwt than for η, as described in section 2.2.4.3. As

can be seen from Fig. 4.2, λt and λwt were more sensitive to τ and m than to p but they

tended to be stable around the values τ = 6 and m = 30 employed here. The marker η,

computed from inter-MWTW, was almost stable around the chosen values p = 25, τ = 3

and m = 22.

Figure 4.2: Panels a–c: Sensitivity of λt (left), λwt (middle) and η (right) for different
values of the parameters representing the period (p), delay (τ) and embedding dimension
(m) calculated from unwarped and warped T waves in a 2-minute window and inter-
MWTW of a patient at a particular HD stage (h4). Note that the default values of p,
τ and m used in the calculation of λt and λwt are different from the ones used in the
calculation of η, which explains differences in the x-axis of panels (a) and (b) with respect
to panel (c).

4.3.2 Simulation of changes in T wave amplitude, duration and

temporal inter-beat variability

Fig. 4.3, top panels, shows T waves under simulated linear and nonlinear duration and

amplitude changes. Each panel shows the last T wave (fkS ) in a simulated 2-minute

segment representing an HD stage. The bottom panels show the variability signals (fkv )

added to the T waves. Tall and narrow T waves are observed at h0, representing the

situation at the HD start, with a subsequent amplitude decrease and duration increase

along time to represent variations during HD.

Fig. 4.4 shows the evolution of T wave markers (λt, η, dw,T, da,T and dNL
a,T) for simulated

linear and nonlinear variations in duration and amplitude (C2 to C6), with (panels f–j)
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Figure 4.3: Simulated (last) T wave from a sequence of 2 minute T waves (fkS ) in linear and
nonlinear duration and amplitude domain (top panels) and the variability (fkv ) in 2 minute
T waves (bottom panels) during HD. Solid black and red T waves correspond to nonlinear
and linear amplitude modulation (C2, C3), solid cyan and magenta T waves correspond
to nonlinear and linear duration modulation (C4, C5), and solid green T wave includes
both time and amplitude modulation (C6). Blue T wave corresponds to the reference
T wave (C1).

and without (panels a–e) added variability to T waves. As can be seen from the figure,

the Lyapunov exponent-based marker λt reflects temporal inter-beat variability in the

T wave well, while the divergence marker η and morphology-based markers dw,T, da,T

and dNL
a,T are able to describe linear and nonlinear duration or amplitude changes. The

markers dw,T and η are the ones best reflecting simulated time changes and combined

time and amplitude changes in the T wave, respectively. Results for λwt were similar to

those obtained for λt, although the decreasing trend along simulated time was less clear.

4.3.3 Characterization of T wave changes during and after HD

Fig. 4.5, panels a–f, shows the changes in the analyzed T wave markers (λt, λwt, η, dw,T,

da,T and dNL
a,T) together with [K+] changes during and after the HD session for the analyzed

ESRD patients’ recordings. Illustrative T waves for a patient are shown in the bottom

panels g–h, presenting the reference T wave (blue), each investigated T wave (red) and

inter-MWTW (black) during and after the HD session, both before (panel g) and after

(panel h) warping and averaging.

A decreasing trend in all markers (right y-axis, in red) with decreasing [K+] (left y-

axis, in blue) was observed during HD, from h0 (HD start) to h4 (HD end). The marker

values increased with increasing [K+] from the HD end to the 48-th hour after the HD
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(a) (b)

Figure 4.4: Panels a–j: T wave markers (λ, η, dw,T, da,T and dNL
a,T) in linear and nonlinear

duration and amplitude simulations during HD, with (bottom panels f–j) and without
(top panels a–e) adding scaled variability’s. Solid black and dotted red results correspond
to nonlinear and combined nonlinear and linear amplitude modulation (C2, C3), dotted
cyan and solid blue results correspond to nonlinear and combined nonlinear and linear
duration modulation (C4, C5), and dotted green results includes both time and amplitude
modulations (C6).

start. Particularly remarkable changes can be seen for the morphology marker dw,T and

for the nonlinear dynamics marker η. Since we took the end of the HD session (h4) as

reference for computation of dw,T, da,T and dNL
a,T, these markers take zero value at this HD

stage. From the bottom panels of Fig. 4.5, tall and narrow T waves can be observed

before (h0) and 48 hours after HD (h48), corresponding to the highest [K+] values.

4.3.4 Correlation between T wave markers and [K+]

Fig. 4.6 shows the results of the correlation analysis. The linear correlation coefficients

between [K+] and each of the T wave markers are shown in black and the partial linear

correlation coefficients after removing the effects of RR and [Ca2+] are shown in red

and blue, respectively. The markers dw,T, η, dNL
a,T and λt were the most highly linearly

correlated with [K+], with median Pearson r over patients presented in Table 4.2. λwt and

da,T poorly correlated with [K+]. Also, dw,T and η were the most strongly correlated with

[K+] after removing the effects of RR and these two indices, together with da,T and dNL
a,T,

were the most strongly correlated with [K+] after removing the effects of [Ca2+]. Results

obtained for Pearson and Spearman correlation coefficients between [K+] and each the

T wave markers investigated in this study are presented in Table 4.1, with the highest

values obtained for dw,T, η and TS/A.

Table 4.2 also shows the p-values from Student’s t-test to assess the statistical signif-

icance of non-zero mean Fisher’s z-transformed Pearson correlation coefficients between
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Figure 4.5: Panels a–f: Changes in λt, λwt, η, dw,T, da,T and dNL
a,T with [K+] variations for

the analyzed patients’ recordings during and after HD. In panels a–f, * indicates p < 0.05
and ** indicates p < 0.01 in the comparison of each marker between consecutive time
stages. The central line indicates the median, whereas top and bottom edges show the
25th and 75th percentiles, respectively. Panel g: T waves of a patient during and after
HD. Panel h: Warped T waves of a patient during and after HD, with the reference
T wave (blue), each analyzed T wave (red) and inter-MWTW (black) being displayed.
∆ denotes the change in [K+] with respect to the end of the HD session and the units in
the legends of panels (g) and (h) are mM.

Table 4.1: Intra-patient Pearson’s (r) and Spearman’s (ρ) correlation coefficients between
[K+] and the T wave markers.

Parameter r ρ
λt 0.63 (0.47) 0.62 (0.69)
λwt 0.32 (0.89) 0.43 (0.78)
η 0.78 (0.38) 0.79 (0.51)

dw,T 0.83 (0.50) 0.78 (0.63)
da,T 0.29 (1.35) 0.18 (0.95)
dNL
a,T 0.66 (0.32) 0.66 (0.29)

TS/A 0.78 (0.39) 0.80 (0.36)
TS/

√
A 0.68 (0.77) 0.53 (0.74)

*Values are expressed as median (IQR)

T wave markers and [K+]. As can be seen from the table, all the analyzed T wave

markers, except for da,T and λwt, correlated significantly with [K+].

To confirm that T wave nonlinear dynamics markers (λt, λwt and η) provided com-
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Figure 4.6: Correlation coefficients between T wave markers (λt, λwt, η, dw,T, da,T, and
dNL
a,T) and [K+] from patients’ ECGs. Black boxplots: Pearson correlation coefficients.

Red boxplots: Partial linear correlation coefficients after removing the effects of RR.
Blue boxplots: Partial linear correlation coefficients after removing the effects of [Ca2+].
Each purple dot represents the correlation coefficient for an individual patient. The
central line indicates the median, whereas top and bottom edges show the 25th and 75th

percentiles, respectively.

Table 4.2: Median Pearson r and partial correlation coefficients after removing the effects
of RR (rRR) and [Ca2+] (r[Ca2+]), and p-values from Student’s t-test to evaluate statis-

tical significance of non-zero mean Fisher’s z-transformed Pearson correlation coefficient
between T wave markers and [K+].

[K+] λt λwt η dw,T da,T dNL
a,T

r 0.63 0.32 0.78 0.83 0.29 0.66
rRR 0.69 0.36 0.79 0.87 0.07 0.66

r[Ca2+] 0.38 0.12 0.41 0.54 0.45 0.41

p-values <0.01 0.01 <0.01 <0.01 0.18 <0.01

plementary information to morphological markers (dw,T, da,T and dNL
a,T), linear correlation

analysis was performed and results are shown in Table 4.3. As can be observed, the

markers dNL
a,T and η correlated strongly.

Table 4.3: Intra-patient Pearson correlation coefficients (r) between morphological and
nonlinear dynamics T wave markers.

Parameter λt λwt η
dw,T 0.66 (0.43) 0.42 (0.58) 0.55 (0.73)
da,T 0.29 (1.25) 0.05 (0.95) −0.12 (1.62)
dNL
a,T 0.57 (0.42) 0.21 (0.60) 0.72 (0.25)

*Values are expressed as median (IQR)
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4.3.5 ECG-based estimation of [K+]

Fig. 4.7 shows the error ϵ for univariable and multivariable [K+] estimators for all ESRD

patients at each HD stage using both stage-specific and patient-specific approaches. Par-

ticularly for the multivariable estimator, Table 4.4 shows the estimated [K+]me values using

stage-specific, [K+]m,S
e , and patient-specific, [K+]m,P

e , approaches and compares them with

the measured [K+]a values.

(a) Stage-specific

(b) Patient-specific

Figure 4.7: Error ϵ between estimated and actual [K+] for all ESRD patients during and
after HD using univariable (η or dw,T) and multivariable (η and dw,T) estimators with
stage-specific (panel (a)) or patient-specific (panel (b)) approaches. The central red dot
represents the mean of the errors, whereas top and bottom edges show the standard
deviation (SD) for all the patients. The central black dotted horizontal line represents a
reference at ’0’.

Table 4.4: Results for the multivariable [K+]me estimator at each HD stage. [K+]m,S
e :

estimated [K+] using stage-specific approach; [K+]m,P
e : estimated [K+] using patient-

specific approach.

Actual vs Estimated [K+] h0 h1 h2 h3 h48

[K+]a 5.23±1.10 4.05±0.78 3.70±0.58 3.48±0.52 5.01±0.93
[K+]m,S

e 5.20±0.33 4.05±0.20 3.70±0.16 3.46±0.14 5.04±0.31
[K+]m,P

e 4.78±1.45 4.21±0.68 3.82±0.76 3.63±0.73 4.78±1.26
*Values are expressed as mean ± standard deviation and the units are mM

Tables 4.5 and 4.6 show the relative errors Rv and Rr between actual and estimated

[K+] at each HD stage for the multivariable estimator using stage-specific and patient-

specific approaches.

Table 4.7 shows the median and IQR values of intra-patient Pearson correlation co-

efficient between actual and estimated [K+] for univariable and multivariable estimators

using stage-specific and patient-specific approaches.

Bland-Altman plots in Figures 4.8-4.12 show the difference vs the mean of actual and

estimated [K+] for TS/A, TS/
√

A, dw,T, η and the combination of dw,T and η using stage and
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Table 4.5: Relative errors Rv using stage-specific (S) and patient-specific (P ) approaches
for the multivariable estimator.

Rv h0 h1 h2 h3 h48

S −0.20±0.68 −0.13±0.45 −0.10±0.35 −0.07±0.29 −0.17±0.57
P 0.30±0.61 −0.11±0.28 −0.09±0.26 −0.09±0.20 0.18±0.38

*Values are expressed as mean ± standard deviation

Table 4.6: Relative errors Rr using stage-specific (S) and patient-specific (P ) approaches
for the multivariable estimator.

Rr h0 h1 h2 h3 h48

S 0.011±0.442 0.000±0.315 −0.001±0.234 −0.002±0.201 −0.008±0.347
P 0.163±0.348 −0.058±0.194 −0.042±0.184 −0.065±0.142 0.085±0.246

*Values are expressed as mean ± standard deviation

Table 4.7: Intra-patient Pearson correlation coefficients (r) between actual and estimated
[K+] (r[K+],[K+]e) using stage-specific (S) and patient-specific (P ) approaches for univari-
able and multivariable estimators.

r[K+],[K+]e η dw,T η, dw,T

S 0.98 (0.03) 0.97 (0.06) 0.97 (0.05)
P 0.32 (1.29) 0.65 (1.07) 0.77 (0.88)

*Values are expressed as median (IQR)

patient-specific approach.

A comparison between estimation errors obtained for T wave markers analyzed in the

present study and in previous studies is presented in Tables 4.8–4.9.
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Figure 4.8: Left Panel: Bland-Altman plot between actual and estimated [K+] for TS/A

using stage-specific approach. Right Panel: Bland-Altman plot using patient-specific
approach.
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CHAPTER 4. T WAVE NONLINEAR DYNAMICS 89

([K
+
]+[K

+
]
e
)/2 (mM)

[K
+
]-

[K
+
] e

 (
m

M
)

d
w,T

: Stage specific

mean: -0.001973

CI: -0.1447 - 0.1407

LoA: 1.623

CI: 1.375 - 1.87

LoA: -1.627

CI: -1.874 - -1.379

([K
+
]+[K

+
]
e
)/2 (mM)

[K
+
]-

[K
+
] e

 (
m

M
)

d
w,T

: Patient specific

mean: -0.08601

CI: -0.213 - 0.04098

LoA: 1.36

CI: 1.14 - 1.579

LoA: -1.532

CI: -1.751 - -1.312
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approach.
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Figure 4.11: Left Panel: Bland-Altman plot between actual and estimated [K+] for η
using stage-specific approach. Right Panel: Bland-Altman plot using patient-specific
approach.
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Figure 4.12: Left Panel: Bland-Altman plot between actual and estimated [K+] for dw,T

and η using stage-specific approach. Right Panel: Bland-Altman plot using patient-
specific approach.

