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Abstract: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with both inter- and
intratumor heterogeneity, thought to result in a more aggressive course and worse outcomes. Neoad-
juvant therapy (NAT) has become the preferred treatment modality of early-stage TNBC as it allows
for the downstaging of tumors in the breast and axilla, monitoring early treatment response, and most
importantly, provides important prognostic information that is essential to determining post-surgical
therapies to improve outcomes. It focuses on combinations of systemic drugs to optimize pathologic
complete response (pCR). Excellent response to NAT has allowed surgical de-escalation in ideal
candidates. Further, treatment algorithms guide the systemic management of patients based on their
pCR status following surgery. The expanding knowledge of molecular pathways, genomic sequenc-
ing, and the immunological profile of TNBC has led to the use of immune checkpoint inhibitors and
targeted agents, including PARP inhibitors, further revolutionizing the therapeutic landscape of this
clinical entity. However, subgroups most likely to benefit from these novel approaches in TNBC
remain elusive and are being extensively studied. In this review, we describe current practices and
promising therapeutic options on the horizon for TNBC, surgical advances, and future trends in
molecular determinants of response to therapy in early-stage TNBC.

Keywords: breast cancer; breast surgery; early-stage TNBC; immunotherapy; neoadjuvant chemotherapy;
PARP inhibitors; triple-negative breast cancer; targeted therapy

1. Introduction

Triple-negative breast cancers (TNBC) are a diverse subgroup of breast cancer de-
fined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2) expression. The dynamic tumor microenviron-
ment in TNBC is associated with resistance to chemotherapy, aggressive course, frequent
recurrence, and worse prognosis [1]. Nearly 20% of patients with TNBC harbor a breast
cancer susceptibility gene (BRCA) mutation, particularly BRCA1, compared to 6% of all
breast cancers associated with a BRCA mutation [2]. Traditionally, chemotherapy has
been the only systemic treatment option in early-stage TNBC; however, the more recent
introduction of novel agents, including immunotherapy and PARP inhibitors, is altering
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the treatment paradigm for this disease. Given significant inter- and intratumor hetero-
geneity in TNBC [3–5], studies are being pursued to understand and address this biological
complexity to tailor therapeutic strategies appropriately.

In this review, we will describe current practices in the medical and surgical manage-
ment of early-stage TNBC. We will also focus on current treatments in the pipeline that
are predicted to contribute to upcoming progress in the field by integrating clinical and
molecular characteristics of TNBC.

Molecular Subtypes of TNBC
All breast cancers are characterized by intrinsic molecular subtypes when gene expres-

sion profiling is undertaken, including Luminal A, Luminal B, HER2-enriched, basal-like,
normal-like, and Claudin low subtypes [6]. Intrinsic subtypes help provide predictive
information on response to neoadjuvant therapy (NAT) in breast cancers but are usually
inconsistent in the triple-negative subtype [7]. Disagreements between classifications and
a high proportion of specimens that cannot be classified are some reasons why intrinsic
subtypes are deemed to be less reliable biomarkers of response [8]. Several molecular
classifications of TNBCs have been proposed and identified, but the Lehmann/Pietenpol
subtypes are most frequently utilized, as described in Table 1. Lehmann et al. identified
six TNBC subtypes through gene expression analyses and identified the unique signaling
pathways that each subtype may be enriched in. This resulted in cell line models that
have facilitated preclinical experiments to define responses to selected targeted therapies
in vivo [9].

Table 1. Molecular subtypes adopted from Pinilla et al. [10].

Lehmann et al. [9] Classification n = 2347

Type Main Molecular Characteristics

Basal-like 1 (BL1)

Enriched in:
Cell cycle and proliferation genes (AURKA, AURKB, CENPA, BUB1, TTK,
CCNA2, PRC1, MYC, NRAS, PLK1, BIRC5)
DNA damage response genes (CHEK1, FANCA, FANCG, RAD54BP,
RAD51, NBN, EXO1, MSH2, MCM10, RAD21, MDC1)
High Ki-67 mRNA expression

Basal-like 2 (BL2)

Enriched in:
Growth factor signaling genes (EGF, NGF, MET, Wnt/β-catenin, IGF1R
pathways)
Growth factor receptor genes (EGFR, MET, EPHA2)
Myoepithelial markers (TP63 and MME or CD10)

Immunomodulatory (IM)

Enriched for gene ontologies in immune cell processes, including:
Immune cell signaling (TH1/TH2, NK cell, BCR signaling, DC, T-cell
receptor signaling pathway)
Cytokine signaling (cytokine, IL-12, IL-7 pathway)
Immune signal transduction (NFKB, TNF, JAK/STAT pathway)

Mesenchymal (M)

Enriched in:
Cell motility (regulation of actin by Rho)
ECM receptor interaction
Cell differentiation pathways (Wnt/β-catenin, ALK, TGF-β signaling)

Mesenchymal stem-like (MSL)

Similar to M type. Also enriched in:
Angiogenesis genes (VEGFR2, TEK, TIE1, EPAS1)
Growth factor signaling pathways (including adipocytokine signaling,
EGFR, PDGF, G-protein coupled receptor, ERK1/2)

Luminal androgen receptor (LAR)
Enriched in:
Signaling pathway of androgen receptor (including FASN, APOD, CLDN8,
DHCR24, ALCAM, FKBP5, PIP, SPDEF)
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Other less commonly used classifications include Burstein subtypes, FUSCC classifica-
tion, Integrative Clusters, and Prado-Vazquez classification [11–15].

Combining molecular knowledge with patient management is the core principle of
precision medicine. Still, the lack of clinically actionable biomarkers of response within
TNBC has led to the use of a “one-size fits all” strategy that has not necessarily been
successful.

