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receptor complexes
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We present a model for the effects of ligands on information transmission in G-

Protein Coupled Receptor (GPCR) complexes. Themodel is built ab initio entirely

on principles of statistical mechanics and tenets of information transmission

theory and was validated in part using agonist-induced effector activity and

signaling bias for the angiotensin- and adrenergic-mediated signaling pathways,

with in vitro observations of phosphorylation sites on the C tail of the GPCR

complex, and single-cell information-transmission experiments. The model

extends traditional kinetic models that form the basis for many existing models

of GPCR signaling. It is based on maximizing the rates of entropy production and

information transmission through the GPCR complex. Themodel predicts that (1)

phosphatase-catalyzed reactions, as opposed to kinase-catalyzed reactions, on

the C-tail and internal loops of the GPCR are responsible for controlling the

signaling activity, (2) signaling favors the statistical balance of the number of

switches in the ON state and the number in the OFF state, and (3) biased-

signaling response depends discontinuously on ligand concentration.

KEYWORDS

G protein coupled receptor, drug discovery, information transmission, maximum rate of
entropy production, transmembrane receptor, barcode, flute model, QR code
1 Introduction

This study examines the consequences and implications of a novel thought experiment

that posits that natural selection promotes the design of molecular information-processing

systems that maximize the efficiency of information processing and maximize the rate of

entropy production. The implications of the thought experiment are compared with

existing experimental observations that either support or are consistent with the

conclusions of the thought experiment [Rajagopal et al. (1); Zielińska and Katanaev (2);

Keshelava et al. (3–5). The conclusions suggest a novel approach to drug discovery and
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targeting that depends on an enhanced importance of

dephosphorylation over phosphorylation, on switch interactions

that tend to maintain a balance between phosphorylated and

unphosphorylated sites, and on discontinuous response to

continuous increases of free-ligand concentration. The study

starts with a very general treatment of molecular systems from a

statistical-mechanics point of view and then specializes to the

structural and physiological details of specific transmembrane

information-processing systems.

The approach here complements more traditional modeling

approaches (6), such as that described in in the Operational model

of Black and Leff (7, 8) and ternary complex models (TCM) [Weiss

et al. (9); Onaran et al. (10)], which focus on the ternary reaction in

the receptor complex. Unlike earlier models, the approach here

accounts for protein flexibility and rigidity. The picture that

emerges is one of flexible protein matrix embedded with long-

lived rigid bonds. This allows for alteration of protein

conformations among multiple proteins at once. The model

developed here permits the maximization of information

transmission efficiency [Shannon and Weaver (11)] and the

efficiency of optimization of free energy and entropy [Jaynes

(12)]. We dub these two principles as, respectively, Maximum

Information Storage and Transmission (MIST), commonly

known as maximum capacity, and Maximum Rate of Entropy

Production (MREP), commonly known as Maximum Entropy

Production. The thought experiment begins at a high level and

then specializes.

We begin at the level of statistical mechanics and natural

selection. To respond to their environment, living cells sense

conditions external to the cell, transmit that information across

the cell membrane, and generate chemical reactions that alter the

structure and behavior of the organism to the organism’s

evolutionary advantage [Lefkowitz (13)]. External stimuli may be

either chemical ligands, such as nutrients [Urano and Jones (14)]

and hormones [Ahlquist (15)], or physical such as in the form of

photons [Rieke and Baylor (16)] and forces [Storch et al. (17)]. We

focus on ligand stimuli here. The initial high-level version of the

thought experiment imagines an ensemble of binary molecular

switches located at fixed points in space. Given levels of entropy

and information flow through the ensemble and the individual

switches. The flexible parts of proteins respond to the flow by

changing conformations to conformations that optimize the flow.

The high-level thought experiment is then specialized to

address particular conditions within a biological context.

Information processing and transmission at the molecular level,

in many systems, is performed by a set of complexes that includes a

receptor protein that traverses the cell membrane and transmits

stimulus information from the extracellular to intracellular

environment and a set of transducer proteins that carry the

stimulus signal to intracellular sites that effect a response to the

external stimulus. Extracellular stimuli that activate transmembrane

signals may trigger multiple and varied responses to stimuli. In

animals, for instance, a portion of the spectrum of responses can be

encoded in independent molecular structures that collectively

behave like a common barcode [Tobin et al. (18); Tobin (19);

Yang et al. (20); Chakravorty and Assmann (21); Latorraca et al. (5);
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Chen et al. (22); Tunc-Ozdemir et al. (23)]. Studies have addressed

the quantitative flow of information through signaling complexes

[Keshelava et al. (3); Selimkhanov et al. (24)]. The observations

indicate that the complexes are only seen transmitting one or, at

most, about two bits of information from a stimulus ligand, yet the

number of effector couplings observed require much more than that

amount of information in order to trigger the couplings [Rajagopal

et al. (1); Latorraca et al. (5)]. This provides the context for the

specialized thought experiment.

The characterization of the general thought experiment is

described in Figure 1. In a closed and isolated chemical system,

Figure 1A, one in which no matter or energy enters or leaves the

system, entropy is maximized [Reif (25)]. Since the entropy is

maximized, the rate of production of entropy at the maximum

is zero.

Living biological systems are, however, not closed, isolated

systems. Matter and the internal energy contained in matter flow

through organisms. They are open systems. This is illustrated

schematically in Figure 1B, which illustrates an open system in

which matter is forced through the system in the form of chemical

flux. Living biological systems fall into this category. Degraded

energy is released as heat. Sometimes a portion of the energy might

be released in the form of useful work. This is the case, for instance,

if the open system is a muscle.

Unlike the isolated systems of Figure 1A, open biological

systems do not achieve a state of maximum entropy. Entropy in

the form of a net chemical and energy fluxes continuously flows

through the system preventing the system from reaching

equilibrium. One might speculate that the system organizes itself

such that the system moves in the direction of equilibrium as

quickly as possible given the constraints on the system. This is the

principle of MREP [Jaynes (12)]. It should be emphasized that

MREP is not the Second Law of Thermodynamics [(26, Chapter 3)]

in which entropy itself is maximized. MREP maximizes the rate of

entropy production, not entropy itself.

Biological processes also adapt to their environment. This is

illustrated in Figure 1C where an additional flow is in the form of

information from the environment to output responses. Molecular

information processes are usually mediated by chemical switches.

The phosphorylation-dephosphorylation cycle (PdPC) and the

GTPase cycle (GTPC) are the two most common switches [Qian

(27)]. The switches are triggered by a stimulus, often a ligand ([3]),

that turns a switch from OFF to ON. The configuration of OFF/ON

switches trigger particular downstream responses [Latorraca

et al. (5)].

One requirement for adaptability is that biological processes

must be repeatable (28). A cell or organism must be able to repeat a

response process every time it encounters a given environmental

trigger. This implies that processes exist as cycles, whether they are

metabolic cycles such as Krebs cycle or they are systems of switches.

Every cycle must eventually return to its original state, which may

be any of the states in a cycle. This puts severe constraints on the

mechanisms by which information flows in a process.

While the model is valid for both PdPC and GTPC switches, we

will tend to use PdPCs as our exemplar for definiteness and

simplicity. Figure 1D illustrates a PdPC. Here, a ligand (dark
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circle) binds to a receptor R. A chemical flux J through the receptor

states is initiated and an amount of free energy m is dissipated as

heat by each receptor transiting the cycle. Switches that do not

maintain a chemical flux are denoted as INACTIVE, while switches

that maintain a chemical flux are ACTIVE. The receptor R of an

ACTIVE switch is then phosphorylated to state R* with the aid of a

catalyst kinase and dephosphorylated with the aid of a catalyst

phosphatase. Information theory deals with switches that are

completely ON or completely OFF. The receptor can be in many

different conformational states. Switches are composed of receptor

states. The switch is ON if the probability of finding a receptor in

state R* is large. The switch is OFF otherwise.

