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Abstract

Doppler ultrasound (DU) is used in decompression research to detect venous gas emboli in

the precordium or subclavian vein, as a marker of decompression stress. This is of rele-

vance to scuba divers, compressed air workers and astronauts to prevent decompression

sickness (DCS) that can be caused by these bubbles upon or after a sudden reduction in

ambient pressure. Doppler ultrasound data is graded by expert raters on the Kisman-

Masurel or Spencer scales that are associated to DCS risk. Meta-analyses, as well as

efforts to computer-automate DU grading, both necessitate access to large databases of

well-curated and graded data. Leveraging previously collected data is especially important

due to the difficulty of repeating large-scale extreme military pressure exposures that were

conducted in the 70-90s in austere environments. Historically, DU data (Non-speech) were

often captured on cassettes in one-channel audio with superimposed human speech

describing the experiment (Speech). Digitizing and separating these audio files is currently

a lengthy, manual task. In this paper, we develop a graphical user interface (GUI) to perform

automatic speech recognition and aid in Non-speech and Speech separation. This consti-

tutes the first study incorporating speech processing technology in the field of diving

research. If successful, it has the potential to significantly accelerate the reuse of previously-

acquired datasets. The recognition task incorporates the Google speech recognizer to

detect the presence of human voice activity together with corresponding timestamps. The

detected human speech is then separated from the audio Doppler ultrasound within the

developed GUI. Several experiments were conducted on recently digitized audio Doppler

recordings to corroborate the effectiveness of the developed GUI in recognition and separa-

tions tasks, and these are compared to manual labels for Speech timestamps. The following

metrics are used to evaluate performance: the average absolute differences between the

reference and detected Speech starting points, as well as the percentage of detected
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Speech over the total duration of the reference Speech. Results have shown the efficacy of

the developed GUI in Speech/Non-speech component separation.

Introduction

Automatic speech recognition [1–3] refers to the problem of getting an algorithm to automati-

cally transcribe spoken language and over the last few years [4–6], several automatic speech-

to-text (STT) machines have been developed in the literature [7, 8]. When spoken clearly, rudi-

mentary speech recognition software has a limited vocabulary and may only recognize a few

words and phrases. More advanced software can deal with natural speech, distinct accents, and

several languages [9, 10]. Speech recognition is based on a diverse set of studies in computer

science [11], linguistics [12], electrical engineering [13], and medical applications [14]. Many

current products and text-focused applications integrate speech recognition functions that

make device use easier or hands-free [15–17].

Automated telephone systems and medical dictation software were among the first imple-

mentations for speech recognition [18–20]. These are widely used for transcribing, database

querying, and commanding computer-based systems, particularly in activities that need spe-

cific vocabulary. Personal assistants in automobiles and smartphones, such as Amazon’s Alexa

and Apple’s Siri, are also enabled [21, 22].

To ensure that the dialog system provides relevant replies at the proper moment, a highly

accurate and rapid speech recognition system must be built. Many cloud-based speech recog-

nition services are available, including the Google Cloud Speech application programming

interface (API) [23], IBM Watson Speech to Text [24], and Microsoft Bing Speech API [25].

Google Cloud Speech API, for example, is a Web API that can leverage Google’s speech recog-

nition technology with a high speech recognition rate [26].

The Google speech recognizer uses a neural network to model speech recognition and allows

developers to transform audio files into text together with corresponding timestamps in the form

of an API that supports 120 different languages around the world. For the best performance of

the Google speech recognizer engine, audio files with a 16 kHz sample rate should be used [27].

We have utilized the Google recognition engine to detect the Speech/Non-speech component of

audio files. Of greatest importance in the present study is the detection timestamps of human

voice activity rather than what has been spoken specifically, as is detailed below.

Doppler ultrasound (DU) is used in decompression research to detect venous gas emboli in

the precordium or subclavian vein, as a marker of decompression stress [28, 29]. A 1–3 MHz

single element transducer is used to transmit ultrasound and backscattered echoes are

recorded either on separate transducer (if the transmit transducer is operating in continuous

wave Doppler mode) or on the same transducer (pulsed wave Doppler mode). Venous gas

emboli are detected through a frequency shift in the backscattered echoes (reflected from the

moving bubbles in blood) and the recorded shifts produce “chirp-like” signal that can be dif-

ferentiated from other cardiac and blood flow sounds, all in the audible range (i.e. 100 Hz—10

kHz) [28]. This is of relevance to scuba divers, compressed air workers and astronauts to pre-

vent decompression sickness (DCS) that can be caused by these bubbles upon or after a sudden

reduction in ambient pressure [30–32]. Doppler ultrasound data is graded by expert raters on

the Kisman-Masurel or Spencer scales that are associated to DCS risk.