2. Systemic Therapy—New Insights

Neoadjuvant systemic therapy (NAT) is now the standard of care for most early-
stage TNBC. Advantages to this approach include downstaging of tumors resulting in
improved rates of breast-conserving surgery, downstaging of axilla resulting in reduced
axillary dissection, and tailoring of adjuvant treatment based on treatment response [16].
NAT also provides a window of opportunity between diagnosis and surgical resection for
translational research and assessment of biomarkers [17]. Furthermore, this approach can
predict survival based on the status of pathological complete response (pCR), defined as
the absence of residual invasive disease in the breast or lymph nodes at the time of surgery,
allowing for tailoring of subsequent therapies. Achieving pCR is an important goal in
TNBC as it is associated with improvement in long-term outcomes, including event-free
survival (EFS) and overall survival (OS) [18–21].

2.1. Advances in Chemotherapy

Cytotoxic chemotherapy is currently considered the main systemic treatment for early-
stage TNBC, yet the ideal treatment regimen remains unclear. Although the efficacy of a
taxane-anthracycline-based regimen has been established in this disease [22], the role of
adding platinum remains controversial. Several trials looked at the addition of carboplatin
in the neoadjuvant setting (Table 2) [23–25]. Although the CALGB 40,603 trial did not
reveal any survival benefit with the addition of carboplatin [8], an improved disease-free
survival (DFS) and EFS was noted in the GeparSixto (HR 0.56; 95% CI 0.34 to 0.93; p = 0.022)
and the BrighTNess (HR 0.57, 95% CI 0.36 to 0.91; p = 0.018) trials, respectively, for patients
treated with platinum [25,26]. However, none of these studies demonstrated an OS benefit
with this approach. Furthermore, a meta-analysis, including 2109 patients from nine trials
who had received NAT with platinum-based versus platinum-free chemotherapy, showed
that platinum-based therapy increased pCR rates by approximately 10–15%. However, this
improvement in pCR did not translate into a survival benefit [27]. Therefore, the benefit of
platinum-based therapies remains unclear and comes at the cost of increased hematologic
toxicities and early treatment discontinuations in early-stage TNBC.

Table 2. Role of neoadjuvant carboplatin.

Trial Design Treatment pCR (Carboplatin vs.
No Carboplatin) Survival Outcomes

CALGB-40603 (Alliance)
[8,24]

Randomized phase II trial
n = 443

Weekly paclitaxel plus
carboplatin followed by ddAC

w/wo bevacizumab vs. wo
carboplatin

60% vs. 44%
(p = 0.0018)

DFS: HR 0.94; 95% CI 0.67
to 1.32, p = 0.72

OS: HR 1.12; 95% CI 0.77
to 1.61, p = 0.56

GeparSixto [25,28] Randomized phase II trial
n = 315

Paclitaxel plus non-pegylated
liposomal doxorubicin plus

bevacizumab w/wo
carboplatin

53% vs. 37%
(p = 0.005)

DFS: HR 0.56; 95% CI 0.34
to 0.93; p = 0.022

OS: HR 0.55; 95% CI 0.27
to 1.14, p = 0.10

BrighTNess [23,26] Randomized phase III trial
n = 634

Paclitaxel vs. paclitaxel plus
veliparib plus carboplatin vs.

paclitaxel plus carboplatin

31% vs. 53%
(p < 0.0001)
53% vs. 58%

(p = 0.36)

EFS: 79.3% vs. 68.5%; HR
0.57, 95% CI 0.36 to 0.91;

p = 0.018
OS: HR 0.63; 95% CI 0.33

to 1.21, p = 0.17
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Table 2. Cont.

Trial Design Treatment pCR (Carboplatin vs.
No Carboplatin) Survival Outcomes

GEICAM/2006–03 [29] Randomized phase II trial
n = 94

Epirubicin plus
cyclophosphamide followed

by docetaxel w/wo carboplatin

30% vs. 35%
(p = 0.61) Not assessed

Ando et al. [30] Randomized phase II trial
n = 181

Paclitaxel w/wo carboplatin
followed by

cyclophosphamide plus
epirubicin and fluorouracil

61.2% vs. 26.3%
(p = 0.003) in TNBC Not assessed

Abbreviations: pCR—pathologic complete response, ddAC—dose-dense doxorubicin/cyclophosphamide,
DFS—disease-free survival, OS—overall survival, EFS—event-free survival, HR—hazard ratio, CI—confidence
interval, TNBC—triple-negative breast cancer, w/wo—with or without.

Another important consideration for chemotherapy administration is the benefit of
dose-dense scheduling. This was noted in the AGO Phase III Study, where improved
ten-year OS was noted with dose-dense administration (69% vs. 59%; HR 0.72; 95% CI 0.60
to 0.87; p = 0.0007) [31]. Correspondingly, a meta-analysis of 26 randomized clinical trials
by the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) revealed a moderate
reduction in 10-year risk of recurrence (31.4% vs. 28.0%; RR 0.86, 95% CI 0.83 to 0.92) and
death from breast cancer (1.9% vs. 21.3%; RR 0.87, 95% CI 0.83 to 0.92) without increasing
mortality from other causes with a dose-dense approach to NAT [32]. Although the benefit
of dose-dense anthracyclines appears to be clear, more studies are needed to establish the
additional benefit seen with dose-dense versus weekly paclitaxel.

