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While ample research on independent associations between infant cognition 
and gut microbiota composition and human milk (HM) oligosaccharides (HMOs) 
has been reported, studies on how the interactions between gut microbiota and 
HMOs may yield associations with cognitive development in infancy are lacking. 
We aimed to determine how HMOs and species of Bacteroides and Bifidobacterium 
genera interact with each other and their associations with cognitive development 
in typically developing infants. A total of 105 mother-infant dyads were included 
in this study. The enrolled infants [2.9–12 months old (8.09 ± 2.48)] were at least 
predominantly breastfed at 4 months old. A total of 170 HM samples from the 
mothers and fecal samples of the children were collected longitudinally. Using 
the Mullen Scales of Early Learning to assess cognition and the scores as the 
outcomes, linear mixed effects models including both the levels of eight HMOs 
and relative abundance of Bacteroides and Bifidobacterium species as main 
associations and their interactions were employed with adjusting covariates; 
infant sex, delivery mode, maternal education, site, and batch effects of HMOs. 
Additionally, regression models stratifying infants based on the A-tetrasaccharide 
(A-tetra) status of the HM they received were also employed to determine if the 
associations depend on the A-tetra status. With Bacteroides species, we observed 
significant associations with motor functions, while Bif. catenulatum showed a 
negative association with visual reception in the detectable A-tetra group both as 
main effect (value of p = 0.012) and in interaction with LNFP-I (value of p = 0.007). 
Additionally, 3-FL showed a positive association with gross motor (p = 0.027) and 
visual reception (p = 0.041). Furthermore, significant associations were observed 
with the interaction terms mainly in the undetectable A-tetra group. Specifically, 
we observed negative associations for Bifidobacterium species and LNT [breve 
(p = 0.011) and longum (p = 0.022)], and positive associations for expressive 
language with 3′-SL and Bif. bifidum (p = 0.01), 6′-SL and B. fragilis (p = 0.019), and 
LNFP-I and Bif. kashiwanohense (p = 0.048), respectively. Our findings suggest that 
gut microbiota and HMOs are both independently and interactively associated 
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with early cognitive development. In particular, the diverse interactions between 
HMOs and Bacteroides and Bifidobacterium species reveal different candidate 
pathways through which HMOs, Bifidobacterium and Bacteroides species 
potentially interact to impact cognitive development in infancy.

KEYWORDS

human milk, infant gut microbiota, early cognitive development, Mullen Scales of Early 
Learning, human milk oligosaccharides, random linear mixed effects model, group LASSO

1. Introduction

Over the last few decades, there has been an increase in studies 
examining the effects of the gut microbiome on the health of the host 
(1–23). Numerous studies in both animals and humans have identified 
connections between the gut microbiome and various health aspects 
(10). These include cognition (23), obesity, cardiovascular diseases, 
intestinal conditions, immunity (1, 4, 5, 15), as well as mental health 
such as depression, anxiety (3, 7, 8, 12, 14, 16, 18, 19), and emotional 
behaviors (9). A lack of exposure to diverse microorganisms could 
lead to an increased risk of allergic diseases (15). Rogers et  al. 
investigated the bidirectional relationship between gut microbes and 
the central nervous system. They found that treating mother-deprived 
rats with Bifidobacterium infantis normalized their immune response, 
and that exposing mice with gastrointestinal inflammation and 
infection to Bifidobacterium longum normalized their anxious 
behavior (6). Carlson et  al. (22) reported that the Bacteroides-
abundant cluster had improved early learning composite score and 
language related scales. Finally, on the species level, Savignac et al. (3) 
showed that the mice fed with Bifidobacterium longum or 
Bifidobacterium breve exhibited improved cognition when compared 
to the controls.

Although the aforementioned results have demonstrated the 
interplay between the gut microbiome and the host’s health, Zafar and 
Saier pointed out the potential beneficial effects of Bacteroides when 
metabolizing polysaccharides and oligosaccharides. Bacteroides serves 
as an immunomodulator, and provides nutrients and vitamin K to 
both the host and other intestinal microbial residents (1). In addition, 
among the species in the Bacteroides genus, the B. fragilis and 
B. vulgatus species are also known to metabolize human milk 
oligosaccharides (HMOs) (24–26). Many studies have also examined 
the associations between HMOs and Bifidobacterium species, which 
are well-known consumers of HMOs as prebiotics. For example, 
Matsuki et al. (27) showed that some Bifidobacterium breve strains use 
fucosyllactose in breast-fed infants, leading to higher Bifidobacterium 
abundance and metabolic signatures characteristic of higher 

Bifidobacterium metabolic activity. Collectively, these findings strongly 
support the potential interactions between specific gut microbes and 
HMOs, providing insight into how different HMOs may alter infant 
gut microbiota composition and function (2, 28–32).

Human milk oligosaccharides, on the other hand, have also been 
independently studied regarding their potential health benefits, 
including cognition during infancy. Specifically, 3′-(3′-SL) and 
6′-sialyllactose (6′-SL), and 2′-fucosyllactose (2′-FL), were shown to 
improve and/or be associated with general cognitive ability (33–37), 
motor skills (36), learning (36, 38–42), language (21), spatial cognition 
ability (43), and anxiety reduction (44). Jorgensen et al. reported that 
infants receiving human milk (HM) high in either sialylated or 
fucosylated HMOs exhibited increase in language abilities at 
18 months (45). Cho et al. further extended their findings and showed 
that 3′-SL had positive associations with language abilities in 
breast-fed infants who received HM containing detectable 
A-tetrasaccharide (A-tetra) during infancy (21).

Given these findings, it is highly plausible that a triad relation 
exists among gut microbiota, HMOs, and cognition during early 
infancy. That is, both gut microbiota and HMOs could independently 
and/or through the interactions of the two yield associations with 
cognitive development in infants. To this end, we aimed to discern if 
the potential interactions between HMOs and specific gut microbiota 
species in the Bifidobacterium and Bacteroides genera, are associated 
with cognition assessed using Mullen Scales of Early Learning (MSEL) 
(46) during infancy. Specifically, we hypothesized that while HMOs 
and species of Bifidobacterium and Bacteroides may be independently 
associated with cognition, the interactions between them could also 
be associated with different aspects of cognitive development during 
the first year of life. Additionally, recent reports suggested that the 
presence/absence of A-tetra in HM depends on the secretor status and 
blood group (A or AB) (47–49), which could potentially influence the 
results of this triad association. In a study by Cho et al., it was found 
that the association between HMOs and cognition depended on the 
presence or absence of A-tetra in HM (21). Therefore, we  further 
hypothesized that the associations with cognition with the identified 
interactions between HMOs and gut microbiota may also depend on 
the presence or absence of A-tetra in the HM that infants received.

