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Objectives:Our objective was to use deep learning models to identify underlying

brain regions associated with depression symptom phenotypes in late-life

depression (LLD).

Participants: Diagnosed with LLD (N = 116) and enrolled in a prospective

treatment study.

Design: Cross-sectional.

Measurements: Structural magnetic resonance imaging (sMRI) was used to

predict five depression symptom phenotypes from the Hamilton and MADRS

depression scales previously derived from factor analysis: (1) Anhedonia, (2)

Suicidality, (3) Appetite, (4) Sleep Disturbance, and (5) Anxiety. Our deep learning

model was deployed to predict each factor score via learning deep feature

representations from 3D sMRI patches in 34 a priori regions-of-interests (ROIs).

ROI-level prediction accuracy was used to identify the most discriminative brain

regions associated with prediction of factor scores representing each of the five

symptom phenotypes.

Results: Factor-level results found significant predictive models for Anxiety

and Suicidality factors. ROI-level results suggest the most LLD-associated

discriminative regions in predicting all five symptom factors were located in the

anterior cingulate and orbital frontal cortex.

Conclusions: We validated the e�ectiveness of using deep learning approaches

on sMRI for predicting depression symptom phenotypes in LLD. We were able to

identify deep embedded local morphological di�erences in symptom phenotypes

in the brains of those with LLD, which is promising for symptom-targeted

treatment of LLD. Future research with machine learning models integrating

multimodal imaging and clinical data can provide additional discriminative

information.
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1. Introduction

Major depressive disorder is the leading cause of disability
worldwide (Ly et al., 2021), but also has distinct risks for older
adults. Late-life depression (LLD), defined as depression occurring
after age 60, is associated with higher rates ofmedical illness (Lyness
et al., 2006), functional disability (Wassink-Vossen et al., 2019),
and cognitive impairment (Panza et al., 2010) compared to older
adults without depression. LLD is influenced by cumulativemedical
burden and age-related changes in brain structure and function,
Jellinger (2022) which results in greater heterogeneity of symptom
presentations and clinical outcomes (Hybels et al., 2011). A review
of neuroimaging studies in LLD identified fronto-cingulate regions
important to treatment outcomes of LLD (Zhukovsky et al.,
2021); however, these studies do not characterize the types of
depression symptoms that accompany these brain changes, which
limits advances in linking brain structural changes to potential
symptom-targeted treatments. Studies that combine depression
symptoms and neuroimaging data can bridge this gap in knowledge
by providing a more detailed characterization of the relationship
between symptomatic and neural phenotypes in LLD.

Structural magnetic resonance imaging (sMRI) is a useful
tool for examining clinical correlates and symptom phenotypes
of LLD (Pimontel et al., 2021), particularly in combination with
statistical methods that can optimize its predictive potential. While
sMRI lacks some of the dynamic network-related information of
functional MRI, it is more clinically accessible, has higher spatial
resolution, and is less influenced by unknown factors in individual
hemodynamic responses like medications and acute emotional
state. Machine learning approaches have the potential use high-
dimensional data from sMRI to identify novel associations between
brain morphometric characteristics and symptom phenotypes
(Uyulan et al., 2020; Zhang et al., 2022). Compared with latent
variable models, which provide descriptive class information
(Veltman et al., 2017), machine learning model can provide
quantitative predictive information in high-dimensional MRI
datasets. Machine learning approaches can reconcile issues around
overlapping brain features in psychiatric conditions or symptom
phenotypes (Zhuo et al., 2019) by extracting brain structural
biomarkers that are accurate for diagnosis or classification (Gao
et al., 2018). Whereas, many machine learning approaches like
support vector machines (SVM), Gaussian process classifier (GPC),
and linear discriminant analysis (LDA; Gao et al., 2018), rely on
manually engineered (i.e., hand-crafted) neuroimaging features,
deep learning approaches can extract information from raw data
characteristics while demonstrating high classification accuracy
and good generalization (Lin et al., 2018). Studies have used deep
learning techniques with a variety of data sources to distinguish
between depressed and non-depressed participants, but few studies
have utilized sMRI data, and there is a need to apply deep-learning
approaches to better understand the relationship between the brain
structural and symptom heterogeneity of LLD.