Other endeavors to further tailor therapy for early-stage TNBC have involved the
addition of sequential capecitabine in the adjuvant setting following NAT and surgery in
patients with residual disease. In the Create-X trial, patients who did not achieve pCR
were randomized to adjuvant capecitabine for 6–8 cycles or a control group with no further
therapy. This strategy resulted in prolonged DFS as well as OS (78.8% vs. 70.3%, HR 0.52;
95% CI 0.30 to 0.90]) [33]. Similarly, the SYSUCC-001 trial demonstrated an improvement
in the 5-year DFS with the use of one year of adjuvant capecitabine (82.8% vs. 73.0%, HR
0.64; 95% CI 0.42 to 0.95; p = 0.03) although there was no improvement in OS noted in this
study [34].

On the contrary, the GEICAM/2003-11 trial did not show a statistically significant
increase in DFS with adjuvant capecitabine [35]. This difference in results raises consid-
erations regarding the influence of ethnic differences on the biology of TNBC as Create-X
and SYSUCC-001 enrolled a predominantly Asian population known to metabolize flu-
oropyrimidines efficiently, whereas GEICAM accrued patients from Europe and South
America. A pre-planned analysis of the GIECAM study demonstrated that the non-basal
TNBC cohort derived the most benefit from receiving capecitabine, thus indicating the
need for detailed investigation into the intrinsic subtypes of TNBC who would most benefit
from capecitabine [35].

2.2. Immunotherapy

Despite lacking canonical targets for biologic treatment, TNBC may demonstrate
a higher tumor mutational burden (TMB), higher PD-L1 expression, and more tumor-
infiltrating lymphocytes compared to other subtypes [36–39], which are associated with
an increased response to immunotherapy [40]. The landscape of early-stage TNBC has
changed with the recent approval of immune checkpoint inhibitors (ICIs) combined with
chemotherapy. ICIs were initially approved for metastatic, PD-L1-positive TNBC based on
improvements in outcomes [41,42]. Evidence suggested a superior efficacy of ICIs when
administered early in TNBC due to the progression of immune escape mechanisms during
the advancement of disease [43,44]. This idea formed the rationale for clinical trials in
early-stage breast cancer with the aim of providing ICIs earlier in the disease course prior
to surgery.
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The KEYNOTE-522 (KN522) was pivotal in bringing ICI to the frontline treatment of
early-stage TNBC. In this study, patients were randomized to receive neoadjuvant therapy
with four cycles of pembrolizumab or placebo plus paclitaxel and carboplatin followed
by an additional four cycles of pembrolizumab or placebo followed by anthracycline-
cyclophosphamide [45]. Patients then went on to receive adjuvant pembrolizumab or
placebo. There was an improvement in pCR (64.8% vs. 51.2%) and EFS (84.5% vs. 76.8%,
HR 0.63; 95% CI 0.48 to 0.82, p < 0.001) in the chemo-immunotherapy arm [46]. Across all
treatment phases, the incidence of grade 3 or higher treatment-related adverse events was
similar (78% vs. 73%) [45,46]. Based on these results, the Food and Drug Administration
(FDA) approved the use of pembrolizumab in combination with chemotherapy for high-risk
early-stage TNBC as neoadjuvant treatment as well as monotherapy in the adjuvant setting.

2.2.1. Other Checkpoint Inhibitors in Breast Cancer

Several other randomized trials have investigated the addition of ICIs to neoadjuvant
chemotherapy in early-stage TNBC (Table 3). Impassion031 also showed improved pCR
when atezolizumab was added to anthracycline-based chemotherapy (58% vs. 41%, 95%
CI 6 to 27; p = 0.0044), especially in patients with positive PD-L1 vs. PDL1 negative (69%
vs. 49%) [47]. Despite similar results to KN522, atezolizumab for early-stage TNBC was
withdrawn in Europe based on the impression that the benefits of atezolizumab did not
outweigh the risks in this population based on a primary endpoint of pCR alone. In contrast
to KN-522 and IMpassion031, the NeoTRIP failed to demonstrate a difference in pCR with
the use of atezolizumab in combination with chemotherapy in the neoadjuvant setting
(48.6% vs. 44.4%, OR 1.18; 95% CI 0.74 to 1.89; p = 0.48) [48]. This discrepancy in outcomes
between NeoTRIP and prior studies is not clear. One possible explanation is that there
were fewer patients with locally advanced or stage III TNBC in IMpassion031 and KN522
compared to the NeoTRIP study (25%, 25%, and 49%, respectively). Another possible reason
is the choice of chemotherapy that included sequential neoadjuvant regimens, including
an anthracycline combination in the prior two studies compared to an anthracycline-free
neoadjuvant regimen in this study.

Table 3. Major clinical trials with chemo-immunotherapy combination in early-stage TNBC.

Neoadjuvant Trials

Trial Design Disease Setting Treatment Relevant Endpoint

Completed trials

Impassion031 [47] Phase III
n = 455

Neoadjuvant treatment
of stage II–III TNBC

Nab-paclitaxel
followed by doxoru-

bicin/cyclophosphamide
w/wo atezolizumab

pCR: 58% vs. 41% (rate
difference 17%, 95% CI 6

to 27; p = 0.0044)

NeoTrip [48] Phase III
n = 280

Neoadjuvant treatment
of stage II–III TNBC

Carboplatin plus
nab-paclitaxel with or
without atezolizumab
followed by adjuvant

anthracycline

pCR: 48.6% vs. 44.4%
(OR 1.18, 95% CI 0.74 to

1.89; p = 0.48)
EFS pending

GeparNuevo [49] Phase II
n = 174

Neoadjuvant treatment
of cT1b-cT4a-d TNBC

Durvalumab or placebo
plus epiru-

bicin/cyclophosphamide

pCR: 53.4% vs. 44.2%
(OR 1.45; 95% CI 0.80 to

2.63, p = 0.22)
3y DFS: 85.6% vs. 77.2%,

p = 0.036
OS: 95.2% vs. 83.5%,

p = 0.006

I-SPY2 [50] Adaptive Phase II
n = 250 (29 with TNBC)

Neoadjuvant treatment
of high-risk stage II–III

breast cancer,
including TNBC

Taxane and
anthracycline w/wo

pembrolizumab

pCR: 60% vs. 22% in the
TNBC cohort
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Table 3. Cont.

