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Abstract: Male breast cancer represents about 1% of all breast cancer diagnoses and, although there are
some similarities between male and female breast cancer, the paucity of data available on male breast
cancer makes it difficult to establish targeted therapies. To date, most male breast cancers (MBCs)
are treated according to protocols established for female breast cancer (FBC). Thus, defining the
transcriptional and epigenetic landscape of MBC with improved resolution is critical for developing
better avenues for therapeutic intervention. In this study, we present matched transcriptional
(scRNA-seq) and epigenetic (scATAC-seq) profiles at single-cell resolution of two treatment naïve
MBC tumors processed immediately after surgical resection. These data enable the detection of
differentially expressed genes between male and female breast tumors across immune, stromal, and
malignant cell types, to highlight several genes that may have therapeutic implications. Notably,
MYC target genes and mTORC1 signaling genes were significantly upregulated in the malignant
cells of MBC compared to the female counterparts. To understand how the regulatory landscape
of MBC gives rise to these male-specific gene expression patterns, we leveraged the scATAC-seq
data to systematically link changes in chromatin accessibility to changes in gene expression within
each cell type. We observed cancer-specific rewiring of several salient enhancers and posit that
these enhancers have a higher regulatory load than lineage-specific enhancers. We highlight two
examples of previously unannotated cancer-cell-specific enhancers of ANXA2 and PRDX4 gene
expression and show evidence for super-enhancer regulation of LAMB3 and CD47 in male breast
cancer cells. Overall, this dataset annotates clinically relevant regulatory networks in male breast
tumors, providing a useful resource that expands our current understanding of the gene expression
programs that underlie the biology of MBC.

Keywords: breast cancer; male breast cancer; single-cell genomics; scRNA-seq; scATAC-seq;
intratumoral heterogeneity; gene regulation; chromatin accessibility; enhancer elements

1. Introduction

Male breast cancer (MBC) is a rare type of cancer that occurs in the breast tissue of
men. MBC accounts for only 1% of total breast cancer incidence [1,2]; however, men are
likely to present with larger, higher-grade tumors and more lymph node involvement
compared to females with breast cancer [3]. Moreover, the 5-year mortality of MBC is
higher than that of female breast cancer (FBC) [4], which may be due to the older age
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at the time of diagnoses, delays in diagnosis, the presence of comorbidities, or intrinsic
biological differences [3–5]. Most men with breast cancer are diagnosed with invasive
ductal carcinoma, and their tumors are estrogen-receptor (ER) positive, progesterone-
receptor (PR) positive, and HER2 negative [5–8]. At the molecular level, most men will
present with Luminal A-like or Luminal B-like tumors [6,9], with some studies suggesting
that MBCs have unique subtypes, M1 and M2, that differ from the intrinsic subtypes of
FBC [10,11]. As with FBC, MBC risk increases for men with familial history of BRCA
mutations. However, men show higher risk for BRCA2 mutations than BRCA1 mutations
compared to women [12,13]. Men are also at higher risk of developing breast cancer if they
are African American [14] or have comorbidities such as Klinefelter’s syndrome, hormone
imbalances, liver disease, and obesity, among others [5,15,16].

Although MBC presents with similarities to certain FBC, the paucity of data related to
the treatment of males makes it difficult to find targeted therapies [17–19]. Instead, men
with breast cancer are treated in accordance with treatment paradigms for women, even if
the efficacy of these treatments is low [18,20]. Interestingly, studies comparing the genomic
profiles of male and female breast cancers have found important differences that are
potentially driving outcomes of their respective disease [10,11,21,22]. For example, several
microarray-based studies have found that NAT1 [10], mTOR [23], EIF4E [23], THY1 [11],
and SPAG5 [11] are upregulated in MBC compared to FBC and may serve as prognostic
biomarkers. These initial studies highlight the fundamental differences between MBC and
FBC and provide the impetus for defining male-specific disease mechanisms that will lead
to better treatment options.

Single-cell genomics have revolutionized our ability to investigate the cellular, tran-
scriptional, and epigenetic heterogeneity of human tumors with improved resolution.
Single-cell RNA-seq (scRNA-seq) [24–29] refines our ability to measure the transcriptional
profiles of thousands of individual cells within a particular tumor specimen to make con-
clusions about the underlying cellular heterogeneity of tumors and pinpoint salient gene
expression programs. These gene expression programs are controlled and sustained by reg-
ulatory elements (e.g., cis-acting enhancer elements) scattered throughout the genome that
are often re-wired and repurposed by cancer cells to drive oncogenic transcriptional pro-
grams [30–33]. The chromatin accessibility landscape may now be robustly profiled thanks
to recent improvements in single-cell sequencing assay for transposase-accessible chro-
matin (scATAC-seq), revealing several layers of gene regulation, including cis-regulatory
elements [34,35]. Together with scRNA-seq, scATAC-seq offers unprecedented resolution
to reveal novel gene regulatory mechanisms in MBC. Although there are some notable
cancer datasets with matched scRNA-seq and scATAC-seq [36,37], none have been reported
for human MBC. Herein, we present matched transcriptional (scRNA-seq) and epigenetic
(scATAC-seq) profiles of two treatment naïve MBC tumors processed immediately after
surgical resection. First, we defined the differentially expressed genes between male and
female breast tumors, specifically within the malignant cell types, to highlight several
genes that may have therapeutic implications. Then, we systematically linked changes in
chromatin accessibility to changes in gene expression to annotate the enhancer landscape
within each cell type. Finally, we highlight the cancer-specific rewiring of several salient en-
hancers that drive abnormally high levels of male-specific gene expression and investigate
the transcription factor occupancy at enhancers. Together, these data enable the annotation
of the cellular composition, transcriptional, and epigenetic landscape of male breast tumors
to help pinpoint drivers of this rare disease.