Meta-analyses, as well as efforts to computer-automate DU grading, both necessitate access

to large databases of well-curated and graded data. A large amount of post-dive audio DU data

was recorded in the 1970s and 1980s and recently digitized using audio software tools. In these
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experiments, DU was recorded on physical tapes, an example of which is shown in Fig 1. This

historic data is unique as it was recorded from military divers that accepted a relatively high

DCS risk incidence in taking part in such studies [33, 34]. As such, these trials would be near-

impossible to repeat nowadays and carry valuable information for modeling and further analy-

sis. However, in numerous recordings, the human voice (Speech component) was recorded

together with cardiac signal (Non-speech component) in a single-channel audio. In those

cases, tape recordings contain dozens of back-to-back DU data signals and Speech, as depicted

in Fig 2. Both Speech (spoken experiment information) and Non-Speech (DU signal) segments

are important for data interpretation and DCS modeling. Separation of these component

requires advanced signal processing techniques due to the overlaid frequency information in

these components. Post-dive DU is graded for VGE presence using several ordinal scales that

Fig 1. Doppler ultrasound measurement: (a) Doppler technician making a precordial measurement; (b) a portable Doppler ultrasound device

(Doppler bubble monitor DBM9008; Techno Scientific Inc., Concord, Canada) with probe and tape recorder for detection. Bubbles are most

typically measured over the subclavian vein and the precordial region.

https://doi.org/10.1371/journal.pone.0283953.g001

Fig 2. Sample audio signal depicting regions of both Speech and Non-speech components.

https://doi.org/10.1371/journal.pone.0283953.g002
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are associated with DCS probabilities. VGE presence is highly specific but less sensitive,

although higher amounts of VGE (above grade 3) are associated with an increase in DCS risk

[35–39]. The ability to reconcile those VGE grades to experimental information (subject ID,

dive characteristics, DCS outcome, etc) is therefore paramount for database curation and asso-

ciation to DCS outcome.

An example of audio activity timeline for these data is shown in Fig 2. As can be seen from

this figure, the human voice activity, as one source of data, is integrated with the audio Dopp-

ler, as the second source of data, throughout the entire recording. These data cannot be used

for DCS research unless the Speech part and Non-speech are effectively separated. While this

task can be performed manually, it is extremely time-consuming and thus impractical for

building a large diving research repository of previously acquired data [33].

In this work, we proposed to employ the Google speech recognizer to separate Speech/

Non-Speech components in DU audio files. To conduct a large-scale experiment on recogni-

tion and separation tasks, a graphical user interface (GUI) is developed using the license-free

Tkinter package of Python. First, the end-user must select the desired audio file to be sepa-

rated. Then, after recognition of the long human voice component (as a practical assumption,

Speech components above three seconds were considered long), the corresponding time-

stamps of the Speech part were used to apply the separation process. During the recognition

process, the end-user was notified by the progress of the program. Once the recognition is fin-

ished, the end-user must corroborate the effectiveness of the separation process before saving

the output of the GUI. The separated Speech component together with its spectrogram (for

visual interpretation) is displayed for the end-user information.

Materials and methods

In this section, the methodology of the speech recognition and separation is provided together

with the GUI structure and functionality of the buttons. Moreover, the dataset used and per-

formance metrics are provided at the end of the section.

A. Speech recognition and separation methods

The block diagram of the developed method is depicted in Fig 3. It has been divided into off-

line and online phases. As a preliminary step during the offline phase, the noise reduction

algorithm was applied to the dataset to improve the Signal to Noise Ratio (SNR). The step-by-

step processing during the online phase is described as follows.

Data preparation. The noisy recorded post-dive DU data were recently digitized. The

presence of noise in the background of the speech signal makes detection and recognition dif-

ficult. Power spectral density of non-stationary noise was used and implemented in MATLAB

to enhance the noisy speech [40].

The noise estimation is updated by averaging the noisy speech power spectrum using time

and frequency dependent smoothing factors. Signal presence is controlled by computing the

ratio of the noisy speech power spectrum to its local minimum, which is updated continuously

by averaging past values of the noisy speech power spectrum. The enhanced audio is then split

into one-minute audio chunks so that it can be fed through the free version of Google speech

recognizer for offline processing without being uploaded to the cloud [26, 27].