4.4 Discussion

In this chapter, we analyzed the T waves of the ECG in ESRD patients during and af-

ter HD by novel nonlinear dynamics and morphology markers as described in chapter 3.

Three nonlinear dynamics markers were evaluated: the first two, λt and λwt, assessed re-

polarization instabilities and temporal inter-beat variability by computing the maximum

Lyapunov exponent from T wave sequences before and after warping, respectively; the

third one, η, was proposed in this study to measure intra-beat differences in an averaged

representative T wave after subtraction of a reference wave. Additionally, three warping-

based markers were evaluated to assess morphological variability in the time domain

(dw,T) and amplitude domain (da,T and dNL
a,T). A comparison between our investigated

markers and previously proposed markers, TS/A [9, 31] and TS/
√
A [32], was performed.

The correlation between the analyzed T wave markers and serum [K+] during and after

HD was found to be particularly strong for η and dw,T. ECG estimators of [K+] were

built based on individual and combined values of these two markers. We found a tight

relationship between actual and estimated [K+] values, especially when the estimation

used population ECG data evaluated at the same time stage after the start of an HD

session. Our results can be used for noninvasive monitoring of [K+] in ESRD patients to

anticipate arrhythmic risk associated with hypo- or hyperkalemia.
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4.4.1 T wave variations during and after HD

This chapter investigated maximum Lyapunov exponent-based markers to characterize

changes in the T wave of the ECG and their association with serum electrolyte levels.

Previous studies have investigated indices of repolarization instability in patients under-

going HD, including T wave alternans [121], beat-to-beat QT interval variability [43] or

T wave periodic repolarization dynamics [56]. However, most of these studies either have

not been able to establish a clear correlation between the values of the evaluated indices

and serum potassium levels or have reported moderate correlation coefficients, thus lim-

iting their possibilities for ambulatory [K+] monitoring. We assessed whether nonlinear

dynamics of the T wave could help in capturing relevant information on the changes in

repolarization characteristics during and after HD. Also, on the basis of recent studies

where we measured T wave morphological variability by time warping-based techniques

and we showed its tight relationship with [K+], we investigated the combination of non-

linear dynamics and morphology descriptors to improve their individual performances for

[K+] monitoring.

To characterize nonlinear dynamics we evaluated the maximum Lyapunov exponent

from 2-minute sequences of T waves taken every hour from the start of HD and 48 hours

after it. Lyapunov exponents quantify the sensitivity of a dynamical system to the initial

conditions by measuring how a small change in the system variables at a certain time

affects the behavior of the system at a future time [89]. Here, we calculated λt and

λwt, representing the maximum Lyapunov exponent from unwarped and warped T wave

sequences, respectively, and we found them to take positive values at all evaluated stages

during and after HD. These results would indicate chaotic behavior in the form of local

repolarization instabilities, which are significantly larger at the onset of the HD sessions

when [K+] is elevated.

Also, we investigated a novel marker, η, evaluated from inter-MWTWs computed

during and after HD to describe intra-beat dissimilarities and their variations with [K+].

We found η to take higher values at the beginning of HD sessions, which would point

to larger intra-beat differences in repolarization associated with raised [K+]. This is

concordant with the fact that T wave amplitude increases with [K+] and so does its

difference with respect to the reference T wave.

To confirm the robustness of our calculations, we varied the values of the parameters

used in the definition of λt, λwt and η and found relatively modest effects around the

default parameter values as compared to changes measured during HD, particularly for

η. To assess the specific information captured by the investigated nonlinear dynamics

markers, we generated synthetic T waves and showed that λt and λwt mainly reflected

temporal inter-beat variability while η was more sensitive to simulated amplitude and

duration modulations.
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4.4.2 Correlation of T wave changes markers to [K+]

The correlation with [K+] was particularly strong for the nonlinear dynamics marker η and

the time-domain morphological variability marker dw,T, with median Pearson correlation

coefficients across patients above 0.78. Importantly, the relationship between each of these

two markers and [K+] remained tight even after removal of the effects of covariates like

heart rate, with partial linear correlation coefficients still above 0.78. Such a relationship

was, however, weaker when the effects of [Ca2+] were removed. This could be explained

by [K+] and [Ca2+] exerting concurrent changes in the T wave during HD.

Previous works have shown that the T wave of the ECG is altered by variations

in [K+] [4–6, 27], with narrow and peaked T waves recorded under high levels of [K+]

[4, 23, 25,30], in agreement with our observations. The effects of [K+] on specific T wave

features like width, amplitude, slope, slope-to-amplitude or amplitude-to-slope ratio have

been quantified [7–9, 31, 108]. Some of these features are very sensitive to T wave delin-

eation and thus could be more prone to errors when measured in ambulatory recordings.

Other markers, like the slope-to-amplitude, were tested in chapter 3 and were found to

present changes that were as strongly correlated to [K+] variations as the time-domain

morphology marker dw,T, both with and without removing the effects of other covariates

like heart rate and [Ca2+] [29].

Morphological characteristics of the T wave have been evaluated in previous studies,

as recently reviewed [27]. In particular, a MCS based on T wave asymmetry, flatness

and notching [33, 35] has been used to analyze the relationship between changes in the

T wave shape and [K+] variations in large scale populations [36]. A strong correlation was

found between MCS and [K+] when the latter varied in the range 2-4.1 mM but not in the

range 4.2-6 mM. Our proposed markers of T wave morphological variability were strongly

correlated with [K+] in a wide range of values, including both hypo- and hyperkalemic

values. For some of our morphology markers, such a relationship was better represented

by a nonlinear function than by a linear one [122], which agrees with previous studies

describing nonlinear relationships between T wave markers like the slope-to-amplitude

ratio and [K+] [9] and could help to explain the lower linear correlations found in other

studies investigating [K+]-induced alterations in ECG repolarization.

Mathematical modeling and numerical simulation have been used as tools to provide

mechanistic understanding of ECG changes elicited in response to electrolyte variations

and to improve the processing methods used to derive ECG markers with capacity for

[K+] monitoring [9,27,79,123]. In the case of T wave morphology markers, in silico anal-

ysis has been used to explain the high inter-individual variation in patterns measured in

ESRD patients with varying [K+] [29,124]. Differences in transmural distributions of en-

docardial, midmyocardial and epicardial cells contributed to explain the inter-individual

variability in the T wave response to [K+] variations. In the case of T wave nonlinear

dynamics, this is the first study investigating the markers λt, λwt and η and their relation-

ship to [K+]. Similarly to the morphological markers, we observed large inter-individual
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differences in nonlinear dynamics characteristics. Our work on synthetic T waves simu-

lating linear and nonlinear amplitude and duration changes served to establish the effects

captured by these indices, with different levels of temporal inter-beat variability having

a direct effect on their magnitudes, as discussed in the previous section.

4.4.3 Estimation of [K+] from T wave markers

Taking the two markers presenting the highest correlation with [K+], i.e. η and dw,T,

we designed ECG-based [K+] estimators. On top of univariable estimators using one of

these two markers, we built multivariable estimators based on their combination. For

each of the constructed estimators, we considered both stage-specific and patient-specific

approaches, with the first approach estimating [K+] for a patient at a given HD stage

based on population data measured at the same stage with respect to the start of an

HD session and the second approach estimating [K+] for a patient at a given time stage

based on data from the same patient measured at different time stages. The stage-

specific approach rendered results that were unbiased in mean and median over patients.

However, the dispersion was generally larger than for the patient-specific approach. The

combination of the two markers η and dw,T led to overall improvements in terms of

reduced estimation errors (Fig. 4.7 and Table 4.9). Multivariable [K+] estimates also

correlated significantly better with actual [K+] than univariable estimates in the patient-

specific approach. Agreement between actual and estimated [K+] was promising using our

proposed T wave markers as compared to previously proposed T wave markers [9,31,32],

which was confirmed by Bland-Altman analysis and calculation of estimation errors. The

estimation errors over patients and HD stages using the patient-specific approach were

0.046 ± 0.69 mM for the combination of η and dw,T while they were 0.091 ± 0.96 mM for

TS/A and 0.139 ± 1.07 mM for TS/
√
A. Also, we confirmed the suitability of [K+] estimation

based on our ECG proposed markers under synthetic noisy scenarios, in which we took

the ECG signal of a patient and we added noise at signal-to-noise ratio (SNR) values

down to 5 dB. Estimation errors (ϵ) based on dw,T and η were, in median over HD points,

always below 0.4 mM, while these reached 0.73 mM for TS/A at the lowest SNRs (Fig. 4.13

as follows).

The highest estimation errors were obtained at the start of the HD session (h0) and

48 hours after it (h48), corresponding to the highest [K+] values. The reason for this

could lie in the fact that these HD stages are associated with [K+] values well apart

from the ones measured at h1, h2, h3 and h4, which translates into large differences in the

T wave markers at h0 and h48 as compared to other HD points. In the learning phase, the

estimators are fitted to all the available values along and after HD, with large relevance

of the high number of HD stages corresponding to lower [K+], which would explain the

lower performance of the estimators at h0 and h48. Future research could be designed so

as to have more available [K+] measurements during the time period from the end of the
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Figure 4.13: Estimation errors (e) based on dw,T, η and TS/A, in median over HD points,
at different levels of SNR (5 − 40 dB).

Table 4.8: Estimation errors (ϵ) for T wave markers and their combinations using stage-
specific (S) estimators.

ϵ(S) h0 h1 h2 h3 h48

TS/A 0.019±1.159 0.620±0.517 0.003±0.630 0.004±0.559 0.007±0.730
TS/

√
A 0.009±1.180 −0.001±0.825 0.003±0.627 0.001±0.554 0.003±0.947

dw,T 0.010±1.132 0.012±0.845 0.008±0.636 0.009±0.543 −0.032±0.919
η 0.016±1.221 −0.006±0.847 −0.009±0.621 −0.010±0.574 0.005±0.996

dw,T and η 0.030±1.225 −0.001±0.874 −0.002±0.648 −0.006±0.556 −0.023±0.960
*Values are expressed as mean ± standard deviation and the units are mM

HD session to the start of a new session 48 hours later, or during the first hour of the HD.

This would allow improved learning of the estimators, which could also be designed to

account for nonlinear relationships between the investigated repolarization markers and

[K+]. Previous studies have shown the relevance of accounting for such nonlinearities in

Table 4.9: Estimation errors (ϵ) for T wave markers and their combinations using patient-
specific (P) estimators.

ϵ(P ) h0 h1 h2 h3 h48

TS/A 0.967±0.729 0.479±0.455 0.357±0.350 0.381±0.409 0.922±1.192
TS/

√
A 0.904±1.413 0.022±0.827 −0.248±0.299 −0.333±0.402 0.353±1.373

dw,T 0.665±0.981 −0.202±0.533 −0.143±0.540 −0.282±0.418 0.407±0.582
η 0.831±0.802 −0.287±0.525 −0.435±0.318 −0.390±0.419 0.530±0.672

dw,T and η 0.451±0.964 −0.161±0.539 −0.116±0.508 −0.180±0.392 0.235±0.681
*Values are expressed as mean ± standard deviation and the units are mM
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the design of the estimators [9, 122], which we discarded in the present study due to the

limited number of sampled HD stages per patient.

The above discussed results suggest that T wave nonlinear dynamics and warping-

based morphology markers can be valuable for [K+] monitoring during inter-dialytic pe-

riods in ESRD patients.

4.4.4 Study limitations and future research

We focused our research on the effects of [K+] on ventricular repolarization. The impact

of other electrolytes like [Ca2+] and [Mg2+] could also be analyzed and univariable and

multivariable estimators could be derived from ECGs. While some reports have already

described alterations in T wave morphology in response to variations in [Ca2+] and [Mg2+]

[6,50,125–127], the impact on T wave markers remains unknown. Therefore, we performed

extensive analysis to estimate [Ca2+] with [K+], not only from T waves but also from

QRS complexes, in following chapter (chapter 5). [Mg2+] was not explored because

[Mg2+] measurements were not available for the present study.

Other multivariable estimators including indices reported in previous studies [9, 31,

32,52,53] could be tested to analyze its potential for improved noninvasive monitoring of

[K+].

The present work could be extended to include deep learning-based approaches for

serum electrolyte estimation provided large data sets of ECG recordings and concomitant

blood samples were available for the analysis, in line with studies already addressing hypo-

and hyperkalemia screening from the ECG using deep learning methods [55,128,129].

4.5 Conclusions

In this chapter, we showed that noninvasive monitoring of [K+] in ESRD patients based

on combined T wave nonlinear dynamics and morphological variability markers is feasible.