2. Results
2.1. Matched scRNA-seq and scATAC-seq of Male Breast Cancer

Two treatment-naïve MBC patients underwent mastectomy with curative intent
(Figure 1). Immediately following surgical resection, each tumor was gently dissociated
into a suspension of live cells using a gentle collagenase and hyaluronidase digestion
and prepped for lipid droplet-based scRNA-seq and scATAC-seq via the 10× Genomics
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Chromium system (Figure 1A). Each tumor specimen was divided into two pools to gen-
erate independent scRNA-seq and scATAC-seq libraries. Since these tumor specimens
were never frozen or fixed in any way, a high level of cell viability during the dissociation
process was maintained for robust sequencing coverage in single cells.
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Figure 1. Overview of scRNA-seq and scATAC-seq of Male Breast Cancer Tumors. (A) Cartoon
of scRNA-seq and scATAC-seq workflow. (B) Clinical features of the male breast tumors and
total cells captured for both scRNA-seq and scATAC-seq. Abbreviations: AA—African American,
IDC—Infiltrating Ductal Carcinoma, pos—positive immunohistochemical staining, neg—negative
for immunohistochemical staining. (C) UMAP plot of scRNA-seq colored by cell type (left) and
scATAC-seq colored by inferred cell type (right) across both male breast cancer patients capturing
total cells after QC (see methods). (D) UMAP plot of scRNA-seq (left) and scATAC-seq (right) colored
by patient of origin.

After quality control and doublet removal for each patient dataset, we obtained
8941 total cells profiled by scRNA-seq (Supplementary Figure S1A) and 10,379 total cells
profiled by scATAC-seq (Supplementary Figure S1E). To ensure the robustness of our
downstream analysis, we removed any cell type clusters that had less than 5000 RNA
or ATAC fragment counts on average, or that could not confidently be assigned a cell
type label (see Methods; Supplementary Figure S1C,G). After applying these filters, we
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proceeded with a dataset composed of 8941 profiled by scRNA-seq cells and 9100 total cells
profiled by scATAC-seq (Figure 1B).

To annotate the transcriptional profiles of the various cell types within these MBC tu-
mor specimens, we performed principal component analysis (PCA) using the top 2000 most
variable genes across all 8941 scRNA-seq cells. To correct for any technical variation, Har-
mony batch correction [38] was applied to the dataset and the cells were then classified
into transcriptionally distinct clusters with graph-based clustering using the top 30 PCs
and visualized using a Uniform Manifold Approximation and Projection (UMAP) plot. We
identified four major cell types (epithelial cells, macrophages, fibroblasts, and endothe-
lial cells) (Figure 1B, left) across nine clusters (Supplementary Figure S1A). Notably, the
non-malignant cell types, such as the macrophages and fibroblasts, showed intermixing of
cells from both patients, suggesting that these cell types had similar transcriptional profiles
across patients. Conversely, the epithelial cell types (which were later confirmed to be
malignant via inferCNV) showed patient-specific transcriptional profiles (Figure 1C, left).
Because these data were batch corrected prior to clustering, we believe that the patient-
specific transcriptional profiles of the epithelial cell types are biologically meaningful.

To analyze the chromatin accessibility landscape (vis-a-vis the epigenetic landscape)
of these tumors, the scATAC-seq data was processed by creating a matrix of contiguous
genomic tiles across the genome, in which we quantified Tn5 insertion counts across every
cell. Then, we performed iterative latent semantic indexing (LSI) on the top 25,000 most
variable genomic tiles [37,39]. We used Seurat v4.0.5 cross-modality integration [40] with
the top 30 LSI dimensions (constrained to cells of the same patient tumor) to assign cell type
labels from the matching scRNA-seq data to the scATAC-seq cells, and visualized the cells
in the UMAP plot (Figure 1B, right) [41]. The scATAC-seq cells were clustered mostly by
cell type and not by patient, which showed the quality of the dataset and data processing
pipeline (Figure 1C, right). All four cell types (epithelial cells, macrophages, fibroblasts,
and endothelial cells) were also observed in scATAC-seq (Figure 1B, right). Similar to the
scRNA-seq, we found that the cell type clusters of macrophages and fibroblasts contained
cells from both patients, while the cell type clusters of epithelial cells were patient-specific
in scATAC-seq (Figure 1C, right). These observations likely reflect the biological overlap of
the non-malignant cells across all patients and highlights the unique, and possibly tractable,
biological features of the malignant cells within each patient’s tumor.

2.2. Transcriptional Profiles of Male Versus Female ER+ Malignant Epithelial Cells

To determine the transcriptional differences between male and female cancer cells, we
first identified the malignant epithelial cell types within each patient by inferring putative
copy number events for each cell cluster using the inferCNV [42] approach (Supplementary
Figure S2A–C). Then, we compared the cancer-epithelial cell profiles of our MBC tumors
to publicly available scRNA-seq profiles of FBC epithelial cells [43] of the same molecu-
lar subtype. The male epithelial cells from both patients grouped together in a UMAP
that contained both male and female cancer-epithelial cells, suggesting they have distinct
transcriptional profiles compared to the female epithelial cells (Figure 2A). Differential
gene expression analysis between MBC and FBC, at a single- cell resolution, identified
1004 upregulated genes and 14 downregulated genes in MBC with log2FC > 0.25 and
adjusted p-value < 0.01 (Supplementary Table S1). To simplify the heatmap visualization,
we filtered the differentially expressed genes with an adjusted p-value < 1 × 10−12 to arrive
at the top 25 upregulated genes and top 5 downregulated genes (Figure 2B). To validate the
soundness of the differential gene expression analysis, we visualized the expression of the
top two upregulated genes (RPS4Y1 and TNFRSF12A) and top two downregulated genes
(FOS and XIST) in the UMAP plot (Figure 2C). Sex-specific genes such as RPS4Y1 (located
on the Y-chromosome) and XIST (needed for X-chromosome inactivation [44]) were exclu-
sively expressed in the corresponding male and female epithelial cells, giving confidence to
our analysis (Figure 2C). Gene ontology analysis [45] of the differentially expressed genes
showed that the upregulated genes in MBC are enriched in ‘MYC targets’ and ‘mTORC1
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signaling’, which suggests the possibility of using BET bromodomain inhibitors [46] and/or
mTOR inhibitors [47,48] for MBC treatment (Figure 2D, Supplementary Table S1).
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Figure 2. scRNA-seq Analysis Comparing Male and Female Breast Cancer. (A) scRNA-seq UMAP
plot of epithelial cells colored by male patients from this study and female patients from Pal et al. [43].
(B) Row-scaled heatmap of gene expression in male cancer epithelial cells versus female cancer
epithelial cells. The heatmap shows the top 25 upregulated genes and the top 5 downregulated genes
with p-value adjusted < 1 × 10−12. Red/blue wedges to the right of the heatmap correspond to
the p-value adjusted trends among the upregulated and downregulated groups. More significant
upregulated genes are at the top of the heatmap while the most significant downregulated genes are
at the bottom of the heatmap. (C) UMAP plots of scRNA-seq male and female cancer epithelial cells
colored by normalized expression of the two most significantly upregulated genes in male breast
cancer (RPS4Y1 and TNFRSF12A) and the two most significantly downregulated genes in male breast
cancer (FOS and XIST) compared to female breast cancer. (D) Hallmark gene set enrichment analysis
of downregulated and upregulated genes in male breast cancer tumors compared to female breast
cancer tumors (q-value ≤ 0.01).
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Conversely, the downregulated genes were enriched in the ‘Estrogen Response Late’
pathway, suggesting that although the male epithelial cells are ER+, the estrogen driven
gene expression pathways may be muted. Together, these data reveal sex-specific gene
expression differences specifically within the malignant cell types of MBC and FBC.

