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Abstract: This study aimed to elucidate the molecular determinants influencing the response of cancer
cells to alkylating agents, a major class of chemotherapeutic drugs used in cancer treatment. The study
utilized data from the National Cancer Institute (NCI)-60 cell line screening program and employed a
comprehensive multi-omics approach integrating transcriptomic, proteomic, metabolomic, and SNP
data. Through integrated pathway analysis, the study identified key metabolic pathways, such as
cysteine and methionine metabolism, starch and sucrose metabolism, pyrimidine metabolism, and
purine metabolism, that differentiate drug-sensitive and drug-resistant cancer cells. The analysis
also revealed potential druggable targets within these pathways. Furthermore, copy number variant
(CNV) analysis, derived from SNP data, between sensitive and resistant cells identified notable
differences in genes associated with metabolic changes (WWOX, CNTN5, DDAH1, PGR), protein
trafficking (ARL17B, VAT1L), and miRNAs (MIR1302-2, MIR3163, MIR1244-3, MIR1302-9). The
findings of this study provide a holistic view of the molecular landscape and dysregulated pathways
underlying the response of cancer cells to alkylating agents. The insights gained from this research
can contribute to the development of more effective therapeutic strategies and personalized treatment
approaches, ultimately improving patient outcomes in cancer treatment.

Keywords: alkylating agents; drug resistance; cancer; metabolic reprogramming; multi-omics;
metabolomics; transcriptomics; proteomics; CNV

1. Introduction

Alkylating agents represent a pivotal class of chemotherapeutic agents extensively
employed in the treatment of various cancers. These compounds exert their therapeutic
effects by inducing DNA damage through the covalent modification of DNA bases, leading
to DNA damage and subsequent cell death [1]. Although alkylating agents have shown
remarkable efficacy, the response of cancer cells to these drugs is highly heterogeneous,
with a subset of cells displaying resistance over the course of treatment [2]. Understanding
the underlying mechanisms that govern the sensitivity or resistance of cancer cells to
alkylating agents is crucial for the development of more effective therapeutic strategies
and personalized treatment approaches. Numerous factors contribute to the differential
response of cancer cells to alkylating agents, including the expression and activity of
DNA repair enzymes, drug uptake and efflux mechanisms, cell cycle checkpoints, and
alterations in apoptotic pathways [3]. Moreover, the interplay between these factors within
the complex landscape of cancer cells further complicates the determination of the precise
mechanisms underlying drug sensitivity or resistance.
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Several mechanisms have been identified that contribute to cancer cells acquiring or
their inherent resistance to alkylating agents. Alkylating agents can be metabolized by vari-
ous enzymes, including glutathione S-transferases (GSTs) and aldehyde dehydrogenases
(ALDHs), which can inactivate or detoxify the drugs. The increased expression or activity
of these enzymes can lead to reduced intracellular drug concentrations, thereby limiting
their cytotoxic effects [4]. Cancer cells that have enhanced DNA repair capacity, such
as increased expression or activity of DNA repair enzymes like O6-methylguanine-DNA
methyltransferase (MGMT), nucleotide excision repair (NER) proteins, or homologous
recombination (HR) factors, can efficiently repair the DNA lesions induced by alkylating
agents, promoting survival and resistance to therapy [5–7]. The activation of survival sig-
naling pathways, such as PI3K/AKT and MAPK/ERK, can confer resistance to alkylating
agents by promoting cell survival, DNA repair, and anti-apoptotic mechanisms [8–10].
Additionally, alterations in cell cycle checkpoints, such as enhanced G2/M checkpoint
activation or dysregulation of cell cycle regulators like p53, can contribute to resistance
by allowing cancer cells more time to repair the DNA damage induced by alkylating
agents [11,12]. Cancer cells that exhibit defects in apoptotic signaling pathways, such as
decreased expression or mutations in pro-apoptotic proteins (e.g., BAX, BAK, caspases) or
increased expression of anti-apoptotic proteins (e.g., Bcl-2, Bcl-xL), can evade cell death
and exhibit resistance to alkylating agents [13–15].

In addition to these processes, cancer endogenous metabolism plays a crucial role
in drug resistance, and understanding its significance is essential for the development
of effective therapeutic strategies. Metabolic reprogramming is a hallmark of cancer,
characterized by altered nutrient utilization, energy production, and biosynthesis [16–18].
This rewiring of cellular metabolism enables cancer cells to sustain their proliferation,
adapt to hostile microenvironments, and resist therapeutic interventions, including drug
treatments [19,20]. This leads to the unique metabolic properties of cancers including
aerobic glycolysis, increased fatty acid synthesis, increased rates of glutamine metabolism,
and more. These processes have been linked to cancer drug resistance [21], however, this
area is understudied compared to other genetic and signaling-pathway-driven mechanisms
for many drug classes, including alkylating agents. Therefore, more research is needed to
investigate how cancer cell metabolism interacts with other cellular processes to facilitate
the response to anticancer agents.