The proposed methods can find application in hypo- and hyperkalemia screening, which

can be of major relevance to anticipate arrhythmic events in these patients.
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Monitoring of Serum Potassium and
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2022.
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5.1 Introduction

In chapters 3 and 4, we used time-warping and nonlinear dynamics techniques to charac-

terize changes in the whole morphology of T wave at varying [K+] and [Ca2+] in patients

and simulated ECGs [29, 84, 119, 122, 124, 130]. We found a strong relationship between

[K+] and T wave linear and nonlinear features. These T wave markers could be used for

the continuous monitoring of these two electrolyte levels, which could facilitate timely

therapies for ESRD patients.

Assessment of ventricular depolarization for serum electrolyte estimation has been less

explored in the literature. Similarly to QT studies, research on QRS complex duration has

rendered inconsistent results, with some works reporting widened QRS complexes [23,37]

and others reporting narrowed QRS complexes at high [K+] [6, 38]. Other works have

assessed the time voltage area, amplitude and sine wave shape of the QRS complex, but

limitations in terms of their significance or their dependence on blood volume have been

acknowledged [27, 58–60]. None of these studies have, however, quantitatively charac-

terized overall variations in the morphology of the QRS complex during HD. We hy-

pothesized that QRS morphology could provide complementary information on [K+] and

[Ca2+], in addition to that provided by repolarization.

96
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In this chapter, we quantify changes in the QRS amplitude, duration and morphology,

the latter both in the time and amplitude domains using time-warping analysis as fully

explained in section 2.2.4.1, at varying [K+], [Ca2+] and HR in ESRD patients. Univari-

able and multivariable electrolyte estimators, including novel QRS morphological markers

in combination with already proposed T wave markers [29, 84, 88, 124], as discussed in

chapters 3 and 4, were devised. The contribution of depolarization analysis to [K+] and

[Ca2+] monitoring was assessed.

5.2 Materials

In this chapter, forty-eight-hour 12-lead ECGs were acquired from 29 ESRD patients of

HCUZ as fully described in section 2.2.1. In this chapter, we defined another time point

for ECG analysis, corresponding to a segment taken two minutes before the end of HD

(minute 213 or 243, depending on the patient), which we denoted by h−
4 . The [K+] and

[Ca2+] values at h−
4 were assumed to be the same as at h4, as the time difference between

these two segments was just two minutes.

5.3 Methods

A flow chart showing all the stages of the signal processing starting with 12-lead ECG

pre-processing, followed by PCA transformation, computation of MWQRS (see section

2.2.4.1 for the computation of MWQRS) and QRS morphological markers (see section

2.2.4.1 for the computation of QRS markers), and finishing with the estimation of [K+]

and [Ca2+] is shown in Figure 5.1.

5.3.1 ECG Pre-Processing

In this chapter, ECG pre-processing was performed as described in previous chapters but

here we focused on QRS complex rather than T wave. Baseline wander, muscular noise

and powerline interference were removed from the ECG signals by the pre-processing

described in section 2.2.1. As described in section 2.2.3, the first PC was computed in

a stable ECG segment at the end of the HD session and this segment corresponded to

the time when the patient was discharged from hospital with restored serum [K+] and

[Ca2+]. The QRS complexes from each time point in the first PC were delineated [28] to

mark their onsets, peaks and ends.

5.3.2 QRS Descriptors

The linear and nonlinear time and amplitude morphological QRS descriptors (du
w,Q, da,Q,

dNL
w,Q and dNL

a,Q), QRS slopes markers (IUS and IDS) and QRS duration and amplitude

markers (QRSw and QRSa), were computed as fully described in section 2.2.4.1.
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Figure 5.1: Flow chart showing the ECG processing steps performed in this study, from
the collection of raw ECGs to the estimation of [K+] and [Ca2+].

5.3.3 Statistical Analysis

Pearson correlation coefficients (r), Wilcoxon signed-rank test and a Student’s t-test were

performed for [K+], [Ca2+], RR, QRSw, QRSa, d
u
w,Q, da,Q, dNL

w,Q and dNL
a,Q as described in

section 2.2.5.

In this chapter, all statistical analyses were performed using MATLAB version R2020b

for Windows (MathWorks Inc., Novi, MI, USA).

5.3.4 Uni- and Multivariable Estimation of [K+] and [Ca2+]

To estimate [K+] and [Ca2+], univariable and multivariable estimators were developed in

this chapter. Of all the analyzed QRS descriptors, du
w,Q was selected to build univariable

estimators because it presented high median absolute Pearson correlation with [K+] and

[Ca2+] and a relatively low IQR range, particularly for [K+]. Univariable estimators

were additionally built using the repolarization descriptor du
w,T, which had shown strong

correlation with electrolyte levels [29, 84]. du
w,T was calculated analogously to du

w,Q but

for the T wave instead of the QRS complex in chapter 3. Multivariable estimators were

tested using both du
w,Q and du

w,T.

The univariable [K̂+]u ([Ĉa2+]u, respectively) and multivariable [K̂+]m ([Ĉa2+]m, re-



CHAPTER 5. QRS COMPLEX CHARACTERIZATION 99

spectively) estimators were computed, as fully described in section 4.2.5, but using du
w,Q

and du
w,T. The performance of the estimators was tested by using the leave-one-out cross-

validation approach for both [K+] and [Ca2+].

Three different types of estimators were considered, namely stage-specific, patient-

specific and global estimators, as described in the following paragraphs. The definition

of jT , xT
b and y was different for each type of estimator:

• For an HD stage-specific (S) estimator, which estimates the electrolyte level ([K+]

or [Ca2+]) at stage hi of a given patient q from the marker’s values of the remaining

patients at that stage as fully explained in section 4.2.5 .

• For a patient-specific (P) estimator, which estimates the electrolyte level at stage

hi of a given patient q from the marker’s values at the remaining stages for that

same patient as described in section 4.2.5 but the vector β̂ was calculated from the

vector j =
[
1 1 · · · 1 1

]
of dimension 1×6 (if hi was h0 or h48) or 1×7 (if hi

was different from h0 or h48), xb=
[
b0,q b0,q b1,q · · · b4−,q b48,q b48,q

]
containing

the values of the marker b = du
w,Q or du

w,T for patient q at the different time points

except for hi, with h0 and h48 being duplicated. The vector y was defined as

y = [[K+]0,q [K+]0,q [K+]1,q · · · [K+]4−,q [K+]48,q [K+]48,q ] containing the measured

[K+] values for patient q at all time points except for hi. An analogous definition

of vector y was applied for [Ca2+]. This process was repeated for each patient

individually.

• For a global (G) estimator, which estimates the electrolyte level at stage hi of

a given patient q from the marker values at all other time points from all other

patients, the vector β̂ was calculated by defining vectors xb and y to contain the

marker values and the electrolyte measures from all patients at all stages except for

patient q at time i.

For the multivariable estimators, β =
[
βm
0 βm

1 βm
2

]T
was estimated as described

in section 4.2.5, depending on the type of estimator (stage-specific, patient-specific or

global).

The estimated error, e, and the relative error, er, with respect to the range of elec-

trolyte measurements, between actual [K+] (or [Ca2+]) and estimated [K̂+] (or [Ĉa2+])

was computed as briefly described in section 4.2.5.

The relative error, ev, with respect to the actual electrolyte measurement [K+] for

each patient at each HD stage (analogously for [Ca2+]) was computed as

ev =
[K+] − [K̂+]

[K+]
. (5.1)
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The mean absolute error was computed by averaging the absolute value of e defined

in Equation (4.17). The root mean square error was computed by taking the root mean

square of e defined in Equation (4.17).

To assess the agreement between actual and estimated [K+] and [Ca2+] values, Bland–

Altman analysis was performed [120], in which the differences between the actual and

estimated [K+] and [Ca2+] were plotted as a function of their averages, for all patients at

all HD time points. [K+] and [Ca2+] estimation accuracy using our investigated markers

was also compared with those of the previously proposed markers TS/A [9,31] and TS/
√

A [32]

as described in section 4.2.4.

In this chapter, it should be noted that estimations of [K+] and [Ca2+] could not be

performed at the end of the HD session (h4) since the morphological QRS complex and

T wave markers were zero by definition due to the fact that the reference was taken at

that time stage. Therefore, we defined an extra time point h−
4 just before the HD end

(reference) so as to improve the estimation accuracy based on one additional HD point.

5.4 Results

5.4.1 Characterization of QRS Complex Changes during and

after HD

Figure 5.2 shows the relationship between ∆IUS (∆IDS, respectively) and ∆[K+] for the

29 patients (panels a-b). ∆IUS and ∆IDS took the smallest and largest values at the

beginning of the HD session, corresponding to the highest [K+] values, respectively. In the

bottom panels of Figure 5.2, significant changes in the morphology of the QRS complex

can be observed during HD. Both QRS slope markers significantly varied with decreasing

[K+] during HD, in all the ESRD patients. As shown in the figure, QRS slope changes

in ESRD patients were related to both amplitude and duration of the QRS complex.

The top panels in Figure 5.3 show the results for the QRS markers (QRSw, QRSa,

du
w,Q, da,Q, dNL

w,Q and dNL
a,Q) together with [K+], [Ca2+] and RR variations during and after

HD for all patients. Statistically significant differences between consecutive HD stages

were found for QRSa, d
u
w,Q, da,Q, dNL

w,Q and dNL
a,Q as well as for [K+] and [Ca2+] variations,

but not for RR.

The bottom panels of Figure 5.3 show MWQRS during and after HD (red) compared

to the reference MWQRS (blue) computed at the end of HD. Lower QRSa values could

be observed at h0 and h48, corresponding to the highest [K+] and the lowest [Ca2+].
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Figure 5.2: Panels a–d: Violin plots of ∆IUS (panel a), ∆IDS (panel b), ∆[K+] (panel c)
and ∆[Ca2+] (panel d) from MWQRS of 29 ESRD patients showing their values during HD
stages. In each panel, the central white dot indicates the median. Each dot corresponds
to an individual patient. Bottom panels show the MWQRS complexes and QRS slopes
variations during HD with ∆[K+] for a patient. Location of Q, R and S waves were
marked by black, purple and green circles, respectively. Red and blue asterisks show
the locations associated with IUS and IDS in the QRS complex, respectively. ∆ denotes
change with respect to the end of HD session (h4).

5.4.2 Contribution of [K+], [Ca2+] and HR Variations to

QRS Complex Changes

Figure 5.4 shows the strong linear Pearson correlation of ∆IUS and ∆IDS with ∆[K+]

(median value of −0.84 and 0.88) and with ∆[Ca2+] (median value of 0.78 and −0.91).

However, a poor association was found between both QRS slope markers and ∆RR,

possibly because the RR interval varies much less than [K+] and [Ca2+] during HD in the

analyzed ESRD patients. Here, ∆[K+], ∆[Ca2+] or ∆RR variations represent changes in

[K+], [Ca2+] and RR with respect to the values at the end of HD end.

Figure 5.5 shows the Pearson correlation coefficient, r, between QRS markers (QRSw,

QRSa, d
u
w,Q, da,Q, dNL

w,Q and dNL
a,Q) and [K+] (black), [Ca2+] (red) and RR (blue). QRSa,

du
w,Q, da,Q, dNL

w,Q and dNL
a,Q were the most highly correlated, in median, with [K+] (median

r being −0.87, 0.78, −0.80, 0.73 and 0.81, respectively) and [Ca2+] (0.76, −0.61, 0.63,
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Figure 5.3: Panels (a–f): changes in QRSw, QRSa, d
u
w,Q, da,Q, dNL

w,Q and dNL
a,Q during HD

stages. Panels (g–i): corresponding variations in [K+], [Ca2+] and RR. In panels (a–i), *
denotes p < 0.05 and ** denotes p < 0.01. In each panel, the central white dot indicates
the median. Each dot corresponds to an individual patient. Panel (j): MWQRS (red) of
a patient at different HD stages and reference MWQRS (blue). ∆ denotes the change in
[K+] with respect to the end of HD (h4).

−0.70 and −0.75, respectively). The IQR of r was the lowest for du
w,Q when the correlation

with [K+] was analyzed, and for QRSa in the case of [Ca2+]. Poor association between

all the analyzed markers and RR was found.

Table 5.1 shows the p-values from the Student’s t-test used to determine the statis-

tical significance of non-zero mean Fisher z-transformed Pearson correlation coefficients

between QRS markers and each of [K+], [Ca2+] and RR in the patient population, during

and after HD. All the analyzed QRS markers showed significant association with [K+]

and most of them (all but QRSw) with [Ca2+]. On the other hand, no marker presented

significant association with RR.

5.4.3 Uni- and Multivariable Estimation of [K+] and [Ca2+]

Figure 5.6 shows an illustrative example of the comparison between measured and esti-

mated [K+] and [Ca2+] using stage-specific (S), patient-specific (P) and global (G) ap-

proaches during (h0, h1, h2, h3, h
−
4 ) and after (h48) HD for a particular patient, for both
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Figure 5.4: Pearson correlation coefficients between QRS slope markers (∆IUS and ∆IDS)
and ∆[K+] (black), ∆[Ca2+] (red) and ∆RR (blue) for all patients. The central white
dot indicates the median. Each dot corresponds to an individual patient.