2.3. Systematic Annotation of Cancer-Specific Enhancer Elements in MBC

Chromatin accessibility is a prerequisite for gene transcription and for the activity of
the regulatory elements that regulate transcription. Moreover, chromatin accessibility is
cell-type specific, usually constrained to the gene expression patterns of a particular cell
lineage. Thus, it is possible to deconvolute the cis-regulatory elements that drive cell-type-
specific gene expression within MBC tumors using scATAC-seq. First, we called statistically
significant chromatin accessibility peaks across all cells and found that the majority of peaks
were located in intronic regions (46.2%) or distal intergenic regions (31.3%) (Figure 3). Next,
we linked changes in chromatin accessibility to changes in gene expression by performing
a peak-to-gene correlation analysis (see Methods; Figure 3) [39]. Briefly, we aggregated
the sparse peak counts within groups of similar scATAC-seq cells (~100 cells per group),
identified via k-nearest neighbors, to generate more informative metacell observations for
each peak in the analysis. Then we computed the correlation between the accessibility of
every peak and the expression of every gene across scATAC-seq cells imputed after the
Seurat v4.0.15 label transfer procedure [40]. Overall, the peak-to-gene linkage analysis
identified 11,719 unique distal peaks participating in 22,869 distal peak-to-gene links in
cis across all cell types (Pearson correlation ≥ 0.45 and FDR < 1 × 10−12). We further
categorized these peak-to-gene links into five k-means clusters before visualizing them in
heatmap form, where we observed highly consistent patterns between gene expression
and linked peak accessibility (Figure 3B). Furthermore, the k-means clustering of the peak-
to-gene links revealed cell-type-specific enhancer-gene pairs that were characteristic of
each cell type; macrophages (cluster 1), epithelial-tumor cells (clusters 2 and 3), fibroblasts
(cluster 4), and endothelial cells (cluster 5) (Figure 3B). Herein, we refer to these linked
distal peaks as putative enhancers of their paired target genes (Supplementary Table S2).

To differentiate between cancer-specific enhancers and lineage-specific enhancers,
we extracted the genomic coordinates for each peak that was enriched in the cancer-
epithelial cell-specific k-means groups (clusters 2 and 3; Figure 3B) and overlapped these
with previously annotated enhancer elements in normal human mammary epithelial
cells (HMECs) [49]. We found a total of 5141 cancer-specific enhancers (participating
in 11,551 peak-to-gene links) that were not present in normal mammary epithelial cells
and specifically active in the cancer-epithelial cells of MBC (Figure 3D, Supplementary
Table S2). Interestingly, the cancer-specific enhancers tend to link to more genes on average
(~2.2 genes per enhancer) compared to the non-cancer enhancers found in all other cell
types (~1.7 genes per enhancer) (Figure 3E). This suggests that the cancer-specific enhancers
may have a higher regulatory load, being associated to the expression of more genes, as
compared to lineage-specific enhancers. We also note that transcription factor motif enrich-
ment analysis of the cancer-specific enhancers revealed FOXA1, MESP1/2, and TFAP2C as
the top three transcription factors enriched at these enhancers based on adjusted p-value
(Supplementary Table S3). These data point to a significant rewiring of enhancer elements
in cancer-epithelial cells compared to normal epithelial cells, that can potentially sustain
oncogenic transcription in MBC.
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Figure 3. Identification of cancer-specific enhancers in male breast cancer. (A) Workflow for the
enhancer peak-to-gene identification strategy. (B) Row-scaled heatmap of statistically significant
distal peak-to-gene links (FDR < 1 × 10−12). Rows represent the accessibility of a distal peak and
the expression of its linked gene. Columns represent cell types. Cancer-epithelial peak-to-gene
links are clustered by k-means clustering and corresponding cluster numbers are denoted in red at
the right side of the heatmap. (C) Peak call summary pie chart showing the location of all peaks.
(D) Venn diagram showing the number of cancer-specific distal peaks (i.e., 5141 peaks in clusters 2
and 3 from (B)) that do not overlap with regulatory elements found in normal human mammary
epithelial cells (HMEC). (E) Left: Bar chart depicting the mean number of linked genes per distal
peak in cancer-specific distal peaks (green, n = 5141) vs. all non-epithelial peaks (grey, n = 4929)
cells. **** denote p-value < 2.22 × 10−16 (Wilcoxon rank-sum test). Right: Bar chart depicting the
total number of genes linked to cancer-specific distal peaks (3586 total genes) vs. non-epithelial distal
peaks (3551 total genes).
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2.4. Tumor Epithelial Cells Acquire Enhancer Elements That Drive Genes Involved in Cancer
Progression