We can simplify the picture in Figure 1D by absorbing the

catalytic activity into the reaction rates k+i and k−i for the forward

and return rates for switch i, respectively. The chemical flux for

switch i is illustrated in Figure 1E.
Frontiers in Endocrinology 03
Ji = k+i Ri = k−i R*i (1)
We assume that many computational processes can be reduced

to an ensemble, or bag, of independent switches (BOIS) illustrated

in Figure 1F. Here, we have a number of switches that are located in

space. They may be associated with different positions on a

transmembrane receptor, for instance. Each switch is associated

with one location. The configuration of the population of switches is

determined by whether a switch is ON or OFF at each location. The

ON/OFF pattern of switches contains the information that can be

transmitted to downstream processes. The ensemble is assumed to

transmit both information and matter/energy. This BOIS model is

significantly simpler that most detailed biological-process models

and may be the simplest molecular-information model that is

amenable to techniques of statistical physics.
A

B

D E

F

C

FIGURE 1

Information and Entropy Flow. (A) An isolated closed system is one in which no energy, matter, or entropy enters or leaves the system. (B) An open
ystem is one in which matter can enter and leave the system. Energy may also enter and leave the system if the system is not isolated. This
generates a flow of entropy. (C) Information may also enter and leave the system. (D) The phosphorylation and dephosphorylation of a receptor. The
switch becomes ACTIVE after a ligand (black circle) binds to a receptor. It is INACTIVE before the ligand binds. For ACTIVE switches, a chemical flux
J of receptor flows through the states R⇔R*. The matter and energy fluxes are driven by a sources external to the switch cycle. For ACTIVE
switches, the unphosphorylated (OFF) state is given by a high concentration of the receptor in state R, while the phosphorylated (ON) state is given
by a high concentration of the receptor in state R*. A receptor dissipates an amount of heat − m as flux completes a round trip through the switch
states. (E) Simplified notation. We reduce the picture in D to its essential elements, the OFF/ON states and the rates k+ and k− at which the states
transition to each other. Whether a switch is ON or OFF is determined by the values of the rates. A low value of k−i forces the switch to turn ON,
while a high value forces the switch OFF. (F) A collection of switches coupled by a common flux source J, a common free-energy source DG, and
information flow I. The same amount of matter that enters the system leaves the system. The free energy is converted to heat that is absorbed and
dissipated by an enclosing heat bath at temperature T .
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The systems illustrated in Figures 1B, C are very general and

scalable. Every living biological process, whether it is metabolic as in

the Krebs cycle, information-bearing as in biochemical switches

[Qian and Reluga (29); Qian (27)], or behavior of a complete

cellular organism, can be mapped to this general picture.

We focushere on theBOISmodel shown inFigure 1F.The twobasic

optimization principles, MIST and MREP, can be stated explicitly.
1.1 Maximum information storage
and transmission

Information storage and transmission is maximized in

molecular computation processes.

Information and entropy are related concepts. In fact, entropy

and information can be transformed into each other [Szilard (30)].

In biological systems, which are also physical systems, entropy and

information are fungible. This leads us to a principle for entropy

similar to our principle for information. We use the principle of

MREP (Jaynes (12); Martyushev and Seleznev (31–33) as the second

general principle for biological information processing.
1.2 Maximum entropy production

In an open, far-from-equilibrium (nonequilibirum) steady state

(NESS), the observed conformation of the steady state is the one

that produces the maximum rate of entropy production given

externally applied constraints of chemical, free-energy, and

information fluxes [Jaynes (12)].

The maximization of entropy and information flux in the

complete system of switches requires the flux to be variable at the

switch level. The concentrations and fluxes within each switch adapt

to maximize the total information and entropy fluxes. For this to

occur, the switches must be flexible [Engh and Bossemeyer (34);

Karshikoff et al. (35); Gerstein and Echols (36); Marsh et al. (37);

Jacobs et al. (38); Sauer et al. (39); Bernadó et al. (40); Teilum et al.

(41); Homans (42); Teilum et al. (43)]. The flexibility of proteins

within the switches implies that reaction rates among protein

conformations can be variable. Storage of molecular information

requires that not all conformation states are flexible, however. Some

reaction rates must be rigid for information storage to be stable.

This switch ensemble has been described by Schrödinger as an

aperiodic crystal [Schrodinger et al. (44)].

The sequestering of reactions into flexible and rigid categories is

determined by the background free energy. In systems near

equilibrium, the background energy is supplied by thermal

fluctuations at temperature T . If free energy is injected into the

system by an external process such as phosphorylation, then the

random fluctuations in the neighborhood of the injection may be

much higher than thermal fluctuations. The free-energy injected by

an ATP is about 12 kcal=mol [(45, Sec. 15.2) Qian and Reluga

(29)], which is to be compared with 0:6 kcal=mol for thermal

fluctuations. Reactions with free-energy barriers smaller than the

fluctuation energy are flexible, while reactions with barriers larger

than the fluctuation energy are rigid.
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It should be noted that MREP is consistent with the Second Law

of Thermodynamics. The Second Law describes the final

equilibrium state of a system. MREP describes how quickly that

equilibrium state is approached.
2 The basic mathematical model

2.1 Maximum information storage
and transmission

An ensemble of switches is a collection of M switches, RT

receptors, and L ligands in which the switches present ON and OFF

states. Macroscopic quantities are calculated by taking an average of

switch properties over the entire ensemble. An equivalent approach

is the time-average picture in which a single switch or group of

switches experiences all possible allowable states over time.

Macroscopic quantities are calculated by taking a time-average of

the switch trajectories through their state space. The two

approaches are equivalent according to the Ergodic Hypothesis

[Reif (25)]. Both pictures are useful for our purposes

An ACTIVE switch maintains a finite chemical flux [Qian (46)].

Consider first an ensemble of M ACTIVE switches that support a

chemical flux Ji for each switch i as illustrated in Figure 1F. Here,

INACTIVE switches are defined as those switches that do not

support a chemical flux. The number of ACTIVE switches in the

ON state is Mo, while the number in the OFF state is M −Mo. A

given configuration xw ∈ X(M,Mo) of Mo ON states among M

ACTIVE switches is, after Boltzmann, called a complexion

[CERCIGNANI (47)]. As an example, if the ON state is

designated by one and the OFF state by zero, then the set of

complexions for M = 4 switches with M0 = 2 of the switches being

ON is (1 1 0 0), (1 0 0 1), (1 0 1 0), (0 0 1 1), (0 1 1 0), and (0 1 0 1),

for a total of six complexions. We assumed the switches are

distinguishable. Each switch can be found in a well-defined location.

The amount of information H(X) in a given ensemble of

switches is an average of the logarithm of the probability Pr  (xi)

of finding the switch in a given complexion [Shannon and Weaver

(11)].

H(X) = −o
W

w=1
Pr (xw) log ( Pr (xw)) (2)

where Pr (xw) is the probability of the ensemble of switches being

found in complexion xw. If all the switches in a probability

distribution have the same probability 1=W, then then Eq. 2

becomes

H(X) = log  W (3)

The number of configurations ofM switches withMo in the ON

state is

W = M !
Mo ! (M−Mo) !

≤ M !
(M=2) ! (M=2) !      (M even) (4)

We see from Eq. 4 that the maximum information storage in Eq.

3 occurs, for a given switch number M and a given number of ON

switches Mo, when the number of ON switches in a spectrum of M
frontiersin.org
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ACTIVE switches is half the total number of ACTIVE switches M.

Mo = M −Mo =
M
2   (M even) (5)

If we assume that natural selection favors systems that maintain

maximum information storage in a collection of switches, then this

implies that a switch configuration that has equal numbers of ON

and OFF switches tends to be favored. This is the justification for

prediction (2) outlined in the abstract.

We take as an example the configurations of switches that

contain M = 4 ACTIVE switches. These configurations are

displayed in Figure 2 where the switches have been assembled

into five groups based the number of switches that are ON. The

information stored in each group is the logarithm of the number of

switches in the group. Here, the group in Figure 2A has the highest

information content.