QRSw QRSa du
w;Q da;Q dNL

w;Q dNL
a;Q

{1

{0.5

0

0.5

1

r

[K+] RR

[Ca2+]

Figure 5.5: Pearson correlation coefficients between QRS markers (QRSw, QRSa, d
u
w,Q,

da,Q, dNL
w,Q and dNL

a,Q) and [K+] (black), [Ca2+] (red) and RR (blue) for all patients at all
HD points. The central white dot indicates the median. Each dot corresponds to an
individual patient.

Table 5.1: p-values from the parametric test (t-test) to evaluate statistical significance of
non-zero mean Fisher z-transformed Pearson correlation coefficients between QRS mark-
ers and [K+], [Ca2+] and RR.

p-Values QRSw QRSa du

w,Q da,Q dNL

w,Q dNL

a,Q ∆IUS ∆IDS

[K+] 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

[Ca2+] 0.09 < 0.01 < 0.01 0.02 < 0.01 < 0.01 < 0.01 < 0.01

RR 0.37 0.94 0.48 0.12 0.23 0.60 0.88 0.43
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Figure 5.6: Actual (black) and estimated [K+] and [Ca2+] for a patient using stage-
specific (red), patient-specific (green) and global (blue) approaches. Univariable du

w,Q-
based estimation is shown in panel a, du

w,T-based in panel b and multivariable du
w,Q-

du
w,T-based in panel c.

Table 5.2: Actual and estimated [K+] and [Ca2+] values over the study population at
each HD stage using multivariable (m) estimation and stage-specific (S), patient-specific
(P) and global (G) approaches. Values are expressed as median (IQR) and the units are
mM.

h0 h1 h2 h3 h−
4 h48

[K+] 5.10 (1.30) 3.90 (0.86) 3.64 (0.81) 3.40 (0.71) 3.40 (0.56) 5.08 (1.53)

[K̂+]Sm 5.31 (0.43) 4.03 (0.18) 3.70 (0.08) 3.49 (0.09) 3.43 (0.05) 4.56 (1.21)

[K̂+]Pm 4.76 (1.90) 4.01 (1.33) 3.84 (1.16) 3.46 (0.97) 3.28 (0.44) 4.43 (1.46)

[K̂+]Gm 4.50 (0.71) 4.33 (0.40) 4.07 (0.33) 3.97 (0.26) 3.84 (0.19) 4.57 (0.75)

[Ca2+] 2.15 (0.20) 2.23 (0.20) 2.29 (0.19) 2.31 (0.23) 2.36 (0.21) 2.17 (0.20)

[Ĉa2+]Sm 2.13 (0.02) 2.21 (0.05) 2.25 (0.02) 2.31 (0.05) 2.28 (0.03) 2.07 (0.13)

[Ĉa2+]Pm 2.06 (0.29) 2.27 (0.23) 2.21 (0.26) 2.29 (0.20) 2.25 (0.23) 2.18 (0.20)

[Ĉa2+]Gm 2.19 (0.04) 2.20 (0.02) 2.22 (0.02) 2.23 (0.01) 2.23 (0.01) 2.19 (0.04)

univariable (panels a–b) and multivariable (panel c) estimators. The patient-specific ap-

proach provided better results in terms of reduced errors, particularly using multivariable

estimation (mean ev over HD points being 0.071 (S), −0.008 (P), 0.001 (G) for [K+] and

0.019 (S), 0.001 (P), 0.031 (G) for [Ca2+]).

Figure 5.7 shows the relative errors, ev, for all patients and HD stages in the estimation

of [K+] and [Ca2+] using stage-specific (top panel), patient-specific (middle panel) and

global (bottom panel) approaches.

Table 5.2 shows actual and estimated [K+] and [Ca2+] values over the study population

at each HD stage. Multivariable estimation results using stage-specific, patient-specific

and global approaches are presented.
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Figure 5.7: Box plots of [K+] and [Ca2+] estimation errors ev during HD stages for all
patients using du

w,Q(black), du
w,T(red) and the combination of du

w,Q and du
w,T (blue) for

stage-specific (top), patient-specific (middle) and global (bottom) approaches. The
central line indicates the median, whereas top and bottom edges show the 25th and 75th
percentiles.

Table 5.3: Intra-patient Pearson correlation coefficient r between actual and estimated
[K+] using univariable and multivariable estimators, with stage-specific (S), patient-
specific (P) and global (G) approaches. Values are expressed as median (IQR).

r[K+],[K̂+] du

w,Q du

w,T du

w,Q, du

w,T

S 0.98 (0.08) 0.96 (0.06) 0.93 (0.30)

P 0.56 (0.75) 0.55 (0.90) 0.75 (0.51)

G 0.75 (0.15) 0.82 (0.35) 0.86 (0.32)

Tables 5.3 and 5.4 show the median and IQR values of intra-patient Pearson correla-

tion coefficients between actual and estimated [K+] ([Ca2+], respectively) using univari-

able and multivariable estimators.

Tables 5.5 and 5.6 show a comparison between estimation errors obtained for the

markers analyzed in this study and in previous studies. Tables 5.7–5.10 show mean

absolute and root mean square errors for the analyzed markers.

Bland–Altman plots in Figures 5.8–5.13 show the difference vs the mean of actual

and estimated [K+] and [Ca2+] for du
w,Q, du

w,T and their combination using stage-specific,
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Table 5.4: Intra-patient Pearson correlation coefficient r between actual and estimated
[Ca2+] using univariable and multivariable estimators, with stage-specific (S), patient-
specific (P) and global (G) approaches. Values are expressed as median (IQR).

r[Ca2+],[Ĉa2+] du

w,Q du

w,T du

w,Q, du

w,T

S 0.88 (0.38) 0.88 (0.22) 0.80 (0.78)

P 0.88 (0.22) 0.63 (0.59) 0.63 (0.37)

G 0.64 (0.73) 0.64 (0.49) 0.70 (0.55)

Table 5.5: Estimation errors (e) using stage-specific (S), patient-specific (P ) and global
(G) approach based [K+] estimators, from all patients at all HD time points.

e S P G
du
w,Q −0.041 ± 0.831 −0.091 ± 1.419 −0.204 ± 0.971
du
w,T 0.004 ± 0.806 −0.147 ± 0.809 −0.169 ± 0.959

TS/A 0.005 ± 0.792 −0.157 ± 1.120 −0.213 ± 0.996
TS/

√
A 0.003 ± 0.811 −0.149 ± 1.422 −0.238 ± 1.048

du
w,Q & du

w,T 0.073 ± 0.808 −0.035 ± 1.113 −0.144 ± 0.883

*Values are expressed as mean ± standard deviation and the units are mM

patient-specific and global approaches. In addition to that, Bland-Altman plots in Figures

5.14-5.17 show the difference vs the mean of actual and estimated [K+] and [Ca2+] for

previously proposed T wave markers from other authors TS/A [9,31], and TS/
√

A [32], using

stage-specific, patient-specific and global approach. Multivariable estimators combining

information from du
w,Q and du

w,T outperformed univariable estimators (the ones proposed

Table 5.6: Estimation errors (e) using stage-specific (S), patient-specific (P ) and global
(G) approach based [Ca2+] estimators, from all patients at all HD time points.

e S P G
du
w,Q 0.117 ± 0.134 −0.007 ± 0.300 0.018 ± 0.175
du
w,T 0.0003 ± 0.170 0.024 ± 0.178 0.018 ± 0.172

TS/A −0.002 ± 0.179 0.025 ± 0.191 0.023 ± 0.180
TS/

√
A −0.002 ± 0.183 0.027 ± 0.201 0.020 ± 0.183

du
w,Q&du

w,T 0.023 ± 0.180 0.010 ± 0.125 0.016 ± 0.174

*Values are expressed as mean ± standard deviation and the units are mM
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Table 5.7: Mean absolute errors (MAE) using stage-specific (S), patient-specific (P )
and global (G) approach-based [K+] estimators, from all patients at all HD time points.
Values are expressed as mean absolute error and the units are mM.

MAE S P G
du
w,Q 0.649 0.910 0.821
du
w,T 0.631 0.579 0.763

TS/A 0.607 0.770 0.819
TS/

√
A 0.643 0.899 0.895

du
w,Q & du

w,T 0.539 0.721 0.687

Table 5.8: Mean absolute errors (MAE) using stage-specific (S), patient-specific (P ) and
global (G) approach-based [Ca2+] estimators, from all patients at all HD time points.
Values are expressed as mean absolute error and the units are mM.

MAE S P G
du
w,Q 0.138 0.127 0.141
du
w,T 0.133 0.098 0.138

TS/A 0.135 0.115 0.141
TS/

√
A 0.139 0.130 0.142

du
w,Q & du

w,T 0.124 0.094 0.139

Table 5.9: Root mean square errors (RMSE) using stage-specific (S), patient-specific
(P ) and global (G) approach-based [K+] estimators, from all patients at all HD time
points. Values are expressed as root mean square error and the units are mM

RMSE S P G
du
w,Q 0.723 1.363 0.961
du
w,T 0.783 0.794 0.946

TS/A 0.776 1.108 0.997
TS/

√
A 0.794 1.400 1.053

du
w,Q & du

w,T 0.771 1.010 0.853
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Table 5.10: Root mean square errors (RMSE) using stage-specific (S), patient-specific
(P ) and global (G) approach-based [Ca2+] estimators, from all patients at all HD time
points. Values are expressed as root mean square error and the units are mM.

RMSE S P G
du
w,Q 0.173 0.283 0.171
du
w,T 0.164 0.172 0.167

TS/A 0.175 0.189 0.178
TS/

√
A 0.180 0.199 0.180

du
w,Q & du

w,T 0.172 0.116 0.166

Figure 5.8: Left Panel: Bland-Altman plot between actual and estimated [K+] for du
w,T

using stage-specific approach. Middle Panel: Bland-Altman plot using patient-specific
approach. Right Panel: Bland-Altman plot using global approach.

by us and other authors).
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Figure 5.9: Left Panel: Bland-Altman plot between actual and estimated [K+] for du
w,Q

using stage-specific approach. Middle Panel: Bland-Altman plot using patient-specific
approach. Right Panel: Bland-Altman plot using global approach.

Figure 5.10: Left Panel: Bland-Altman plot between actual and estimated [K+] for the
combined du

w,Q and du
w,T using stage-specific approach. Middle Panel: Bland-Altman plot

using patient-specific approach. Right Panel: Bland-Altman plot using global approach.
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Figure 5.11: Left Panel: Bland-Altman plot between actual and estimated [Ca2+] for du
w,T

using stage-specific approach. Middle Panel: Bland-Altman plot using patient-specific
approach. Right Panel: Bland-Altman plot using global approach.
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Figure 5.12: Left Panel: Bland-Altman plot between actual and estimated [Ca2+] for du
w,Q

using stage-specific approach. Middle Panel: Bland-Altman plot using patient-specific
approach. Right Panel: Bland-Altman plot using global approach.
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Figure 5.13: Left Panel: Bland-Altman plot between actual and estimated [Ca2+] for the
combined du

w,Q and du
w,T using stage-specific approach. Middle Panel: Bland-Altman plot

using patient-specific approach. Right Panel: Bland-Altman plot using global approach.

Figure 5.14: Left Panel: Bland-Altman plot between actual and estimated [K+] for TS/A

using stage-specific approach. Middle Panel: Bland-Altman plot using patient-specific
approach. Right Panel: Bland-Altman plot using global approach.
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Figure 5.15: Left Panel: Bland-Altman plot between actual and estimated [K+] for TS/
√

A

using stage-specific approach. Middle Panel: Bland-Altman plot using patient-specific
approach. Right Panel: Bland-Altman plot using global approach.
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Figure 5.16: Left Panel: Bland-Altman plot between actual and estimated [Ca2+] for TS/A

using stage-specific approach. Middle Panel: Bland-Altman plot using patient-specific
approach. Right Panel: Bland-Altman plot using global approach.
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Figure 5.17: Left Panel: Bland-Altman plot between actual and estimated [Ca2+] for
TS/

√
A using stage-specific approach. Middle Panel: Bland-Altman plot using patient-

specific approach. Right Panel: Bland-Altman plot using global approach.
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5.5 Discussion

In this chapter, we investigated changes in QRS duration, amplitude and morphology at

varying [K+], [Ca2+] and HR in ESRD patients. We designed [K+] and [Ca2+] estimators

based on our proposed QRS morphological characteristics, taken both individually and in

combination with T wave morphology markers. We showed the accuracy of our proposed

estimators using three different approaches: stage-specific, patient-specific and global

estimation, which outperformed previously proposed methods. Our results offer new

non-invasive tools to monitor serum [K+] and [Ca2+], which could have a significant role

in clinical practice and could contribute to reduce the mortality risk associated with

abnormal electrolyte levels in ESRD patients.