The peak-to-gene analysis revealed a striking amount of cancer-specific enhancer-
gene pairs that could potentially serve as biomarkers or even tractable pathways in MBC.
Therefore, we wanted to identify the cancer-specific enhancers that were linked to MBC
genes that are upregulated in comparison to FBC. In total, we found 61 genes that are
upregulated in MBC compared to FBC, whose enhancers are specifically active in the cancer-
epithelial cell fraction of MBC tumors (Figure 4A,B). One of the highest expressed genes is
ANXA2, a gene involved in tumor heterogeneity and cancer progression [50]. It has been
reported that ANXA2 is more expressed in African American triple negative breast cancer
(TNBC) patients compared to Caucasian TNBC patients, and high expression of ANXA2
is associated with worse survival [51]. The enhancer linked to ANXA2 is significantly
enriched in the cancer-epithelial cells but not in the non-malignant cell types (log2FC = 2.3
and FDR < 0.001), resulting in significantly higher expression of ANXA2 as measured by
the scRNA-seq (Wilcoxon rank sum tests, p-value < 2.22 × 10−16) (Figure 4C). Of note,
this enhancer is not normally active in human mammary epithelial cells (HMEC) and,
perhaps more interestingly, is also not annotated in the ENCODE Consortium’s curated
registry of cis-regulatory elements compiled across hundreds of different cell types [49]
(Figure 4C). Furthermore, motif analysis revealed YY1 as the most significantly enriched
transcription factor at this enhancer and MAFF as the highest enriched transcription
factor at the promoter of ANXA2 (Figure 4D). YY1 is an important mediator of enhancer–
promoter interactions [52], and the expression of YY1 and MAFF in the cancer-epithelial
cells was confirmed using the matching scRNA-seq dataset (Figure 4D). Taken together, this
previously un-annotated cancer-specific enhancer represents a novel regulator of ANXA2
in MBC.

Another salient example of a cancer-specific enhancer linked to a male breast cancer
upregulated gene is PRDX4. We selected PRDX4 for this example because this gene is
involved in breast cancer metastasis [53,54]. We found that PRDX4 is more highly expressed
in MBC compared to FBC (log2FC > 1.0), and its expression in cancer-epithelial cells is
significantly higher than in the non-malignant cell types (Figure 4E). In this case, there
are three enhancer peak-to-gene links to the PRDX4 promoter (Figure 4E). Among these
three peak-to-gene links, enhancer 2 showed the highest enrichment in the cancer epithelial
cells compared to the non-malignant cells (log2FC = 3.5 and FDR < 1 × 10−5) and was
also not present in normal mammary epithelial cells (Figure 4E). Motif search revealed
that FOXP1, TFAP2A, and RUNX1 were the most significantly enriched transcription
factors in enhancers 1–3, respectively, and ZKSCAN1 was the most enriched transcription
factor at the promoter of PRDX4 (Figure 4F). Finally, we confirmed the expression of these
transcription factors specifically within cancer epithelial cells using the scRNA-seq data,
giving confidence to our results.
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linked genes in male breast cancer versus female breast cancer. More significant upregulated genes
are at the top of the heatmap. (C) Browser track view of chromatin accessibility at the ANXA2 locus
across epithelial cancer cells (Epi. Tumor) and all other cell-type clusters. The cancer-specific enhancer
1 (Enh1) peak that is linked to ANXA2 gene expression is highlighted in light purple. The peak track
below the browser track denotes all scATAC-seq peaks from this study (Peaks), regulatory elements
found in human mammary epithelial cells (HMEC), and all ENCODE cis-regulatory elements. The
peak-to-gene correlation loops show the correlation between ANXA2 and Enh1. Gene expression
of ANXA2 in matched scRNA-seq cells is depicted to the right of the browser track. **** denote
p-value < 2.22 × 10−16 (Wilcoxon rank-sum test). (D) Find individual motif occurrences (FIMO)
predictions within the ANXA2 cancer-specific Enh1 and the ANXA2 promoter showing the predicted
transcription factors with the highest expression in the 0-Epi.Tumor cluster from patient 2. The gene
expression of each TF specifically within the cancer epithelial cells is shown to the right of the table.
(E) Browser track view of chromatin accessibility at the PRDX4 locus across epithelial cancer cells (Epi.
Tumor) and all other cell-type clusters. Predicted enhancers of PRDX4 are highlighted in light purple.
The cancer-specific peak, Enh2, is denoted in red. The peak track below the browser track denotes all
scATAC-seq peaks from this study (Peaks), regulatory elements found in human mammary epithelial
cells (HMEC), and all ENCODE cis-regulatory elements. The peak-to-gene correlation loops show the
correlation between PRDX4, and the peaks linked to this gene. Gene expression of PRDX4 in matched
scRNA-seq cells is depicted to the right of the browser track. **** denote p-value < 2.22 × 10−16

(Wilcoxon rank-sum test). (F) Find individual motif occurrences (FIMO) predictions within the
PRDX4 cancer-specific Enh2 and the PRDX4 promoter showing the predicted transcription factors
with the highest expression in the 0-Epi.Tumor cluster from patient 2. The gene expression of each TF
specifically within the cancer epithelial cells is shown to the right of the table.

As we were looking through the 61 MBC genes that are linked to cancer-specific
enhancers, we noticed a few instances of clusters of neighboring enhancers that had abnor-
mally high levels of chromatin accessibility in the cancer-epithelial cell types. These clusters
of enhancers were highly active and highly interconnected, reminiscent of super-enhancer
function [55,56]. For example, LAMB3 is very highly expressed in MBC epithelial tumor
cells, with more than five peak-to-gene links associated with its promoter (Supplementary
Figure S3A). The cluster of enhancer peaks near chr1:209,444,222-09,546,602 were sig-
nificantly correlated to each other and individually linked to the promoter of LAMB3,
suggesting that this may be a super-enhancer (Supplementary Figure S3A). LAMB3 has
been previously related with focal adhesion for cell migration in breast cancer [57], and its
higher expression is associated with worse overall survival (OS) and disease-free survival
(DFS) in pancreatic ductal adenocarcinoma (PDAC) [58]. Therefore, we posit high expres-
sion of LAMB3 is unfavorable for MBC patients and its elevated expression is sustained
by the super-enhancer. Interestingly, we found a second cluster of cancer-cell-specific
enhancers that are linked with the expression of CD47 and overlap with a previously anno-
tated super-enhancer in breast cancer [59] (Supplementary Figure S3B). As seen with the
previous example (LAMB3), the cluster of enhancer peaks near chr3:107,999,565-108,001,642,
were highly interconnected and linked to the promoter of CD47 leading to high levels of
CD47 gene expression (Supplementary Figure S3B). CD47 is a key mediator of immune
evasion and epithelial to mesenchymal transition in breast cancer and its high expression is
related to worse disease-free survival [60]. Although we did not intentionally set out to
find super-enhancers, these examples highlight the potential for finding ‘super-enhancers’
at single-cell resolution. These data begin to explain how differentially expressed genes
in MBC are regulated by cancer-specific enhancers, highlighting their potential as novel
targets for therapeutic intervention.
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3. Discussion