To address this critical knowledge gap, the current study was conducted to elucidate
the molecular determinants that influence the response of cancer cells to alkylating agents
using data from the National Cancer Institute (NCI)-60 cell line screening program. The
NCI-60 cell line screen program tests the response of 60 cancer cell lines to thousands of test
compounds that span numerous mechanisms of action [22]. Additionally, public datasets
exist that have molecularly profiled the baseline characteristics of these cell lines. To this
end, omics profiles were linked with sensitivity to alkylating agents in order to better
understand the underlying molecular processes that determine the response of cancer cells
to this drug class. By employing a comprehensive approach integrating transcriptomic,
proteomic, metabolomic, and single nucleotide polymorphism (SNP) data, the current
study takes a multidimensional view of the sensitivity of cancer cells to alkylating agents.
These data offer a holistic view of the molecular landscape, network-level interactions, and
dysregulated pathways related to alkylating agent response, and enables the discovery of
novel biomarkers and predictive signatures to enhance our understanding of the complex
and heterogeneous nature of drug resistance. Ultimately, these insights can inform the
development of more effective therapeutic strategies and improve patient outcomes in
cancer treatment.

2. Results

Mining NCI-60 cell line treatments revealed 51 chemical agents with an alkylating
mechanism as defined by Cellminer. This included agents broadly defined as alkylating
agents, as well as those that were specifically characterized as alkylating N-2, O-6, and N-7
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positions of guanine residues (Supplemental Table S1). After converting z-scores to rank
orders for each test compound, a clustering heatmap was generated using MetaboAnalyst
(Figure 1). The unsupervised clustering of cell lines did not clearly indicate that sensitivity
profiles to alkylating agents were driven by tissue type, although some tissue types such
as leukemia and central nervous system cell lines tended to favor the lower z-score rank
orders, indicating more sensitivity to these compounds.
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naling pathway (4.00 × 10−6) (Figure 2A). Joint-pathway analysis of metabolites and pro-
teins identified ECM-related pathways (leukocyte transendothelial migration (p = 4.71 × 
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Figure 1. Heatmap of rank order of z-score for 51 alkylating agents across 58 cell lines in the NCI-60
cell line panel. Orange colors represent higher rank order values (more resistant) whereas blue colors
represent lower rank order values (more sensitive). Distance measures were calculated using the
Euclidean method and clustering was performed using the Ward method in MetaboAnalyst 5.0.
Compounds are listed as NSC identifiers, which is an accession number given to each compound
by NCI.

A total rank order of z-scores was calculated using the mean z-score value across all
51 alkylating agents for each cell line. This total rank order was used to divide the 58 cell
lines into quartiles with the fourth quartile (Q4) having the highest overall z-score rank
(most resistant to alkylating agents) and the first quartile (Q1) as having the lowest overall
z-score rank (most sensitive to alkylating agents) (Table 1). Using these definitions, fold
changes and p-values were calculated for all metabolites, transcripts, and proteins between
Q1 and Q4 to identify the differentiators of cell lines that are resistant or sensitive to alkylat-
ing agents (Supplemental Table S2). This analysis revealed 34 metabolites, 4411 transcripts,
and 530 proteins with a p < 0.05 between Q1 and Q4. These metabolites, transcripts, and
proteins with p < 0.05 were input into MetaboAnalyst 5.0’s joint-pathway analysis to deter-
mine the cellular pathways that differentiated sensitive and resistant cells. Joint-pathway
analysis of metabolites and transcripts identified the pathways associated with extracel-
lular matrix (ECM) protein interactions (tight junction (p = 8.91 × 10−11), cell adhesion
molecules) p = 4.45 × 10−6), and endocytosis (p = 8.65 × 10−7)) and the Hippo signaling
pathway (4.00 × 10−6) (Figure 2A). Joint-pathway analysis of metabolites and proteins
identified ECM-related pathways (leukocyte transendothelial migration (p = 4.71 × 10−9,
tight junction (p = 9.58 × 10−8), and adherens junction (p = 1.75 × 10−5)) and the sphin-
golipid signaling pathway (p = 1.04 × 10−5) (Figure 2B). To add additional validation to
these results, the CREAMMIST database was utilized which generates integrated pan-
cancer dose-response curves across multiple publicly available studies and correlates drug
IC50 values with gene expression patterns [23]. Ten alkylating agents were found in the
CREAMMIST database (darbazine, procarbazine, bendamustine, oxaliplatin, mitomycin,
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chlorambucil, carboplatin, cyclophosphamide, cisplatin, and doxorubicin) and genes that
were significantly correlated with > 50% of these drugs (Supplemental Table S3) were input
into MetaboAnalyst 5.0 for pathway analysis. The results of this analysis also showed
several ECM-related pathways, many of which were identified from the NCI-60 cell line
data (adherens junction (p = 3.65 × 10−7), focal adhesion (1.68 × 10−8, ECM-receptor
interaction (p = 3.09 × 10−7), and tight junction (4.31 × 10−4) (Figure 2C). This overlap in
identified cellular pathways adds validity to the identified molecules that differentiate Q1
and Q4 cell lines. To narrow down a core set of molecules/pathways that differentiated
Q1 and Q4, Omicsnet was utilized for an integrated network analysis using the KEGG
database (Figure 2). This network analysis uses known biological relationships between
each factor (proteins, transcripts, and metabolites) and builds a core set of molecules from
input lists. This ensures that pathway analyses are enriched for molecules with logical
connections to each other, removing outlier molecules without strong relationships to the
entire set. The results showed that 71 pathways had a p < 0.05 (41 with an FDR-corrected
p-value < 0.05) (a full list of pathway results for Figure 2 can be found in Supplemental
Table S4). Four of the top five pathways were related to metabolic processes: cysteine
and methionine metabolism (p = 4.36 × 10−14), pyrimidine metabolism (p = 5.02 × 10−14),
starch and sucrose metabolism (p = 1.3 × 10−12), and purine metabolism (p = 1.34 × 10−12).
EGFR tyrosine kinase inhibitor resistance was the top pathway differentiating Q1 and Q4
(p = 4.24 × 10−73) (Table 2).