The goal of the current study was to construct a deep learning
model using sMRI morphometric features to predict depression
symptom phenotypes in LLD. As symptom phenotypes, we used
five symptom factors validated in LLD by previous research within
our group (Potter et al., 2015). One challenge of applying deep
learning methods to sMRI data is the large amount of data needed

to learn a large number of parameters in deep neural networks
during training (Litjens et al., 2017). In consideration of this
challenge, we developed a novel “light” convolutional neuronal
network model that focuses on 3D sMR image patches within
34 regions-of-interests (ROIs), and these ROIs are defined as a
priori based on their correlation with LLD (Gunning et al., 2021)
(Joseph et al., 2021). We predicted that we would be able to
identify discriminative brain regions that would predict symptom
phenotypes of LLD based on sMRI.

2. Method

2.1. Sample

Participants were enrolled in the Neurocognitive Outcomes of
Depression in the Elderly Study (NCODE) (Steffens et al., 2004),
which was approved by the Duke University Institutional Review
Board. All participants in the parent NCODE study were age
60 or older at the time of enrollment. Depression diagnosis and
screening of cognitive impairment was conducted by NCODE-
trained psychiatrists using standardized assessment instruments
and diagnostic algorithms, as described elsewhere (Steffens et al.,
2004). Exclusion criteria included: (1) another major psychiatric
illness including bipolar disorder, schizophrenia, or dementia; (2)
alcohol or drug abuse or dependence; (3) primary neurologic
illness, including dementia; and (4) contraindication to MRI
scanning. Participants with comorbid anxiety disorders were not
excluded, as long as the primary diagnosis was depression. For
the current study, we included only participants with a time
interval between clinical data and neuroimaging data <6 months.
This resulted in a sample size of 116 depressed participants
(Table 1).

2.2. Factor scores related to depression
symptom phenotypes

As part of the enrollment assessment, an NCODE-trained
geriatric psychiatrist interviewed participants with standardized
clinical assessments, including the 17-item Hamilton Rating

TABLE 1 Participant characteristics (sample size: N = 116).

Sex (% female) 68%

Race (% Caucasian) 77%

Age of depression onset
(% >age 60)

16%

Mean (SD)

Age 66.94 (6.32)

Education 14.61 (2.28)

MADRS 10.94 (9.27)

HDRS-17 15.44 (6.64)

Age of depression onset 36.99 (20.79)

MADRS,Montgomery-Asberg depression rating scale; HDRS-17, Hamilton depression rating
scale-17 item.
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Scale for Depression Hamilton (HRSD17; Hamilton, 2000) and
the Montgomery-Åsberg Depression Rating Scale (MADRS;
Montgomery and Åsberg, 1979). These two widely used scales
were combined for factor analysis in our previous work (Potter
et al., 2015), the rationale of which was based on evidence that
they capture a broader range of depression symptoms together
than separately (Heo et al., 2007). The model in that study was
a common factor analysis using principal component analysis
(PCA) with varimax rotation to produce orthogonal factor scores.
Factor interpretations and labels were listed as follows: Anhedonia
and Sadness (Factor name: Anhedonia), Suicidality and Guilt
(Factor name: Suicidality), Appetite and Weight loss (Factor name:
Appetite), Sleep Disturbance, Anxiety and Tension (Factor name:
Anxiety). All participants in the current study were included in that
prior analysis, and their individual standardized factor scores from
that analysis were applied to our current models.

2.3. MRI protocol and image preprocessing

Each participant completed a cranial MRI scan with an eight-
channel parallel imaging head coil on a 3 Tesla whole-body
MRI Siemens Trio system (Siemens Medical Systems, Malvern,
PA). Proton density (PD), T1-weighted, T2-weighted, and fluid-
attenuated inversion recovery (FLAIR) images were acquired. In
the current study, we focused on T1-weighted sMRIs to predict
the factor scores of depressed subjects. Since the intensity of the
T1 displays a clear brain structure and it is useful for anatomy.
Edema around the lesion areas is detectable using T2. T2-Flair is
more sensitive to pathology than T2. Unlike T1 and T2 images,
PD’s signal intensity is related to tissue proton density. It has a
high signal-to-noise ratio, and is used to visualize finely structured
tissue. In the process of studying the causes of depression, we need
to observe structural information in all ROIs rather than focusing
on one lesion region, so the characteristics of the T1 modality are
most suitable for the experiments in this paper. The T1-weighted
image set was acquired using a 3D axial TURBOFLASH sequence
with TR/TE = 22/7ms, flip angle = 25◦, a 100Hz/pixel bandwidth, a
256× 256 matrix, a 256 mm diameter field-of-view, 160 slices with
a 1 mm slice thickness and Nex = 1 (no signal averaging), yielding
an image with 1 mm cubic voxels in an 8 min, 18 s imaging time.
All T1-weighted structural MR images were preprocessed via the
following steps: (1) inhomogeneity correction with N4, (2) brain
extraction, and (3) linear registration using FLIRT in FSL (with
affine transformation only). Finally, all preprocessed MRI scans
have the same size, containing 182 × 218 × 182 voxels with the
image resolution of 1× 1× 1 mm3.