The results described herein exemplify the utility of our matched scRNA-seq and
scATAC-seq dataset for uncovering clinically relevant mechanisms of gene expression
in MBC. We recognize that our study is limited to two ER+ male breast cancer patients,
but it is important to note that MBC represents only 1% of all breast cancer diagnoses,
making it difficult to procure these rare tumor types. Moreover, we had the additional
requirement of collecting live tumor specimens, on the day of surgical resection, to ensure
high quality single-cell datasets. Thus, our study represents the first matched scRNA-
seq and scATAC-seq dataset of MBC and represents a foundation for determining the
regulatory logic of MBC. This is important because the 5-year mortality of MBC is higher
than that of FBC [4] and not enough is known about MBC at the molecular level, especially
at single-cell resolution.

While the anatomical listing of cell types within MBC tumors was not the initial
goal of this project, our high-quality scRNA-seq dataset enabled the detection of various
cell types, including macrophages, fibroblasts, endothelial cells, and epithelial cells. The
malignant cell types were detected by inferring copy-number variation from the scRNA-
seq data, and notably we found that the non-malignant cell types showed similar gene
expression profiles across patients (suggesting a similar biological state) while the cancer-
epithelial cells showed more patient-specific transcriptomes, pointing to the heterogeneity
of MBC. Comparison of the cancer-epithelial cell transcriptomes to the female cancer-
epithelial cell transcriptomes revealed distinctive gene expression programs as evidenced
by the discrete clustering of the male versus female epithelial cells (Figure 2). The top five
upregulated genes were RPS4Y1, TNFRSF12A, ISG20, S100A6, and LGALS3, whereas the
top five downregulated genes were XIST, FOS, TFF3, PBX1, and HSPA1B. RPS4Y1 was not
expressed in female epithelial cells since it was located on the Y-chromosome, confirming
the soundness of differential gene expression analysis. Interestingly, the other upregulated
genes are associated with features of cell proliferation (TNFRSF12A in human hepatocellular
carcinoma [61]), tumor progression (ISG20 in clear cell renal cell carcinoma [62]), and
cell survival (LGALS3 in breast cancer [63]). Collectively, the pathway analysis of all
upregulated genes shows enrichment in hallmark pathways such as ‘MYC targets’ and
‘mTORC1 signaling’ (Figure 2). Indeed, the upregulation of the mTOR pathway in male
breast cancer has been shown before using bulk microarray studies [23], suggesting that
MBC patients may benefit from mTOR inhibitors. Conversely, the downregulated genes
were enriched in the ‘Estrogen Response Late’ hallmark pathway, suggesting that although
the male epithelial cells are ER+, the estrogen-driven gene expression pathways may
be muted. Similar to FBC, endocrine therapy targeting ER is the mainstay of systemic
therapy for ER+ MBC, and these results indicate that MBC may be inherently less estrogen
responsive. No data currently exist prospectively determining the efficacy of endocrine
therapy in MBC patients. The ongoing ETHAN prospective, randomized trial (https:
//clinicaltrials.gov/ct2/show/NCT05501704 (accessed on 17 April 2023), will compare
endocrine therapy regimens in male breast cancer patients and this will be important to
establish the role of endocrine therapy for male patients. Additionally, this trial will provide
samples for translational correlates of how MBC respond to endocrine therapy, and to test
how expression of genes identified in our study correlate with response.

The chromatin accessibility profiles enabled the systematic detection of regulatory
elements that drive the distinctive gene expression programs within MBC. We demonstrated
that there is widespread rearrangement of the enhancer landscape in MBC and that cancer-
epithelial cells acquire de novo enhancer elements that drive the expression of male-specific
genes. Starting from a broad survey of cis-regulatory elements across all cell-types, we
were able to identify cancer-cell-specific enhancer-to-gene links that are not typically active
in normal cell types (Figure 3). Examples such as ANXA2 and PRDX4 show significant
enrichment in the chromatin accessibility of the cancer-specific enhancers compared to
the non-malignant cell types, resulting in marked increases in gene expression (Figure 4).
Previous studies in FBC have shown that increased ANXA2 gene expression is associated

https://clinicaltrials.gov/ct2/show/NCT05501704
https://clinicaltrials.gov/ct2/show/NCT05501704
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with drug resistance and tumor recurrence [64]. Since ANXA2 expression is even higher
in MBC, our enhancer–promoter interaction model may provide a way to understand the
mechanism by which MBC becomes resistant to standard therapy. Similarly, PRDX4 is
overexpressed in several cancers such as gastric cancer [65], lung cancer [66], and breast
cancer [54]. In addition, elevated PRDX4 expression is associated with worse overall and
disease-free survival in FBC patients [54]. Thus, the heightened expression of PRDX4 in
males versus females may underlie observed worse outcome for male patients.