Table 1. Median z-score rank orders of each cell line for alkylating agents in the NCI-60 cell line screen.

Cell Line Cancer Type Median z-Score Rank Order Quartile Number

SR Leukemia 3.5 1
HL-60(TB) Leukemia 4 1

CCRF-CEM Leukemia 6 1
MOLT-4 Leukemia 6 1

NCI-H460 Non-Small Cell Lung 6 1
UACC-62 Melanoma 8 1

ACHN Renal 10 1
CAKI-1 Renal 11 1
SF-295 Central nervous system 12 1
SF-539 Central nervous system 14 1

LOX IMVI Melanoma 15 1
786-0 Renal 15 1
MCF7 Breast 17 1

HOP-62 Non-Small Cell Lung 18 1
SN12C Renal 19 1
SF-268 Central nervous system 20 2
U251 Central nervous system 20 2

A549/ATCC Non-Small Cell Lung 20 2
NCI-H23 Non-Small Cell Lung 21 2

NCI-H522 Non-Small Cell Lung 22.5 2
SNB-75 Central nervous system 23 2

M14 Melanoma 23 2
SK-MEL-5 Melanoma 25 2

SW-620 Colon 26 2
HOP-92 Non-Small Cell Lung 26 2
DU-145 Genitourinary 26 2

HCT-116 Colon 29 2
RPMI-8226 Leukemia 30 2

RXF-393 Renal 30 2
MALME-3M Melanoma 32 3

OVCAR-8 Genitourinary 32 3
T-47D Breast 33.5 3
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Table 1. Cont.

Cell Line Cancer Type Median z-Score Rank Order Quartile Number

HCC-2998 Colon 34 3
BT-549 Breast 34.5 3
SNB-19 Central nervous system 35 3
K-562 Leukemia 35 3

NCI-H226 Non-Small Cell Lung 35.5 3
SK-OV-3 Genitourinary 35.5 3
IGROV1 Genitourinary 36 3

NCI/ADR-RES Genitourinary 36 3
HCT-15 Colon 37 3

COLO 205 Colon 38 3
UACC-257 Melanoma 38 3
OVCAR-3 Genitourinary 39 4

UO-31 Renal 39 4
HT29 Colon 40 4

MDA-MB-435 Melanoma 40 4
A498 Renal 42 4
PC-3 Genitourinary 44 4

OVCAR-4 Genitourinary 45 4
OVCAR-5 Genitourinary 45 4

KM12 Colon 47 4
SK-MEL-28 Melanoma 47 4

EKVX Non-Small Cell Lung 48 4
MDA-MB-
231/ATCC Breast 51 4

HS 578T Breast 51 4
NCI-H322M Non-Small Cell Lung 53 4

TK-10 Renal 53 4
Missing z-scores indicate that the corresponding cell line did not have z-score information for a given compound.
A lower rank order indicates a higher z score (greater sensitivity to a compound). Compounds that did not have
experimental data after quality control were removed. Ties were not broken for cell lines that had the same z-score
for a given test compound.

Table 2. Top ten pathways by p-value from multi-omic pathway analysis using variables with p < 0.05
between Q1 and Q4.