2. Materials and methods

2.1. Study subjects

Parents enrolled in this study provided written informed consent 
for the participation of both themselves and their infants. The 

Abbreviations: 2′-FL, 2′-Fucosyllactose; 3-FL, 3-Fucosyllactose; 3′-SL, 

3′-Sialyllactose; 6′-SL, 6′-Sialyllactose; A-tetra, A-Tetrasaccharide; A-tetra+, 

Detectable A-tetrasaccharide; A-tetra−, Undetectable A-tetrasaccharide; ES, Effect 

size; HM, Human milk; HMO, Human milk oligosaccharide; LASSO, Least absolute 

shrinkage and selection operator; LMEM, Linear mixed effects model; LNT, Lacto-

N-tetraose; LNnT, Lacto-N-neotetraose; LNFP-I, Lacto-N-fucopentaose-I.; MoA, 

Mechanisms of Action; MSEL, Mullen Scales of Early Learning; SCFA, Short-chain 

fatty acids.
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University of North Carolina at Chapel Hill and University of 
Minnesota Institutional Review Boards approved all study activities. 
Using site-based research registries, subjects were enrolled from both 
universities. Local newborn nurseries, institutional centers with 
research interest on early brain development, local flyers, and 
university listservs were additionally used for recruitment. The 
inclusion criteria were: (1) birth at 37–42 weeks of gestational age; (2) 
appropriate birth weight for gestational age; and (3) no major 
pregnancy and delivery complications. The exclusion criteria included: 
(1) adopted child; (2) presence of autism, intellectual disability, 
schizophrenia, or bipolar disorder related first degree; (3) less than 
2 kg of birth weight; (4) neonatal hypoxia (10 min APGAR <5); (5) 
having illness requiring more than 2 days of newborn intensive care 
unit stay; (6) chromosomal or major congenital abnormality; (7) 
abnormal magnetic resonance in previous MRI; (8) significant 
developmental delay or medical illness, or significant genetic or 
medical conditions impacting growth, development, or cognition 
(including visual/hearing impairment); (9) contraindication in MRI; 
and (10) maternal pre-eclampsia, HIV status, placental abruption, and 
alcohol or illicit drug use during pregnancy. Finally, additional 
inclusion criteria for subjects included in this study were infants 
younger than 12 months old and exclusively/predominantly breastfed 
during the first 4 months of life, defined as the infants who were fed 
less than 20 g or four teaspoons per day of complementary foods/
liquids (water, apple juice, etc.), and non-formula.

2.2. Human milk collection and analyses

Human milk samples were obtained from the right breast using a 
hospital-grade, electric Medela Symphony breast pump at each visit. 
To ensure that the collected HM samples represented HM composition 
at each feeding, the samples were gathered until no more HM was 
expressed. Additionally, whenever possible, HM samples were 
standardized to the second feed of the day so that the diurnal variation 
of HM compositions could be minimized. The weight and volume of 
the samples were recorded and then vortexed at the highest speed for 
2 min. A graduated cylinder was used for volume measurement with 
extra care to avoid bubbles. The total fat content was then measured 
using mid-infrared spectroscopic analyses (MIRIS Human Milk 
Analyzer) to ensure that the total fat content, which indicates the 
quality of milk sampling, was within the expected range of 
2.5 mL. Lastly, from the collection bottle, an aliquot of the minimum 
30 mL of volume was transferred to a 50 mL polypropylene Falcon 
tube. Repeat pipette and appropriate tips were used to make 11 
aliquots of 1 mL in 1 mL Eppendorf tubes, and nine aliquots of 2 mL 
in 2 mL Eppendorf tubes for storage in a − 80°C freezer after the 
collection was done.

For HMO quantifications, a representative 1 mL aliquot of HM 
was shipped to Neotron Spa (Italy) on dry ice. HMO analyses were 
done following Austin and Benet (50). Analyses were done using 
liquid chromatography with fluorescence detection after labeling with 
2-aminobenzamide. HMOs were quantified using a standard ultra-
high liquid chromatography (UHPLC) system. The system was 
equipped with a fluorescence detector, which is a two-way 10 port 
high pressure switching valve and two columns, a VanGuard BEH 
amide (1.7 μm, 2.1 mm × 50 mm; Waters Corp., Milford, United States) 
and an Acquity BEH Glycan (1.7 μm, 2.1 mm × 150 mm; Waters Corp., 

Milford, United States). Neotron used the method developed by the 
Nestlé Research team, which is ISO17025 certified and a reference 
human milk sample was included in their analyses to ensure the 
correct performance of the method. Using standard curves with 
authentic high purity HMO standards, the following eight HMOs 
were quantified: 2′-FL, 3-FL, 3′-SL, 6′-SL, Lacto-N-tetraose (LNT), 
Lacto-N-neotetraose (LNnT), Lacto-N-fucopentaose-I (LNFP-I), and 
A-tetra (Elicityl SA., Crolles, France). Each analyzed batch of samples 
were quality controlled. After every 20 samples, quality control 
samples were included to verify the method performance by allowing 
only the deviations within ±15% from the expected amounts.

2.3. Infant gut microbiota composition and 
analyses

Stool samples were collected from children’s diapers using the 
Omnigene Gut sample collection kit (DNA GenoTek, Ontario, 
Canada) 24 h before, during, or after in-person visits. The collected 
samples should be stable for up to 60 days in a collection tube and 
were processed within a week using the following steps. Fecal samples 
were loosened by placing them in a dry bead bath. A sterile transfer 
pipette was used to transfer a fecal sample into Eppendorf tubes. The 
fecal sample was then evenly split between two 1.5 mL Eppendorf 
tubes, frozen immediately, and stored in a − 80°C freezer. Finally, all 
collected fecal samples were shipped to CosmosID Inc. (Germantown, 
MD, United States) for further analyses as detailed below.

2.4. DNA extraction, library preparation, 
and sequencing

Following the manufacturer’s protocol, using the QIAGEN 
DNeasy PowerSoil Pro Kit (Qiagen, Germantown, MD, United States), 
DNA from samples was isolated. Quantification of the extracted DNA 
samples was done using Qubit 4 fluorometer and Qubit™ dsDNA HS 
Assay Kit (Thermofisher Scientific, MA, United States).

Preparation of DNA libraries was done using the Nextera XT 
DNA Library Preparation Kit (Illumina, San Diego, CA, United States) 
and IDT Unique Dual Indexes with total DNA input of 1 ng. Using a 
proportional amount of Illumina Nextera XT fragmentation enzyme, 
genomic DNA was fragmented. To each sample, unique dual indexes 
were added and then libraries were constructed after 12 cycles of 
PCR. With AMpure magnetic Beads (Beckman Coulter, Brea, CA, 
United States), DNA libraries were purified and eluted in QIAGEN EB 
buffer. Libraries were then sequenced on an Illumina NovaSeq 6000 
System with S4 Flow Cell.

2.5. Bioinformatics analysis

Unassembled sequencing reads were directly analyzed using 
CosmosID-HUB Microbiome Platform (CosmosID Inc., 
Germantown, MD, United States). In short, the platform employed 
curated genome databases together with a high-performance data-
mining algorithm allowing rapid disambiguation of hundreds of 
millions of metagenomic sequence reads into the discrete 
microorganisms engendering the particular sequences.
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Raw data were backed up to Amazon AWS and run through fastqc 
for quality checks upon data generation. A multiqc report was 
generated to ensure the conformation of read depth thresholds, and 
to check that there was no abnormality with read quality, duplication 
rates, or adapter content. Taxonomic results were checked on the 
http://app.cosmosid.com platform to ensure no contamination nor 
barcoding issues. For statistical significance of the results, the filtering 
threshold was based on statistical scores determined by analyzation of 
a large number of diverse metagenomes.

Relative abundance of species of Bifidobacterium and Bacteroides 
was employed for our analyses. To avoid biases from outliers, the 
double median absolute deviation approach (51) was employed to 
remove outliers. Subsequently, relative abundance of each species was 
summed over all the samples from all the subjects and only the species 
with a summation greater than one were used in our analyses since 
including species with infinitesimal abundance does not convey much 
information and could hamper the efficiency of the analysis with an 
unnecessarily larger number of variables.