Shannon and Weaver (11) defined the information I(Y jX)
transmitted from one distribution Pr (X) to another distribution

Pr  (Y) as

I(Y X) = H(Y) −H(Yj jX) = H(X) −H(X Y)j (6)
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where H(Y jX) is the information stored in the conditional probability

Pr (Y jX). Here, X might be the switch ON/OFF spectrum and Y

might be the spectrum of effector coupling, whether a given effector is

activated or not. We see that maximum information transmission

occurs when the storage terms H(X) and H(Y) are maximal and the

conditional terms H(X | Y) and H(Y jX) are minimal. The conditional

terms are zero if the mapping from X to Y and Y toX is unique in each

direction. Every single state in X maps to a single state in Y and every

single state in Y maps to a single state in X. Intuitively, the transition

from X to Y is like a deck of cards that is shuffled. The amount of

information stored in the cards is the same before and after shuffling,

but the order of the cards is different. The maximum information

transmission that is possible in a process is known as the capacity CI of

the system [Shannon and Weaver (11)].
2.2 Constancy of receptor concentration in
switches

We can maximize the information stored in the receptor

concentrations of each switch in Figure 1F. The total receptor
A B

DE

C

FIGURE 2

Five configuration groups (A-E) characterized by the total number of ACTIVE switches M = 4 and the number of ON states Mo = 0, 1, 2, 3, 4. The total
number of switch configurations, or complexions, is 16. A “1” indicates an ON state, while a “0” indicates an OFF state. For example, the notation
1100 indicates that the switch in location 1 is ON; the switch in location 2 is ON, while the switches in locations 3 and 4 are OFF. The amount of
information stored in each group is equal to the logarithm of the total number of switches in the group. For instance, the information in the group
of A is log  (6) = 2:58 bits.
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concentration RT is equal to the receptor concentration RS in the

switches plus the concentration DR of any receptors not attached to

a switch.

RT = RS + DR (7)

The probability Pr (ijj) that receptor j that is associated with any
switch is associated with switch i

Pr  (ijjÞ = Ri + R*i
RS

=
Ri + R*i
RT − DR

(8)

where Ri + R*i is the number of receptors, both ON and OFF,

associated with switch i. A uniform distribution maximizes

information storage.

Pr  (ijjÞ ! 1
MS

(9)

which yields

Ri + R*i =
RT − DR

MS
= Rref (10)

 where Rref is a reference concentration that is independent of the

number of ACTIVE switches, the number of ON switches, and the

number of OFF switches.

The constant concentration defined in Eq. 10 is a convenient set

of units to measure receptor concentration. If the switch is ON, then

R*i
Rref

! 1 (11)

This normalization is experimentally accessible and is currently

used in assay experiments to supply a set of units for receptor

concentration. It is observed in assay experiments that the

maximum response for many ligands and downstream coupling

pathways have similar values [Rajagopal et al. (1)]. The maximum

response to a particular ligand in this group is taken to be the

reference receptor concentration Rref . Here, we normalize all

receptor concentrations to Rref .
2.3 Maximum rate of entropy production

Proteins can have both flexible and rigid domains [Engh and

Bossemeyer (34); Karshikoff et al. (35); Gerstein and Echols (36);

Marsh et al. (37); Jacobs et al. (38); Sauer et al. (39); Bernadó et al.

(40); Teilum et al. (43); Homans (42); Teilum et al. (41)]. The

principle of MREP states that flexible internal degrees of freedom

within the NESSs adjust such the naturally preferred NESS

generates entropy at a maximum rate, consistent with relevant

constraints such as mass and energy conservation [Jaynes (12);

Dobovisěk et al. (33)]. The maximum is not only the maximum rate

over all possible NESSs, but also over all flexible internal states of

each NESS. The receptors are flexible for bonds with binding

energies below some energy determined by the distance from

equilibrium and rigid for bonds with greater binding energies

[Dobovisěk et al. (33)].

Note that the MREP picture is quite different from a traditional

mass-action treatments, such as the Operational model and TCM.
Frontiers in Endocrinology 06
[Black and Leff (7); Stephenson (8); De Lean et al. (48); Onaran et al.

(10)]. The key difference results from protein flexibility and rigidity. In

a mass-action simulation, the concentrations are allowed to vary, while

reaction rates are held constant. The mass-action approach assumes

that all reaction rates are rigid. For MREP, only rigid rates are held

constant, while concentrations and flexible rates vary. This implies that

fluxes Ji and free-energy drops mi ≤ 0 can vary for flexible reactions.

In anticipation of specializing the results to a GPCR complex,

we add a GTPC to our collection of PdPCs. We consider the simple

case in which we have two types of ACTIVE switches, N PdPC

switches and one GTPC. Here, M = N + 1. The collection of

ACTIVE PdPCs obey a chemical reaction of the form

Ri⇌
ki+

ki−
Ri* (12)

where Ri is the receptor state in which the switch i is

unphosphorylated (OFF) and R*i is the phosphorylated (ON)

state. Here, k−i is the reaction rate from the ON state to the OFF

state and k+i is the rate from the OFF to the ON. It is the rate at

which the ON state is dephosphorylated.

The GTPC is of the form

RG⇌
kG+

kG−
R*G + G (13)

Here, RG is the receptor concentration associated with the OFF

state and R*G is the receptor concentration associated with the ON

state of the GTPC, and G is the Ga bound to GTP that effects the

downstream effector coupling. Here, k+G and k−G are the forward and

backward reaction rates, respectively. We assume the number of

GaGTP is much larger than the number of free receptors.

Consider a single given receptor in a given volume V that can be

in a number of internal states. The flow among the states is

determined by the probability of the receptor being in a certain

state and the reaction rates among the states. The total receptor

concentration is 1=V receptors per unit volume. The entropy

production rate s for all the ACTIVE switches in the receptor is

Ts = −o
N

i=1
  Jimi − JGmG (14)

Ji = Pr  (ONj i)k−i (15)

JG = Pr  (ONj G)k−G (16)

Pr (OFFj i) = 1 − Pr (ONj i) (17)

Pr  (OFFj G) = 1 − Pr (ONj G) (18)

where T is the temperature of the heat bath in energy units and

mi ≤ 0 is the free-energy cost for turning ACTIVE switch i to ON

and then back to OFF with similar conditions for the GTPC. Here,

Pr(ON | i) is the probability that ACTIVE switch i is ON, and

Pr(OFF | i) is the probability that the switch is OFF. Here, Ji is the

flux per receptor. The summation is over N , the total number

of PdPCs.
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Since, from Eq. 10, the number of receptors in each switch is

constant, we can express the chemical flux Ji in terms of the

probability a switch is ON or OFF, Eqs. 15 and 16. The ON-state

receptor concentration is

R*i = Pr (ONj i)Rref (19)

with comparable expressions for the GTPC and the OFF states.

The total free-energy drop DG is finite. We quantify this by

setting the average drop m0 over switches to be constant.

Mm0 =o
N

i=1
mi + mG = DG (20)

The entropy production, Eq. 14, along with normalization and

free-energy constraints can be maximized with the method of

Lagrange multipliers (see Supplement). We find that the chemical

flux is constant J0 in every switch

Ji = JG = J0 =
J
M

(21)

where J is the total chemical flux into the system.

Equation 21 can be used to identify the control point for turning

a switch ON and OFF. From the definition of flux, Eqs. 15 and 16,

the probability of a PdPC being ON is

Pr (ONj i) = J0
k−i

(22)

and the probability of the GTPC being ON is

Pr (ONj G) = J0
k−G

(23)

As can be seen from Eqs. 22 and 23, the ON states of the

switches are completely determined by the externally applied

chemical flux and the return rates k−i and k−G for the switches.