Pathway p-Value FDR

EGFR tyrosine kinase inhibitor resistance 4.24 × 10−73 1.42 × 10−70

Cysteine and methionine metabolism 4.36 × 10−14 5.62 × 10−12

Pyrimidine metabolism 5.02 × 10−14 5.62 × 10−12

Starch and sucrose metabolism 1.3 × 10−12 9.03 × 10−11

Purine metabolism 1.34 × 10−12 9.03 × 10−11

ABC transporters 7.98 × 10−09 4.47 × 10−07

Nicotinate and nicotinamide metabolism 9.81 × 10−09 4.71 × 10−07

Alanine, aspartate, and glutamate metabolism 9.69 × 10−08 4.07 × 10−06

Valine, leucine, and isoleucine degradation 1.91 × 10−07 7.12 × 10−06

Platinum drug resistance 1.21 × 10−06 4.07 × 10−05
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This resulted in 15 metabolites, 371 transcripts, 107 proteins, and 931 SNPs identified as 
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Table 4) indicated that purine metabolism was the top significant pathway in both anal-
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Figure 2. (A) Joint-pathway analysis of metabolites and transcripts with p < 0.05 between Q1 and
Q4. (B) Joint-pathway analysis of metabolites and proteins with p < 0.05 between Q1 and Q4.
(C) Pathway analysis of genes correlated to IC50 value of alkylating agents in the CREAMMIST
database. Red points on the graph indicate a more significant pathway p-value. (D) Network analysis
using metabolites, transcripts, and proteins with p < 0.05 between Q1 and Q4 of total rank order
of z-scores. The network was built using Omicsnet and creating metabolite-protein interactions by
mapping to the KEGG database. Grey nodes represent transcripts, red nodes represent proteins,
yellow nodes represent metabolites, and red and grey nodes represent molecules present in both the
transcriptomics and proteomics dataset. Nodes highlighted in blue represent seed nodes.

Multivariate analysis was performed using DIABLO to identify the complex rela-
tionship between the omics datasets and identify the strongest combination of predictors
between Q1 and Q4. In addition to the metabolomics, transcriptomics, and proteomics
datasets, SNP variant data were also uploaded to identify SNP variants that combined with
the other omics datasets to differentiate Q1 and Q4. DIABLO analysis showed a clear sepa-
ration between Q1 and Q4, with the first component of the model showing the strongest
separation between the two groups (Figure 3A,B). Using this model, loadings scores were
obtained for each variable (metabolite, transcript, protein, and SNP) and a cutoff of >|0.6|
for the loadings values for the first component was used to identify significant variables.
This resulted in 15 metabolites, 371 transcripts, 107 proteins, and 931 SNPs identified as
differentiators (Supplementary Table S5). Joint pathway analysis using DIABLO-selected
metabolites and transcripts (Figure 4A, Table 3) or metabolites and proteins (Figure 4B,
Table 4) indicated that purine metabolism was the top significant pathway in both analyses.
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Figure 3. (A) DIABLO plot showing separation of Q1 (purple) and Q4 (red) using metabolomics,
transcriptomics, proteomics, and SNP data. (B) Summary of first 5 components of the DIABLO model
showing each component’s contribution to the separation of Q1 and Q4 samples.
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Table 3. Top ten pathways from joint pathway analysis of metabolites and transcripts selected by
DIABLO.

Pathway p-Value

Purine metabolism 0.005412
Fructose and mannose metabolism 0.062016
Glycosaminoglycan degradation 0.073378

Amino sugar and nucleotide sugar metabolism 0.193000
Arginine biosynthesis 0.243890

Pyrimidine metabolism 0.269520
One carbon pool by folate 0.274760

Pentose and glucuronate interconversions 0.282290
Pantothenate and CoA biosynthesis 0.297110

Selenocompound metabolism 0.304420

Table 4. Top ten pathways from joint pathway analysis of metabolites and proteins selected by
DIABLO.

Pathway p-Value

Purine metabolism 0.012062
Synthesis and degradation of ketone bodies 0.056019

Butanoate metabolism 0.154510
Pantothenate and CoA biosynthesis 0.178800

Terpenoid backbone biosynthesis 0.188330
Fructose and mannose metabolism 0.207080

Starch and sucrose metabolism 0.220880
Beta-Alanine metabolism 0.225430

Pyruvate metabolism 0.229960
Biosynthesis of unsaturated fatty acids 0.238940

Molecular differences in purine metabolism between Q1 and Q4 were visualized
using Pathview with only metabolites, transcripts, or proteins with p < 0.1. Visualization
showed decreases in the expression of enzymes in Q4 samples that control flux away from
purine metabolism into other pathways, including the pentose phosphate pathway and
amino acid pathways. Additionally, an increased expression of enzymes in the Q4 samples
surrounding the base pair conversions was observed, and metabolites guanosine, xanthine,
hypoxanthine, and inosine were also seen as increased in the Q4 samples in agreement with
this observation (Figure 5A). Interestingly, the recorded doubling time of cell lines in Q4 is
significantly higher than those of Q1, which may be related to this increase in nucleotide
metabolism (cell line metadata including doubling time is included in Supplementary
Table S6). An analysis of KEGG’s “Disease genes and drug targets” database revealed
that many of these increased reactions in purine metabolism are known to be targeted by
various drugs (Figure 5B), indicating the potential for the pharmacological targeting of
these processes.