2.6. Mullen Scales of Early Learning

The MSEL, a validated and widely used infant cognitive 
development assessment tool, comprises of five subdomains: fine 
motor, gross motor, visual reception, receptive language, and 
expressive language (46). An early learning composite score which is 
consistent with the Developmental Quotient score for infants was 
derived using all subdomain scores excluding gross motor. Trained 
staff administered the MSEL assessment at every visit.

2.7. Statistical modeling and analyses

The R version 4.0.3 (The R Foundation for Statistical 
Computing, Vienna, Austria) was used for all statistical analyses. 
Relative abundances of the selected species were used based on the 
aforementioned criteria. Interaction terms were included to capture 
the dependence between infant gut microbiota and HMOs. The 
relative abundances and the HMO concentrations were first 
standardized to ensure fair comparisons among all gut microbiota 
species and HMOs prior to subsequent analyses. We  fitted the 
following models to examine the relationship between cognition, 
HMOs and gut microbiota: an unstratified model and two stratified 
models based on A-tetra status in HM. The unstratified model used 
the eight HMO concentrations from all study subjects. Thus, the 
estimated effects were associations between HMOs and infant 
cognition. In contrast, the stratified models only used the HMO 
concentrations from a subgroup of the subjects. Thus, the estimated 
effects captured the associations between infant cognition and 
HMOs from homogeneous subjects depending on the A-tetra 
status. For example, in the A-tetra+ stratified model, the HMO 
concentrations were used for association analyses for infants whose 
mothers produced HM with detectable A-tetra, but not for infants 
whose mothers did not. Microbiota relative abundances were used 
for all infants, but interaction terms between HMO and microbiota 
species were only included for those fed with HM with detectable 
A-tetra. Similarly, the A-tetra-stratified model included HMOs 

from only the infants with mothers with undetectable A-tetra 
HM. Collectively, if consistent significant associations were 
observed for all three models, it implied that the associations were 
independent of the A-tetra status or otherwise the associations 
depended on the A-tetra status.

All models were adjusted for infant sex, delivery mode, maternal 
education, site, and batch of HMO analyses.

Unstratified
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HMO MB HMO MB
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+ + + × +
β β
β β γ
0 1
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Here, HMO and MB correspond to the eight HMO quantifications 
and the relative abundances of the species from Bifidobacterium and 
Bacteroides genera, respectively. In the stratified models, 
HMO(Atetra+) and HMO(Atetra−) indicate HMO as a function of 
A-tetra status, where HMO(Atetra+) represents the HMO 
quantifications from the HM with detectable A-tetra (> the limit of 
detection of 4.4 mg/L), and vice versa. Furthermore, a binary indicator 
representing if the HM samples contained detectable [I(Atetra+)] or 
undetectable [I(Atetra−)] A-tetra was included for the stratified 
models and I(Atetra+) = 1 when the HM samples were used for 
A-tetra+ subjects, and 0 for the A-tetra-subjects and vice versa for 
I(Atetra−).

2.8. Variable selection via group LASSO

Finally, to determine how HMOs and gut microbiota and their 
interactions may be associated with cognition, a two-step approach 
was employed, which included variable selection and regression 
analyses. Specifically, the group least absolute shrinkage and 
selection operator (LASSO) (52) was first used for variable selection 
of HMOs, microbiota species and their interactions for subsequent 
regression analyses. The widely used LASSO uses a penalty 
parameter for each variable to select variables and attains model 
parsimony (53). While the group LASSO also utilizes the same 
concept, one fundamental difference is that the penalties are given 
to a group of variables instead of each variable (52). That is, 
variables are either selected as a group or not. By applying group 
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LASSO to the interaction models, the corresponding main 
associations were always chosen when an interaction term was 
selected so that the model could be  interpreted. This step was 
needed to reduce dimensionality of the included variables and 
minimize overfitting. The penalty parameter, which influences the 
selection of the variables, was chosen using 10-fold cross-validation 
so that it has the best prediction error (54). Since randomness was 
introduced from the cross-validation, 200 repetitions were done in 
our study to ensure that the observed results were stable. If the final 
selected model did not include any interaction terms, the main 
associations with all eight HMOs and gut microbiota relative 
abundances were used for subsequent regression analyses. The 
adjusting covariates were always included in the linear mixed effects 
model so that these factors could be controlled in the analyses. 
Finally, linear mixed effects models were fitted with the chosen 
variables to account for the longitudinal data (55, 56). The 
dependence within a subject was captured with a random intercept 
for each infant.

3. Results

3.1. Subject demographics and descriptive 
data

A total of 105 mother-infant dyads were included in this study. 
The infants aged between 2.9 and 12 months old (mean and standard 
deviation of age: 8.09±2.48 months). Of the 105 mother-infant dyads, 
60 visited once while the remaining subjects had at most four visits, 
leading to a total of 170 MSEL assessments and fecal samples from the 
infants and 170 HM samples from the mothers. The demographic 
information of the study subjects and the MSEL are provided in 
Tables 1, 2, respectively. Except for the expressive language score 
(p = 0.03, A-tetra+: 51.82, A-tetra-: 54.83 mean scores), the MSEL 
scores were statistically similar between the A-tetra+ and 
A-tetra-groups.

Since Bifidobacterium and Bacteroides are the two most 
abundant genera in the infant gut microbiota and their potential 
interaction with HMOs has been widely reported (1, 2, 24–32, 57–
62), our analyses focused on these two genera. A total of 37 and 59 
species including unspecified species were obtained from the 
Bifidobacterium and Bacteroides genera, respectively. As indicated 
in the Methods section, only the species with a summation of 
relative abundance over all samples greater than one were used in 
our analyses, yielding a total of 12 species, including five Bacteroides 
and seven Bifidobacterium species. We used B. and Bif. to represent 
Bacteroides and Bifidobacterium when species were indicated 
hereafter, respectively. Figure 1 shows the temporal characteristics 
of the pseudo-log-scaled relative abundance of the 12 species and 
results of the remaining species are provided in 
Supplementary Figure 1. The black and light blue circles represent 
A-tetra+ and A-tetra-HM samples, respectively. Evidently, Bif. 
longum, Bif. bifidum, and Bif. breve exhibited a markedly higher 
relative abundance than other species in genus Bifidobacterium 
whereas B. vulgatus, B. dorei, and B. fragilis were higher than the 
remaining two species in genus Bacteroides (Figure 2; Table 3). The 
strip chart for all the 96 species in Bifidobacterium and Bacteroides 
genera is provided in Supplementary Figure  2. The relative 
abundances of Bif. longum and Bif. breve were negatively associated 
with age [effect size (ES) = −0.91 and − 0.41 with p = 0.004 and 
0.012, respectively] while Bif. catenulatum and B. vulgatus were 
positively associated with age (ES = 0.01 and 0.26 with p = 0.023 and 
0.035, respectively). We further evaluated if a nonlinear relationship 
between relative abundance and age was present by including an 
additional quadratic age term in the analyses and none exhibited 
such relationship. Finally, no difference was observed for the 
standardized relative abundance among the 12 included species 
between A-tetra+ and A-tetra-HM samples (Table 3).