2.4. Regions of interest and patch
extraction

As illustrated in Figure 1, our modeling process has three main
components: (1) ROI selection, (2) 3D image patch extraction,
and (3) deep neural network prediction of depression symptom
phenotype scores.

Based on available sample size, we developed a patch-based
approach based on 3D MR image patches extracted from brain

regions-of-interest (ROIs) that we selected a priori as commonly
associated with LLD. As shown in Table 2, we used these 34
structural ROIs based on the AAL3 (Rolls et al., 2020) as masks
to test whether we can predict our previously validated depression
symptom phenotypes using structural neuroimaging data. These
34 ROI were organized into 10 testing sets (Table 2). To constrain
model complexity and augment the data needs for deep learning
models, we randomly extracted five different patches from each
ROI. To extract the patch, we randomly selected patch centers
within the ROI area. We randomized up to 20,000 times with the
constraint of a preset distance between every two centers, which
represents the overlap between two patches). Overlap increases
with the size of ROI and varied from 50 to 75%; thus, our process
ensured: (1) different patches were adequately separated from each
other, but the centers of the patches were within each ROI, and (2)
each patch could cover some voxels outside of the ROI to account
for individual anatomical variability and potential registration
error. We used a patch size of 32× 32× 32.

2.5. Deep learning model

The input of our deep learning model is sMRI image patches
selected from the pre-defined ROIs (in the mask with values other
than 0), and the output is each of the five depression factor scores
for each subject. The estimation of each depression symptom
factor score was trained separately as a single regression task. We
used ResNet-18 (He et al., 2015) as the backbone of our model
and developed a novel 3D CNN model, called 3D-ResNet-12,
for our regression task. To accommodate a smaller sample size,
we simplified the network architecture from 18 to 12 layers, as
shown in the middle part of Figure 1. The 12 convolutional were
followed by Batch Normalization (BN) layers (Ioffe and Szegedy,
2015), with the Rectified Linear Unit (ReLU) (Nair and Hinton,
2010) as the activation function following each BN layer. The
skip connection can be expressed as a linear superposition and a
nonlinear transformation of the input, and has shown effectiveness
in addressing the vanishing gradient problem (He et al., 2015).

In the training phase, we fed the extracted ROI-based image
patches to the regression network 8. Note that we assign subject-
level factor scores to all image patches in ROIs. For instance, for
a specific subject, all patches extracted from the same ROI share
the same Anxiety factor score. Denote M as the number of ROIs,
I as the number of patches within each ROI, and the i-th patch
as xi. In our experiments, we empirically set M to 34 and I to 5,
respectively. The patch-level estimated score ŷi

patch
for the i-th patch

can be computed as follows:

ŷipatch = 8(xi), i ∈ {1, 2, · · · , I} (1)

where 8(·) denotes the forward computation process of the
convolution network, and i denotes the patch ID.

The ROI-level estimated score ŷmROI can be computed by the
mean of all the patch-level estimated scores for the m-th (m =

1, · · · ,M) ROI. The subject-level estimated score for the n-th
subject ŷn

subject
can be acquired by averaging all the ROI-level

estimated scores. Mathematically, the ROI-level and subject-level
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FIGURE 1

Illustration of the deep learning framework for structural MRI-based prediction of five late-life depression-associated symptom phenotype factor

scores. This framework contains three major components: (1) ROI selection, (2) 3D image patch extraction, and (3) a deep neural network for

prediction of five depression symptom phenotypes.

estimated scores are defined as follows:

ŷmpatch =
1

I

I∑

i=1

ŷipatch (2)

ŷnpatch =
1

M

M∑

m=1

ŷmpatch,m ∈ {1, 2, · · · ,M} (3)

Our model maps the extracted patches to the estimated factor
scores, and the regression loss L is based on the mean square error
(MSE) and defined as follows:

L = ||ypatch − ŷipatch||
2
2 (4)

where ypatch denotes the real/ground-truth factor score vector
(with each element denoting the real score for a specific training
subject), ŷpatch is a vector (with each element denoting the
estimated/predicted score for a specific training subject), and || · ||22
denotes the l2 norm.