Use of Automatic Speech Recognition (ASR) for real-time transcribing. Traditional

speech recognition systems have three major components [41]: the acoustic model, the pro-

nunciation model, and the language model. These components are trained separately but are

then merged into one general search graph. The acoustic model recognizes the phonemes that

are most likely to be present in raw audio data. It takes a waveform, chunks it into small time
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segments, implements a frequency analysis, and outputs a probability distribution over all the

triphone-states for that input. More recently, deep learning has also enabled the use of end-to-

end training of speech recognition systems. Such models, including the Google speech recog-

nizer, substitute the traditional components of an ASR system with a single, end-to-end

trained, all neural model that estimates the character sequences directly [42]. After processing

each audio segment, the exact timestamps of the Speech components are extracted for each

audio chunk to collect the exact location of the human speech. This information is then used

to separate the DU (Non-speech component) (useful data) from the Speech component based

on the timestamps. This step depends highly on the performance of the noise reduction in the

previous step. Higher SNR results in better detection and recognition of the human voice [43].

Speech/Non-Speech separation and verification. Once the audio recognition is com-

pleted, the algorithm asks the end-user for final verification of separated audio files before sav-

ing into the memory. This is a critical step, since the algorithm may not be reliable in all the

detections especially when dealing with old data, and in this way the end-user must corrobo-

rate the recognition and separation tasks. To help the end-user decide and save the correct

files, the spectrograms of separated audio files (Speech and Non-speech components) is shown

on the GUI platform as a piece of complementary information. A sample result of the separa-

tion step is provided in the next section.

B. GUI structure

A GUI was established and designed using the license-free Tkinter package of Python [44].

Tkinter, or Tk interface, is a Python package that provides an interface to Tk GUI toolkit, and

Fig 3. The complete processing steps for speech detection and separation in audio Doppler ultrasound data.

https://doi.org/10.1371/journal.pone.0283953.g003
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works with common platforms, e.g., MS Windows, Linux, and Mac OS. Event handling, wid-

gets, and geometry management are three major components of Tkinter package. Visual ele-

ments are rendered using local operating system elements, so applications built with Tkinter

look like they belong on the platform where they are run. We have integrated the Google

speech recognition into our GUI and one possible platform to take advantage of it is based on

Python programming language, rendering this choice practical for the purpose of this pro-

gram. Finally, another advantage of using this programming language for building the GUI is

that the final program can be packaged into an executable file (.exe) that can then be executed

in any Windows-based machine without needing to install Python. This is an attractive feature

for our application where this program may be used by users with little or no coding experi-

ence. A schematic representation of the developed GUI is shown in Fig 3. The functionality of

each button for the developed GUI is provided in the following subsections in detail. The back-

bone processing of the GUI is shown in Fig 4. It consists of three major components. In the

setup phase, the user selects a file to process. The processing pipeline then consists of starting

and completing the voice detection process then finding the timestamps associated with the

start and end of each detected speech segment if any are detected. Finally, the verification step

displays the detected components visually to the user for his/her input with regard to saving.

Fig 4. Schematic showing the processing pipeline of the GUI. The main steps are as follows: (a) Setup: Select a file to process from the end-user’s local

directory, (b) Processing pipeline: Real-time transcription of the selected audio to obtain timestamps of the speaker voice in long segments, and (c)

Verification: The speech component is extracted based on the detected timestamps in the previous step, spectrograms are displayed to help the user

decide whether to save the separated components.

https://doi.org/10.1371/journal.pone.0283953.g004
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Select file button. The first step in the pipeline (shown as part (a) in Fig 5) is to select the

input file. By clicking on the Select file button, the generic path in MS Windows will be opened

(see Fig 6). At this point, the end-user must select the denoised file for further processing. If

the GUI runs in the Command Window as the backbone, then after audio file selection some

Fig 5. Developed GUI.

https://doi.org/10.1371/journal.pone.0283953.g005

Fig 6. Generic path and audio file selection in GUI.

https://doi.org/10.1371/journal.pone.0283953.g006
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features of the selected audio file will be printed out, including the samples rate, length of the

signal in terms of number of samples along with number of detected one-minute audio chunk.

It is worth noting that for the best performance of detection and separation using Google

speech recognizer, all the denoised audio files were down sampled to 16 kHz sample rate.

Thus, the number of detected one-minute audio chunk mentioned above is simply calculated

as the total number of samples divided by sample rate.