Figure 3 shows the HMO concentrations for all HM samples and 
grouped by post-partum ages: 2.9–4, 4–8, and 8–12 months, both with 
and without stratification based on the A-tetra status, respectively. The 
temporal variations of HMO concentrations in relation to post-
partum ages are evident. In general, 3-FL, 3′-SL, and A-tetra have an 
increasing trend and 2′-FL, 6′-SL, LNFP-I, LNnT, and LNT have a 
decreasing trend by post-partum age. There were no statistically 
significant differences observed for each HMO between the A-tetra+ 
and A-tetra− groups across all post-partum age bins. More detailed 
information of the measured HMO concentrations shown in Figure 3 

TABLE 1 Demographic information of the participants.1

Total A-tetra+ A-tetra− p 
value2

Subjects 105 

subjects 

(170 

samples)

36 subjects 

(61 samples)

69 subjects 

(109 

samples)

Sex (male) 40 (38%) 15 (42%) 25 (36%) 0.59

Age (months) 8.08 

(2.48)

8.13 (2.67) 8.06 (2.38) 0.863

Birth weights (kg) 3.57 

(0.45)

3.61 (0.46) 3.55 (0.44) 0.54

Birth lengths (cm) 51.97 

(2.54)

52.15 (2.62) 51.87 (2.51) 0.62

Gestation age 

(months)

9.30 

(0.26)

9.30 (0.23) 9.30 (0.30) 0.98

Vaginal birth 83 (79%) 27 (75%) 56 (81%) 0.48

Household 

Income (n)

< 50 k 5 2 3 0.24

50–

75 k

21 6 15

75–

100 k

18 3 15

100–

150 k

32 13 19

150–

200 k

16 6 10

200 k 

<

11 4 7

Mother education (at 

least some graduate 

level)

64 (61%) 21 (58%) 43 (62%) 0.70

1Means or counts and standard deviations in parentheses.
2p values from the t-test or Chi-square test of independence (household income) for 
comparing between detectable (A-tetra+) and undetectable (A-tetra−) A-tetrasaccharide 
groups.
3p value calculated as treating each sample to be independent.
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was provided in the Supplementary Table 1. With the exception of 
3-FL (p = 0.01, A-tetra+: 1243.26, A-tetra−: 1550.97 mean 
concentrations), the remaining seven HMOs did not show significant 
difference between the A-tetra+ and A-tetra− groups.

3.2. Specific HMOs, microbial taxa and their 
interactions associate with cognition

Figure  4 shows a summary of the main associations between 
HMOs, Bifidobacterium species, Bacteroides species, and their 
respective interactions in association with cognition. To clearly 
summarize our results, we first provided the associations between 
HMOs and cognition, as well as microbiota and cognition separately, 
followed by the results of their interactions in association with 
cognition below.

3.2.1. Associations between HMOs and cognition
Expressive language had significantly negative association with 

A-tetra (p = 0.026; ES = −2.15) using the unstratified model, suggesting 
that infants fed with HM containing a high concentration of A-tetra 
exhibited a lower expressive language score. Additionally, significantly 
positive associations were observed between 3-FL with visual 
reception (p = 0.041, ES = 6.34) and gross motor (p = 0.027, ES = 7.67) 
in the subjects who received HM with detectable A-tetra (A-tetra+ 
stratification), indicating that these associations depended on the 
A-tetra status.

3.2.2. Associations between gut microbiota and 
cognition

Regardless of the A-tetra status, a higher relative abundance of 
B. fragilis and B. vulgatus was significantly associated with a higher 
gross motor score (B. fragilis: unstratified, A-tetra+, and A-tetra−; 
p = 0.017, 0.031, and 0.023; ES = 1.89, 1.75, and 1.69 and B. vulgatus: 
unstratified, A-tetra+, and A-tetra−; p = 0.03, 0.039, and 0.027; 
ES = 1.70, 1.58, and 1.73, respectively). In contrast, fine motor showed 
significant positive association with B. ovatus in both unstratified and 
A-tetra+ stratified models (p = 0.032 and 0.033; ES = 1.94 and 2.15, 
respectively), indicating that a higher relative abundance of B. ovatus 
was associated with a higher fine motor score. Although both 
unstratified and A-tetra+ stratified models showed significant 
associations, the association using the unstratified model was most 
likely driven by the A-tetra+ group and suggested that the observed 

association was distinct among infants who were fed with HM with 
detectable A-tetra.

Finally, a higher visual reception score was significantly associated 
with a lower Bif. catenulatum relative abundance in the subjects who 
received HM with detectable A-tetra (p = 0.012; ES = −2.13), indicating 
that a higher visual reception score was associated with a lower Bif. 
catenulatum relative abundance in the subjects who received HM with 
detectable A-tetra.

3.2.3. Associations with cognition through 
interactions between HMOs and gut microbiota

While the above findings are independent associations between 
HMOs and species of Bifidobacterium and Bacteroides with cognition, 
additional associations through the interactions of the two systems 
were also observed. Fine motor showed a significantly negative 
association with the interaction between LNT and Bif. longum 
(ES = −2.12; p = 0.037) using the unstratified model. Although not 
statistically significant, the effect sizes of the main associations of LNT 
and Bif. longum were both negative (−1.07 and − 0.12, respectively). 
That is, an increase of either LNT concentration, Bif. longum relative 
abundance, or both was associated with lower fine motor scores as 
seen in the significant interaction effect between LNT and Bif. longum.

Visual reception showed a significant negative association with 
the interaction between Bif. catenulatum and LNFP-I (ES = −8.37; 
p = 0.007) in the A-tetra+ stratified model. Again, we examined the 
effect sizes of the main associations of Bif. catenulatum and LNFP-I, 
which were − 2.13 and 3.41, respectively. That is, a higher relative 
abundance of Bif. catenulatum was associated with lower visual 
reception scores but the effects would be weakened with an increase 
of LNFP-I and vice versa.

Finally, expressive language showed significant positive 
associations with the interaction between 3′-SL and Bif. bifidum, 6′-SL 
and B. fragilis, and LNFP-I and Bif. kashiwanohense (p = 0.01, 0.019, 
and 0.048; ES = 4.06, 6.95, and 6.31, respectively) and significant 
negative associations with the interaction between LNT and Bif. breve 
and LNT and Bif. longum (p = 0.011 and 0.022; ES = −4.19 and − 2.17, 
respectively) in the A-tetra-stratified model. The main associations of 
3′-SL, Bif. bifidum, LNFP-I, Bif. kashiwanohense, and LNT had 
negative effect sizes (−0.08, −0.56, −0.91, −2.91, and − 1.68, 
respectively) while 6′-SL, B. fragilis, Bif. breve, and Bif. longum had 
positive effect sizes (0.23, 0.61, 0.34, and 0.38, respectively). Thus, 
associations with expressive language and 3′-SL, Bif. bifidum, LNFP-I, 
Bif. kashiwanohense, Bif. breve, and Bif. longum were diminished due 

TABLE 2 The Mullen Scales of Early Learning scores of the participants.1

Mullen Scales of Early 
Learning

Total (n = 170) A-tetra+ (n = 61) A-tetra− (n = 109) p value2,3

Composite score 106.18 (12.48) 104.87 (11.62) 106.91 (12.93) 0.29

Gross motor 50.61 (8.77) 50.75 (8.95) 50.53 (8.70) 0.88

Visual reception 54.24 (9.87) 53.38 (9.21) 54.72 (10.23) 0.38

Fine motor 53.40 (11.43) 52.98 (10.81) 53.63 (11.80) 0.72

Receptive language 50.82 (9.48) 51.39 (8.99) 50.50 (9.78) 0.55

Expressive language 53.75 (8.67) 51.82 (8.03) 54.83 (8.86) 0.034

1Means and standard deviations in parentheses.
2p values from the t-test comparing between detectable (A-tetra+) and undetectable (A-tetra−) A-tetrasaccharide groups.
3Value of p calculated as treating each score to be independent for each visit.
4Expressive language score shows significant difference between A-tetra+ and A-tetra− subjects.
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to the significant interactions, while the associations enhanced with 
6′-SL and B. fragilis in positive direction and with LNT in 
negative direction.