Perhaps more interestingly, we saw evidence for super-enhancer activity at single-cell
resolution. Super-enhancers are defined as large clusters of neighboring enhancers that
have an unusually high occupancy of interacting factors and are thought to act synergisti-
cally with each other to promote the expression of their target genes [55]. Super-enhancers
have gained much attention because they are known to regulate key cell identity genes, and
in cancer, are known to drive oncogene expression [56,67]. Within our list of 61 upregulated
male versus female breast cancer genes linked to cancer-specific enhancers, we identified
at least two super-enhancers; one linked to LAMB3 and the other to CD47 (Supplemen-
tal Figure S3). Notably, the super-enhancer linked to CD47 has been annotated before
in breast cancer [59] and we show evidence of the increased activity of the constituent
enhancers specifically within the cancer-epithelial cell types (Supplemental Figure S3).
CD47 is a transmembrane protein that belongs to the immunoglobulin superfamily that
enables binding adhesion to the extracellular matrix. The encoded protein binds the ligand
thrombospondin and plays a role in membrane signal transduction [60,68]. In breast cancer,
CD47 is associated with epithelial-mesenchymal transition and poor DFS [60,68]. Therefore,
the high expression of CD47 in MBC may suggest a possibility for targeting CD47 as a
therapeutic strategy to overcome immune evasion [68]. Although we may be underpow-
ered to comprehensively annotate super-enhancers using single-cell data, the detection
of super-enhancers at single-cell resolution is an interesting concept and inspires further
investigation. Taken together, this study annotates clinically relevant regulatory networks
in male breast tumors at single-cell resolution, providing a useful resource that expands
our current understanding of the gene expression programs that underlie the biology of
MBC.

4. Materials and Methods
4.1. Human Patient Tumor Dissociation

Fresh, never frozen or fixed, tumors were collected by UNC’s Tissue Procurement
Facility and immediately transported to the lab on ice in DMEM/F12 media + 1% peni-
cillin/streptomycin after surgical resection or core biopsy. Tumor specimens were dis-
sociated and prepped as described in our previous work [37]. Briefly, tumor specimens
were minced with two sterile razor blades and incubated overnight on a 37 ◦C stir plate
at 180 rpm in the following digestion media: DMEM/F12, 5% FBS, 15 mM HEPES,
1× Glutamax, 1× Gentle Collagenase/Hyaluronidase (Stem Cell Technologies, Vancouver,
BC, Canada, 07919), 1% penicillin/streptomycin, and 0.48 µg/mL Hydrocortisone (Stem
Cell Technologies, 74144). After overnight digestion, tumor cells were pelleted at 1200 rpm
for 5 min at room temperature and washed two times with cold PBS + 2% FBS and 10 mM
HEPES (PBS-HF). Removal of red blood cells was done by treating cell pellets with cold
ammonium chloride solution (Stem Cell Technologies, 07850) diluted with 1 part PBS-HF.
To ensure complete dissociation of tumor cells and removal of free DNA in the cell sus-
pension, cells were treated with 0.05% Trypsin-EDTA and 200 µL 1 mg/mL DNase I for
one minute, followed by trypsin inactivation with PBS-HF and centrifugation. Cells were
then washed with PBS-HF, filtered through a 100µm cell strainer and a final centrifugation
was done. Cell pellets were resuspended in DMEM/F12 + 5% FBS using a volume that
was dependent on the size of the final cell pellet, then filtered through a 40µm cell strainer.
We measured cell viabilities for two patient samples with the Countess II Automated Cell
Counter (Thermo Fisher (Waltham, MA, USA) AMQAX1000), cell viabilities were 90% for
the Patient 1 sample and 88% for the Patient 2 sample.
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4.2. Single-Cell Sequencing Library Preparation

Immediately following dissociation, cells were diluted to 1200 cells/µL in prepa-
ration for scRNA-seq and scATAC-seq library generation as described in our previous
work [37]. For scRNA-seq libraries, 10,000 cells were used for library preparation using
the 10× Genomics Single Cell 3′ kits: Single Cell 3′ GEM, Library & Gel Bead Kit v3 (PN-
1000075), Chromium Chip B Single Cell Kit (PN-10000153), and Chromium i7 Multiplex Kit
(PN-120262) following the manufacturer’s protocol.

For scATAC-seq, nuclei isolation of 500,000 cells was carried out following the Nuclei
Isolation for Single Cell ATAC Sequencing protocol from 10×Genomics using a four-minute
lysis time. Next, 10,000 nuclei were used for library preparation using the 10× Genomics
Single Cell ATAC Kits: Chromium Single Cell ATAC Library & Gel Bead Kit v1 (PN-
1000110), Chromium Chip E Single Cell ATAC Kit (PN-1000082), and Chromium i7 Mul-
tiplex Kit N, Set A (PN-1000084) following the manufacturer’s protocol. scRNA-seq and
scATAC-seq libraries were sequenced using 10× Genomics’ suggested sequencing parame-
ters on an Illumina NextSeq 500 machine by UNC’s Translational Genomics Lab.

4.3. Single-Cell RNA-seq Quantification and Quality Control (QC)

Cell Ranger from 10× Genomics was used to generate raw and filtered feature barcode
matrices for each patient sample. A Seurat object was built from the filtered feature barcode
matrix for each patient sample by using the Seurat R package [41,69]. Quality control (QC)
and doublet removal were performed separately for each patient dataset to select for high
quality cells. First, outlier cells were defined in each of the following metrics: number
of UMI counts) (<5000), number of genes expressed (<2000) and percent mitochondrial
read count (>25%). Outlier cells according to these criteria were removed before doublet
detection. Then, doublet removal was performed by DoubletFinder [70]. After QC and
doublet removal for each patient dataset, we applied Seurat’s merge() function [40] to
combine the individual patient datasets, forming the male breast cancer cohort presented
in this study.

4.4. Single-Cell RNA-seq Normalization, Feature Selection and Clustering

Seurat’s NormalizeData() function [40], with the normalization method set to “LogNor-
malize”, was used to normalize gene expression matrices. Seurat’s FindVariableFeatures()
function [40], with the selection method set to “vst” and the number of top variable fea-
tures set to 2000, was used to perform feature selection. Seurat’s ScaleData() function [40]
was used to scale the expression values for the top 2000 variably expressed genes in the
dataset before carrying out principal component analysis (PCA). We chose to regress out
the percentage of mitochondrial genes when using Seurat’s ScaleData() function [40]. The
top 2000 most variably expressed genes were summarized by PCA into 50 principal compo-
nents (PCs). Cells were then visualized in a UMAP embedding with Seurat’s RunUMAP()
function [40] using 30 PCs. Next, the shared nearest-neighbor graph was constructed
by Seurat’s FindNeighbors() function [40] using 30 PCs and Louvain clustering was per-
formed with Seurat’s FindClusters() function [40] with a resolution of 0.8. scRNA-seq UMAP
embeddings were plotted in R [69] using ggplot2 [71].