These two reaction rates are the dephosphorylation rate in PdPCs

and the backward rate for the reaction in Eq. 13 for the GTPC. This

is prediction (1) in the abstract. The switch is ON when the reaction

rate, k−i or k
−
G, is equal to the flux J0. The switch is OFF when the rate

is much larger than J0. In the PdPCs, this rate is the rate catalyzed by

the phosphatase. In the GTPC, this is the hydrolysis/association rate

for GTP-bound G protein to bind to the receptor. To maintain a

stable switch, the return rates k−i and k−G must be rigid, not flexible.

This indicates that the return rates are the controls for turning the

switches ON and OFF.
2.4 Specialization of the model to the
GPCR complex

We specialize the BOIS model to a GPCR complex illustrated in

Figure 3A. Again, the time-average approach is most useful and

convenient. We imagine that a single GPCR complex transitions

among its allowable internal states over time. The complex is like a

pulsating cloud in which all flexible states of the complex are visited

by RT receptors. High-energy rigid states do not fluctuate as readily

as flexible states.
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In most cases, the point of ligand engagement is a ligand-

binding pocket in the seven-transmembrane (7TM) G protein

coupled receptor (GPCR) that is accessible from the extracellular

fluid. Simultaneous to the ligand binding, a ternary reaction binds

guanosine di-phosphate (GDP) -bound heterotrimeric G protein to

the intracellular side of the complex [Lefkowitz (49)]. Ligand

binding is further allosterically stabilized by the heterotrimeric G

protein complex that binds to an intracellular binding pocket in the

GPCR [Lefkowitz (49); De Lean et al. (48)]. This G protein complex,

at this stage, has its Ga subunit bound to Guanosine Diphosphate

(GDP). From the extracellular pocket, the endogenous ligand or

possibly drug agonist controls signaling to downstream pathways

re-conformation of the transmembrane and intracellular alpha

helices of the GPCR [Wingler et al. (50)]. The conformations

determine switch configurations. The switch responsible for the

control of the Ga pathway is a GTPC ([39]).

The G protein is composed of three sub-units, Ga and a Gbg

dimer. Nucleotide exchange occurs and the G-protein bound GDP

is replaced with a bound guanosine tri-phosphate (GTP). This

destabilizes the complex leading to the release of GaGTP into the

intracellular fluid where it activates G-protein effector coupling.

This is the GTPase switch. The Gbg dimer is involved with other

effector coupling, including b arrestin ( b arr) pathways. The C tail

of the GPCR contains a number of phosphorylation sites [Latorraca

et al. (5)]. These sites can be ACTIVATED and act as PdPCs,

switches that leads to effector coupling of b arr pathways.

The GPCR acts as a Guanine-nucleotide Exchange Factor

(GEF) that facilitates the exchange of GDP bound to the Ga

subunit of the G protein complex for GTP [Coleman et al. (51);

Sprang (52)]. The heterotrimeric G protein separates into two

subunits, the Ga subunit bound to GTP and a bg dimer [Liang

et al. (53)] Both the Ga subunit and the released dimer transduce

the signal initiated by ligand binding to the GPCR.

The other transducer, b arrestin ( b arr) is controlled by

multiple PdPCs that can desensitize the Ga pathway or activate

pathways downstream of b arr ([38,40]). Here, b arr can bind to the

receptor core and sterically desensitize the Ga pathway. The

transducer b arr can also form a megaplex by binding through

phosphorylation sites to the C tail of the GCPR leading to possible

continued activation of Ga pathways [Thomsen et al. (54)].

Downstream b-arrestin pathways can also be activated by the

phosphorylation configuration on the C tail [Latorraca et al. (5)].

In this study, we focus on the information flow through the

megaplex rather than Ga desensitization.

The C terminus of the G protein-coupled receptor binds to the

bg dimer (55]) and facilitates the phosphorylation of the C

terminus and intracel lular loops of the GPCR. After

phosphorylation, b arrestin binds to the phosphorylated barcode

and intracellular loops formed by the placement of phosphates on

the intracellular portions of the GPCR. The b arrestin provides a

scaffold for downstream pathways. [Smith et al. (56)] The b arrestin

protein takes on many conformations with each independent

conformation associated with a downstream pathway ([30]). Each

conformation corresponds to a distinct configuration of PdPC

switches. The GPCR is dephosphorylated by a phosphatase. Free

energy is cycled into and out of the process by phosphorylation-
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dephosphorylation [Beard and Qian (57); Qian and Reluga (27, 29,

46)] and nucleotide exchange-hydrolysis [Coleman et al. (51);

Sprang (52)].

This biological model is greatly simplified by the BOIS picture

illustrated in Figure 3B. Here, the OFF states of the switches are

pooled into a common state C, that is ACTIVATED by ligand L

binding to free receptors RF . In this picture, the OFF state for a

given switch is characterized by an absence of receptor in the ON

state R*i . The arguments stemming from MIST are unchanged and

still hold in the specialized case. Moreover, the equations for MREP,

Eqs. 14 through 14, remain unchanged. The key properties of the

general BOIS model are preserved in this specialized configuration,

including a common value for the flux in each ACTIVE switch and

the constancy of the ON-state receptor concentration for

each switch.

Most of the complication of the biological model is included in a

single state C, which acts as a flux source J and sink for the switch

outputs which are the phosphorylation sites on the C-tail and

intracellular loops of the GPCR complex and the release of GTP-

bound Ga . State C represents all of the ligand-bound GPCR

complex other than the switch outputs: other than the

concentrations of the phosphorylation site outputs and the

concentration of the GTP-bound free Ga subunit. Free energy is

cycled into and out of the process by phosphorylation-

dephosphorylation [Beard and Qian (57); Qian and Reluga (29);
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27, 46)] and nucleotide exchange-hydrolysis [Coleman et al. (51);

Sprang (52)]. In the BOIS model, the ON/OFF state of the switches

is determined by dephosphorylation in the PdPCs and by hydrolysis

of GTP in the GTPC.

The GTPC switch may be more complicated than the PdPCs.

Here, association and dissociation of Ga adds some complication as

does the presence of hydrolysis and its catalyst RGS. The value of

the free Ga concentration also has an effect. This added

complication does not affect the results and conclusions here.

The number of receptors bound to ligands depends on the free-

ligand concentration. If the receptors have not been exposed to

ligands and the current free-ligand concentration is zero, then,

obviously, the number of ligand-bound receptors is zero. As the

free-ligand concentration increases, ligands become bound to

receptors. This is a dynamic process with ligands associating and

dissociating with the receptors. If the addition of free ligands is slow

enough, the ligand-bound receptor concentration achieves a steady

state that depends only on the ligand concentration. In other words,

the bound receptor concentration changes adiabatically with ligand

concentration. When the ligand concentration becomes very large,

all receptors become bound.

No information is transmitted by the ligands when the number

of ligand-bound receptors is zero or when all receptors are bound.