3.3. Adjusting covariates

Significant covariates are summarized in Table 4. For the batch 
effects, the year 2018 was used as the reference year for the 

comparisons with years 2019 and 2020. Regardless of the stratification, 
significant MSEL batch effects were observed for the early learning 
composite, visual reception, expressive language, and gross motor 
scores. Fine motor showed a significant batch effect between the years 
2018 and 2020 in the unstratified models. Compared to year 2018, 
with HMOs collected in 2019 or 2020, the above four scores were 
lower. In general, as the HMOs were collected at later years, the scores 
decreased. For expressive language, sex of the infants and maternal 
education also had significant effects in the A-tetra-stratified model. 

FIGURE 1

Scatter plots of the pseudo-log scale of the relative abundance of the species used in the analyses, including (A) seven species from Bifidobacterium 
genus and (B) five species from Bacteroides genus. The samples in the detectable A-tetrasaccharide (A-tetra) group are colored in black and the ones 
in the undetectable A-tetra group are colored in light blue. Age in months is indicated in the x-axis.
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That is, girls compared to boys and infants with college graduated 
mothers compared to mothers with graduate school level education 
had higher expressive language scores.

4. Discussion

Although the conceptual frameworks suggesting a potential 
association between HMOs, gut microbiota composition, and 
cognition have been proposed (63), studies thus far have largely 
focused on the associations between infant cognition and gut 
microbiota or HMOs, separately. While our findings are consistent 

with that reported in the literature demonstrating that specific HMOs 
and Bifidobacterium and Bacteroides species are independently 
associated with certain cognitive domains, this study took one step 
further to provide evidence on the associations between interactions 
of HMOs and specific microbial taxa and cognitions during the first 
year of life. Interestingly, most of the HMOs that showed a significant 
main association with cognition did not show a significant interaction 
effect except for the interaction between Bif. catenulatum and LNFP-I 
with visual reception. In addition, most of the significant interactions 
were with expressive language in the A-tetra-stratified model. In 
general, except for the significant association between B. fragilis and 
6′-SL with expressive language, the species showing significant 

FIGURE 2

Strip chart for relative abundances of the 12 species used in the analyses. Bifidobacterium species (light gray) and Bacteroides species (dark gray) in 
different colors. Boxplot with whiskers added in red for each species. For Bifidobacterium species, only the species name included due to visibility. Un. 
for unspecified Bifidobacterium species.

TABLE 3 The relative abundance of the species from Bifidobacterium and Bacteroides genera of the participants.1

Generum Species Total (n = 170) A-tetra+ (n = 61) A-tetra− (n = 109) p value2,3

Bifidobacterium

Bif. longum 0.38 (0.32) 0.38 (0.35) 0.38 (0.30) 0.97

Bif. bifidum 0.09 (0.18) 0.12 (0.22) 0.07 (0.15) 0.17

Bif. breve 0.09 (0.17) 0.10 (0.19) 0.08 (0.15) 0.50

Bif. pseudocatenulatum 0.01 (0.05) 0.01 (0.03) 0.01 (0.06) 0.49

Bif. kashiwanohense 0.01 (0.05) 0.002 (0.01) 0.02 (0.06) 0.034

Bif. catenulatum 0.001 (0.004) 0.001 (0.004) 0.002 (0.005) 0.77

Unspecified 0.01 (0.04) 0.01 (0.03) 0.01 (0.04) 0.95

Bacteroides

B. vulgatus 0.04 (0.12) 0.02 (0.09) 0.05 (0.14) 0.08

B. dorei 0.02 (0.07) 0.02 (0.06) 0.02 (0.07) 0.63

B. fragilis 0.03 (0.10) 0.04 (0.15) 0.02 (0.06) 0.48

B. uniformis 0.003 (0.01) 0.004 (0.01) 0.002 (0.01) 0.24

B. ovatus 0.01 (0.02) 0.004 (0.02) 0.01 (0.03) 0.29

1Means and standard deviations in parentheses.
2p values from the t-test comparing between detectable (A-tetra+) and undetectable (A-tetra−) A-tetrasaccharide groups.
3p value calculated as treating each infant gut microbiota species to be independent for each visit.
4Bif. kashiwanohense species shows significant difference between A-tetra+ and A-tetra− subjects, but when the relative abundance is standardized, the significance in the difference disappears.
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interaction with HMOs were Bifidobacterium species, while 
Bacteroides species showed significant main associations with motor 
functions. To the best of our knowledge, our study is the first to 
evaluate associations between the three biological systems—relative 

abundance of Bifidobacterium and Bacteroides species, HMO 
concentrations, and cognition in typically developing infants during 
the first year of life. More detailed discussions on the observed 
associations with specific cognitive abilities are provided below.

FIGURE 3

Bar plots showing the apparent temporal variations of HMO concentrations during 2.9–4, 4–8, and 8–12 months, and all HM samples, with and 
without stratification based on the A-tetra status, respectively. The concentration values are summarized in Supplementary Table 1. 2′-FL, 6′-SL, LNFP-I, 
LNnT, and LNT decrease while 3-FL, 3′-SL, and A-tetra increase with post-partum age.

FIGURE 4

Visual display of the statistically significant fitted results at 0.05 significance level. The filled color indicates different Mullen Scales of Early Learning 
(MSEL) domains. The text color indicates the sign of the effect size, red for negative and dark blue for positive associations. “Main” in x- and y-axis are 
to show the main associations of human milk oligosaccharides (HMOs) and infant gut microbiota relative abundances with cognition. Texts in the 
figure show from which stratified model the results are: “Unstrat” corresponds to unstratified model, “Atetra+” and “Atetra−” correspond to detectable 
and undetectable A-tetrasaccharide (A-tetra) stratified models, respectively. “Unstrat & Atetra+/−” corresponds to the results that are shown 
consistently throughout all three models. “Unstrat & Atetra−” is for the result from unstratified and undetectable A-tetra stratified models and “Unstrat 
& Atetra+” is for the result from unstratified and detectable A-tetra stratified models. Expressive language (EL); fine motor (FM); Gross motor (GM); and 
Visual reception (VR).
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4.1. Motor skills

Although the potential relations between HMOs and gut 
microbiota and motor functions during early infancy remain elusive, 
few reports are available in the literature and results are somewhat 
inconsistent among these studies. Using gut microbiota coabundance 
at infancy, Sordillo et al. (64) reported that poor fine motor scores at 
3-year old were associated with Bacteroides-dominated coabundance 
group. However, Tamana et al. (65) reported a positive association 
between motor development at 2 years old and Bacteroides-dominant 
cluster at birth. Finally, by stratifying healthy infants at 18 months old 
into two groups, above and below median fine motor scores, Acuna 
et al. (66) reported that probiotic Bifidobacterium was more abundant 
in the above median group. While discrepancies in approaches and 
ages among study cohorts may have contributed to these inconsistent 
results, our findings may offer additional insights into the complex 
associations between HMOs, gut microbiota, and motor functions 
during infancy. Specifically, our results elucidated that the observed 

associations differed between gross and fine motor abilities. Gross 
motor was independently associated with the HMO 3-FL and the 
microbes B. fragilis and B. vulgatus. In contrast, no association 
between HMOs and fine motor was observed. Instead, fine motor was 
associated with B. ovatus, which differs from those with gross motor 
and through interaction between LNT and Bif. longum. To this end, 
our findings signify the importance to consider potential interactions 
between HMOs and gut microbiota to more comprehensively analyze 
the potential relations among HMOs, gut microbiota and 
motor functions.