5.5.1 Characterization of QRS Complex Slope, Amplitude, Du-

ration and Morphology in ESRD Patients during and after

HD

In ECG recordings of ESRD patients, we evaluated QRS slopes, duration and amplitude,

measured by markers IUS, IDS, QRSw and QRSa, and QRS morphological characteristics,

measured by markers du
w,Q, da,Q, dNL

w,Q and dNL
a,Q, which was proposed here for the first time.

All markers except for QRSw presented significant changes during and after HD. These

changes were strongly associated with variations in [K+] and [Ca2+] but not in HR.

The inconsistent relationship between QRS markers, such as QRSw, and HR has been

investigated in previous works, including the study by Hnatkova et al. [131], who reported

increases in QRS duration with increasing HR in 35% of their patients and decreases

in QRS duration in the remaining 65%. In line with these results, we found that QRS

became markedly wider at higher RR intervals for 34% of the patients; it became markedly

narrower for 21% of the patients; its width moderately changed with RR for 21% of the

patients; and it showed poor association with RR for the remaining 24% of the patients

(see Table 5.11 as following). This led to a median r value of 0.42 between QRSw and

RR over the 29 ESRD patients, reflecting a notably weaker relationship between QRSw

and RR as compared to other depolarization markers.

Regarding QRS amplitude, even if we found QRSa to remarkably change during HD,

this marker depended on ECG amplitudes at specific time points, which, in noisy ambu-

Table 5.11: Pearson correlation coefficient (r) between QRS complex width and RR
interval in 29 ESRD patients. Values are expressed as median (interquartile range) over
patients.

QRSw P1–10 P11–16 P17–P22 P23–P29 P1–P29 (overall)
r 0.77 (0.17) −0.73 (0.21) 0.45 (0.13) −0.04 (0.35) 0.42 (0.91)



CHAPTER 5. QRS COMPLEX CHARACTERIZATION 115

Figure 5.18: Changes in sodium levels ([Na+]) along HD stages

latory recordings, could lead to large changes not associated with variations in electrolyte

levels. On the other hand, changes in QRS slopes and warping-based markers accounted

for deviations in the whole QRS waveform and could thus be better suited for ambulatory

monitoring. In particular, if QRS duration on top of amplitude changes occurred in the

inter-dialytic interval, as, e.g., reported during advanced ischemia [39,40], these changes

could be reflected in our proposed QRS warping markers.

On top of investigating the relationship between QRS markers and [K+] or [Ca2+],

we also investigated the relationship between these markers and sodium concentration

([Na+]). [Na+] variations were less remarkable than those of [K+] and [Ca2+] during HD

in our patients (see Figure 5.18 and Table 5.12 as shown below). Importantly, none of

the markers were strongly associated with [Na+] (see Table 5.13 as shown below). [Na+]

could have been expected to play a more important role in modulating depolarization

markers because the fast sodium current was primarily responsible for phase 0 of the

action potential and its changes might have manifested in QRS complex alterations.

However, we found that the QRS complex became markedly wider at higher [Na+] for

43% of the patients; it became markedly narrower for 7% of the patients; its width

moderately changed with [Na+] for 14% of the patients; and it showed poor association

with [Na+] for the remaining 36% of the patients (see Table 5.14 as shown below).

High inter-individual variability was found in the relationship between the analyzed

QRS markers and [K+] or [Ca2+]. This was especially remarkable in the case of da,Q,

which presented high IQR in the intra-patient correlation coefficients with [K+] and

[Ca2+]. Such high dispersion could be explained by QRS polarity effects, as a reduction
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Table 5.12: P-values from the Wilcoxon signed-rank test to assess differences in [Na+]
between consecutive time stages.

p-value h0–h1 h1–h2 h2–h3 h3–h4

[Na+] 0.17 0.06 0.39 0.16

Table 5.13: Pearson (r) and Spearman (ρ) correlation coefficients between QRS com-
plex markers and [Na+] in 29 ESRD patients along HD. Values are expressed as median
(interquartile range) over patients.

QRSw QRSa du
w,Q da,Q dNL

w,Q dNL
a,Q

r 0.24 (1.01) 0.30 (0.97) −0.31 (1.00) −0.37 (1.18) −0.33 (1.05) −0.18 (1.13)
ρ 0.23 (0.84) 0.24 (0.99) 0.00 (0.98) −0.29 (0.90) −0.10 (0.96) −0.11 (0.95)

(increase, respectively) in the absolute amplitude could be reflected as either positive or

negative da,Q, depending on QRS being predominantly positive or negative.

Changes in ECG characteristics induced by variations in [K+] and [Ca2+] have been

extensively investigated in terms of ventricular repolarization. A number of studies

have characterized changes in T wave width, amplitude, slope or slope-to-amplitude

ratio [7–9, 31, 108]. We have recently quantified changes in T wave nonlinear dynam-

ics and morphology and have shown their relationship with [K+] and [Ca2+] varia-

tions [29, 119,124,130,132].

The analysis of electrolyte-induced alterations in ventricular depolarization remains,

however, much more limited. In a study including 923 patients with severe hyperkalemia,

sine wave-shaped QRS complexes were observed in almost 36.7% of patients [60]. In

the present study, we could observe such behavior in most of the patients (Figure 5.3).

Inconsistent results have been reported in relation to the effects of [K+] on QRS duration,

with a larger proportion of studies reporting QRS widening [23, 37, 133–137] and others

reporting QRS narrowing [6, 38] with increased [K+]. Here, we observed no significant

changes in QRS width during and after HD. Regarding QRS amplitude, we found QRSa

to be strongly negatively correlated with [K+] and positively correlated with [Ca2+], in

accordance with the increase in QRSa with decreasing [K+], as described by Astan et al.

[38]. We observed similar results for the QRS morphology-based amplitude marker da,Q.

Our study characterized additional QRS morphological changes by the warping markers

Table 5.14: Pearson correlation coefficient (r) between QRS complex width and [Na+] in
29 ESRD patients. Values are expressed as median (interquartile range) over patients.

QRSw P1–12 P13–14 P15–P18 P19–P29 P1–P29 (overall)
r 0.88 (0.13) −0.72 (0.05) −0.40 (0.23) −0.05 (0.22) 0.24 (1.01)
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Figure 5.19: QRS and T wave variations at the start (red) and end (blue) of the HD
session. Panels (a,b) show the waveforms related to the QRS complex and the T wave,
respectively.

du
w,Q, dNL

w,Q and dNL
a,Q further extended these results to provide a robust characterization

of QRS changes during and after HD in ESRD patients. Figure 5.19 illustrates QRS

complexes and T waves at the start and end of HD.

5.5.2 Multivariable Predictors of [K+] and [Ca2+] Based on De-

polarization and Repolarization Characteristics

Based on the novel QRS morphology markers of this study and on already proposed

T wave markers [29, 84, 88], we designed linear univariable and multivariable [K+] and

[Ca2+] estimators. In particular, we used du
w,Q (QRS marker) and du

w,T (T wave marker),

as these were strongly correlated with [K+] and [Ca2+] and poorly related to each other,

thus potentially providing complementary information to monitor electrolyte variations.

For each of the constructed [K+] and [Ca2+] linear estimators, we used stage-specific,

patient-specific and global estimation approaches. Overall, the stage-specific approach

rendered results with both mean and median estimation errors very close to zero but with

higher dispersion than in the patient-specific approach. The latter approach would be

suitable for clinical application, as electrolyte levels could be predicted in each patient

based on a short ECG recording of the same patient.

Multivariable estimators combining information from du
w,Q and du

w,T outperformed uni-

variable estimators (the ones proposed by us and other authors [9,31,32]). The estimation

errors for the multivariable estimators were lower (Figure 5.7, Figures 5.8–5.17, Tables 5.5

and 5.6) and the correlation coefficients r between actual and estimated electrolyte lev-

els were higher than for univariable estimators, both for the patient-specific and global
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estimation approaches (see Tables 5.3 and 5.4). In particular, for the patient-specific

approach, median r in [K+] estimation was 0.75 for the combination of du
w,Q and du

w,T,

while it was 0.56 for du
w,Q and 0.55 for du

w,T. Similarly, for the global approach, median r

in [Ca2+] estimation was 0.70 for the combination compared to 0.64 for du
w,Q and 0.64 for

du
w,T. It should be noted that these correlation coefficient values were computed between

actual [K+] and estimated [K̂+] while the correlation between each of the tested markers

and [K+] was higher, both for the QRS marker du
w,Q proposed here and for the T wave

marker du
w,T analyzed in our previous studies [29, 84].

These results supported the use of our proposed QRS markers to improve prediction

of [K+] and [Ca2+] by ECG repolarization markers. ECG depolarization-based estima-

tors have been scarcely investigated in the literature for serum electrolyte monitoring.

In [54], an ECG-based [K+] estimator was designed using QRS duration in addition to

T wave markers, but QRS duration was found not to be highly correlated with [K+], in

agreement with our present results for QRSw. Pilia et al. [27] reviewed studies evaluat-

ing QRS amplitude and width features, but no improved serum electrolyte prediction by

incorporating these features into repolarization-based estimators was provided. Here, we

proposed univariable and multivariable [K+] and [Ca2+] estimators that included informa-

tion from the whole morphology of the QRS complex. By accounting for characteristics

beyond QRS amplitude and width, these estimators could offer more robust performance

for ambulatory monitoring of ESRD patients and overcome some limitations of previously

proposed markers, such as their dependence on blood volume [58,59].

For all the estimators we built, we found that the values of [K+] and [Ca2+] at the

beginning of each of the two HD sessions, i.e., time points h0 and h48, were the most

challenging to estimate, as could be observed from the large estimation errors at those

time points (Figure 5.3). Here, we duplicated the values of the ECG markers at h0 and

h48 to give them more weight in the training step, as all other measures corresponding to

h1, h2, h3 and h−
4 were more similar to one another and the learning could otherwise be

biased towards such measures.

5.5.3 Study Limitations and Future Research

For each patient, six blood samples were available, five of them taken during an HD session

and the sixth one at the beginning of the following HD session. Future studies could be

designed to have more frequent [K+] and [Ca2+] measurements, especially during the first

HD hour, when electrolyte levels vary most remarkably. This could help to improve the

learning of the estimators.

We used linear estimators due to the small number of samples, particularly when

using a patient-specific approach. Future work could investigate the use of nonlinear

estimators [9, 122], which could prove to be particularly relevant for estimation of [K+]

and [Ca2+] at the start of HD sessions when these take values far from those at other HD
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stages.

We did not have access to measurements of blood volume or of other variables that

could be used to infer them. Studies on other data sets where such measurements were

available could test the relationship between the markers du
w,Q and du

w,T used in our [K+]

and [Ca2+] estimators and the blood volume. Also, some of the patients analyzed in the

study had diseases like diabetes mellitus. We did not find significant differences in the

analyzed markers between diabetic and non-diabetic patients. Nevertheless, future stud-

ies addressing larger patient cohorts could investigate the impact of diseases additional

to ESRD on the relationship between QRS markers and electrolytes.

We focused our research on [K+] and [Ca2+] estimation. [Na+] was found to present

less notable variations during HD and none of our analyzed QRS markers showed signifi-

cant association with it in the reduced data set analyzed in this study, which should be fur-

ther tested in larger patient cohorts. Although variations in other electrolytes, like mag-

nesium ([Mg2+]), have also been shown to alter the ECG to some extent [6,50,125–127],

[Mg2+] measurements were not available for the present study.

5.6 Conclusions

Our proposed QRS morphology markers presented remarkable changes during and af-

ter HD, which were strongly associated with [K+] and [Ca2+] in the ESRD patients.

Multivariable estimators based on combined QRS and T wave morphological variability

allowed accurate prediction of [K+] and [Ca2+], outperforming estimators based on only

ECG depolarization or repolarization. These results could pave the way to ambulatory,

non-invasive monitoring of electrolyte levels, which could help to prevent fatal ventricular

arrhythmias in ESRD patients.
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6.1 Introduction

In previous chapters 3, 4 and 5, we have used nonlinear dynamics and time-warping

techniques to characterize changes in the whole T wave and QRS complex at varying

[K+] and [Ca2+] in patients [29, 84,87,119,122,124,130]. We found a strong relationship

between [K+] (or [Ca2+]) and T wave and QRS complex linear and nonlinear features

in patients. Previous attempts have been published to assess the effects of changes in

[K+] and [Ca2+] on simulated APs and ECGs using computational modeling [7, 79, 80].

However, all these in silico studies were based only on a single ventricular model and not

accounting for potential inter-individual variability as observed in the patients [84,87,119,

122,130]. A common weakness of all the proposed markers is that their relationships with

electrolyte concentrations vary strongly between patients [27, 122, 138–142]. The cause

of this variability is presently unknown. In this chapter, we hypothesized that inter-

individual differences in cell type distribution across the ventricular wall could help to

explain such variability between patients. We tested this hypothesis using a population of

realistic computational models, based on the anatomy of a real subject. We characterized

ECG features, including several proposed markers for [K+] and [Ca2+], in models with

120
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different proportions of endocardial, midmyocardial and epicardial myocytes at varying

[K+] and [Ca2+], and compared the results to measurements in 29 ESRD patients.