Start to process button. This button (shown as part (b) in Fig 5) applies the Google

speech recognizer to the one-minute audio segments on the fly. The audio segments come

from the previous step, during the file selection process. If the GUI runs in the Command

Window as the backbone, the detected transcript together with its timestamp will be printed

out for each iteration. In case the algorithm cannot find any presence of human voice, it simply

prints an empty matrix at the output. The detected transcripts together with the timestamps

(starting and ending point of Speech component) are then saved into two different lists during

the processing for further analysis. The progress bar shown in Fig 5(c) gets updated once the

detection and recognition of an audio segment finishes. When the last audio segment gets pro-

cessed, the program notifies the end-user to move forward with the next step.

Fig 7. Sample spectrograms of the separated Speech and Non-speech components.

https://doi.org/10.1371/journal.pone.0283953.g007
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Audio chunking and selection button. By clicking on the Audio chunking and selection

button, these files get pruned from all detected human voice activity for final verification in the

next step.

Play and save button. In this step, the separated Speech and Non-speech components are

displayed to the end-user. Spectrograms are shown, an example of which can be seen in Fig 7,

and the user can also listen to the separated audio if desired. At this stage, the end-user must

confirm the effectiveness of the recognition and separation tasks by typing “yes” or “no” in the

opened text box, as shown in Fig 8. After confirmation, the separated Speech and Non-speech

components get saved into two different folders.

C. Dataset used and evaluation metrics

The dataset comprised analogue recordings of human precordial and subclavian audio Dopp-

ler signals that were made as part of a study conducted by the United States Navy Experimental

Diving Unit in the 1980s. The analogue tapes were then converted to a digital format using an

analogue to digital converter (Behringer UCA202, Willich, Germany) connected to a PC,

where they were saved as digital files in the .flac format. The duration of each audio file is sum-

marized in Table 1. The last column in this table (denoted as no. long segments) accounts for

the number of Speech components in each recording. Long segments were defined as Speech

of at least three-second duration, where the examiner provides information related to the

recording that follows. This is typically done between subjects being recorded, or for the same

subject recorded at different times post-dive. In diving research, recordings are often per-

formed both at rest and after movement (e.g. leg flexions). In those cases, the experimenter

will briefly speak the words “rest” and “flex”. Here we concentrate on separation between long

Fig 8. User query box to confirm the separation process and save the resulting separated audio files.

https://doi.org/10.1371/journal.pone.0283953.g008
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segments rather than picking up the start and end of rest and flex recordings done

consecutively.

The start and end points of the Speech component were annotated manually as the refer-

ence for the entire dataset to test the effectiveness of the developed algorithm. Two comple-

mentary metrics were used for evaluation, as defined in Fig 9: (1) M1: Ratio of total duration

of detected Speech component to total duration of reference Speech component, and (2) M2:

The absolute difference start of timestamp between the detected Speech component segment

and the corresponding reference audio segment. The percentage of Speech component dura-

tion correctly identified by the algorithm M1 is defined as:

M1 ¼
Dd

Dr
� 100 ð1Þ

Table 1. Dataset description.

File ID Length (minutes) No. Long Segments

Su204-D1/2-sdA 40 7

Su302-D1/2-sdA 58 19

Su302-D1/2-sdB 40 7

Su302-D3/4-sdA 60 11

Su302-D3/4-sdB 36 6

Su302-D5/6-sdA 49 9

Su302-D5/6-sdB 44 11

Su306-D1/2-sdA 57 9

Su306-D1/2-sdB 30 7

Su306-D3/4-sdA 57 11

Su306-D3/4-sdB 16 3

Su306-D5/6-sdA 52 11

Su306-D5/6-sdB 37 6

Total 576 117

https://doi.org/10.1371/journal.pone.0283953.t001

Fig 9. Metrics of algorithm performance assessment.

https://doi.org/10.1371/journal.pone.0283953.g009
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where Dr and Dd are the reference duration of Speech component and detected duration

Speech component, respectively. Furthermore, the error in start time detection of each voice

segment, M2, in seconds, is calculated as:

M2 ¼ jTd � Trj ð2Þ

Fig 10. Frequency analysis of speech component and non-speech (Doppler audio) component in a representative

recording, showing significant superposition of the frequency content.

https://doi.org/10.1371/journal.pone.0283953.g010
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in which Tr and Td represent the reference start of Speech component and detected start of

Speech component, respectively.

Results and discussion

The estimation of the power spectral density of the speech and non-speech components in

each recording were analyzed, which converts the signal from time domain into the frequency

domain. This method was used for the estimation of the power signal at different frequencies

in this study. One representative example of the results is shown in Fig 10. The power spectral

density (periodogram) of the human voice component and the Doppler audio component are

shown in the top row, and a zoomed-in portion comprising the overlaid frequency compo-

nents between 0 to 5 kHz (where most of the energy exists) is shown in the bottom row. They

are shown significantly superimposed, so that more advanced signal processing and learning-

based algorithms are required to effectively separate them.