4.5. Inference of Copy Number Variation (CNV) from Single-Cell RNA-Seq

Within each patient sample, estimated copy number events for each cell cluster were
derived using the R package inferCNV [42]. Immune cell and endothelial cell clusters were
used as a normal background for inferCNV. The remaining cell clusters were specified in
the inferCNV annotations file to infer CNVs at the level of these clusters. The standard
inferCNV algorithm was invoked with infercnv::run() with the following parameters of
(cutoff: 0.1, scale_data: FALSE, HMM: FALSE, and denoise: TRUE). Epithelial cells were
classified into epithelial tumor, epithelial unassigned, epithelial normal after plotting scatter
plots with CNV values and correlation with top 5% cells with high CNV values [72,73].
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Among nine clusters, two clusters were assigned as epithelial unassigned, and four clusters
were assigned as epithelial tumor (Supplementary Figure S2B).

4.6. Single-Cell RNA-seq Cell Type Annotation

The cell types were annotated with the R package SingleR [74] based on reference
transcriptomic datasets of pure cell types and gene signature enrichment obtained from
Seurat’s AddModuleScore() function [40]. The normalized expression values built from
human bulk RNA-seq generated and supplied by Blueprint and ENCODE were used as
a reference dataset for SingleR [74], which is available via R package celldex [74]. We
built a MBC patient cohort dataset after merging the raw count matrices of both patients
into a Seurat object by using Seurat’s merge() function [40], we applied Harmony batch
correction [38], and finally, cells were clustered based on the Louvain algorithm (described
above). The resulting cell-type clusters in our merged dataset were assigned a cell type
labeled based on the majority cell type in each cluster.

Among nine clusters in the full cohort of two MBC patients, six clusters were assigned
as epithelial clusters since the most frequent cells of these clusters were epithelial cells.
The other three clusters were a fibroblast cluster, an endothelial cluster, and a macrophage
cluster. The mean number of RNA counts across all nine clusters was larger than 5000
(Supplementary Figure S1C), since outlier cells with UMI counts < 5000 were removed at
the QC step. Similarly, the mean number of features across for nine clusters was greater
than 2000 (Supplementary Figure S1D), since outlier cells with features < 2000 were also
removed at the QC step.

4.7. Differentially Expressed Genes in Single-Cell RNA-Seq between Female BC and Male BC

ScRNA-seq data for female ER+ breast cancer data were downloaded from GSE161529 [43].
The differentially expressed genes in single cells between 16 female ER+ breast cancer patients
and two ER+ male breast cancer patients were identified by Seurat’s FindMarkers() function [40]
with parameters (logfc.threshold; 0.25, min.pct: 0.5, min.diff.pct: 0.25, and max.cells.per.ident:
500). Then, markers were selected by an additional filter of Padj < 0.01. The heatmap of
Figure 2B includes top 25 upregulated genes in male BC and top 5 downregulated genes with
additional criterion of Padj < 1 × 10−12 to select smaller number of genes for visualization. All
of the differentially regulated genes are tabulated in Supplemental Table S1. The enrichment
of cancer hallmark gene sets [45] were identified by hypergeometric tests with clusterProfiler
enricher() [75] with q-value≤ 0.01.

4.8. Single-Cell ATAC-seq Quality Control (QC)

Cell Ranger ATAC from 10× Genomics was used to demultiplex raw base call files
into FASTQ files and generate a filtered peak-barcode matrix containing detected cellular
barcodes and a fragments file as in the BED format for each patient sample. These fragment
lists were read into the R package ArchR [39] to perform quality control and doublet
removal. To enrich for cellular barcodes, a threshold for log10(TSS enrichement + 1)
was set manually to 0.9 for both scATAC-seq samples while a sample-specific threshold of
log10(number of unique fragments) was estimated using a Gaussian Mixture Model (GMM)
for each scATAC-seq sample, as implemented in the R package mclust [76]. Barcodes below
these thresholds in any of these metrics were excluded before doublet detection step.
ArchR’s addDoubletScores() function [39], with the knnMethod parameter of “UMAP”, was
used to estimate doublet enrichment scores, and ArchR’s filterDoublets() function [39], with
the filterRatio parameter of 1.0, was used to filter out cellular barcodes as doublets.
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4.9. Single-Cell ATAC-seq Quantification, Feature Selection and Integration with Single-Cell
RNA-seq

An initial tile matrix of 500 bp genomic tiles across all cells was generated by the ArchR
package [39]. We used the iterative latent semantic indexing [35,36,77] (LSI) procedure
implemented in the ArchR R package to reduce dimensions of the genomic tile matrix
using two iterations with 25,000 variable features. 30 LSI dimensions were used to create
a UMAP embedding with ArchR’s addUMAP() [39] with the reduced dimension object
obtained by Harmony batch correction [38,39]. By applying a corCutOff parameter of
0.75 to ArchR’s additerativeLSI(), we excluded LSI dimensions that have a correlation to
sequencing depth greater than 0.75. scATAC-seq UMAP embeddings were plotted in R [69]
using ggplot2 [71].

ArchR’s addGeneScoreMatrix() function was used to estimate gene activity scores by
considering accessibility within the entire gene body and the activity of putative distal
regulatory elements [39]. Seurat’s CCA implementation [41] was executed via ArchR’s
addGeneIntegrationMatrix() function [39] to integrate scATAC cells with a scRNA cells by
assigning each of the scATAC-seq cells a cell-type cluster identity from the matching
scRNA-seq data, an associated label prediction score, and an imputed transcriptome. Cells
with label prediction scores less than or equal to 0.5 were excluded before obtaining marker
features for each cell-type cluster and calling peaks from pseudo-bulk replicates. For
each inferred cell-type cluster, pseudo-bulk replicates were generated using the R package
ArchR [39] and pseudo-bulk peak calling was performed using MACS2 [78,79]. Peak calls
from each inferred cell-type cluster were merged into a universal peak set using ArchR’s
default iterative overlap procedure. ArchR’s plotBrowserTrack() function [39] was used to
plot genomic browser tracks visualizing the chromatin accessibility across cell-type clusters,
the peak locations of pseudo-bulk ATAC-seq peaks, and peak-to-gene correlations.