It should be noted that although both gross and fine motor assess 
infants’ motor ability, a potential association between fine motor and 
language abilities has been reported; fine motor skills at 6–24 months 
positively predicted the expressive language skill at 30–36 months in 
autistic children (67, 68). Our results may also support the associations 
between language and motor ability, as we  identified that both 
expressive language and fine motor skills showed a negative 
association with the interaction between LNT and Bif. longum.

TABLE 4 Statistical results for adjusting covariates using random linear mixed effects model with one random intercept for study subjects.2

Unstratified3 A-tetra+3 A-tetra−3

ELC4 FM4 GM4 VR4 EL4 ELC4 GM4 VR4 EL4 ELC4 GM4 VR4 EL4

Batch 2019 

(reference: 

2018)

Estimate −6.89 −3.34 −5.61 −6.99 −0.84 −7.38 −5.82 −6.80 −1.36 −6.79 −5.35 −8.27 −1.82

S.E. 2.87 2.41 2.01 1.88 2.00 2.76 1.96 1.85 1.83 2.89 2.00 2.12 1.82

t −2.40 −1.39 −2.79 −3.72 −0.42 −2.67 −2.96 −3.67 −0.74 −2.35 −2.68 −3.91 −1.00

p value1 0.0185 0.167 0.006 <0.001 0.674 0.009 0.004 <0.001 0.459 0.021 0.008 <0.001 0.320

Batch 2020 

(reference: 

2018)

Estimate −8.29 −5.85 −5.84 −4.45 −5.46 −9.86 −6.56 −5.62 −5.31 −8.39 −6.12 −4.98 −8.10

S.E. 3.39 2.84 2.39 2.31 2.37 3.34 2.38 2.29 2.16 3.42 2.37 2.52 2.19

t −2.44 −2.06 −2.44 −1.93 −2.30 −2.96 −2.76 −2.45 −2.46 −2.46 −2.58 −1.98 −3.70

p value1 0.016 0.041 0.016 0.056 0.023 0.004 0.007 0.015 0.015 0.016 0.011 0.05 <0.001

Sex (Male) Estimate −2.51 −0.83 2.36 −0.61 −3.07 −1.77 2.28 0.29 −2.01 −3.17 2.22 0.03 −3.11

S.E. 2.34 1.83 1.69 1.51 1.65 2.27 1.67 1.49 1.53 2.36 1.67 1.68 1.47

t −1.08 −0.46 1.39 −0.40 −1.87 −0.78 1.37 0.19 −1.31 −1.35 1.33 0.02 −2.13

p value1 0.286 0.650 0.17 0.688 0.066 0.437 0.176 0.848 0.193 0.183 0.188 0.985 0.037

Maternal 

education

Estimate −2.25 −1.78 −0.33 1.03 −1.41 −2.10 −0.16 0.62 −1.19 −2.22 −0.40 1.16 −2.70

S.E. 1.69 1.31 1.22 1.09 1.19 1.63 1.20 1.07 1.10 1.70 1.20 1.22 1.10

t −1.33 −1.36 −0.27 0.95 −1.19 −1.29 −0.13 0.58 −1.08 −1.31 −0.33 0.95 −2.46

p value1 0.187 0.177 0.785 0.343 0.240 0.202 0.898 0.565 0.281 0.195 0.743 0.343 0.016

Delivery 

mode 

(Vaginal)

Estimate 0.48 2.76 0.04 −3.10 −0.51 0.36 0.28 −3.34 −0.54 −0.78 −0.11 −3.08 −2.22

S.E. 2.86 2.29 2.06 1.78 2.01 2.73 2.01 1.78 1.82 2.93 2.06 2.12 1.85

t 0.17 1.21 0.02 −1.74 −0.25 0.13 0.14 −1.87 −0.30 −0.27 −0.06 −1.46 −1.20

p value1 0.868 0.229 0.986 0.084 0.800 0.896 0.176 0.063 0.768 0.792 0.957 0.147 0.233

Site (UNC) Estimate 2.77 2.65 3.55 1.42 −0.55 3.34 4.08 1.00 0.30 2.56 3.31 1.88 0.37

S.E. 3.13 2.59 2.25 2.08 2.20 3.21 2.33 2.15 2.08 3.29 2.32 2.36 2.04

t 0.89 1.02 1.58 0.68 −0.25 1.04 1.76 0.47 0.14 0.78 1.43 0.80 0.18

p value1 0.379 0.309 0.118 0.496 0.804 0.304 0.083 0.643 0.887 0.44 0.158 0.428 0.855

1Significant results with 0.05 significance level provided.
2Results shown from all three models, unstratified, stratified by detectable (A-tetra+), and undetectable (A-tetra−) A-tetrasaccharide models.
3Unstratified model: the human milk samples used from all the subjects; stratified models: the human milk samples used from only the corresponding subjects, i.e., subjects from the A-tetra+ 
group for the A-tetra+ stratified model and from the A-tetra− group for the A-tetra− stratified model.
4Abbreviations for the Mullen Scales of Early Learning scores: ELC for early learning composite score, FM for fine motor, GM for gross motor, VR for visual reception, and EL for expressive 
language scores.
5Bold values indicate statistical significance.
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4.2. Language skills