We found that the relationships between electrolyte concentrations in the models were

similar to those in patients and that the variability in the relationships could indeed be

explained, partly, by differences in ventricular wall composition.

6.2 Materials and Methods

6.2.1 In silico population of human heart-torso models

A population of coupled whole-ventricle and torso models was built taking as a basis the

computed tomography (CT) data of a patient [143], as shown in Figure 6.1. The model

included the ventricular wall, ventricular and atrial cavities, torso surface, lungs and an

approximate anisotropic skeletal muscle layer, which were segmented from the CT data.

A hexahedral mesh of the heart with 200 µm resolution and a torso mesh with 1 mm

resolution were created.

Ventricular electrical propagation was simulated with a monodomain reaction-

diffusion model:
∂Vm

∂t
=

1

Cm

(β−1∇ · (G∇Vm) − Iion), (6.1)

where Vm is the transmembrane potential, Cm the membrane capacitance, β the mem-

brane surface-to-volume ratio (the amount of membrane found in a given volume of

tissue), Iion the sum of all transmembrane ionic currents, and G the monodomain con-

ductivity tensor GintGext/(Gint + Gext) with Gint and Gext representing the intracellular

and extracellular conductivity tensor fields, respectively. The fiber orientations used to

compute the conductivity tensors were assigned with a rule-based method [144,145]. Tem-

poral integration was done with a forward Euler scheme with a time step of 0.01 ms. For

accuracy, gating variables in the membrane model were integrated with the Rush-Larsen

method [146]. The simulations were performed using a recent version of the Propag-5

software [147].

Figure 6.1: 3D heart-torso model used for ECG simulations.
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Cellular electrophysiology was represented by the human ventricular myocyte model

of Ten Tusscher and Panfilov [64]. The updates to the Ten Tusscher-Panfilov model

published by Severi et al. [77] were incorporated to adequately represent the relationship

between APD and [Ca2+] as fully described in section 3.2.4.

The initial state for each simulation was pre-calculated from single cell simulations,

one for each cell type: endocardial, midmyocardial and epicardial. The values of the

model state variables after 1000 paced beats were considered as representative of the cell

at steady state.

A total of 7 whole-ventricle models with variations in the proportions of endocardial,

midmyocardial and epicardial cells were simulated, with the thickness of endocardial and

midmyocardial layers ranging from 10% to 50% and the epicardial layer from 20% to

60%. We used the notation Cuvw, where C stands for the word “case” and u, v and w

denote the thicknesses of the endocardial, midmyocardial, and epicardial layers in tenths

of the total wall thickness, respectively, as described in section 3.2.4. The population

of ventricular models included the following combinations of transmural heterogeneities:

C136, C154, C316, C334, C352, C514, C532.

6.2.2 ECG simulation and processing

The extracellular potential, ϕext, was computed by solving

∇ · ((Gint + Gext)∇ϕext) = −∇ · (Gint∇Vm) (6.2)

in the torso model, with Vm simulated by the monodomain reaction-diffusion model (6.1)

[148]. Since we needed to know ϕext only at a few locations for the computation of

the ECG we used a Green’s function of the operator ∇ · ((Gint + Gext)∇.) for each of

these locations to solve this equation efficiently. ECG leads can be represented by a

linear combination of Green’s functions because ECG lead is a linear combination of ϕext

at two or more points. These linear combinations of Green’s functions are termed lead

fields [149,150]. Our lead fields were computed by solving an equation similar to (6.2) but

as a lead field needs to be computed only once for each ECG lead this approach is much

more efficient than solving (6.2) for each time step in each simulation [148]. Five-beat

ECGs were simulated at a sampling frequency of 1 kHz.

A wavelet-based single-lead delineation method was used for QRS detection and wave

delineation of each of the 12 leads [28].

PC analysis was spatially applied to the T waves and QRS complexes of the eight

independent leads [85] to enhance the T wave and QRS complex energy as fully described

in section 2.2.3.

The T waves and QRS complexes in the first PC were delineated using the single-lead

delineation algorithm described by Mart́ıniz et al. [28]. The onset, peak and end of the

T waves and QRS complexes were determined and used for subsequent computation of
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T wave and QRS complex markers.

Simulation results were compared with the results obtained by applying the same

analysis to ECG recordings from patients. The study population included 29 ESRD

patients from Hospital Cĺınico Universitario de Zaragoza, Spain, from which 48-hour 12-

lead ECGs were acquired. T waves and QRS complexes, respectively, in the first PC

were obtained and delineated to compute the markers described below [84, 87, 130] as

fully described in chapters 3 and 5.

6.2.3 Duration, amplitude and morphology-based ECG mark-

ers

6.2.3.1 Duration- and amplitude-based ECG markers

Time- and amplitude-based T wave and QRS complex markers, Tw, TSA, QRSw, QRSa,

were computed from the last T wave and QRS complex of each simulated ECG projected

onto the first PC, at varying [K+], [Ca2+] and their combinations, as fully described in

section 2.2.4.1.

6.2.3.2 Morphological variability-based ECG markers

Morphology-based T wave and QRS complex markers, du
w,T, da,T, dNL

w,T, dNL
a,T, du

w,Q, da,Q,

dNL
w,Q and dNL

a,Q, were computed using the time-warping methodology described previously

in section 2.2.4.1 [87, 88]. For each model in the population, reference T waves and

QRS complexes were calculated from the last beat of the PC-transformed ECG at mini-

mum [K+] (3 mM) and maximum [Ca2+] (3.2 mM).

6.2.4 Effects of [K+], [Ca2+] and their combination on simulated

T waves and QRS complexes

To assess the relationship between [K+], [Ca2+] and their combination with T wave and

QRS complex characteristics in each model of the population, simulations were con-

ducted under varying values of the electrolytes. The range of simulated [K+] values

included the default level in the Ten Tusscher-Panfilov model, i.e. [K+] = 5.4 mM, as

well as other levels below and above it: [K+] ∈ {3, 4, 5.4, 6.2} mM. In the case of [Ca2+],

the range of simulated values included the default level of 2 mM and values around it:

[Ca2+] ∈ {1.4, 2, 2.6, 3.2} mM. The combinations of [K+] and [Ca2+] included: [3,3.2],

[4,2.6], [5.4,2.0] and [6.2,1.4] mM. The simulated ranges are similar to those observed in

patients during HD [29,84,130].

Linear Pearson correlation analysis was also performed to assess the effects of [K+]

and [Ca2+] on each investigated T wave and QRS complex marker.



CHAPTER 6. 3D AND TORSO MODELS 124

6.2.5 Sensitivity analysis for assessment of inter-individual vari-

ability sources

Sensitivity analysis was performed to quantify how the proportion of endocardial, mid-

myocardial and epicardial cell layers modulated inter-individual variability in simulated

T wave and QRS complex morphology markers at different [K+], [Ca2+] or their combi-

nation levels.

For each T wave and QRS complex marker at each given concentration of [K+] ([Ca2+]

or both [K+] and [Ca2+], respectively), the percentage of change DY ;c;ai in marker Y

and its sensitivity SY ;c;a1,a2 to changes in the proportion of cells was computed as fully

described in section 3.2.6 [29, 99, 124]. In this chapter, C532 was used as a reference,

having similar ECG morphology as that of the real patient.

6.3 Results

6.3.1 Evaluation of T wave and QRS complex changes induced

by [K+] and [Ca2+] variations in heart-torso simulations

T wave markers (Tw, TSA, du
w,T, da,T, dNL

w,T, dNL
a,T) computed from simulated ECGs at varying

[K+], [Ca2+] and their combinations are shown in Fig. 6.2. The morphological markers

du
w,T, da,T, dNL

w,T and dNL
a,T changed markedly at varying [K+] and [Ca2+]. Large differences

between models in the population could be observed for all analyzed T wave markers.

Analogously, Fig. 6.3 shows changes in QRS complex markers (QRSw, QRSa, d
u
w,Q, da,Q,

dNL
w,Q, dNL

a,Q) at varying [K+] and [Ca2+] and their combinations, with high variability be-

tween models for all markers.

6.3.2 Comparison of [K+]- and [Ca2+]-induced changes in T wave

and QRS complex characteristics in simulations and pa-

tients

Fig. 6.4 shows T waves and the analyzed markers Tw, TSA, du
w,T, da,T, dNL

w,T and dNL
a,T,

computed from the ECGs of a particular model, C514, and a particular patient, P10,

when concomitantly varying [K+] and [Ca2+]. More peaked T waves can be observed with

increasing [K+] and decreasing [Ca2+] in both the model and the patient. Analogously,

Fig. 6.5 shows QRS complexes and analyzed QRS markers QRSw, QRSa, d
u
w,Q, da,Q, dNL

w,Q

and dNL
a,Q, for a simulated case (C154) and a patient (P10) for simultaneous variations in

[K+] and [Ca2+].

Fig. 6.6 shows a comparison of the changes in the marker dNL
w,T when varying both [K+]

and [Ca2+] in the simulated cases and the patients. As can be observed by comparing

panels a and b, panels d and e and panels g and h, the models in the population reproduced
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Figure 6.2: Panels a–f: Changes in Tw, TSA, du
w,T, da,T, dNL

w,T and dNL
a,T for varying [K+]

at fixed [Ca2+]=2.0 mM (black), varying [Ca2+] at fixed [K+] =5.4mM (red) and the
combination of [K+] and [Ca2+] (blue), for ECGs simulated from the population of models.
Central lines indicate the median, whereas bottom and top edges show the 25th and 75th
percentiles, respectively.

some specific patterns of change of dNL
w,T in the patients, albeit with some quantitative

differences. These results were confirmed by computation of correlation coefficients, as

[K
+
]:

[Ca
+2

]:

[K
+
],[Ca

+2
]:

(a) (b) (c)

(d) (e) (f)

Figure 6.3: Panels a–f: Changes in QRSw, QRSa, d
u
w,Q, da,Q, dNL

w,Q and dNL
a,Q for varying

[K+] at fixed [Ca2+]=2.0 mM (black), varying [Ca2+] at fixed [K+] =5.4mM (red), and
the combination of [K+] and [Ca2+] (blue), for ECGs simulated from the population of
models. Central lines indicate the median, whereas bottom and top edges show the 25th
and 75th percentiles, respectively.



CHAPTER 6. 3D AND TORSO MODELS 126

[K+],[Ca+2] (mM)

[K+],[Ca+2] (mM)

[K+],[Ca+2] (mM) [K+],[Ca+2] (mM)

[K+],[Ca+2] (mM) [K+],[Ca+2] (mM)

[K+]=3,[Ca2+]=3.2

[K+]=4,[Ca2+]=2.6

[K+]=5.4,[Ca2+]=2.0

[K+]=6.2,[Ca2+]=1.4

[K+]=3.70,[Ca2+]=2.4

[K+]=4.02,[Ca2+]=2.3

[K+]=4.25,[Ca2+]=2.2

[K+]=5.58,[Ca2+]=2.1

(P10)

(b)

(a)

(C514)

From a simulated Case (C514)

From a patient (P10)

(c)

(d)

Figure 6.4: Panels a–b: T waves at varying [K+] and [Ca2+], for a simulated case (C514)
and for a patient (P10). Panels c–d: Changes in T wave markers Tw, TSA, du

w,T, da,T, dNL
w,T

and dNL
a,T for the same simulated case and patient, respectively.

Figure 6.5: Panels a–b: QRS complexes at varying [K+] and [Ca2+], for a simulated case
(C154) and for a patient (P10). Panels c–d: Changes in QRS complex markers QRSw,
QRSa, d

u
w,Q, da,Q, dNL

w,Q and dNL
a,Q for the same simulated case and patient.

shown in panels c, f and i of the same figure. The ability of our in silico population to

reproduce dNL
w,T trends measured in some of the patients was equally valid for other T wave

markers even if they did not present as remarkable changes as dNL
w,T when varying [K+]

and [Ca2+]. Analogous results in simulated and patients’ ECGs are depicted in Fig. 6.7

for the QRS-based dNL
a,Q, which was the one showing the largest changes in response to

electrolyte variations.