Neoadjuvant Trials

Trial Design Disease Setting Treatment Relevant Endpoint

Ongoing trials

GeparDouze
[51]

Phase III
n = 1520

Neoadjuvant plus
adjuvant treatment of
high-risk (cT2-3N0 or

cT1c-3N+) TNBC

NAT with
atezolizumab vs.

placebo plus
paclitaxel/carboplatin

followed by AC, six
months of

postoperative
atezolizumab or

placebo

EFS, pCR pending

Adjuvant trials

IMpassion030
[52]

Phase III
n = 2300

Postoperative
treatment of operable

stage II–III TNBC

Atezolizumab vs.
placebo plus

anthracycline/taxane
iDFS pending

SWOG S1418
[53]

Phase III
n = 1155

Postoperative
treatment of stage II–III

TNBC with residual
disease (>1 cm) or

lymph node-positive
disease (ypN+

including
micrometastatic

disease) after NAT

12 months of
pembrolizumab vs.

observation
postoperatively

iDFS pending

MIRINAE
[54]

Phase II
n = 284

Postoperative
treatment of TNBC

with residual disease
(>1 cm) or macroscopic
positive lymph nodes

(ypN+) after NAT

Capecitabine w/wo
atezolizumab 5y iDFS pending

Abbreviations: TNBC—triple-negative breast cancer, EFS—event-free survival, pCR—pathologic complete re-
sponse, NAT—neoadjuvant therapy, iDFS—invasive disease-free survival, w/wo—with or without.

Notably, the GeparNuevo study evaluating durvalumab/chemotherapy combination
in the neoadjuvant setting showed an improvement in 3-year DFS (85.6% vs. 77.2%,
p = 0.036) but no statistical differences in pCR rates [49]. However, the multivariable
analysis revealed a durvalumab effect independent of pCR effect. A unique aspect of this
study was the “window of opportunity” cohort who received two weeks of durvalumab
alone before the commencement of chemotherapy. Interestingly, patients in this cohort
experienced greater pCR benefits with Durvalumab.

Overall, these data have established the role of neoadjuvant ICIs in higher-risk early-
stage TNBC. More studies are vital to risk-stratify these patients to optimize treatment
recommendations while minimizing toxicity. Table 3 summarizes major clinical trials
with immunotherapy that are currently pending or have resulted in the neoadjuvant and
adjuvant setting.

2.2.2. Challenges and Future Directions

The approval of ICIs in early-stage TNBC has raised several questions. Despite the
success of pembrolizumab in the KN522 study, no biomarker has predicted the pattern of
response in patients with early-stage TNBC including PD-L1 level, unlike the metastatic
setting where PD-L1 level was somewhat predictive. A consistent benefit of ICI was noted
regardless of tumor size, age, carboplatin schedule, and performance status. Although
standard parameters have not so far helped in selecting patients for immunotherapy, novel
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markers, including circulating tumor DNA (ctDNA), have emerged as a relevant prognostic
marker in breast cancer [55,56] and their clinical value is now being investigated as potential
predictive biomarkers of ICIs and treatment resistance to maximize the personalized benefit
of ICIs.

Furthermore, the combination of pembrolizumab with prior standard therapies re-
mains a challenge. Adjuvant capecitabine in patients with residual disease following
NAT [33] and adjuvant olaparib in high-risk HER2-negative patients with BRCA1/2 muta-
tions [57] were not studied in the KN522 trial, where all patients received pembrolizumab
alone as adjuvant therapy irrespective of residual disease at surgery. To our knowledge,
there are no data on the efficacy and safety of concurrent or sequential capecitabine or
olaparib when combined with pembrolizumab in the adjuvant setting for patients with
residual disease post-NAT in early-stage TNBC. Although, safety data have been reported
for these combinations (capecitabine plus pembrolizumab; olaparib plus pembrolizumab)
in the metastatic setting. Based on best judgment and the currently available framework,
there is a proposition to use pembrolizumab with capecitabine in patients with residual
disease and pembrolizumab with olaparib for high-risk BRCA-mutant patients [58].

Next, it is also important to clarify if pembrolizumab is truly essential and efficacious
in the adjuvant setting, as ICIs come with the risk of immune-related adverse effects beyond
the toxicities of traditional chemotherapy and increased economic burden due to the high
cost of these medications. For instance, the GeparNuevo study only incorporated ICI in the
neoadjuvant setting and still demonstrated improved EFS, suggesting that ICIs may not
need to be continued in the adjuvant setting [48]. In that regard, OptimICE-pCR is designed
to study clinical outcomes, including invasive DFS of adjuvant pembrolizumab, compared
to no therapy in early-stage TNBC patients who have received NAT with pembrolizumab
and achieved pCR [59,60].

Furthermore, despite adjuvant pembrolizumab in KN522, EFS was only 67.4% in
patients with residual disease at surgery, with worse EFS in patients with higher residual
cancer burden (26.2% in patients with RCB-3) [61], highlighting the need to find alternative
treatment strategies in these patients. OptimICE-RD [NCT05633654] and the SASCIA trial
[NCT04595565] are evaluating the addition of sacituzumab govitecan in patients with
residual disease [62,63].