We applied an additional filtering step to select highly confident epithelial tumor clus-
ters for the downstream analyses including peak-to-gene correlation analysis, identifying
cancer-specific distal peaks, and predicting transcription factor occupancy at select putative
enhancer regions. Two clusters assigned as epithelial unassigned (i.e., 1-Epi. Unassigned
and 8-Epi. Unassigned) were removed, since these clusters could be a mixture of tumor
cells and normal cells. Note that the number of cells in the first epithelial unassigned
cluster (i.e., 1-Epi. Unassigned) was around 500 cells and the number of cells in the second
epithelial unassigned cluster (i.e., 8-Epi. Unassigned) was less than 500 cells. We did not
use “the number of cells < 500” as a filtering criterion, but these two epithelial unassigned
clusters might have lower quality in peak calling. One cluster assigned as epithelial tumor
(i.e., 6-Epi. Tumor) was removed, since the mean number of ATAC fragments was less than
5000 (Supplementary Figure S1G). Note that this cluster had the lowest number of cells
(Supplementary Figure S1F).

4.10. Peak-to-Gene Correlation Analysis

ArchR’s addPeak2GeneLinks() function [39], with reducedDims set to “IterativeLSI”
and dimsToUse set to “1:30”, was used to carry out the peak-to-gene correlation analysis
to identify putative regulatory elements by correlating peak accessibility with imputed
gene expression in scATAC-seq cells [37]. To circumvent the sparsity of scATAC-seq data,
low-overlapping aggregates of scATAC-seq cells were generated via a k-nearest neighbor
procedure in the LSI space to ensure robust peak-to-gene associations and reduce noise.

Peak-to-gene links were selected by distal peak location and selection criteria of
correlation ≥ 0.45 and FDR ≤ 1 × 10−12 with the control of Benjamini–Hochberg (BH)
method [80]. The number of remaining distal peaks was 11,719, participating in a total
of 22,869 peak-to-gene links. The distal peak-to-gene links were clustered using k-means
before being visualized in a heatmap using ArchR’s plotPeak2GeneHeatmap() function [55].

The mean number of linked genes per distal peak and the total number of genes
linked with distal peaks (Figure 3E) was computed from a peak-to-gene metadata table
having peak names defined by genomic coordinates, and corresponding gene names. The
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distribution of the number of linked genes per distal peak was used to compute p-value
with Wilcoxon test to show that the numbers of linked genes per peak in epithelial cells
and non-epithelial genes are statistically significant.

4.11. Identifying Cancer-Specific Distal Peaks

To identify putative cancer-specific distal peaks as demonstrated in Figure 3A,D,
we used a genomic internal overlap analysis as previously described [37]. The genomic
coordinates of the distal peaks participating in the cancer-enriched peak-to-gene links
were overlapped with a set of normal active enhancer marker H3K27ac peaks in human
mammary epithelial cells (HMECs) obtained from ENCODE [49]. To find any overlaps
including 1 bp overlap between the cancer-enriched peaks and the normal peaks in HMECs,
we used the function findOverlapsOfPeaks() from the ChIPpeakAnno R package [81] with
the minoverlap parameter of 1. The cancer-specific peaks were defined as cancer-enriched
peaks that did not overlap with any of the normal peaks in HMECs.

The cancer-specific distal peaks linked with upregulated genes in MBC compared with
FBC were determined by upregulation criteria (log2FC > 1.0 and adjusted p-value < 0.01).
Total of 61 cancer-enhancer link genes were selected (Figure 4A). The gene expression of
these 61 genes in FBC and MBC cells were visualized in heatmap form (Figure 4B).

The normal peaks in HMECs and the full list of the candidate cis-Regulatory Elements
(cCREs) [49] derived from ENCODE data in hg38 were used for visualization of peaks
around genes of interest in Figure 4C,E. The gene expression values (log normalized count)
of ANXA2 and PRDX4 in two groups (epithelial tumor clusters vs. non-epithelial clusters)
were compared by the Wilcoxon test.

Motif enrichment analysis was performed between cancer-specific distal enhancer
peaks and other distal enhancer peaks with ArchR’s addMotifAnnotation() function [39] using
CisBP (Catalog of Inferred Sequence Binding Preferences) [82] and peakAnnoEnrichment()
function [39] with the cutOff of “FDR < 0.01 & log2FC > 1.0”. The top 10 motifs enriched
in cancer-specific distal enhancer peaks included FOXA1 and TFAP2C (Supplementary
Table S3).

4.12. Predicting Transcription Factor Occupancy at Select Putative Enhancer Regions

The genomic location of the enhancer of ANXA2 was chr15:60,223,133-60,223,633 (Enh),
whereas the genomic locations of three enhancer of PRDX4 were chrX:23,434,983-23,435,483
(Enh1), chrX:23,525,503-23,526,003 (Enh2), chrX:23,822,316-23,822,816 (Enh3).

Bedtools [83] getfasta() was used to extract the sequences of the select putative en-
hancers in the malignant fraction of Patient 2, as shown in Figure 4D,F, after accounting
for single-nucleotide variants relative to the hg38 reference genome. To include single-
nucleotide variants from the malignant fraction in our analysis, we used bcftools [84]
mpileup followed by bcftools [84] consensus with a bam file containing fragments only from
cellular barcodes present in in the Patient 2 malignant fraction. Cell Ranger’s bamslice was
used to subset a position-sorted BAM file to make a malignant-specific BAM file for each
patient sample. We ran Find Individual Motif Occurrences (FIMO) [85] motif scanning
with the putative enhancer sequences as input and with JASPAR2020 CORE [86] contain-
ing curated and non-redundant transcription-factor-binding motifs for vertebrates. The
statistically significant motifs with a q-value < 0.01 were sorted by the expression values
of corresponding transcription factors in the malignant cells of Patient 2. The expression
value of a transcription factor was calculated by the sum of log-normalized counts of the
transcription factors across malignant cells in scRNA-seq, which was visualized in R [69]
using ggplot2 [71].
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