Int. J. Mol. Sci. 2023, 24, 13242 10 of 19

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 19 
 

 

samples surrounding the base pair conversions was observed, and metabolites guanosine, 
xanthine, hypoxanthine, and inosine were also seen as increased in the Q4 samples in 
agreement with this observation (Figure 5A). Interestingly, the recorded doubling time of 
cell lines in Q4 is significantly higher than those of Q1, which may be related to this in-
crease in nucleotide metabolism (cell line metadata including doubling time is included 
in Supplementary Table S6). An analysis of KEGG’s “Disease genes and drug targets” da-
tabase revealed that many of these increased reactions in purine metabolism are known 
to be targeted by various drugs (Figure 5B), indicating the potential for the pharmacolog-
ical targeting of these processes.  

 

Figure 5. (A) Pathview analysis of the purine metabolism pathway using metabolites, transcripts, 
and proteins with p < 0.1 between Q1 and Q4. Genes in red are increased in Q4 whereas genes in 
green are decreased in Q4. Metabolites in yellow are increased in Q4 whereas metabolites in blue 
are decreased in Q4. (B) Purine metabolism KEGG map colored by druggable reactions. Genes col-
ored in blue have at least one known drug which targets the corresponding enzymatic reaction. 
Genes colored in pink are associated with a disease. Genes colored in green are organism-specific 
genes. 

(A) 

(B) 

Figure 5. (A) Pathview analysis of the purine metabolism pathway using metabolites, transcripts,
and proteins with p < 0.1 between Q1 and Q4. Genes in red are increased in Q4 whereas genes in
green are decreased in Q4. Metabolites in yellow are increased in Q4 whereas metabolites in blue are
decreased in Q4. (B) Purine metabolism KEGG map colored by druggable reactions. Genes colored
in blue have at least one known drug which targets the corresponding enzymatic reaction. Genes
colored in pink are associated with a disease. Genes colored in green are organism-specific genes.
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CNV markers were also analyzed to uncover the potential genetic variants that may
be contributing to these metabolic changes. DIABLO analysis selected 931 CNV markers
that differentiated Q1 and Q4 (Supplementary Table S7). After matching CNV markers to
their respective genes, 15 genes had >5 CNV markers identified as significantly different
between Q1 and Q4. These genes included those that were increased in copy number
intensity (MIR1302-2, MIR3163, CNTN5, MIR1302-9, DDAH1, DISC1FP1, PGR, and TRPC6)
and those that were decreased in copy number intensity (MIR1244-3, WWOX, ARL17B,
VAT1L, OR4F3, and FRG2) (Table 5).

Table 5. Top genes identified as significantly different between Q1 and Q4 based on CNV data
selected by DIABLO.

Gene Symbol Gene Name Number of CNV
Markers Direction of Change in Q4

MIR1302-2 microRNA 1302-2 149 Increased

MIR3163 microRNA 3163 87 Increased

MIR1244-3 microRNA 1244-3 27 Decreased

WWOX WW domain containing oxidoreductase 22 Decreased

CNTN5 contactin 5 17 Increased

ARL17B ADP ribosylation factor like GTPase 17B 12 Decreased

VAT1L vesicle amine transport 1 like 10 Decreased

OR4F3 olfactory receptor family 4 subfamily F
member 3 9 Decreased

MIR1302-9 microRNA 1302-9 8 Increased

DDAH1 dimethylarginine dimethylaminohydrolase 1 7 Increased

DISC1FP1 DISC1 fusion partner 1 7 Increased

PGR PGR 7 Increased

RNU6-2 RNA, U6 small nuclear 2 7 Increased

FRG2 FSHD region gene 2 6 Decreased

TRPC6 transient receptor potential cation channel
subfamily C member 6 6 Increased

Only genes with >5 CNV markers with a DIABLO loadings value > |0.6| are displayed. Direction of change for
each gene was determined by comparing the sum of all marker intensities in Q4 compared to Q1.

Lastly, to confirm the importance of nucleotide metabolism in the sensitivity of cancer
cells to alkylating agents, data were mined from the Biological General Repository for
Interaction Datasets (BioGRID) Open Repository of CRISPR Screens (ORCS) [24]. Twelve
CRISPR screen datasets were identified that investigated genes that modified sensitivity to
various alkylating agents (cisplatin, doxorubicin, mitomycin, daunorubicin, oxaliplatin, and
thiotepa). These datasets spanned four studies with >30,000 total genes screened [25–28].
All identified gene hits in these screens were input into MetaboAnalyst 5.0 for pathway
analysis. The results showed pathways involved in repairing damaged nucleotides/DNA
as highly significant in determining alkylating agent sensitivity: the Fanconi anemia
pathway, (p = 1.04 × 10−35), homologous recombination (2.00 × 10−24), nucleotide excision
repair (2.77 × 10−9), and non-homologous end-joining (1.04 × 10−7) (Figure 6).
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3. Discussion