To assess the extent to which our population of models could reproduce the inter-
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Figure 6.6: Panels a–b, d–e, g–h: Changes in dNL
w,T at varying [K+] and [Ca2+], in simulated

cases and patients. Panel c: Pearson correlation coefficients, r, of dNL
w,T with [K+] and

[Ca2+] for the simulated cases shown in a and the patients shown in b. Panel f: Pearson
correlation coefficient r for the simulated cases shown in d and the patients shown in e.
Panel i: correlation coefficient r for all the simulated cases and all the patients. h0–h4

are the HD time points corresponding to the onset and end of HD (h4 with lowest [K+]
and highest [Ca2+] and h0 with highest [K+] and lowest [Ca2+].
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Figure 6.7: Panels a–b, d–e, g–h: Changes in dNL
a,Q at varying [K+] and [Ca2+], in simulated

cases and patients. Panel c: Pearson correlation coefficients, r, of dNL
a,Q with [K+] and

[Ca2+] for the simulated cases shown in a and the patients shown in b. Panel f: Pearson
correlation coefficient r for the simulated cases shown in d and the patients shown in e.
Panel i: correlation coefficient r for all the simulated cases and all the patients. h0–h4

are the HD time points corresponding to the onset and end of HD (h4 with lowest [K+]
and highest [Ca2+] and h0 with highest [K+] and lowest [Ca2+].
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Figure 6.8: Pearson correlation coefficients, r, between each T wave marker (Tw, TSA,
dw,T, da,T, dNL

w,T and dNL
a,T) and [K+] (black for simulated cases and blue for patients) or

[Ca2+] (red for simulated cases and green for patients), for simultaneous variations in
[K+] and [Ca2+].

patient variability in T wave markers at concomitantly varying electrolyte levels, a cor-

relation analysis was performed. Fig. 6.8 shows the Pearson correlation coefficient r

between each T wave marker and [K+], or [Ca2+], in the simulated and the patients’

ECGs. Tw, du
w,T and dNL

a,T were the markers most strongly correlated with [K+] (median r

being −0.70, 0.87, 0.91 in simulations and −0.92, 0.93, 0.75 in patients, respectively) and

[Ca2+] (median r being 0.70, −0.85, −0.91 in simulations and 0.79, −0.84, −0.75 in pa-

tients, respectively). Inter-individual variability in the correlation coefficients associated

with Tw and TSA was high in both simulations and patients. For all other T wave mor-

phology markers, the variability between models only partly reproduced the differences

between patients. Table 6.1 provides the results for the quantitative comparison between

simulated and patients’ T wave markers, in terms of median and interquartile range of r

with [K+] and [Ca2+]. As can be seen from the table, all the analyzed morphology-based

T wave markers correlated strongly with [K+] and [Ca2+] in simulations and patients,

with part of the inter-patient variability being reproduced by the models.

Fig. 6.9 and Table 6.2 show correlation coefficients between QRS complex markers

and electrolyte levels in simulated and patients’ ECGs.

6.3.3 Contribution of ventricular wall composition to inter-

individual variability in T wave and QRS complex re-

sponse to [K+] and [Ca2+] variations

The results of the sensitivity analysis performed to investigate how different propor-

tions of endocardial, midmyocardial and epicardial cells contribute to explain individual
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Figure 6.9: Pearson correlation coefficients, r, between each QRS complex marker (QRSw,
QRSa, d

u
w,Q, da,Q, dNL

w,Q and dNL
a,Q) and [K+] (black for simulated cases and blue for patients)

or [Ca2+] (red for simulated cases and green for patients), for simultaneous variations in
[K+] and [Ca2+].

Table 6.1: Median (interquartile range) of Pearson correlation coefficient between T wave
markers and each of [K+] and [Ca2+] in the simulated cases and in the patients at varying
[K+], [Ca2+] and their combination.

Tw TSA du
w,T da,T dNL

w,T dNL
a,T

[K+] (Simul. [K+] only) −0.86(0.56) 0.64(0.91) 0.92(0.04) 0.97(0.02) 0.92(0.11) 0.89(0.05)

[K+] (Simul. [K+] & [Ca2+]) −0.70(0.52) 0.47(0.29) 0.86(0.07) 0.98(0.02) 0.96(0.14) 0.91(0.26)

[K+] (Patients) −0.92(0.28) 0.84(0.30) 0.93(0.31) 0.65(1.50) 0.68(0.53) 0.75(0.38)

[Ca2+] (Simul. [Ca2+] only) −0.98(0.16) 0.56(0.71)−0.89(0.06)−0.72(0.22)−0.94(0.02)−0.89(0.14)

[Ca2+] (Simul. [K+] & [Ca2+]) 0.70(0.55)−0.42(0.29)−0.86(0.07)−0.98(0.02)−0.95(0.15)−0.91(0.25)

[Ca2+] (Patients) 0.79(0.76)−0.81(0.68)−0.84(0.68) 0.27(1.28)−0.53(0.59)−0.75(0.58)

T wave responses when varying both [K+] and [Ca2+] are presented in Table 6.3 for all

the analyzed simulated T wave markers. The highest sensitivity values were observed for

morphology-based T wave markers, particularly du
w,T and dNL

w,T, when varying the propor-

tion of epicardial cells. Table 6.4 shows sensitivity results for QRS complex markers.
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Table 6.2: Median (interquartile range) of Pearson correlation coefficient between
QRS complex markers and each of [K+] and [Ca2+] in the simulated cases and in the
patients at varying [K+], [Ca2+] and their combination.

QRSw QRSa du
w,Q da,Q dNL

w,Q dNL
a,Q

[K+] (Simul. [K+] only) −0.05(0.71)−0.99(0.00) 0.46(0.32)−0.82(0.34) 0.82(0.18) 0.76(0.17)

[K+] (Simul. [K+] & [Ca2+]) 0.66(0.86)−0.98(0.03) 0.58(0.09) 0.35(1.33) 0.80(0.10) 0.71(0.37)

[K+] (Patients) −0.51(1.24)−0.86(0.25) 0.82(0.33)−0.81(1.49) 0.86(0.27) 0.87(0.28)

[Ca2+] (Simul. [Ca2+] only) −0.66(1.31) 0.99(0.01)−0.87(0.14) 0.97(0.02)−0.91(0.12)−0.98(0.24)

[Ca2+] (Simul. [K+] & [Ca2+])−0.59(0.90) 0.98(0.03)−0.59(0.09)−0.41(1.34)−0.82(0.12)−0.71(0.40)

[Ca2+] (Patients) 0.12(1.47) 0.82(0.48)−0.74(0.76) 0.78(1.45)−0.71(0.49)−0.80(0.36)

*Values are expressed as median (IQR)

Table 6.3: Results of the sensitivity analysis, SY ;c;a1,a2 , for different values of combined
[K+] and [Ca2+] for T wave markers, when varying cell proportions in layer c from a1 to
a2 for human-specific Torso model.

SY ;c;a1,a2 Y Tw TSA du
w,T da,T dNL

w,T dNL
a,T

c, a1, a2 [K+],[Ca2+] % % % % % %

Endo, 10, 50
4,2.6 −0.36 1.26 −17.77 14.87 −2.16 5.32

6.2,1.4 0.98 −2.52 −67.62 12.45 −16.62 1.17

Mid, 10, 50
4,2.6 6.40 −3.24 −14.32 1.06 10.13 −4.19

6.2,1.4 4.56 −1.16 −43.50 2.22 −4.26 7.42

Epi, 20, 60
4,2.6 −6.03 1.98 32.09 −15.93 −7.98 −1.13

6.2,1.4 −5.55 3.68 111.13 −14.67 20.88 −8.59

Table 6.4: Results of the sensitivity analysis, SY ;c;a1,a2 , for different values of combined
[K+] and [Ca2+] for QRS complex markers, when varying cell proportions in layer c from
a1 to a2 for human-specific Torso model.

SY ;c;a1,a2 Y QRSw QRSa du
w,Q da,Q dNL

w,Q dNL
a,Q

c, a1, a2 [K+],[Ca2+] % % % % % %

Endo, 10, 50
4,2.6 −3.20 1.05 −1.24 49.99 −193.31 13.51

6.2,1.4 −6.60 −0.06 −0.70 −8.31 −107.61 8.39

Mid, 10, 50
4,2.6 5.37 −7.22 3.59 −60.56 23.96 −6.48

6.2,1.4 3.89 −7.30 −0.52 38.35 33.54 −21.50

Epi, 20, 60
4,2.6 −2.17 6.17 −2.35 10.57 169.35 −7.02

6.2, 1.4 2.71 7.37 1.23 −30.04 74.07 13.11
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6.4 Discussion

In our whole-heart and torso simulations, T wave and QRS complex duration, amplitude

and morphology changed with [K+] and [Ca2+] in the same direction and with similar

averaged magnitude as in ECGs from ESRD patients undergoing HD. In both simulations

and patients, high inter-individual ECG variability was observed, which was accentuated

at high [K+] and low [Ca2+]. Differences in cell type distribution, particularly in the

proportion of epicardial cells, partially explained inter-patient variability in T wave and

QRS complex response to electrolyte variations.

6.4.1 In silico heart-torso models reproduce [K+]- and [Ca2+]-

induced changes in T wave and QRS complex measured

in ESRD patients

We measured commonly used QRS complex and T wave markers describing characteris-

tics related to their duration and amplitude, including T wave and QRS complex widths

(Tw, QRSw), QRS complex amplitude (QRSa) and T wave slope-to-amplitude ratio (TSA),

as well as our recently proposed morphological variability-based markers (du
w,T, du

w,Q, da,T,

da,Q, dNL
w,T, dNL

w,Q, dNL
a,T, dNL

a,Q) [29,84,87,88]. We evaluated these markers in simulated ECGs

derived from coupled heart-torso models with different proportions of endocardial, mid-

myocardial and epicardial cells, at varying [K+] (3–6.2 mM), [Ca2+] (1.4–3.2 mM) and

their combinations. We found that most of our simulated QRS and T wave markers (all

except for QRSw, da,T and da,Q) presented a diversity of patterns in their relationships

with [K+] and [Ca2+] that were in line with our observations in ESRD patients during and

after HD [29,84,87,130]. Overall, the T wave morphology markers du
w,T, dNL

w,T and dNL
a,T were

the ones that most notably changed with [K+], somewhat less notably with [Ca2+] and

very remarkably with their combination, in average over the population of in silico models

(Fig. 6.2). These results were in line with averaged changes presented by these markers in

ESRD patients, as shown here and in previous studies where the markers were first eval-

uated during HD [29,84,130]. This generally corresponded to more peaked T waves, with

lower amplitude and/or longer duration, which presented increasingly larger morpholog-

ical differences with respect to a reference T wave (calculated at physiological electrolyte

levels) when [K+] was increased and [Ca2+] was decreased (Fig. 6.4) [29, 84, 130]. Re-

garding the QRS complex, markers describing amplitude characteristics, like QRSa and

dNL
a,Q, also varied appreciably with [K+], [Ca2+] and, particularly, with their combination,

in both the simulations and the patients. Typically, the averaged QRS complex in the

simulated and patient populations became lower in amplitude and had larger nonlinear

amplitude morphological variations than a reference physiological QRS complex when

evaluated in response to increasing [K+] and decreasing [Ca2+] (Fig. 6.5) [87].

For confirmation of the ability of our in silico population to describe averaged trends
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of T wave and QRS complex changes with electrolyte variations in patients, a correla-

tion analysis was performed. Among the analyzed T wave markers, du
w,T and dNL

a,T were

the most strongly correlated with [K+] and [Ca2+] in both the simulations and the pa-

tients (absolute median correlation coefficient ranging from 0.75 to 0.93). In the case of

QRS complex markers, QRSa, d
NL
w,Q and dNL

a,Q were the ones most strongly associated with

[K+] and [Ca2+] in the simulations and the patients (absolute median correlation coeffi-

cient ranging from 0.71 to 0.98). These results support the use of our in silico population

of models to describe the average response of T wave and QRS complex to variations in

electrolyte levels like those seen in ESRD patients during and after HD.

6.4.2 Differences in ventricular wall composition contribute to

explain inter-individual variability in [K+]- and [Ca2+]-

induced changes in T wave and QRS complex

After assessing how our population of in silico models could reproduce the general trends

of electrolyte-induced changes in ECG markers observed in ESRD patients, we investi-

gated how it could contribute to explain the high inter-patient variability in such changes.

In agreement with the diversity of patterns of QRS complex and T wave changes in re-

sponse to [K+] and [Ca2+] variations measured in the patients, we found different ven-

tricular models presenting largely distinct behaviors that covered some of the patterns

described in the patients. Models with thin epicardial layers were mainly related with a

non-monotonic behavior of the evaluated ECG markers similar to that presented by some

ESRD patients. This was particularly clear for the T wave morphology marker dNL
w,T, il-

lustrated in Fig. 6.6. Most models with thick epicardial layers reproduced the increasing

linear trend of dNL
w,T observed in many patients (Fig. 6.6). For the QRS complex, we

found that models with thick midmyocardial layers could replicate the increasing linear

trend in the marker dNL
a,Q measured in some patients (Fig. 6.7). Also, the non-monotonic

behavior of dNL
a,Q in many other patients was obtained for models with thick epicardial lay-

ers (Fig. 6.7). Therefore, we may conclude that the different transmural heterogeneities

simulated in this study could reproduce part of the inter-patient variability in the ECG

response to [K+] and [Ca2+] variations.

To quantify how different ventricular wall compositions could contribute to explain

individual ECG responses at a range of [K+] and [Ca2+], we computed QRS and T wave

marker sensitivities to variations in the thickness of the endocardial, midmyocardial and

epicardial cell layers. The highest sensitivity values were observed for T wave morphol-

ogy markers du
w,T, dNL

w,T and dNL
a,T and for QRS morphology markers dNL

w,Q, da,Q and dNL
a,Q.