Finally, there are several ongoing efforts to evaluate the safety and efficacy of other
immunotherapeutic approaches in TNBC, including vaccine therapies, T-cell regulatory
immunomodulators, and chimeric antigen receptor-modified T (CAR-T) cell therapy in all
stages of TNBC [64]. Although several of these therapies have been studied in phase I and
phase II studies in the metastatic setting, they are being incorporated into the treatment
of early-stage TNBC as well. Of note, oncolytic virus therapy is a modality of treatment
that has shown promising efficacy in early-stage breast cancer. In a phase II clinical
trial, patients with early-stage TNBC received intratumoral Talimogene-laherparepvec (T-
VEC), an oncolytic virus, alongside neoadjuvant chemotherapy; 45.9% of patients achieved
a residual cancer burden index (RCB) of 0 (corresponding to pCR), whereas 65% had
RCB-I [65].

2.3. Targeted Agents

With the development of next-generation sequencing (NGS), novel targets have been
identified for patients with metastatic breast cancer but are still being explored in the
early-stage setting. TP53 mutations are the most frequent mutations (60–70%) commonly in
basal-like TNBC, followed by PIK3CA (~10%) seen often in LAR TNBC [4]. Other mutations
occur at a low (1–5%) to very low (<1%) frequency, some of which can be targetable, like
ERBB2 and BRAFV600E, through currently available therapies. Figure 1 depicts major
therapeutic targets in TNBC.
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2.3.1. PARP Inhibitors (PARPi)

TNBCs are often deficient in DNA Damage Response (DDR) pathways and display
high chromosomal instability [4]. Poly ADP-ribose polymerase (PARP) is vital for double-
strand break (DSB) repairs through the homologous recombination pathway [66]. In
tumors harboring a defect in the homologous recombination pathway, inhibition of PARP
enzymes leads to the accumulation of unpaired damages leading to cell cycle arrest and
death. Following success in the metastatic setting, PARP inhibitors have now emerged
in early-stage disease. Specifically, olaparib was approved by the FDA in March 2022
as adjuvant therapy for high-risk HER2 negative breast cancer with germline BRCA1/2
mutations based on the OlympiA trial, which demonstrated improvement in DFS (85.9%
vs. 77.1%, HR 0.68; 95% CI 0.50 to 0.91; p = 0.0091) and OS (HR 0.68; 98.5% CI 0.47 to
0.97; p = 0.009) [57,67]. Based on this study, expert consensus favors the use of olaparib
over capecitabine in germline BRCA carriers with high-risk TNBC and residual disease
following NAT, although there is no direct comparison between the two.

In the neoadjuvant setting, addition of veliparib, which has weak PARP-trapping
activity, to platinum/paclitaxel showed improved pCR rates in I-SPY2 compared to single-
agent paclitaxel (51% vs. 26% in TNBC) whereas pCR rates were comparable in the
BrighTNess trial between veliparib/platinum/paclitaxel and platinum/paclitaxel (53% vs.
58%, p = 0.36) [23,68]. This suggests that the increase in pCR seen in I-SPY2 could have
been related to platinum rather than veliparib and that there may not be a synergistic effect
between platinum and PARP inhibitors.

Subsequently, the NEOTALA study tested talazoparib monotherapy preoperatively
in BRCA1/2 mutated HER2 negative breast cancers showing pCR rates of 49%, which is
numerically comparable to those receiving neoadjuvant chemotherapy [69].
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In summary, neoadjuvant treatment with PARP inhibitor in BRCA-mutated TNBC may
influence pCR but there is no additional benefit in combining it with a platinum-containing
chemotherapy. None of the studies utilizing PARPi (Table 4) have shown compelling
evidence to currently use them in the neoadjuvant setting as a standard of care. More
research is required in terms of survival benefits, safety, and optimal patient population
before this can be accomplished.

Table 4. PARPi in early-stage TNBC.

Trial Trial Characteristics Setting Treatment Result

NEOTALA
[69]

Phase II, non-randomized,
single arm trial

Early-stage
gBRCA1/2-mutated
HER2- breast cancer

24 weeks of neoadjuvant
talazoparib monotherapy

1 mg daily followed
by surgery

pCR was 49%

GeparOLA
[70]

Phase II, randomized,
open-label trial

Early-stage HER2- breast
cancer with either

gBRCA1/2 mutation or
high HRD score

Neoadjuvant Paclitaxel
plus olaparib versus

paclitaxel plus carboplatin,
both followed by epiru-

bicin/cyclophosphamide

pCR was 55.1% vs. 48.6%
In TNBC subgroup, pCR

was 56% vs. 59.3%

I-SPY2
[71] Phase II, adaptive trial Stage II/III HER2- breast

cancer

Neoadjuvant Durvalumab,
olaparib, and weekly

paclitaxel vs.
chemotherapy alone

pCR in the TNBC group
higher (27–47%)

I-SPY2
[68] Phase II, adaptive trial >2.5 cm stage II/III HER2-

breast cancer

Neoadjuvant veliparib
with carboplatin plus taxol

vs. taxol

pCR rate was higher in the
TNBC group at 51%

vs. 26%.

BrighTNess
[23]

Phase III, randomized,
double-blind Stage II/III TNBC

One of three:
Taxol plus carboplatin

(AUC6) plus veliparib vs.
taxol plus carboplatin
(AUC6) plus veliparib
placebo vs. taxol plus

carboplatin placebo plus
veliparib placebo

pCR was 53% vs.
58% vs. 31%

Abbreviations: gBRCA1/2—germline BRCA 1 or 2 mutation, pCR—pathologic complete response,
HRD—homologous recombination deficiency, TNBC—triple-negative breast cancer, AUC—area under the curve.