Expressive language is the ability to communicate and express 
thoughts and feelings, while receptive language concerns 
understanding of information (69). We previously reported that 
both receptive and expressive language abilities were significantly 
and positively associated with 3′-SL in infants who received HM 
containing detectable A-tetra but not in the A-tetra− group (21). In 
particular, a stronger association between 3′-SL and receptive 
language was observed in children older than those younger than 
1 year-old while no age interaction was observed for expressive 
language. These previous findings, however, differ from the current 
study. With the exception of A-tetra, which exhibited a negative 
association using the unstratified model, all identified associations 
with language ability in this study were through interactions 
between microbiota and HMOs, including 3′-SL with expressive 
language in the A-tetra− group. In addition, no association with 
receptive language was observed. Although several potential factors 
may account for the observed discrepancies between our previous 
and current studies, one of the most plausible reasons is the age 
differences between the two studies. The age range was 2–25 months 
old in our previous study while the current study focused on the 
first 12 months of life. As indicated above, children older than 
12 months old exhibited a stronger association between 3′-SL and 
receptive language than those younger than 12 months old. 
We further re-analyzed our data using the previous approach but 
only included subjects in the first year of life, identical to this study, 
and no significant association was observed 
(Supplementary material, entitled “Association analyses between 
infant cognition and HMOs”). Therefore, the difference in age 
ranges between the two studies might explain why no association 
with receptive language was observed in the current study. 
Furthermore, the potential interaction between HMOs and gut 
microbiota was not accounted for in our previous study. Contrasting 
to our previous findings, which were specific to A-tetra+ group, 
inclusion of the interactions between HMOs and microbiota yielded 
previously unseen associations beyond language ability. These 
findings underscore the importance of considering the potential 
interactions between HMOs and gut microbiota in the identification 
of potential associations between HMOs and cognition. While the 
underlying mechanisms explaining our findings remain elusive and 
beyond the scope of the current study, Bif. breve, Bif. longum, and 
Bif. bifidum showed the highest relative abundances suggesting they 
have a competitive advantage in the presence of HMOs during 
breastfeeding. James et  al. (70) demonstrated that species from 
Bifidobacterium genus, including Bif. breve and Bif. longum, but 
especially, Bif. breve are able to metabolize LNT. Notably, LNT is the 
highest in HM of mothers who cannot express LNFP-I and A-tetra 
(non-secretor) (47, 48), and Guo et al. (71) showed that B. fragilis 
has an important transglycosylation activity for synthesizing 
sialylated HMO. The present study findings support these previously 
published interactions.

Finally, significant associations between the expressive language 
skills and infant sex and maternal education level in A-tetra− group 
were observed where girls exhibited a better expressive language 
ability than boys. This is consistent with the widely accepted intuition 
that girls are commonly known to have better expressive language 
skills (72).

4.3. Visual reception skill

Mullen Scales of Early Learning visual reception assesses an 
infant’s ability to understand what different shapes, words, and 
symbols represent as well as the recognition of objects spatially. In this 
study, associations were observed between visual reception and HMOs 
(3-FL), gut microbiota (Bif. catenulatum), and their interactions (Bif. 
catenulatum and LNFP-I). Interestingly, Bif. catenulatum is not a 
dominant Bifidobacterium species during infancy, hence not much is 
studied about this species among infants (73). Liu et al. (74) studied 
the different genetic make-up of Bif. catenulatum in infants and adults 
and found that Bif. catenulatum subspecies kashiwanohense is 
generally more dominant among the infants and is equipped with an 
alpha-L-fucosidase needed to metabolize HMOs. Also, Ojima et al. 
(75) suggested that Bif. catenulatum utilizes fucosyllactose through its 
fucosyllactose-binding proteins. Our data support this relationship 
between Bif. catenulatum and LNFP-I and showed that visual 
reception was associated with the interaction between these two. 
Furthermore, a previous study by Cabrera-Rubio et al. (76) reported 
that Bif. catenulatum was more prevalent among secretor milk samples 
compared to non-secretors. In our study, we used the level of A-tetra, 
equally dependent on the secretor positive status, for stratification, as 
initially used by Cho et al. (21), and observed that the association 
between Bif. catenulatum and LNFP-I for visual reception was specific 
for the population that received A-tetra+ HM.

While a few studies exist on Bif. catenulatum, to the best of our 
knowledge, no study has previously reported a potential association 
between visual reception and HMOs although Carlson et al. reported 
that visual reception was negatively associated with the alpha diversity 
of gut microbiome at 2 years of life (22). Our study focused on infants 
during the first year of age and similarly observed a negative 
association between the visual reception score and the relative 
abundance of Bif. catenulatum.

4.4. A-tetra status

Although secretor status has been commonly used to group HM 
samples in the literatures (77–81), we instead employed A-tetra status 
in our study for the following two reasons. First, the reported criteria 
(80, 81) used to determine secretor status led to relatively uneven 
sample sizes between secretors vs. non-secretors in our cohort, 
making it difficult to derive statistically meaningful results. Second, 
this study further expanded our previous findings (21) by considering 
how the potential interactions between microbiota and HMOs could 
lead to previously unseen associations with cognition during early 
infancy (Please see Supplementary material, entitled “Secretor vs. 
A-tetra statuses” for more detailed discussion). A-tetra status of HM 
depends both on the secretor positive status and the blood type of A 
or AB leading to a subgrouping of secretor positive HM (47–49). In 
our study, we found significant associations differed according to the 
stratification based on the A-tetra detectability. In particular, most of 
the interactions were shown in the stratified models. Yet, independent 
associations of Bacteroides species with cognitive scores were less 
dependent on the A-tetra status. On the other hand, when the 
associations of the microbiota were dependent on HMOs through 
interactions, the associations were more significant when HMOs were 
stratified by A-tetra detectability. This is intuitive in the sense that 
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when stratified, the HMO components would be more homogenous, 
and thus would have less deviation, allowing more detection of 
significant terms.

4.5. Temporal variations of HMO 
concentrations with postpartum age

Human milk (HM) oligosaccharide concentrations in HM are 
known to vary with postpartum age of lactation (82, 83) with some 
decreases (e.g., 2′-FL and 6′-SL), while others increase (3-FL; 
Figure 3). These temporal variations underscore the importance of 
considering when the HM samples were collected in relation to the 
post-partum age should one be interested in comparing the HMO 
concentrations with those reported in the literature. Specifically, there 
is a common misconception that 2′-FL and 6′-SL are always higher 
than 3-FL and 3′-SL, respectively, because most studies have analyzed 
samples collected during early infancy, e.g., first 1–2 months of 
lactation. However, since 2′-FL and 3-FL exhibited an opposite 
temporal pattern, 2′-FL was higher than 3-FL in 2.9–4 months but 
became lower in 8–12 months (Figure 3). Likewise, similar findings 
were observed for 3′-SL and 6′-SL.

Comparing the HMO concentrations in our study to those 
reported in the literature, Thurl et al. (79) showed that 2′-FL, 3-FL, 
3′-SL, and 6′-SL were 3.13, 0.42, 0.27, and 1.22 g/L for secretors and 
not detected, 1.79, 0.24, and 1.14 g/L for non-secretors for HM 
samples collected from German women between days 3–90 
postpartum, respectively. Since the secretor status was used by Thurl 
et al., we employed two approaches to determine the secretor status in 
our cohort and only included HM samples collected between 2.9 and 
4 months post-partum for a fair comparison. Specifically, using 
2′-FL/3-FL abundance ratio > 6.5827 as the secretor-positive (80), 
none of our cohort with HM samples collected in 2.9–4 months post-
partum met this criterion as secretor positive. In contrast, using 
2′-FL < 15 mg/L (81) as non-secretors, nine subjects were secretors and 
one was non-secretor among the HM samples collected within 
2.9–4 months post-partum. The median values of 2′-FL, 3-FL, 3′-SL, 
and 6′-SL were 1.86, 0.97, 0.12, and 0.076 g/L for secretors and 
not-detected, 2.43, 0.13, and 0.11 g/L for the non-secretor. It appears 
that our results are different from that reported by Thurl et al. (79). 
Several factors may account for the observed discrepancies between 
ours and those reported by Thurl et al. (79). Specifically, as discussed 
above, HMO concentrations are anticipated to vary with post-partum 
age. Since our samples were largely collected beyond the first 3 post-
partum months (two samples <90 days post-partum), it is highly likely 
that our results would be different from that reported by Thurl et al. 
(79). In fact, our results of 6′-SL were highly consistent with those 
reported by Austin et  al. (49) (76.6 mg/L at 2.9–4 months and 
56.8 mg/L at 4–8 months in our study vs. 78 and 39 mg/L for 2–4 and 
4–8 months, respectively). Furthermore, several additional 
publications have reported a wide range of HMO concentrations 
among different studies, races, geographic locations, and post-partum 
ages (84–86). Our results are well within the ranges of the reported 
results. Finally, the age effects were regressed out prior to conducting 
the association analyses in our study, further minimizing the potential 
impacts of the temporal variations of HMO concentrations to our 
conclusions. In summary, although discrepancies of HMO 

concentrations were observed between ours and those reported by 
Thurl et al. (79), our results are within the ranges reported by many 
other studies (49).