The current study provides valuable insights into the molecular determinants of re-
sponse to alkylating agents. Using a multi-omics approach of NCI-60 cell line data, we
were able to assign multiple metabolic features that differentiated cancer cells that are
sensitive or resistant to this class of anticancer agents. While pathways related to amino
acid and carbohydrate metabolism were found to be significantly different, nucleotide
metabolism—specifically purine metabolism—was found to be the largest metabolic dif-
ferentiator between cells sensitive or resistant to alkylating agents. Overall, gene/protein
expression and metabolite levels were increased in this pathway for resistant cells, espe-
cially for the purine salvage reactions involving the interconversion of guanosine, xanthine,
hypoxanthine, and inosine. Additionally, our findings of several drug resistance pathways
(e.g., EGFR tyrosine kinase inhibitor resistance, platinum drug resistance, and ABC trans-
porters) provide validity to our analysis approach and support the linkage between these
metabolic disruptions and drug resistance.

The purine salvage pathway provides the majority of the cellular requirements for
purines through the recycling of degraded bases to replenish the purine pool [29]. Inter-
estingly, xanthine—which initiates the degradation pathway of purines [30]—was also
increased in resistant cells. In addition to their role in balancing the purine pool, inosine,
hypoxanthine, and xanthine can be incorporated into DNA when accumulated within the
cell. This misincorporation of these bases into DNA is mutagenic, and has been shown
to lead to point mutations [31,32]. Given that genomic instability has been linked to
multi-drug resistance in various cancers, this alteration in purine metabolism may be a
mechanism that is driving resistance to alkylating agents [33–35]. Indeed, certain enzymes
involved in purine metabolism such as xanthine oxidoreductase (XOR) have been shown
to play a role in linking the pathogenesis of cancers to metabolic disorders and obesity by
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increasing the inflammation and oxidative stress that facilitate transformation, proliferation,
progression, and metastasis [36]. Our data also showed a decrease in glutamine, which
is one of the substrates that contribute to the de novo biosynthetic pathway of purine
metabolism [29], which may indicate a reliance on increased glutamine consumption to
support these changes in nucleotide metabolism. Notably, several other studies have shown
that purine metabolism is a metabolic vulnerability of cancer cells and that this pathway is
implicated in therapy resistance in a number of cancer types [37–45]. The current study
shows that purine metabolism is a differentiator for resistant cancer cells in an entire drug
class, and that changes in certain aspects of this pathway (e.g., increases in xanthine- and
hypoxanthine-related reactions) are the most robust differentiators. Moreover, these results
are specific to alkylating agents as a class, whereas previous studies have looked at other
drug classes or only at a specific alkylating agent drug. A better understanding of the
linkages that drive drug resistance, such as purine metabolism dysregulation, have the
potential to lead to therapeutic approaches for improving response to anticancer therapies.

An analysis of CNV data derived from SNP analysis identified differences in 15 genes
between sensitive and resistant cells. Included in these genes was WWOX, a tumor suppres-
sor gene that has been shown to regulate multiple metabolic processes, including glucose
and lipid metabolism [46–49]. WWOX has also been shown to play a role in contributing
to the drug resistance to cisplatin, one of the alkylating agents included in our analysis,
in ovarian cancer [50]. Additionally, four microRNAs were identified as differentiators
between sensitive and resistant cells. MicroRNAs have been shown to play significant roles
in drug resistance, including alkylating agent drugs, through modifying the expression of
genes involved in drug metabolism/uptake, cell cycle checkpoints, DNA repair, and oth-
ers [51,52]. The microRNAs identified in this analysis—MIR1302-2, MIR3163, MIR1244-3,
and MIR1302-9—have been studied to various degrees in the context of drug resistance.
MIR3163 and MIR1244 expression has, interestingly, been shown to inhibit drug resistance
in multiple studies [53–55]. The observation that these miRNAs have increased copy num-
ber intensity may indicate that the expression and utilization of drug-sensitizing miRNAs
may be inhibited in resistant cells. Additionally, increased copy number can be linked to
decreased gene expression (through increasing negative promoter activity, for example),
and uncoupling gene expression from copy number has been observed in cancers, which
may further explain our observation of increased copy number signal in these miRNAs in
resistant cells [56–58]. The other omics datasets did not have information on these miRNAs,
therefore the actual expression could not be verified. Regardless, targeting these potential
inhibitory mechanisms may provide an interesting strategy to increase drug sensitivity
in resistant cancer cells. Other miRNAs identified in our CNV analysis, MIR1302-2 and
MIR1302-9, have not been well studied in the context of drug resistance and are candidates
for future studies. Other genes identified in the CNV analysis were related to metabolic pro-
cesses (DDAH1, PGR) and protein trafficking (VAT1L, ARL17B), which may be additional
avenues for future studies to determine the relationship between genetic factors and drug
resistance. Variation in these genes may play a role in pre-dispositioning cells to undergo
the metabolic changes seen in purine metabolism and other pathways reflected in the
metabolomics, transcriptomics, and proteomics datasets, providing a potential underlying
mechanism for these pathway differences. Additionally, targeted approaches are a logical
approach to follow up results from any untargeted omics study. Our investigation has
identified purine metabolism as a pathway that plays a major role in the response of cancer
cells to alkylating agents. Targeted methods designed to measure this pathway should be
used in in vitro and in vivo experiments to confirm the metabolomic, transcriptomic, and
proteomic changes seen in this study.