2.3.2. PIK3CA/AKT1/PTEN Pathway

PI3K/AKT/mTOR pathway-associated mutations may be seen in TNBC. Although
there are no currently approved therapies in early-stage TNBC, this pathway has been
explored for potential therapeutic benefit [72]. It is most commonly activated by PIK3CA
mutations (9–18%), loss of PTEN (35%) or INPP4B (30%), and amplifications of PIK3CA
(43%) [72,73]. PIK3CA mutations are more common in mesenchymal or LAR subtypes [9,73].
Pre-clinical studies have demonstrated the role of PI3K/mTOR inhibitors in producing a
cytostatic effect, but, in combination with chemotherapy, resulted in cell death [74]. Results
from a phase II trial [NCT04216472] evaluating the combination of alpelisib and nab-
paclitaxel in anthracycline refractory TNBC with PIK3CA or PTEN alterations are awaited.

AKT1, AKT2, and AKT3 are closely related proteins that have downstream effects
and are potentially targetable. Ipatasertib, an AKT inhibitor, when added to neoadjuvant
chemotherapy in the FAIRLANE study, did not significantly increase the pCR rate in pa-
tients with early-stage TNBC [75]. However, the antitumor effect of ipatasertib seemed to be
more noticeable in patients with PIK3CA/AKT1/PTEN alterations based on unconfirmed
clinical responses.

Everolimus, an mTOR inhibitor, has been investigated in combination with cis-
platin/paclitaxel [76], and with docetaxel/5-FU/epirubicin/cyclophosphamide [77] in
neoadjuvant treatment for TNBC. There were no improvements in response rates in either
of the studies.

In summary, the efficacy of drugs against the PI3K/AKT/mTOR pathway in TNBC
has not lived up to the potential observed in the pre-clinical setting. This could be justified
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by the complex nature of the immune microenvironment and confounding molecular
alterations or parallel pathway activation resulting in a resistance mechanism that may
make accurate estimation of clinical benefit challenging. Secondly, the best actionable
target within this pathway may differ based on mechanisms of pathway activation and
escape feedback.

2.3.3. Androgen Receptor (AR) Pathway

AR expression is found in approximately 10–35% of TNBC [78], especially in the
LAR subtype. Although enzalutamide monotherapy [79], enzalutamide with PIK3CA
inhibitor [80], abiraterone, and bicalutamide [81,82] have shown modest results in advanced
TNBC, there are no conclusive data in the early-stage setting. A phase II trial evaluating
enzalutamide in combination with paclitaxel in the neoadjuvant setting in AR-positive
TNBC is currently underway [NCT02689427].

2.3.4. Receptor Tyrosine Kinase Family (HER2, VEGF)

HER2: A small subset of TNBC patients harbor somatic ERBB2 mutations [3]. In an
exploratory analysis of a cohort of the I-SPY2 trial treated with neratinib in TNBC, increased
EGFR Y1173 (p = 0.005) and HER2 Y1248 (p = 0.019) phosphorylation were a predictor of
pCR [83]. Additionally, neratinib in the neoadjuvant setting demonstrated pCR of 37.5%
which increased to 62.5% in patients displaying phosphorylation of HER2 or EGFR [84].

There is increasing evidence that close to 35% of TNBCs may be reclassified as HER2-
low [85], which has expanded therapeutic options in this subset. The encouraging results
in HER2 low-expressing breast cancer in the metastatic setting observed in the DESTINY-
Breast 04 study with the antibody–drug conjugate, trastuzumab deruxtecan, will likely
pave the way for the use of these agents in the early-stage setting [86].

VEGF: Several studies have assessed the utility of bevacizumab, a monoclonal an-
tibody targeting vascular endothelial growth factor A (VEGF-A) like the ARTemis and
GeparQuinto; they demonstrated improved pCR rates with the addition of bevacizumab to
chemotherapy especially in TNBC patients in the neoadjuvant setting [25,87]. However,
this did not translate into an OS benefit in either of the studies [88]. Similarly, CALGB
40,603 showed improved pCR in the breast with the addition of bevacizumab but not in
the axilla and had no impact on OS [8]. In the adjuvant setting, adding bevacizumab to
anthracycline or taxane-based chemotherapy did not show a difference in invasive DFS
or OS per the BEATRICE trial [89]. Hence, VEGF inhibitors are not currently considered
standard-of-care therapies.

Several other targets, including EGFR, FGFR, TROP-2, JAK/STAT3, and CDK4/6
pathways are being studied in early-stage TNBC. Of particular importance is sacituzumab
govitecan, an antibody–drug conjugate that has demonstrated success in the metastatic
setting and is now being extensively studied in the early-stage setting. Table 5 summa-
rizes some ongoing clinical trials studying targeted agents in the management of early-
stage TNBC.

Finally, several other novel molecular biomarkers are being identified in TNBC whose
therapeutic benefits are yet to be explored fully including Axl [90], Wnt pathway [91], and
paraoxanase-2 [92].
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Table 5. Ongoing pending trials with targeted treatments in early-stage TNBC.

Trial Phase Setting Treatment Primary Endpoint

EGFR NCT05177796 II Neoadjuvant
inflammatory BC

Panitumumab plus pembrolizumab
plus chemotherapy pCR

FGFR/VEGFR/PDGFR
NCT04427293 I Neoadjuvant Lenvatinib plus pembrolizumab Infiltration of

CD8+ TILs

NeoATCT
[NCT04914390] II Neoadjuvant Tislelizumab plus Anlotinib plus

anthracycline/nab-paclitaxel pCR

JAK2/STAT3

NCT02876302 II Neoadjuvant Ruxolitinib plus paclitaxel followed
by AC

Effect on
pStat3+ Expression

NCT02041429 II Neoadjuvant
inflammatory BC

Ruxolitinib plus paclitaxel followed
by AC

Maximum Tolerated
Dose

TROP2

NeoSTAR
[NCT04230109] II Neoadjuvant Sacituzumab govitecan pCR rate

SASCIA [NCT04595565] III Adjuvant, HER2- BC
with residual disease Sacituzumab govitecan iDFS

ASPRIA [NCT04434040] II Adjuvant TNBC with
residual disease

Atezolizumab and
Sacituzumab govitecan

Undetectable
circulating cfDNA

ASCENT-05
[NCT05633654] III Adjuvant TNBC with

residual disease

Sacituzumab govitecan plus
pembrolizumab vs. pembrolizumab

or pembrolizumab/capecitabine
iDFS

TROPION-Breast03
[NCT05629585] III Adjuvant TNBC with

residual disease
Datopotamab plus durvalumab vs.