In these two cases, the information H stored in the bound-receptor

probability distribution is zero. The maximum storage of one bit
A B

FIGURE 3

(A) Structural schematics of adrenergic and angiotensin receptors. A ligand, indicated in orange at the top of the figure, binds to the transmembrane
receptor causing a conformational change in the GPCR complex [Lefkowitz (13)] (see this reference for details and definitions). The GPCR
simultaneously binds to a GDP-bound heterotrimeric G-protein complex (purple, green and magenta). The bound GDP is converted to GTP by
nucleotide exchange. Intrinsic GTP hydrolysis by the Ga subunit is accelerated by a Regulator of G-Protein Signaling (RGS). The Ga subunit (purple)
and the b- g subunits (green and magenta) of the G protein separate. The GTP-bound Ga complex is released from the GPCR and activates
downstream Ga processes such as those indicated by cAMP, Diacyglycerol, and Ca. This constitutes a GTPC. Phosphorylation sites are selectively
phosphorylated with a kinase and dephosphorylated by a phosphatase. The configuration of OFF and ON states in the barcode determine the
activation and inactivation of b arr downstream responses such as those indicated by MAPK and E3. (B) BOIS Model Specialized to GPCR The
detailed biological picture is reduced to the simpler BOIS picture. This picture places the additional constraint on the BOIS model that the OFF states
are pooled into a common state C. The complex C contains all the ligand-bound receptor states other than those associated with switch output.
The ligand state is denoted by L, while the ligand-free receptor state is RF . The phosphorylation-dephosphorylation cycle (PdPC) outputs are
denoted by Pi. Switch Pi is ON if the site on the b arr is phosphorylated, otherwise it is OFF. The GTPC is ON if the GTP-bound Ga subunit is
detached from the GPCR complex, otherwise it is OFF. Nucleotide exchange provides the source J of chemical flux, which is divided equally into
chemical fluxes for each switch according to the BOIS model. All ON switch states, GaGTP and Pi, have the same concentration also according to
the BOIS model. Whether a switch is ON or OFF is determined by the reaction rate from the output to state C. This is determined by
dephosphorylation in PdPCs and by dissociation in the GTPC.
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occurs when half the receptors are ligand-bound. Any information

transmission rate greater than one bit must be supplied by another

mechanism than the simple ligand binding described here.

It should be noted that reversing the ligand population from a

high value to zero does not necessarily reproduce the same ligand

dependence on the number of bound receptors as in the forward

case. This is due to the fact that once a receptor is bound to a ligand,

it can change into other states such as, for instance, a ligand-bound

phosphorylated state, which may not have the same ligand

dissociation constant as the unphosphorylated state. One then

expects hysteresis in the forward and reverse trajectories of the

bound receptor concentration. We are not aware of any

experiments that have examined the removal of free-ligand

concentration from a population of fully bound receptors. We do

not believe that the hysteresis prediction has been tested.

The kinetics of the model is described by the following ordinary

differential equations (ODE) where we designate the state

concentrations by the name of the state

dRF

dt
= k+LC − k−LRFL (24)

RT = RF + C +o
N

i=1
R*i + R*G (25)

dR*i
dt

  =  J0  −  k−i  R*i (26)

and

dR*G
dt

= J0 − kG R*G (27)

where N is the number of ACTIVE phosphorylation switches and

the k notation indicates reaction rates. All receptor concentrations

are normalized to Rref from Eq. 10. Here, R*i is the ON-state

concentration of the of the PdPC and is equal to the probability

that the PdPC is ON, while R*G is the same quantity for the GTPC.

Simulations were performed in which the ligand concentration

was initially set to zero. The concentration was increased until all

receptors were bound. At that point, all ON switch concentrations

were at their common maximum value.

For a finite value of the chemical flux J0, some initial conditions

lead to non-physical results. For instance, in the relevant case in

which all receptors are initially in the free state RF and none are in

any ligand-bound state, Eqs. 26 and 27 immediately drive the ON-

state concentrations Pi and RG to negative values, which is non-

physical and not permitted. This implies that in the state in which

the complex encounters the ligand for the first time, all switches are

INACTIVE and contain no chemical flux ( J0 = 0). Simulations

indicate that no physical solutions are possible until the ligand

concentration increases to the level at which the complex

concentration C is equal to the number of receptors that will turn

on one switch ( C = 1).

C =
LRT

L + KL
= 1 (28)
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KL =
k−L
k+L

(29)

At that point one switch can be ACTIVATED and turn ON.

The concentration goes to zero at this point. As the ligand

concentration increases more, the receptor concentration C once

again increases to a value of one at which a second pair of ON/OFF

switches are ACTIVATED. This process continues until the total

number of INACTIVE switches is ACTIVATED or the ACTIVE

switches have consumed the total number of receptors. This is

illustrated in the simulation runs in Figure 4.

This argument highlights the important transition from

inactivated switches to activated switches as free-ligand

concentration increases in the presence of receptors that are not

initially bound to ligands. At low free-ligand concentrations, the

total flux into the system is zero. No switches are ACTIVE. The

complex is not capable of sending information to downstream

processes. As free-ligand concentration increases, however, a

point is reached when a phase transition occurs and the chemical

flux becomes finite. At this point, the complex is able to transmit

information. This supports prediction (3) in the abstract.

The sharp transition between ON and OFF states illustrated in

Figure 4 is an artifact of the theory. In physical phase transitions

and in all theories based on the mean-field-theory approximation,

as is the BOIS model, fluctuations spread sharp transitions. When

fluctuations are included in the theory, the transitions become

smooth [Uzunov (58)].

An assumption of the BOIS model in Eqs. 24 - 27 is that the

only state in which a receptor can dissociate from a ligand is C. This

is consistent with many models, including the Operational Model.

The dissociation constant from phosphorylated states, for instance,

is zero. An important implication is that, in the BOIS model, once a

switch has been activated it does not become deactivated if the free-

ligand concentration decreases to zero. The ligands bound to the

receptors in the switches remain bound. A process from outside the

model must deactivate the switches. It must be terminated by an

external process such as arrestin blockage. This is consistent with

[Tran et al. (59); Gurevich and Gurevich (60); Wilden et al. (61);

Lohse et al. (62)].

Both the Operational model and the BOIS model treat much of

the receptor complex as a black box represented by state C in Eq. 24.

The Operational model differs from the BOIS model in that the

constant flux J0 in Eqs. 26 and 27 is replaced by fluxes k+i C and k+GC,

respectively. The specialized BOIS model makes a very different set

of predictions from the Operational model. There is no concept of

ACTIVE and INACTIVE switches in the Operational model as

there is in TCM. The flux in a switch can take on any values given by

k+i C and k+GC. In the scenario in which all ligands are free and the

ligand concentration is increased from zero, a single switch becomes

saturated when it has absorbed the entire number of receptors RT . If

multiple switches are present in the system, the response is

partitioned equally among the switches if they are identical. This

is illustrated by the green curve in Figure 4. If the number of

switches changes, then so does the maximum response.

Importantly, in the Operational model, the saturated outputs

drop to zero if the free-ligand concentration drops back to zero. We
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can see this quantitatively by noting that the Operational model for

the system describes the NESS by [Black and Leff (7)].

R* =
KSL

L + KL + KSL
RT (30)

Here, R* is the ON concentration of the switch and KS are given

by

KS =
k+

k−
(31)

for a switch. Note that the Operational model, Eq. 30, depends

continuously on ligand concentration and linearly on the total

receptor concentration RT . This is quite different from the BOIS

model, which is step-wise dependent on the ligand concentration.
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The Operational model increases the ON concentration for all

switches simultaneously, while the BOIS model turns on one

switch at a time. From Eq. 30 we see that the output

concentration R* goes to zero as the free-ligand concentration L

goes to zero.
2.5 Switch manipulation

Molecular switches exist within a milieu of energy fluctuations,

which cause the molecular conformations to rapidly change. On the

other hand, for information transmission to be useful, the

conformations associated with information storage and

transmission must be long-lived. [Schrodinger et al. (44)],

otherwise, the information rapidly disappears. Therefore, bonds

associated with the switches, whether covalent or conformational,

must have lifetimes comparable to the time needed for information

storage and transfer. The bonds associated with switch

configurations must be rigid. In the BOIS model these rigid

bonds are represented by the reaction rates k−i and k−G in Eqs. 26

and 27.

MIST requires that the number of ON states is equal to the

number of OFF states, at least statistically. Some indications of this

have been observed experimentally [Latorraca et al. (5)]. This is a

global requirement involving the entire portion of the GPCR

megaplex associated with switches. The mechanism to implement

this requirement is unclear but we can gain some insight with a

simple simulation illustrated in Figure 5.

As was pointed out in the discussion of Figure 1, biological

processes, in order to repeat actions, must exist as cycles [Kauffman

(63)]. We can perform a very simple numerical experiment to see

how these cycles might form from a very simple set of physical rules.