Multiple measures were taken to validate the results in this study. The first method
involved the use of the CREAMMIST database to identify genes correlated with alkylating
agent IC50 values and to identify their associated pathways. These identified pathways had
a high degree of overlap with the NCI-60 results initially identified in the joint-pathway
analysis of metabolites, transcripts, and proteins, with p < 0.05 between Q1 and Q4. The
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second method was the use of metabolites + transcripts and metabolites + proteins as sepa-
rate joint-pathway analyses, both with the univariate and multivariate-selected molecules.
Using this approach, agreement could be found between the two methods to identify
pathways that were consistently identified as significant across the omics datasets. The
third method was the combination of univariate and multivariate approaches, as well
as the combination of pathway (metabolites + transcripts and metabolites + proteins)
and network analysis approaches in the multi-omics analysis. Using these orthogonal
approaches, commonalities in key pathways/molecules could be identified, allowing the
results to be narrowed down. Lastly, additional validation was gained from analyzing
data from BioGRID ORCS. CRISPR screens are an emerging method that allow for the
identification of genes that significantly determine cancer cells’ ability to survive under
a given selection pressure (e.g., drug treatment) [59]. An investigation of the CRISPR
datasets studying alkylating agents revealed the DNA repair mechanisms directly related
to nucleotide metabolism/usage, including the Fanconi anemia pathway, homologous and
non-homologous recombination, and nucleotide excision repair. Indeed, the regulation of
the nucleotide pool is a major mechanism by which cells regulate DNA repair [60]. Future
research is needed to further understand the dynamics between nucleotide metabolism
and alkylating agent response, which may reveal the biomarkers of sensitivity or novel
mechanisms to improve drug response.

4. Materials and Methods
4.1. Acquisition of Public NCI-60 Cell Line Molecular Data

Publicly available omics datasets of baseline molecular characteristics of cell lines
in the NCI-60 cell line panel were obtained. Metabolomics data (average of triplicate
experiments) were downloaded from NCI’s Development Therapeutics Program (DTP)
website. Proteomics data were downloaded from https://www.ebi.ac.uk/pride/archive/
projects/PXD013615 (accessed on 25 May 2023) [61]. Averaged transcriptomics data were
downloaded from https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4296 (ac-
cessed on 24 May 2023) [62,63]. Copy number variant (CNV) data, derived from SNP
measurements, were downloaded from CellMiner (DNA Affy 500k CRMAv2) [64]. Two
cell lines—MDA-N and SK-MEL-2—were removed from all datasets due to being absent in
the metabolomics data.

4.2. Compilation of Drug Response Data for Alkylating Agents in the NCI-60 Cell Line Panel

Drug activities for compounds tested in the NCI-60 cell line panel were downloaded
from CellMiner in the form of z-scores—a transformed value that is calculated by taking
mean-centered GI50 values and then dividing by the standard deviation of a given test
compound across all cell lines [64]. Compound mechanism data were also downloaded
from CellMiner to identify test compounds with alkylating mechanisms. Only compounds
that were indicated to have experimental data following quality control review from NCI
were used for the analysis. Z-scores for each alkylating test compound were converted to a
rank order (without breaking ties) across cell lines, and the median rank order across all
test compounds was calculated for each cell line to derive a total rank order for alkylating
compounds. MetaboAnalyst 5.0 was used to generate heatmaps of z-scores [65].

4.3. Univariate Statistics, Pathway Analysis, and Network Analysis of Selected Features

Fold changes were calculated between cell lines in the top (Q4) and bottom (Q1)
quartile of the total rank order of z-scores using group averages for each variable. p-values
were calculated between Q1 and Q4 using Students’ t-test. Metabolites, proteins, and
transcripts that had a p-value < 0.05 between Q1 and Q4 of the total rank order of z-
scores were used for joint pathway analysis in MetaboAnalyst 5.0 [65]. Pathway hits were
validated using data from the CREAMMIST database for cancer drug response prediction
(https://creammist.mtms.dev/ (accessed on 26 July 2023) [23]. Ten alkylating agents were
identified in the CREAMMIST database and genes significantly correlated (Spearman rank)

https://www.ebi.ac.uk/pride/archive/projects/PXD013615
https://www.ebi.ac.uk/pride/archive/projects/PXD013615
https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4296
https://creammist.mtms.dev/
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with each drug’s IC50 value were identified. Genes that were significant in ≥50% of the
ten alkylating agents were input into MetaboAnalyst’s pathway analysis. For network
analysis, metabolites, proteins, and transcripts with p < 0.05 between Q1 and Q4 were
input into Omicsnet [66]. Metabolites were entered as KEGG IDs, proteins were entered as
Uniprot IDs, and transcripts were entered as official gene symbols. For database selection
for metabolomics, transcriptomics, and proteomics datasets, KEGG was used to map
metabolite–protein interactions. After generating the network, pathway analysis was
conducted in Omicsnet using the KEGG (gene/protein) database.