Capecitabine w/wo pembrolizumab iDFS

CDK4/6

CAREGIVER
[NCT05067530] II Neoadjuvant

Palbociclib vs. paclitaxel vs.
palbociclib plus paclitaxel vs.
carboplatin vs. carboplatin

plus paclitaxel

Early metabolic
response

NCT03979508 II Neoadjuvant NAT, then abemaciclib,
then surgery

Change from
CD8/FOXP3 ratio <1.6

to >1.6 *

Abbreviations: pCR—pathologic complete response, iDFS—invasive disease-free survival, cfDNA—cell-free
DNA, TIL—tumor-infiltrating lymphocytes, NAT—neoadjuvant therapy, w/wo—with or without; * CD8/FOXP3
ratio is a novel indicator for monitoring immune function. High CD8/FOXP3 ratios are reported to have high
pCR rates in TNBC.

3. Advances in Surgery

Surgical management of breast tumors has undergone significant advances since the
initial description by Halsted in 1898. A better understanding of disease biology and
advances in systemic and radiotherapy have allowed for the de-escalation of surgery
without compromising oncologic outcomes. Although no surgical techniques are specific
to TNBC, advances in chemotherapy and immunotherapy have led to changes in timing
and more importantly, the extent of surgery. Therefore, advances in surgery for TNBC are
in principle safe de-escalation and omission of surgical procedures.

Over the past few decades, NAT regimens have been increasingly adopted for patients
with TNBC. As discussed previously, the use of NAT provides prognostic information
from tumor response assessed on surgical pathology, which is used to stratify patients
for additional adjuvant therapy. Additionally, NAT is well established to increase patient
eligibility for breast conservation and more recently is being used to downstage the axilla
to avoid axillary lymph node dissections (ALND); these effects are most pronounced for
TNBC compared to other subtypes [93,94]. ALND is associated with significant risks of
neuropathy, lymphedema, and arm dysfunction [95,96]. Despite early concerns about the
potential to miss residual nodal disease after NAT, several groups have demonstrated the
ability to identify residual nodal disease with acceptable false negative rates in patients
with clinically node-positive disease who are treated with NAT. The ACOSOG Z1071
trial showed that in clinically node-positive patients treated with NAT, the false negative
rate of outback sentinel lymph node biopsy (SLNB) was under 10% with dual tracer
and three or more recovered nodes [97], which was similar to the SENTINA trial which
showed a reduction in false negative rate with increased nodal recovery [98]. The MD
Anderson group adopted an approach of retrieving the previously biopsied clipped node,
which demonstrated improved performance over the sentinel node alone [99]. This has
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been independently validated in another study [100]. Although performance metrics
with the retrieval of the clipped node are improved over SLNB alone, oncologic safety of
axillary staging using SLNB alone has been shown. In a prospective observational study of
patients with clinically node-positive breast cancer treated with NAT where ALND was not
completed if sentinel nodes were negative and SLNB was performed with dual tracer and
a minimum of three nodes recovered, the nodal recurrence rate was under 1% at a median
follow up of 40 months [101].

The accuracy of axillary staging after NAT and the potential to avoid ALND in patients
with good response to systemic therapy has led to significant interest in optimizing systemic
regimens to maximize nodal clearance rates. In the BrighTNess trial, patients were treated
with doxorubicin/cyclophosphamide followed by taxol and randomized to the addition of
carboplatin, demonstrating increased nodal clearance with the addition of carboplatin [26].
Quickly following BrighTNess, KN522 showed that the addition of pembrolizumab further
increased the rate of nodal disease clearance [45]. As rates of nodal clearance increase and
thereby increase the prevalence of true negatives, the potential burden of false negatives is
depleted; however, establishing a clinically actionable threshold whereby accurate post-
chemotherapy axillary staging is no longer necessary, will prove to be challenging.

With improved responses, two important horizons remain for de-escalation of surgery
in patients following neoadjuvant chemotherapy. First, as trials demonstrate that micro-
scopic node-positive disease is not a driver of recurrence or survival [95,102], the benefit
of routine axillary lymph node dissection for patients with residual node-positive disease
after neoadjuvant chemotherapy is being questioned. Concerns remain that this represents
a population of patients enriched for chemotherapy-resistant disease who are at increased
risk for regional failure if surgical clearance of regional lymph nodes is omitted. Supporting
the safety of this approach, regional nodal irradiation is recommended for all patients with
known nodal disease prior to neoadjuvant. The Alliance 11,202 trial [NCT01872975] is
ongoing to address the benefit of routine ALND in patients with residual node-positive
disease after NAT vs. nodal irradiation alone [103]. Second, and perhaps representing
the pinnacle of systemic therapy for solid organ tumors, is the question of whether all
patients with TNBC treated with NAT need surgery at all. The pCR rate was 65% in KN522,
and these high rates of complete response have led investigators to question whether
resection is needed for patients with evidence of response. Kuerer et al. reported the
omission of surgery in patients with TNBC and HER2-positive breast cancer who had ex-
ceptional responses to NAT, measured radiographically and with post-NAT percutaneous
biopsies [104]. They found that in 21 patients with TNBC where surgery was omitted,
there were no recurrences at a median follow-up of 26 months. Several hurdles remain for
the implementation of this strategy, including radiographic follow-up and the significant
burden of post-NAT percutaneous biopsies to determine response. Therefore, the success
of strategies omitting surgery will rely heavily on predicting which patients are most
likely to have complete responses. As improved regimens demonstrate higher pCR rates,
the omission of surgery will become increasingly more feasible. This also represents an
important area of future investigation, as more precise regimens could help increase the
number of patients who can avoid surgery altogether.