In the testing phase, we follow the same data preprocessing
principle, and randomly extract 3D image patches from each ROI in
each test MRI. The average of the estimated scores of the extracted
patches from the same ROI from the ROI-based scores ŷROI . The
average of all the ROI-level estimated scores form the subject-level
estimated scores ỹ , defined as follows:

ỹmROI =
1

I

I∑

i=1

ŷipatch (5)

ỹ =
1

M

M∑

m=1

ŷmROI (6)

where ỹmROI denotes the estimated scores of the m-th ROI, and ỹ

denotes the final estimated scores of the test subject. The mean
score of the extracted patches from the same ROI formed the

estimated factor score at the ROI-level. We present the results at
the ROI-level, which reflects the correlation between individual
ROI and the factor score. This is expressed as Pearson correlation
coefficient (r), with significance set at a p < 0.05.

2.6. Data partitioning

To ensure the generalization performance of the algorithm,
we applied a 10-fold cross-validation (CV) strategy. This is
supported by work showing that 10-fold CV provides a more
stable performance between different data than leave-one-out
cross-validation (LOOCV; Gao et al., 2018). Since each part is
used as a test set and a training set, the over- and under-fitting
problems can be well alleviated. In addition, it makes better use
of the dataset because each data point is used for both testing
and training, thus improving the performance of the model for
testing and training, thus improving the generalization ability of
the model. It can also help to select the best model parameters.
By performing 10-fold cross-validation, the performance of the
model with different parameters can be compared and the best
combination of parameters can be selected.

To execute this, we (1) randomly split the dataset (N = 116)
into 10-folds, (2) took each fold (10% of samples) as the testing
set in turn, and (3) used the remaining 9-folds (90% of samples)
in turn as the training set. The testing set was utilized to evaluate
the performance of model generalization ability measurement.

2.7. Implementation

Five different 3D-ResNet-12 models were separately trained to
predict factor scores, with each one corresponding to a specific
factor score. For each model, we used patches from different ROIs
to train the neural network. The mean square error (MSE) loss was
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TABLE 2 Automated anatomical labeling (AAL) regions selected a priori

for machine learning models.

Anatomical
description

Label:
aal2.nii.gz/
aal3.nii.gz*

Abbreviation

Anterior cingulate testing set

Anterior cingulate cortex,
subgenual

ACC_sub* ACCsub

Anterior cingulate cortex,
pregenual

ACC_pre* ACCpre

Anterior cingulate cortex,
supracallosal

ACC_sup* ACCsup

Orbitofrontal PFC testing set

Medial orbital gyrus OFCmed OFCmed

Anterior orbital gyrus OFCant OFCant

Posterior orbital gyrus OFCpost OFCpost

Lateral orbital gyrus OFClat OFClat

Dorsolateral PFC testing set

Middle frontal gyrus Frontal_Mid MFG

Inferior frontal gyrus Frontal_Inf_Oper IFGoperc

Ventromedial PFC testing set

Superior frontal gyrus, medial
orbital

Frontal_med_orb PFCventmed

Gyrus rectus Rectus REC

Posterior cingulate gyrus
testing set

Cingulate_post PCC

Hippocampus testing set Hippocampus HIP

Amygdala testing set Amygdala AMYG

Insula testing set Insula INS

Caudate nucleus testing set Caudate CAU

Nucleus accumbens testing set N_Acc* Nacc

PFC, prefrontal cortex. Each of the 17 regions includes (R) and left (L) hemispheres (n = 34).
∗These labels indicate regions added to AAL3 (Rolls et al., 2020); otherwise labels reflect AAL2
convention (Rolls et al., 2015).

used as the loss function. The batch size was set to 1,000, and the
initial learning rate was set to 0.001. All models were implemented
on PyTorch under the environment of Python 3.7 on the Ubuntu
18.04 system with NVIDIA TITAN Xp GPU.

The general regression process is implemented using least
squares, while we implement a robust regression here based on the
iteratively reweighted least squares (IRLS) to reduce the effect of
outliers.