We imagine a collection of four switches with states as illustrated in

Figure 2. We then imagine that each state s transitions to another

state at times t = 1, 2, 3,⋯ with a certain transition probability p½s
(t) ! s(t + 1)�. We then run a Monte Carlo simulation of state

transitions with a single requirement: if the simulation transitions

from s(t) to s(t + 1), then the transition probability for those two

states is slightly increased. This type of modification to the

transition probability is known as Hebbian learning and is

important in the study of neural systems [Munakata and Pfaffly

(64); Keysers and Perrett (65); Gerstner and Kistler (66)].

Each simulation starts with a random initial state. The

requirement states that a transition from one state to another

affects the conformation of the flexible protein matrix such the

conformation has a physical memory, a lasting impression, of the

transition. We see in Figure 5A that the simulation spontaneously

forms cycles. Precisely which cycles are formed varies from

simulation to simulation and is determined by the random

number seed. We see from Figure 5B that the probability of a

state being in a cycle in which the average number of ON states

among the cycle switches clusters around two, which is half the total

number of switches M = 4. We found this to be true for all the

approximately 100 simulations we ran.

These results are easy to understand. If we pick a state with

uniform probability from among the 16 possible choices, then the
FIGURE 4

Dose Response Simulated (BOIS) (red) and Operational (solid green)
models dose response curves are displayed. The total receptor
concentration is RT = 2:5 in normalized units. A maximum of 2 < RT

ON switches are allowed. For each ON switch, there is an OFF
switch. The ligand concentration increases from the left and is
normalized to the ligand-receptor dissociation constant. For small
initial ligand concentrations no switches are ACTIVATED in the BOIS
model. When the ligand concentration in state C increases to one,
two switches become ACTIVATED (Eq. 28), ON and an OFF
switches. Either a GTPC switch is activated and turned ON (solid
black line) or a PdPC is ACTIVATED and turned ON (dotted black
line). When the switches are ACTIVATED, the concentration in state
C drains into the switch states. As the concentration is state C
increases to one once more, four switches become ACTIVATED and
two turn ON. The switch always achieves the same receptor
concentration when ON, however the ligand concentration at which
the switch turns ON varies. For higher receptor concentration RT ,
more ON switches are possible with a maximum number equal to
the largest integer less than the normalized receptor concentration.
In contrast, the Operational model varies with the number of
switches. We plot the curve for two switches assuming the receptor
concentration is equipartitioned between the two. Once the BOIS
model is ACTIVATED and the switches are turned ON, then the
system does not return to the INACTIVATED state. If the ligand
concentration goes to zero then the ON state turns OFF for the
Operational model, in contrast to the BOIS model.
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probability that the state will be associated with a particular cycle is

greater the more states are in the cycle. Larger cycles, on the other

hand, sample more of the total number of states than smaller cycles.

As the cycles become larger, the average number of ON switches in

the cycle approaches 2, which is the average number for all 16 states.

This leads to the tight clustering around the average of 2 seen

in Figure 5B.

It is well known that balance of this nature, excitatory-

inhibitory balance, occurs at the cellular level [Froemke (67);

Ganguly et al. (68)]. At least in some periods of neural

development, the number of inhibitory and excitatory neurons

are statistically equal in neuron switches. The balance in the

cellular case is determined by Cl − concentration in the extra-

and intra- cellular fluid [Ganguly et al. (68)], which, as we propose

here, is a system-wide control of ON/OFF balance.

One important implication of this ON/OFF balance is that if a

switch is flipped, then, at least statistically, another switch is flipped

oppositely. The hypotheses generated by the arguments of this

section are theoretical predictions that merit experimental tests.
3 Experimental tests of predictions

The BOIS model makes several predictions, some of which can

be compared with experiments. In particular, the prediction that all

ON-state switch concentrations are the same value for a given

receptor even if different ligands are applied or the number of ON
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switches varies can be tested, as described by Eq. 11. The output

response to ligand-concentration, Figure 4, can be compared with

assay bias curves. This provides a mechanism for understanding

and quantifying the observed values of EC50 for the dose-response

curves in bias assays ([41]). Predicted information transmission for

a given number of ACTIVE phosphorylation sites can be compared

with experimental information transmission experiments

[Keshelava et al. (3)].
3.1 Bias assay experiments

We compare the assay data from [Rajagopal et al. (1)] with

simulations based on the BOIS model in Figure 6. Assay results on

two different receptors, b2 adrenergic ( b2AR) and angiotensin II

type 1A ( AT1AR), for which IP and cAMP, respectively, were

measured as an indirect proxies for these switch ON states, are

displayed. The G proteins were in the Gq class for b2AR and in the

Gs class for AT1AR. The study also measured recruitment of b
arrestin 2.

Two different downstream pathway concentrations were

measured for each receptor, the Ga pathway and one b-arr
pathway. Other pathways may have been present, but they were

not measured. The estimated reference receptor concentration Rexp

was taken to be the maximum Formoterol concentration for the

adrenergic receptor and angiotensin II maximum concentration for

the angiotensin II receptor. The maximum downstream
A B

FIGURE 5

Monte Carlo simulations of switch cycles. An initial switch was chosen randomly from among all 16 switches. The transition to the next state was
determined by a transition probability, which was initially uniform. if the transition between two states was chosen, the transition probability from the
first to the second state was increased by 10% and then renormalized. The transition to the next state is determined in the same manner, with the
consequent renormalization. The process is repeated for 16 transitions. Then a new initial state is chosen and a new trajectory is generated with
modification of the transition probabilities. The process continues until a fixed point in the cycle formation is achieved. The fixed points can vary
from run to run. (A) A fixed point for the process. We see here three stable cycles, one that contains 13 states (magenta), one that contains two
states (blue), and one that is a single state. The singleton cycle has one ON switch (see Figure 2C). The two-state cycle has two ON switches
(Figure 2A). (B) Probability that a switch chosen randomly will land in a cycle that has a given average number of ON states in the cycle. The
probability for the three cycles are displayed. Note that the probabilities are clustered around the ON state number 2, which is half the number of
total switches in the configuration.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1111594
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Jones and Jones 10.3389/fendo.2023.1111594
concentrations normalized to Rexp for each pathway are given in

columns marked Ga and b arr in Table 1. The EC50 concentrations

in the table are measured in moles per liter. Several distinct ligands,

listed in Table 1, were applied to each receptor.

Experimental dose-response and bias curves from [Rajagopal

et al. (1)] are displayed in Figure 6. All concentrations are

normalized to the maximum observed concentrations Rexp for

each receptor. Here, Rexp is the maximum concentration of

Formoterol for the adrenergic receptor; it is the maximum

concentration of angiotensin II for the angiotensin II receptor.

Figure A displays the Ga and b arr recruitment responses to

Formoterol and angiotensin II for the adrenergic and angiotensin

II receptors, respectively.

Figure 6A illustrates the two dose response curves for the ligand

Formoterol binding to the adrenergic receptor. The Ga response is

indicated by gold markers and the b arr response is indicated by
Frontiers in Endocrinology 12
cyan markers. The maximum normalized Formoterol response

concentration is one since Rexp is equal to the maximum

Formoterol concentration.