Figure 2 demonstrates the pivotal advances in surgical management of breast cancer.
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4. Tumor Heterogeneity and the Future of Precision Medicine

Personalized treatment options for TNBC patients are limited by the lack of targeted,
patient-specific therapies available in the clinic [105]. A grand challenge in finding these
personalized treatments is understanding the extent to which tumor heterogeneity impacts
treatment response. Tumor heterogeneity is a “black box” term used in cancer research to
indicate how variable a patient’s tumor is in the context of spatial (regional) and molecular
variability [106]. The fact that we lack quantitative and systematic methods to explain this
variability in concrete terms is a major obstacle impacting treatment outcomes. Distinct
subpopulations can be inherently resistant to treatment or primed for developing adaptive
resistance [106]. Ultimately, the more heterogeneous a tumor, the higher the likelihood
of resistance and poorer prognosis. Each level of heterogeneity contributes significantly
to our understanding of how human tumors respond to therapy, but without methods to
integrate these levels appropriately and effectively, we are limited in the practical use of
this knowledge.

Incorporating tumor heterogeneity into the vision of precision medicine means estab-
lishing clinical care that: (1) incorporates knowledge related to intertumoral heterogeneity;
(2) assesses how likely a patient will respond to a treatment, given the genetic and molecu-
lar profile of their tumor; (3) determines how effective a treatment will be (e.g., how likely
the tumor will develop resistance) based on intratumoral heterogeneity of their tumor
biopsy. Having an individualized roadmap for each patient that considers comprehensive
molecular profiling will enable matching patients to precision clinical trials and, ultimately,
a clinician’s ability to match tumors to therapeutics. Such molecular biomarkers of response
will enrich responding populations, reduce toxicity, and identify patients needing improved
strategies.

Biomarker discovery has benefited from the incredible advances in the fields of ge-
nomics and computer science over the last decade. DNA sequencing, transcriptomics,
and proteomics datasets are now available for over 11,000 tumors in the Cancer Genome
Atlas, of which 1084 are breast cancer tumors and 171 are TNBC subtypes. In addition
to tumor data, nine types of multi-omics data have been collected on over 2000 cancer
cell lines [107,108], which includes DNA sequencing, functional genomics profiles (tran-
scriptomics, epigenomics, proteomics, metabolomics, etc.), and perturbation screens (drug
treatment and CRISPR-mediated knockdown). Of the 2000 cell lines, 31 are TNBC cell lines.
Novel single-cell sequencing datasets are also becoming available, both in breast cancer
cell lines [109–111] and tumors [112]. Where bulk sequencing offers an average picture
of cellular activities, single-cell sequencing provides a comprehensive view at single-cell
resolution, thereby directly probing intratumoral heterogeneity. Recently, a study has been
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published demonstrating that both bulk RNA-seq and ssRNA-seq can be simultaneously
collected on 26 breast cancer primary tumors [112]. These are exciting advances because
RNA when analyzed without other molecular profiling data, can be used for clinically
useful predictors of recurrence and response to therapy in breast cancer [113–115].

Although this is a significant step in the right direction, there remains a significant
opportunity for more global big data analyses that can increase precision in prognostication
and prediction of response to therapy, especially in TNBC breast cancer. One of the grand
challenges of the field of genomics and systems biology is to expand multi-omic datasets
collected for primary breast cancer tumors to include additional data types, such as single-
cell RNA sequencing and single-cell ATAC-seq [116]. The technical capacity to perform
multiple bulk and single-cell genomics assays on individual pre-treatment breast cancer
samples could transform our ability to determine heterogeneity in molecular features that
drive therapeutic response and individualize treatment regimens. To accomplish this,
enough tissue must be extracted from a biopsy to ensure that high enough quality data can
be generated. But what is enough tissue? And what data types will be most informative?
These questions demand further testing and will require changes in the way patient data
are collected and the way clinical trial experiments are designed.

Incorporating multi-omic approaches to guide diagnosis, treatment, and clinical trial
design is the future of precision medicine. It is expected to improve the prediction of
response in patients with breast cancer and especially TNBC, due to the ability to tease
out intratumoral heterogeneity. Studies incorporating these datasets have the potential to
elucidate mechanisms of response and resistance, which can be used to select patients for
treatment strategies and uncover more effective treatment strategies for non-responders.

5. Conclusions

In conclusion, TNBC remains a heterogenous disease; tremendous progress has been
made especially pertaining to early-stage TNBC management. One of the most promising
modalities has been the use of immune checkpoint inhibitors; however, questions remain
regarding the ideal patients suitable for therapy, optimal chemotherapy partners, the
role of postoperative systemic therapy, and biomarkers that predict response early in the
treatment course.

Similarly, advances in tumor characterization have allowed for several promising
targeted agents, including antibody–drug conjugates on the horizon. However, the optimal
way of integrating these agents for treatment combinations is challenging. The TNBC
treatment landscape remains an evolving area that represents the crucial relationship
between laboratory and clinical research.
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