Extremely high sensitivities were found for some of these T wave markers at abnormally

high levels of [K+] and low levels of [Ca2+], which could at least partially explain the

remarkably large inter-patient variability observed at the beginning of the HD, when

[K+] was enhanced and [Ca2+] was reduced. In particular, du
w,T very notably increased
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for progressively larger proportions of epicardial cells and it decreased for progressively

larger proportions of endocardial or midmyocardial cells. The largest sensitivity of du
w,T

to variations in the proportion of epicardial cells within the ventricular wall agrees with

previous reports showing the contribution of epicardial cells to other forms of repolariza-

tion variability like T wave alternans [110]. For [K+] = 6.2 mM and [Ca2+] = 1.4 mM,

sensitivity values above 110% were found, which corresponded to a coefficient of deter-

mination of 0.93 for the relationship between du
w,T and the proportion of epicardial cells.

Previous experimental and theoretical studies have described how cell type distributions

influence ECG characteristics [88, 110, 111, 113–115]. In particular, [110] reported that

the contribution of epicardial cells to T wave alternans was significantly higher than that

of mid-myocardial cells, which would be in line with our results for T wave morphological

variability. In [111], cell type distributions were shown to highly affect both repolariza-

tion and T wave morphology parameters, in concordance with our findings on the impact

of ventricular wall composition on T wave characteristics, particularly at abnormal [K+]

and [Ca2+] values.

Our in silico analysis could pave the path to understand how patients with different

ventricular wall compositions may present largely different responses to serum electrolyte

variations, even if other factors could contribute to inter-patient variability. These re-

sults could help to improve monitoring and prediction of arrhythmic events in ESRD

patients based on investigations combining in silico modeling and simulation with signal

processing of the ECG.

6.4.3 Related work

Several previous studies have characterized ECG features in relation to electrolyte con-

centrations. [79] and [80] computed ECGs at different [Ca2+] from the ventricular elec-

trophysiology and a torso model. No changes with [Ca2+] were found in QRS duration,

while the R wave amplitude and energy diminished with decreasing [Ca2+] [79], which

would agree with our observations of reduced QRSa and dNL
a,Q. Also, the T wave slopes

were reported to increase with decreasing [Ca2+] [79] and increasing [K+] [80], which is

in line with our observations of more peaked T waves at low [Ca2+] and high [K+].

Other studies have simulated human ventricular electrophysiology in a one-

dimensional transmural model and have derived pseudo-ECGs at varying [K+] [7, 9].

Increases in T wave slope were reported in association with hyperkalemia, which is in

agreement with our results.

Inter-patient variability in the relation between electrolytes and ECG markers has

been reported by several authors [9,27,53,122,138–142,151]. We are not aware of previous

work explaining this variability in terms of variations in ventricular wall composition.
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6.4.4 Study limitations and future research

Our simulations were performed with the most realistic available techniques to model

the electrophysiology of the heart and the resulting ECGs. The electrophysiology was

represented by a widely-used and detailed model of the human ventricular myocyte [64]

that is thoroughly rooted in experimental data. The ECG was simulated using a de-

tailed torso model accounting for the major inhomogeneities in electrical conduction and

for the anisotropic conductivity of cardiac and skeletal muscle [148]. Yet, our finding

that variations in wall composition can help to explain inter-patient variability in the

ECG response to electrolyte changes remains a theoretical prediction, and based on the

theoretical concept of endocardial, mid-myocardial, and epicardial myocyte types that

would be present as layers in the ventricles. While we have shown that variability in the

thickness of such layers can be a cause, we cannot exclude that the main cause in real

patients be entirely different.

Our in silico population included 7 whole-ventricle models with different cell type

distributions across the ventricular wall, which we used to simulate variations in [K+]

from 3 to 6.2 mM and in [Ca2+] from 1.4 to 3.2 mM. Future studies could extend the

methods proposed here to add larger numbers of coupled ventricle-torso models and

simulate a wider range of [K+] and [Ca2+].

The effects of other electrolyte concentrations such as magnesium, [Mg2+], which has

been reported to be possibly involved in observed alterations in the ECG [6, 125–127],

could be accounted for in the simulations if information on the variation of these elec-

trolytes during and after HD were available. In the present study, we did not investigate

[Mg2+] variations because serum [Mg2+] levels were not measured in our patients.

To investigate other sources of inter-individual variability in the ECG response to

serum electrolyte variations, future studies could include other ventricular heterogeneities

on top of transmural ones, like interventricular, apicobasal or anteroposterior [152, 153],

which might play a relevant role in determining ECG characteristics under normal and

abnormal electrolyte concentrations.

6.5 Conclusions

Our in silico population of coupled ventricle-torso models with different ventricular wall

compositions allows to determine patient-dependent responses of T wave and QRS com-

plex to variations in [K+] and [Ca2+]. Differences in the proportion of ventricular cell

types, particularly of epicardial cells, partly explain the inter-subject variability in such

responses. These findings can pave a path to design better tools for non-invasive serum

electrolyte monitoring and prediction of arrhythmic events in the patients.



Chapter 7

Study Limitations, Future Work and

Conclusions

7.1 Main achievements

The main objective of this PhD thesis was to propose novel estimates of serum [K+]

and [Ca2+] by combining novel ECG signal processing techniques with in silico modeling

and simulation of cardiac electrophysiology. We processed ECGs of ESRD patients and

we quantified ECG characteristics identified as being related to extracellular [K+] and

[Ca2+] in simulations. The extracted ECG features were then used to propose a novel

noninvasive method for the estimation of serum electrolyte levels and to quantify the

risk for arrhythmias in CKD patients. Clinically, this investigation can help to improve

current therapies and to provide risk stratification tools.

Time-warping analysis can more robustly characterize hypo- or hyperkalemia

and hypo- or hypercalcemia-induced changes in ventricular repolarization

from ECGs This thesis started by the characterization of hypo- or hyperkalemia

and hypo- or hypercalcemia-induced changes in ventricular repolarization from ECGs

(T wave) of ESRD patients. We described how T waves were extracted from ECGs

and how we characterized changes in T waves at varying [K+], [Ca2+] and HR using

time-warping analysis.

This study confirmed our hypothesis that time-warping based markers, accounting

for the whole T wave morphology, can more robustly characterize repolarization changes

associated with different [K+] and [Ca2+] and be better suited for non-invasive electrolyte

estimation as compared to local features.

Nonlinear dynamics markers can assess repolarization instabilities and tempo-

ral inter-beat variability Next, T wave nonlinear dynamics markers were evaluated

to assess the extent to which they provided complementary information to the already

evaluated T wave morphology markers.
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This study confirmed our hypothesis that elevated [K+] at the start of HD and 48 hours

later was associated with higher variability in the form of dynamical instabilities, which

was reflected in larger values of the quantified nonlinear dynamics markers. Nonlinear

dynamics markers assessed repolarization instabilities, temporal inter-beat variability and

intra-beat differences.

Univariable and multivariable regression models including markers of T wave nonlinear

dynamics in combination with warping-based markers of T wave morphology were built

and their performance for [K+] estimation was assessed, which confirmed that combined

markers can be a valuable tool for noninvasive monitoring of [K+] during inter-dialytic

periods in ESRD patients.

Time-warping analysis can more robustly characterize hypo- or hyperkalemia

and hypo- or hypercalcemia-induced changes in ventricular depolarization

from ECGs and improve estimation of electrolytes After successfully evaluating

the performance of whole T wave morphology in response to varying [K+], [Ca2+] and HR,

we characterized hypo- or hyperkalemia and hypo- or hypercalcemia-induced changes in

ventricular depolarization from ECGs (QRS complex) of ESRD patients.

This study confirmed our hypothesis that QRS morphology provided complementary

information on [K+] and [Ca2+], additional to that provided by repolarization. This

was done by performing univariate and multivariate regression analyses including novel

QRS morphological markers in combination with T wave morphological markers to assess

the contribution of depolarization and repolarization features for electrolyte monitoring

in ESRD patients.

Inter-patient variability can be well reproduced using our in silico investi-

gations After investigating variations in the T wave and QRS complex morphology in

ESRD patients, we characterized changes in the T wave and QRS complex markers in re-

lation to [K+] and [Ca2+] variations in human torso-heart simulations to uncover potential

cellular mechanisms underlying differential ECG responses to variations in electrolytes.

This in silico study confirmed our hypothesis that inter-individual differences in cell

type distribution across the ventricular wall can well reproduce inter-patient variability.

7.2 Study Limitations and Future Work

The study limitations and possible future work are discussed below:

• We focused our research on [K+] and [Ca2+] estimation. Sodium, [Na+], was found

to present less notable variations during HD and none of our analyzed markers

showed significant association with it in the dataset analyzed in this study, which

should be further tested in larger patient cohorts. Although variations in other
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electrolytes, such as magnesium [Mg2+], have also been shown to alter the ECG

to some extent [6, 125–127], in this thesis, [Mg2+] was not investigated due to the

unavailability of serum [Mg2+] levels. Future studies using different data sets could

investigate [Mg2+] effects on ECG waveforms.

• In this thesis 48-hour ECG recordings of 29 ESRD patients were analyzed. Although

the dataset was originally planned to include a larger number of patients, ECG

acquisition had to be stopped due to the situation generated by the COVID-19

pandemic. Future studies including a larger number of patients and more frequent

blood samples during the inter-dialytic period would allow to confirm the present

findings and extend the investigation to ECG-based linear and nonlinear estimators

of [K+], [Ca2+] and [Mg2+].

• In this thesis, we used linear estimators due to the small number of samples, par-

ticularly when using a patient-specific approach. Future work could investigate the

use of nonlinear estimators [9, 122], which could prove to be particularly relevant

for the estimation of [K+] and [Ca2+] at the start of HD sessions when these take

values far from those at other HD stages.

• We did not have access to measurements of blood volume or of other variables that

could be used to infer them. Studies on other data sets where such measurements

were available could test the relationship between blood volume and the ECG-

derived markers proposed in our study to monitor [K+] and [Ca2+]. In addition,

some of the patients analyzed in the study had diseases, such as diabetes mellitus.

We did not find significant differences in the analyzed markers between diabetic and

non-diabetic patients. Nevertheless, future studies addressing larger patient cohorts

could investigate the impact of diseases additional to ESRD on the relationship

between analyzed ECG markers and electrolytes.

• Our electrophysiological simulations considered human biventricular models em-

bedded in a patient-specific torso model, from which more realistic ECGs were

computed. This research and future investigations on patient-specific ventricular

models will additionally allow exploring the role of other types of ventricular hetero-

geneities, on top of transmural ones, on the QRS and T wave response to electrolyte

and HR variations.

• The present work could be extended to include deep learning-based approaches

for serum electrolyte estimation provided large data sets of ECG recordings and

concomitant blood samples were available for the analysis, in line with studies

already addressing hypo- and hyperkalemia screening from the ECG using deep

learning methods [55,128,129].
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7.3 Conclusions

ECG signal processing and in silico electrophysiological modeling and simulation are used

in my PhD thesis to investigate inter-individual differences in the T wave and QRS com-

plex responses to [K+], [Ca2+] and HR changes. Novel T wave nonlinear dynamics markers

and QRS morphological variability markers present remarkable variations with varying

[K+], [Ca2+] and HR, but a wide range of patterns are observed for such relationships,

both in simulated ventricular tissues and in patients’ ECGs. The proportion of endo-

cardial, midmyocardial and epicardial cells within the simulated ventricular tissues is

shown to have a large impact on ECG derived markers, particularly for serum electrolyte

concentrations and HR above and below their physiological levels. This suggests that

transmural heterogeneities can play a relevant role in determining patient-dependent re-

sponses of the T wave and QRS complex in CKD patients, which can have major relevance

for non-invasive monitoring and prediction of arrhythmic events in these patients. Our

results offer new non-invasive tools to monitor serum [K+] and [Ca2+], which could have

a significant role in clinical practice and could contribute to reduce the mortality risk

associated with abnormal electrolyte levels in ESRD patients.
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Ms. Arantxa Trigo, Ms. Maŕıa Salinas, Ms. Susana Perez, Ms. Yolanda Velicias and

especially Ms. Dorse Mart́ınez for the administrative work because you helped me a lot

throughout this journey. I am thankful to all of my BSICoS team members especially

Prof. Juan Pablo, Prof. Pedro, Dr. David Sampedro, Saul, Chiara, Jennifer, Neurys,

Maxi, Dr. David, Dr. Ana, Dr. Alba, Dr. Jesus and Mr. Joaqúın Chivite (IT manager).
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P. J. van der Most, M. Müller-Nurasyid, C. P. Nelson, Y. Qian, L. Repetto, M. A.

Said, N. Shah, K. Schramm, P. G. Vidigal, S. Weiss, J. Yao, N. R. Zilhao, J. A.

Brody, P. S. Braund, M. Brumat, E. Campana, P. Christofidou, M. J. Caulfield,

A. De Grandi, A. F. Dominiczak, A. S. F. Doney, G. Eiriksdottir, C. Ellervik,
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F. Cucca, S. R. Cummings, M. D örr, G. Girotto, V. Gudnason, T. Hansen, S. R.
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macro finite elements for the numerical solution of monodomain equations in cardiac

electrophysiology,” Annals of Biomedical Engineering, vol. 38, no. 7, pp. 2331–2345,

2010.

[99] L. Romero, E. Pueyo, M. Fink, and B. Rodŕıguez, “Impact of ionic current variabil-
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