The general regression process can be described as the following
equation, where x is the observed value, b is the expected value, A is
the regression coefficient, and e is the error value defined as follows:

e = Ax− b (7)

And the optimization objective in the general regression is
defined as:

||e||22 =
∑

i

e2i = eTe (8)

The IRLS then uses a weighted 2-norm to emphasize or
de-emphasize certain components, where the diagonal array W
is computed based on the last error e and therefore changes
continuously.

||e||
p
p =

∑

i

e
(p−2)
i e2i =

∑

i

w2
i e

2
i = ||We||22 (9)

3. Results

3.1. Depression symptom factors

Predictive modeling revealed specific networks associated with
the five symptom phenotype factors. Regression errors were
averaged for each of the 10 ROI sets across all 116 testing subjects.
All the medians of MSE were smaller than 2, which demonstrates
that the proposed model achieved good performance. The p-value
is used to determine the risk level for rejecting the H0 hypothesis.
In this paper, the H0 hypothesis is that the five factors are not
related to LLD, so when the p-value is less than a certain threshold
(generally 0.05), we can assume that the H0 hypothesis is not
valid, that is, the five factors are significantly related to LLD. The
p-value can be calculated by the formula of chi-square, where
O is the observed value, E represents the expected value, and i

is the number of samples, and then the chi-square distribution
table can be queried according to the degrees of freedom in the
hypothesis:

p =

n∑

i=1

(Oi − Ei)2

Ei
(10)

The predictive performance of the Anxiety factor score is
shown in Figure 2, in which the red line indicates a robust
regression-fitted line. At the ROI-level, the Pearson’s correlation
between the estimated and real scores was 0.2589 (p = 1.0152e−61),
and the robust regression resulted in t = 11.5517 (p = 2.2200e−30).
P-values were significant.

The results of estimated and real Suicidality factor scores are
shown in Figure 2. At the ROI-level, the Pearson’s correlation
between the estimated and real scores is 0.1436 (p = 6.4760e−20),
and the robust regression resulted in t = 9.3654 (p = 1.2392e−20).
P-values were significant.

For the Appetite factor score, the Pearson’s correlation between
the estimated and real scores at the ROI-level evaluation was 0.0743
(p = 1.4763e−06), and the robust regression resulted in t = 5.2498
(p = 1.6029e−07).

For the Anhedonia factor, the Pearson’s correlation between
the estimated and real scores at the ROI-level was 0.0282 (p =

0.0384), and the robust regression resulted in t = 1.5794
(p = 0.1143).

For the Sleep Disturbance factor, Pearson’s correlation between
the estimated and real scores at the ROI level was −0.0836 (p =

7.3433e−08), and the robust regression resulted in t = −4.6128
(p = 4.0983e−06). The results for the Appetite, Anhedonia and
Sleep Disturbance factor scores were not significant.
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FIGURE 2

Estimated scores vs. real scores for Anxiety factor score at the ROI-level (left); estimated scores vs. real scores for Suicidality factor score at the

ROI-level (right).

3.2. Contribution of ROI sets to factor
scores

We found that different ROIs tend to have different
contributions to different prediction tasks. A lower median of the
MSE reflects a more accurate estimate, which provides information
about the potential importance of a given ROI set to a specific
symptom factor score. Table 3 summarizes the top five most
informative ROIs for each symptom factor, which shows that ACC
and OFC are most informative to the prediction tasks compared to
the other ROI sets. ACC is first ranked in four of the five symptom
factor estimates, the OFC ROI set appears at least once in the
top-five ranked ROI sets of all the factor score estimation models.
Figure 3 presents the top five ROI sets of different estimation tasks
overlaid on a standard brain template (Tzourio-mazoyer et al.,
2002).

4. Discussion

The goal of the current study was to use a deep learning
approach to identify brain morphometric features in T1-weighted
structural MRIs that are predictive of previously validated factor
structure of depression symptom phenotypes. Among the five
symptom phenotypes, our method yielded the best performance
in estimating the Anxiety and Suicidality symptom factors
with significant small-to-medium-sized correlations. Our findings
suggest that in LLD, symptoms related to Anxiety and Suicidality
may bemore strongly related to brainmorphological characteristics
than symptoms related to anhedonia, appetite/weight loss, and
sleep disturbance. We found features in the ACC and OFC had
prominent predictive information for Anxiety and Suicidality
factors. Our results suggest that deep-learning models such
as ours can help identify deep embedded local morphological

characteristics in raw structural MRI data to predict and
characterize distinct symptom phenotypes of LLD, and can be
accomplished with a modest sample size.