The BOIS model is indicated in red. We assume that four

switches are involved in the process. As the ligand concentration L

increases from zero in the presence of a receptor that has not been

exposed to the ligand before, the theoretical response is zero. The

chemical flux through all the switches is zero. When the normalized

bound-ligand concentration in the receptor (state C) reaches one,

the first switch turns on (dashed curve). We set the EC50 for the first

switch of the BOIS model to be the EC50 of the first switch measured

in the experiment. The receptor becomes activated. A chemical flux

flows through the receptor states. The ligand concentration in

receptor states associated with the body of the GPCR, state C,

approaches zero and all the receptor states are associated with the

first switch that turns ON. As the ligand concentration increases
A B

DC

FIGURE 6

Comparison of experiment and simulation (A) Adrenergic Receptor with Formoterol as Ligand. The simulation is displayed in red. Receptor
concentrations are normalized to the reference concentration, which for this adrenergic receptor is the maximum concentration of Formoterol. All
receptor concentrations for all adrenergic assays are normalized to this reference concentration. The dashed line is the simulation of the activation
of the first switch. The dotted curve is the activation of the second switch. The yellow markers are the observed assay dose response for the Ga
pathway. The cyan markers are the observed assay dose response for b arr. (B) Angiotensin II Receptor with Angiotensin II as Ligand. The reference
concentration is taken to be the maximum concentration of angiotensin II. (C) Bias Plot for All Ligands for Adrenergic Receptor (see Table 1). The
simulation results are displayed in red. Note that some ligands are Ga biased; their endpoints lie close to the Ga axis. Other ligands are balanced;
their endpoints lie at (1,1). No b arr bias is seen in this set of ligands. (D) Bias Plot for All Ligands for angiotensin II Receptor. This plot illustrates
balanced bias and b arr bias. For balanced bias the first switch is the GTPC and the second switch is the PdPC that activates arrest in recruitment.
For b arr bias, the GTPC is not activated. The BOIS model predicts that the first ACTIVATED is a PdPC that is not observed. Here, Ga bias is only seen
for ligand concentrations that are associated with sub-maximal response.
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further, the concentration in the body of the GPCR complex

increases once more until the second switch (dotted) turns ON.

The EC50 of this switch in the BOIS model is determined by the

EC50 of the first switch.

For Formoterol applied to the adrenergic receptor, the

experimental observations indicate that the first switch that turns

ON is the Ga (gold) response. The second switch is the observed b
arr recruitment (cyan) switch. This can be seen also to be true for all

ligands tested with the adrenergic receptor in Figure 6C. Here, we

have reproduced the bias curves (blue) from Rajagopal et al. (1).

Each curve represents a unique ligand given in Table 1. The markers

indicate the maximum output for each ligand and receptor. The

horizontal axis measures the output to the Ga or GTPC pathways,

while the vertical axis measures the output to the b arr PdPC

pathway. We see that all responses start as zero as would be

expected. All measured ligands turn the Ga switch ON first and

then some of the ligands also turn on the b arr recruitment switch.

It is important to note that the maximum responses all lie roughly

around the points (0,0), (0,1), and (1,1). This is support for the

BOIS prediction that all responses saturate at a common

concentration. The biological interpretation is that the ligand-

bound receptor first binds to the G protein. Then, the receptor

can stay in that state with the b arr downstream pathway

untriggered or the ligand/G protein-bound receptor can facilitate

the recruitment of b arr.

Figure 6B displays the response curve for Angiotensin II ligand

on the angiotensin II receptor. As was the case with the adrenergic

receptor, the first switch to turn ON for the angiotensin II receptor

is a Ga switch as seen in Figure 6B. The second switch is associated

with b arr. The interpretation of the bias curves Figure 6D is not as

simple as the interpretation of the bias curves for the adrenergic

receptor, Figure 6C. We note that if a receptor triggers the Ga

response it also triggers a b arr response at a higher ligand
Frontiers in Endocrinology 13
concentration. We see that the right blue curve in the figure first

passes near the (0,1) state before proceeding to the balanced (1,1)

state. This indicates, within the context of the BOIS model, the Ga

switch is turned on first and then all receptors that have the Ga

switch turned ON transition into the b arr recruitment state. In

more biological language, this means that the ligand-bound

receptor first binds with G protein, which facilitates the

recruitment of b arr. The left blue curve in Figure 6D indicates

that the b arr can occur without the intermediary of the measured

Ga pathway. In other words, the measured Ga pathway does not

facilitate b arr recruitment. The b arr recruitment occurs with an

EC50 of the second switch. Within the context of the BOIS

model, this indicates that an unmeasured switch was the first to turn

ON and that this unmeasured switch may have facilitated the

recruitment of b arr.

We see that the saturated responses, the ON states, for the

experimental assays are clustered about the points (0,1), (1,1), and

(1,0) in the bias curves. One ineffective measured ligand had a

response of (0,0). This point is not displayed. This indicates that the

common saturated-concentration value of Rexp is the common

concentration for all the ligands, for multiple numbers of ON

switches. The BOIS predictions indicate the this number is Rref .

We can conclude that the measured value Rexp and the BOIS value

Rref are equal.

The fits to data in Figure 6 rely on just three free parameters,

Rref , the EC50 for one switch, and DR (see Eq. 7). Each of the three

parameters has an intuitive meaning.

The Operational model and TCM predict different maximum

response for different numbers of ON switches. This is not observed

in the observations in Figure 6. The Operational model and TCM

predict that all switches turn on simultaneously. This also, is not

observed. This defect of the Operational model can be corrected in a

more elaborate Mass-Action model that introduces additional
TABLE 1 Assay data.

Adrenergic Angiotensin II

Ga log(EC50) b Arr log(EC50) Ga log(EC50) b Arr log(EC50)

Form 1.05 -9.62 1.02 -8.61 TRV120056 0.95 -7.34 1.00 -6.42

Iso 0.87 -9.71 0.94 -8.14 TRV120055 1.00 -7.97 1.03 -7.05

Fen 0.80 -9.41 0.94 -7.81 AngII 1.00 -8.84 1.00 -7.90

Epi 0.88 -9.01 0.69 -7.25 S1C4 0.93 -8.84 0.70 -6.66

Salb 0.92 -8.30 0.33 X A1 0.98 -8.52 0.95 -7.68

Salm 0.97 -8.26 0.33 X TRV120034 0.12 X 0.89 -7.68

Clen 1.00 -8.85 0.17 X TRV120026 0.09 X 0.89 -6.64

Norepi 0.96 -6.84 0.21 X TRV120045 0.11 X 0.89 -7.57

Dob 0.94 -6.57 0.04 X SGG 0.17 X 0.72 -5.69

Pind 0.10 X 0.01 X TRV120044 0.09 X 0.76 -6.79
fr
Assay values for maximum stimulus for adrenergic and angiotensin receptors [Rajagopal et al. (1)]. The concentrations Ga and b arr are normalized to the reference value Rref. Ligand
concentrations are molar. The ligand names correspond to the names used in [Rajagopal et al. (1)]. Balanced ligands for the adrenergic receptor are Formoterol, Isoproterenol, Epinephrine, and
Fenoterol. Balance ligands for the angiotensin II receptor are Angiotensin II, TRV0120055, TRV0120056, A1, and S1C4. Adrenergic ligands that are Ga biased are Dobutamine, Norepinephrine,
Clenbuterol, Salmeterol, and Salbutamol. No adrenergic ligands in the sample are b-arr biased. Angiotensin II ligands that are b-arr biased are TRV0120044, TRV0120045, TRV0120034, and
S1G4G8. No angiotensin ligands in the sample are Ga- biased.
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degrees of freedom for reaction rates that vary the EC50 for each

switch. The BOIS model, however, makes the prediction with a

paucity of free parameters.
3.2 Information-flow experiments

Recent single-cell experiments on the muscarinic acetylcholine

receptor M3R [Keshelava et al. (3)] indicate that more than two bits

of information is transmitted through the receptor complex. In

other words, the channel capacity CI was measured to be greater

than two bits. This is significantly higher than previous population-

level experiments that measured transmission at about one bit (see

Keshelava et al. (3) and Zielińska and Katanaev (2) for references)

The difference is attributed to extrinsic noise, that is inter-cellular

noise, in the cell population. Increased information flow is observed

when measurements are made at the cellular level as opposed to the

population level. Accurate measurement of information flow seems

to be sensitive to the resolution of the experiments.

The authors point out that a capacity slightly greater than two

allows for four possible downstream effector couplings, which

allows for ligand bias. Bias is measured in Rajagopal et al. (1).