4.4. Multi-Omic Multivariate Analysis and Joint Pathway Analysis

Metabolomics, transcriptomics, proteomics, and SNP datasets were imported into
Omicsanalyst for integrated analysis [67]. Due to data size constraints, only the top 25% of
CNV markers by variance across all cell lines were imported. All datasets were autoscaled
to provide similar distribution patterns. Integrated analysis was performed using Data
Integration Analysis for Biomarker discovery using Latent variable approaches for Omics
studies (DIABLO) [68]. DIABLO is a supervised multivariate method (multi-block PLS-DA),
and was used to discriminate cell lines in Q1 and Q4 of the total rank order of z-scores for
alkylating agents. Joint pathway analysis was performed using Metaboanalyst 5.0 using
variables that had an absolute loadings value > 0.6 for the first principal component [65].

4.5. CNV Analysis

CNV markers that had an absolute loadings value > 0.6 for the first DIABLO principal
component were aligned with associated genes indicated by CellMiner. To determine genes
with increased or decreased CNV intensity in resistant cells, average intensity values were
averaged for each marker in Q1 and Q4 samples, and all markers mapped to the same
gene were summed. Genes with a summed intensity that was higher in Q4 were defined as
increased whereas genes with a summed intensity that were lower in Q4 were defined as
decreased. Frequency of mapped CNV markers for each gene was calculated to determine
genes that had the greatest number of CNV markers that differentiated Q1 and Q4.

4.6. Integrative Pathway Visualization

To visualize pathway perturbations using multi-omic data, metabolites, proteins, and
transcripts were input into Pathview with average values in Q1 and Q4 of total rank order
of z-scores [69,70]. Only variables with a p < 0.1 were input into the analysis. hsa-Homo
sapiens was chosen for the species database, and positive fold changes indicate an increase
in Q4 of total rank order of z-scores (most resistant to drug treatment). KEGG’s disease gene
and drug targets database was analyzed to determine druggable targets that overlapped
with Pathview data [71].

4.7. Data Mining and Pathway Analysis of CRISPR Screen Hits of Alkylating Agents

Multi-omics analysis results were validated by searching for gene hits that determine
alkyalting agent sensitivity in the Biological General Repository for Interaction Datasets
(BioGRID) Open Repository of CRISPR Screens (ORCS) (https://orcs.thebiogrid.org/ (ac-
cessed on 26 July 2023)) [24]. A total of 11 datasets were identified that observed gene
hits that modified alkylating agent sensitivity (1-PMID32649862, 6-PMID32649862, 14-
PMID32649862, 15-PMID32649862, 23-PMID32355287, 27-PMID32355287, 33-PMID32355287,
11-PMID32355287, 1-PMID35221331, and 10-PMID34049503, 14-PMID34049503). Gene hits
from all studies were input into MetaboAnalyst 5.0 for pathway analysis to determine
pathways that were linked with alkylating agent sensitivity.

5. Conclusions

In conclusion, we have taken an unbiased, multi-omics approach to identify molec-
ular networks that differentiate cancer cells that are sensitive or resistant to alkylating
agents. Our analysis revealed several metabolic processes that differentiated sensitive and

https://orcs.thebiogrid.org/
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resistant cells, with purine metabolism emerging as the major metabolic differentiator, as
determined by a combination of univariate and multivariate approaches. Additionally,
CNV analysis revealed a collection of genes which may play a role in establishing these
metabolic phenotypes that differentiate response status to alkylating agents. It is currently
unclear if these metabolic processes play a role in cancer cell response to other drug classes.
Therefore, future research should be performed to use multi-omics approaches to identify
the cellular pathways associated with drug response to other classes in an unbiased manner.
Notably, our findings did not indicate that cancer cell type was a major driver of sensitivity
to this drug class, suggesting that omics profiles would be a better indicator of drug respon-
siveness. Overall, this information provides new insights into the cellular processes that
may be targeted to potentially prevent or overcome resistance to alkylating agents. Due to
the metabolic nature of these differences, targeting these processes should be investigated
pharmacologically and nutritionally. Indeed, nutritional factors have been shown to have
anticancer activity, as well as chemosensitization properties, through targeted cancer cell
metabolism, such as fatty acid beta oxidation, glucose metabolism, polyunsaturated fatty
acid metabolism, or nucleotide metabolism, to name a few [72–75]. As such, nutritional
intervention may provide an additional route to combat drug resistance. Further research
is needed in this area to develop multiple approaches to improve the efficacy of alkylating
agents in cancer therapy.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241713242/s1.
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