The performance results for different audio files are reported in Table 2. On average, the

algorithm was able to detect 79.1% of Speech component throughout the entire dataset. The

individual performance per audio file is provided in the 2nd column of Table 2. The average

error in detected duration was found to be 3.94 ±2.24 s, with individual audio file results

reported in the 3rd column of Table 2. The average error in the start timestamp detection of

the Speech component was 2.84 ±1.65 s, and individual audio file results are presented in the

4th column of Table 2.

To show the effectiveness of the developed algorithm visually and make the interpretation

of the results easier, four sample audio files were randomly selected, and the bar chart of sys-

tem performance is plotted in Fig 11. The first column of Fig 11 shows the duration error for

the selected audio files and the second column corresponds to the error of the start of time-

stamp. The current system achieves a good performance at 79.1% of voice segments recog-

nized. However, one limitation of the Google Speech recognizer is that voice segments of

insufficient quality for speech recognition may be missed. This was addressed in our work

through the initial denoising step. In the future, we could investigate the performance of voice

activity detection (VAD) algorithms as an alternative strategy [45], since those do not focus on

word recognition but rather the differences in acoustic features.

Table 2. Performance results of the developed algorithm.

File ID Duration detection accuracy–M1 (%) Duration detection absolute difference error (s) Start of timestamp absolute error–M2 (s)

Su204-D1/2-sdA 92.0 1.94 ±1.11 0.67 ±0.67

Su302-D1/2-sdA 73.6 5.24 ±5.20 2.59 ±1.68

Su302-D1/2-sdB 82.8 3.21 ±3.58 1.17 ±0.91

Su302-D3/4-sdA 79.8 3.13 ±1.74 1.61 ±0.94

Su302-D3/4-sdB 77.2 4.23 ±2.23 2.1 ±1.45

Su302-D5/6-sdA 77.9 4.16 ±1.67 3.31 ±1.44

Su302-D5/6-sdB 71.6 5.12 ±2.84 2.8 ±2.33

Su306-D1/2-sdA 76.7 4.46 ±1.12 3.23 ±1.95

Su306-D1/2-sdB 75.2 4.55 ±2.1 4.44 ±2.5

Su306-D3/4-sdA 78.9 4.24 ±2.44 3.36 ±2.11

Su306-D3/4-sdB 87.4 2.5 ±1.47 3.23 ±2.32

Su306-D5/6-sdA 76.6 4.61 ±1.88 3.81 ±1.74

Su306-D5/6-sdB 78.6 3.93 ±1.76 4.35 ±1.47

Total 79.1 3.94 ±2.24 2.84 ±1.65

https://doi.org/10.1371/journal.pone.0283953.t002
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While not a perfect surrogate marker for DCS [39], VGE remain to date the most widely

used decompression stress marker in physiological studies. Used appropriately, they are an

important component of decompression physiology and pathophysiology research. Efforts

such as the one detailed in this work aim to leverage the abundance of historic data collected

Fig 11. Performance of the developed model in terms of duration error and start of timestamp error for better

visualization in representative samples.

https://doi.org/10.1371/journal.pone.0283953.g011
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in the field. In parallel, additional initiatives are needed to further discussions within the diving

research community to develop testable hypotheses on large databases and other candidate

biomarkers.

Conclusion

Leveraging previously collected DU data is especially important in diving research due to the

difficulty of repeating large-scale military hyperbaric exposures that were conducted in the 70–

90s in austere environments. Historically, these were often collected on cassettes as one-chan-

nel audio with superimposed human speech describing the experiment, making digitization

and separation of these audio files a lengthy, manual task. Since the processing of this data

relies heavily on the effective separation of the human voice from the ultrasound audio, we

have developed a novel graphical user interface (GUI) to aid in these recognition and separa-

tion tasks. We used the Google speech recognizer within our developed GUI to extract the

timestamps of Speech component and perform separation. Speech separation technology has

not previously been used in post-dive Doppler ultrasound recordings. Here we show promis-

ing preliminary performance for its capacity to help separate long back to back recordings that

could help accelerate the reuse of large amounts of unique previously-collected data. The

developed algorithm tested on our private domain dataset shows that the recognition and sep-

arations tasks are performed with good accuracy. This may allow a human operator to save

time in reviewing historic cassettes, where the approximate times of Speech/Non-speech tran-

sition are presented, and they can selectively listen to those to expedite manual separation of

the segments of interest.
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