The BOIS model predicts that for four switches, the capacity is CI =

log  (6) = 2:58 bits, which is consistent with both the single-cell

capacity measurements and the bias experiments.
4 Discussion

The approach of this study is mathematics/physics-based, which is

not common in biology in the manner it is used here. The approach

posits an idealized thought experiment. The thought experiment itself

does not contain all the richness of reality, but it attempts to create an

imaginary world that can be used for prediction. The goal of a thought

experiment is to generate hypotheses that can be tested by existing or

future experiments. The implications of the thought experiment are

explored and predictions are compared with experimental

observations. Most scientists would agree that biological systems are

constrained by the laws of physics and mathematics, so it is not only

useful, but imperative, that these constraints be examined in

biological contexts.

The thought experiment here takes as its fundamental

assumption that biological systems are optimized. Biologists often

point out that components of biological systems such as enzymes

are not optimal. By this, they may mean that the system under study

does not seem to operate most efficiently in regards to energy

consumption. This does not mean that the system is not optimized

according to some different criteria consistent with natural

selection. In this study, we postulate that biological systems have

optimized information and entropy flow and we then determine the

implications. We chose these quantities to optimize because they

seem reasonable from the perspective of natural selection. There

may be other reasonable choices.

This study examined an ensemble of energy consuming

switches. We imagined that natural selection chose a system that

transmitted information perfectly and that evolved toward thermal
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equilibrium along the shortest path subject to mass and free-energy

flow through the ensemble. Maximization into a stable system

required a balance between protein flexibility and rigidity

[Schrodinger et al. (44)].

Some of the assumptions and predictions of the BOIS model

have experimental support. The picture of an array of switches is

supported by measurements of the phosphorylation sites on the

isolated C terminus of the GPCR [Latorraca et al. (5)].

Measurements of information flow in individual cells, as opposed

to tissue measurements, indicated that the information

transmission through the GPCR is greater than 2 bits [Keshelava

et al. (3)]. This is consistent with the BOIS model that predicts that

the information transmission is log2(6) = 2:58 bits for four switches.

The common receptor reference concentration Rref was observed in

(1, for example). The steady-state and transient bias curves

predicted by the BOIS model were observed in bias curves

[Rajagopal et al. (1)]. The BOIS model requires the arrestin-

bound C tail of the GPCR complex to be flexible such that

distinct phosphorylation sites can come in contact with each

other and also the GTPC. This is supported by observations

[Kahsai et al. (69); Latorraca et al. (4); Eichel et al. (70)].

The BOIS model describes the transition between an inactive

GPCR complex that is incapable of transmitting information to one

that can transmit information as free-ligand concentration

increases in the presence of receptors that are not initially bound

to ligands. The model predicts a phase transition in which the

chemical flux in the system turns on suddenly as free-ligand

concentration increases.

The BOIS model indicates that the number of OFF switches is

statistically equal to the number of ON switches if the system is

operating at maximal efficiency for information flow. The tendency

of the switch configurations to have a constant number of ON

switches was observed in isolated C tails of the GPCR complex

[Latorraca et al. (5)]. We speculated on one possible mechanism for

this behavior in Sec. 2.5 where we showed that self-reinforcing

transitions through the various switch configurations lead to

statistical equivalence of the number of ON and OFF switches.

The trajectories through the state space formed cycles as one would

expect for biological processes that are able to repeat their actions.

Moreover, perturbation of this system with the addition of a ligand

actually disrupts the equality of the number of OFF/ON switches, at

least briefly. A perturbation sets in motion a set of changes that

bring the system back to OFF/ON equality. Similar behavior at the

cellular level is seen with neurons in excitatory/inhibitory balance in

various stages of development [Froemke (67); Capogna et al. (71)].

As such, optimal information flow requiring this OFF/ON equality

may increase the fidelity of signaling. In fact, switch chains of this

sort have been suggested as a means to enhance temporal

cooperativity among the switches [Qian (46)].

We are not aware of experiments that can be compared with

other BOIS predictions. For example, we do not know of currently

performed experiments that can test the BOIS assertion that the

chemical flux in each switch is constant, nor have we seen

experiments that identify the return reaction rates, k−i and k−G in

Eqs. 26 and 27, as the target to change switch states between ON

and OFF. We have not seen GPCR experiments that address the
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prediction that the number of ON switches is statistically equal to

the number of OFF switches (Sec. 2.5). Finally, we are not aware of

experiments that determine whether the ON states turn OFF if the

extracellular ligand concentration drops to zero (Sec. 2.4). These

unverified predictions comprise a set of hypotheses for testing.

The most potentially practical applications of the BOIS model

may be for drug discovery [see Zhuang et al. (72)] for a very recent

relevant study of bias]. The BOIS picture is a systems picture for the

selection of downstream pathways. The BOIS model is not able to

supply a recipe for drug discovery. It does, however, show some

promise to point out meaningful search pathways. Kinases, for

example, are currently receiving more research attention than

phosphatases. This study suggests that, for bias control, it may be

necessary to increase attention paid to phosphatases.

Current drugs operate on coarse scales. For instance,

Angiotensin Receptor Blockers (ARB), among other things, affect

blood pressure and renal glomerular damage by blocking all the

information transfer in the Angiotensin II ( AT1) receptor. If,

hypothetically, blood-pressure control lies on one AT1 pathway

and renal-function control lies along another pathway (Ruiz-Ortega

et al. (73), then ARBs block both pathways indiscriminately.

Precision medicine will require knowledge of bias control at a

much finer scale than is currently practiced. In that case detailed

knowledge of the order and how switches are turned on with

varying free-ligand concentration is crucial to controlling which

switches are ON and OFF. The discussion around Figure 6

illustrates how the BOIS model might inform the fine temporal

application of drugs that affect multiple pathways. In the case of

angiotensin II receptor AT1A, for instance, the BOIS model suggests

that at least two distinct pathways lead to b arr recruitment, one in

which the Ga pathway is crucial in the recruitment and another

pathway in which it seems that recruitment depends on a switch

other than the Ga switch. The identification of pathways that be

controlled by different mechanisms may, for instance, be important

for the treatment of diabetic kidney disease in which the angiotensin

receptor seems to have downstream pathways that affect

cardiovascular response and other pathways that affect the kidney

more directly.

In another example, it should become possible to deliver current

opioids automatically into the tissue as micro-doses in a continuous

or dynamic prescribed regime such that the anti-nociceptive

properties of that specific drug are realized whereas the addictive

side effect is avoided.

The BOIS model suggests that the number of ON and OFF

switches are statistically equal (Sec. 2.5). This implies that flipping a

switch may affect the switch state of another switch or switches that

may be physically distant from the flipped switch. This is a system-

wide effect that seems to emerge from the BOIS picture of rigid

bonds embedded in a matrix of flexible protein. In that case, the

concept of drug targets must be expanded to include the

manipulation of the entire protein matrix rather than just

manipulation of specific bonds.

The BOIS model may have implications for systems biology.

The BOIS model relies on protein flexibility for reaction binding

energies less than approximately 12 kcal=mol, the amount of
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energy per reaction from ATP [(45, Sec. 15.2) Qian and Reluga

(29)], and rigid protein reactions for binding energies greater than

this number. This model differs significantly from models such as

mass-action models in which proteins are completely rigid and

inflexible, and reaction rates are constant. The main variables in the

BOIS model are chemical fluxes in each reaction, while the key

variables in models such as mass action are concentrations of each

chemical species. Because of protein flexibility, the BOIS model is

more like a fluid than a rigid reaction network. The BOIS model

behaves globally to optimize external forces just like water forms a

flat surface in response to gravity.

The BOIS model suggests a physics laboratory in which to test

conjectures in nonequilibrium thermodynamics. The principle of MREP

is much less well-established than the Second Law of Thermodynamics

[Jaynes (12)]. The bias and information-transmission experiments

[Rajagopal et al. (1); Keshelava et al. (3)] can be thought of as physics

experiments in nonequilibrium thermodynamics.
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