4.6. Hypothesis on mechanisms of action 
mediating the HMO and microbiota effects 
and their interactions

Our findings confirm the hypothesized interaction between 
HMOs, microbiota, and cognitive functions in infants. Although 
some of our findings align with existing literature and offer 
additional insights into the complex triad relation between HMOs, 
infant gut microbiota, and cognition, this area of research remains 
largely underexplored. To this end, we offered potential mechanistic 
hypotheses underlying our findings. In this exercise, we  will 
be  obliged to leverage the existing evidence collected in animal 
models that mainly investigated the HMOs, 2′-FL, 3′-SL, and 6′-SL 
thanks to their availability for research and/or presence in rodent 
milk. While potential extrapolation of similar hypothetical 
mechanisms of action (MoA) to other HMOs beyond these is not 
excluded, the hypothesis generated will be stronger for these three 
HMOs. The most obvious MoA via which HMOs can influence 
subjects is the modulation of microbiota composition and function, 
which is a subject of intense research in infants (59) as well as in 
models to study more species-specific growth and activity on specific 
HMOs (87). HMO boosted microbial metabolites are of particular 
interest as many of those can go systemic and affect distant sites like 
the developing brain (42). In this direction, several studies have 
reported that short-chain fatty acids (SCFA) could be  essential. 
Extensive investigation of the growth of bacteria and their 
production of SCFA has been reported by Yu et al. (57). In summary, 
while most Bifidobacterium and Bacteroides were reported to grow 
on fucosylated HMOs (2′-FL, 3-FL, and lactodifucotetraose) and 
generate abundant SCFA, supplementation with sialylated HMOs 
(3′-SL and 6′-SL) only promoted moderate growth of specific 
Bifidobacterium and Bacteroides, which however also generated 
significant SCFA. Interestingly, SCFA have been associated with 
neurogenesis (88) as well as potential impact on microglia (89). 
Beyond SCFA, other metabolites could be mediating the potential 
impact of HMOs on cognition. Among the candidates are 
neurotransmitter, such as gamma-aminobutyric acid (GABA) (90) 
and serotonin (91, 92) or their precursors, such as tryptophan for 
serotonin (93, 94). Change in gut synthesis of these metabolites can 
have impacts on brain via various routes, including directly reaching 
the brain, providing the precursor for brain synthesis of the 
neurotransmitters, and direct impact on the enteric nervous system 
or on the vagus nerve (95). Interestingly several probiotics, including 
Bifidobacterium, have been reported to synthesize GABA (90, 96), 
which would act mostly at the enteric nervous system or via the 
vagus nerve. Further evidence comes from studies where 
intervention with probiotics led to changes in behavior or gene 
expression in the brain. For example, treatment with a lactobacillus 
strain was shown to impact both central GABA receptor expression 
as well as emotional behavior via the vagus nerve (97).

Another MoA reported in multiple preclinical studies is the 
modulation of brain gene expression, which has been studied across 
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different species (42, 98). Fleming et al. used 2′-FL as nutritional 
intervention, while Hauser et al. used an absence vs. presence of 
6′-SL in the early life diet, suggesting that the potential impact on 
brain gene expression might be different for different HMOs. In 
these studies, the authors reported alteration of glutamatergic, 
cholinergic, gamma amino butyric acid-ergic and histone 
deacetylation pathways in pigs (98) and alteration of 
neurodevelopment and more specifically myelination pathways in 
mice (42), respectively. Finally, while some of our findings were 
consistent with results reported in the literature, such as the 
modulation of microbiota growth, we also observed unexpected 
results. Specifically, we  observed interactions between 3′-SL and 
6′-SL, but not with 2-FL with infant gut microbiota were associated 
with cognition. Moreover, we  also observed interactions with 
previously unreported HMOs (LNT and LNFP-I) and gut microbiota 
revealed additional associations with cognition which require future 
studies to confirm these findings. Going beyond the healthy 
population, it has been reported that some neurological pathologies, 
such as autism spectrum disorder (ASD), were associated with 
gastrointestinal symptoms as well as alteration of the microbiota 
(99). In preclinical models of autism, administration of bifidobacteria 
resulted in improved social function (100), possibly via 
normalization of the immune system. While comprehensive clinical 
studies in this direction remain lacking, a recent case study utilizing 
combined oral and enema fecal microbiome transplant for treating 
late-onset ASD children reported improvement of ASD symptoms 
in six of nine subjects who were 8 years old or younger (101). These 
studies suggest that intervention targeting microbiota could be an 
appealing approach for neurological pathologies, such as ASD. To 
this end, our results would benefit to be explored further for its 
potential clinical applications beyond the healthy population.

4.7. Limitations

While our results are informative, our study has several 
limitations. First, the maternal education of our cohort was higher 
compared to the general population. Second, while the batch 
effects of the HMOs were included as one of the adjusting 
covariates, the significant difference between the batches indicated 
potential limitations on the consistency of the HMOs analyzed. 
Third, to minimize potential confounding factors from 
complementary food interacting with gut microbiome, our study 
only focused on the first year of life since it is a time period when 
most infants still consumed HM. Fourth, while most of the 
reported results regarding the potential interactions between gut 
microbiota and HMOs have largely focused on Bacteroides and 
Bifidobacterium genera, including additional gut microbiome 
genera could have given a more comprehensive understanding of 
the associations between gut microbiota and HMOs, but would 
have required a larger sample size. Fifth, it has been suggested that 
the relative abundances of Bifidobacterium and Bacteroides in the 
breastfed infant colon are different depending on the secretor 
status (102, 103). Future studies could also consider this potential 
factor. Finally, while it is highly plausible that interactions between 
HMOs and gut microbiota may also be  associated with other 
developmental outcome, e.g., infant temperament, our study only 
focused on infant cognition.

5. Conclusion

The associations of the relative abundance of the species of 
Bacteroides and Bifidobacterium genera, HMO concentrations, and their 
interactions with infant cognition scores using MSEL were examined. 
Most of the significant interactions between the gut microbiota relative 
abundance and HMOs were associated with expressive language ability 
in A-tetra-HM fed group. Motor scores showed significant positive 
associations with Bacteroides species. Visual reception showed significant 
associations with Bif. catenulatum and HMOs. Our results not only 
support independent associations of HMOs or gut microbiota with 
infant cognition, but also showed the importance of considering the 
interactions between the two systems by unveiling additional associations 
with cognition during the first year of life. Overall, our study sheds light 
on the complexity of the interaction between HMOs, infant gut 
microbiota, and cognition, and the need for further research in this area. 
Understanding these interactions could have important implications for 
infant nutrition and development, as well as potential therapeutic 
interventions for cognitive and neurological disorders later in life.
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