Considering this possible mechanism of results, we are
hesitant to speculate beyond the data available to our study. A
plausible explanation is that anxiety and suicidality are strongly
linked to dysfunction in the emotional regulation of negative
thoughts, which is largely cortically mediated, whereas the other
symptom factors may have additional white matter and non-
brain physiological contributors. A key mechanistic study by Etkin
et al. (2010) used task-based fMRI to demonstrate that individuals
with generalized anxiety disorder were unable to engage the
pregenual ACC in ways that could help downregulate emotional
conflict. Andreescu et al. (2015) reported results consistent with an
emotional dysregulation explanation, including the anterior ACC
in studies of anxious older adults in an antidepressant treatment
trial. As with anxious symptoms, the role of dysfunctional
emotional regulation in suicidality and LLD has been well-
reviewed (Kiosses et al., 2014), with the cognitive control aspect
of emotional regulation having greater impact in suicidality and
LLD (Szanto et al., 2020), and which is more strongly localized
to the default-mode network (Shao et al., 2021). Future work on
phenotyping LLD symptoms using deep learning models should
include multi-modal MRI and physiologic variables to more fully
explore mechanistic hypotheses.

Our findings are consistent with the body of research showing
that the ACC and OFC are core regions related to the expression
of depression symptoms in LLD, and the predictive value was
the strongest in the phenotype of anxious depression. A clinical
phenotype of anxious depression has been estimated to compose
40–50% of individuals with LLD (Jeste et al., 2006). Anxious
depression in LLD has been associated with greater severity of
depression symptoms, more frequent suicidal ideation, and both
attenuated and delayed responses to pharmacologic treatment
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TABLE 3 Top five predictive ROIs by symptom factor score.

Symptom
factor

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Anxiety ACCpre (L) ACCpre (R) REC (R) ACCsub (R) OFCpost (R)

Suicidality ACCsup (R) OFCmed (R) HIP (R) OFCpost (L) IFGoperc (L)

Appetite OFCmed (R) AMYG (R) Nacc (L) Rect (L) OFCpost (R)

Anhedonia ACCpre (R) Nacc (L) AMYG (R) OFCant (R) ACCsub (R)

Sleep ACCsub (R) AMYG (R) PCC (R) OFCant (L) IFGoperc (R)

Anatomical description for each abbreviation appears in Table 2.

FIGURE 3

The top five important ROIs identified by our model in predicting five depression-related symptom factor scores.

(Andreescu et al., 2007). Anxiety symptoms in LLD have been
found to have functional MRI correlates involving reduced
connectivity between the anterior ACC regions and PFC (Gerlach
et al., 2021), which is broadly consistent with the sMRI findings of
our predictive model.

Our model did predict the Suicidality symptom phenotype with
a small effect size. Although the predictive model identified features
within the right dorsal ACC to be most informative, suicide risk in
LLD is more prominently associated with the structural changes in
prefrontal regions more than the ACC (Shao et al., 2021). We do
note that features within the prefrontal cortex were also among the
most predictive regions in our model.

Our models were not significantly predictive for symptom
factors related to Anhedonia, Appetite/Weight Loss, or Sleep

Disturbance. In the case of anhedonia symptoms in particular, this
may reflect the fact that our model was based on T1 MRI scans and
did not include white matter features. Anhedonia symptoms, such
as lack of initiative, low energy, and psychomotor and cognitive
slowing, are widely associated with white matter pathology in LLD
(Aizenstein et al., 2016). White matter features would be expected
to be important for the prediction of a vascular subtypes of LLD
(Taylor et al., 2013). The addition of white matter features to
machine learning models could improve prediction of anhedonia
in LLD.

Identifying sMRI correlates of appetite and weight loss
symptoms in LLD May be complicated by the fact that appetite
and weight loss are signs of unhealthy aging in general (Gaddey
and Holder, 2021), not just LLD, and the physiological mechanisms
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are complex (Lipsitz, 2004). Thus, heterogeneity of the symptom
construct and overlap with aging pathologies may explain the lack
of a significant predictive model. Other clinical markers, such as
biomarkers of nutritional and metabolic change, could improve
prediction of appetite loss in LDD.

Sleep disturbance, as characterized by insomnia, is a common
symptom of depression in LLD; however, insomnia is also a
symptom of many comorbid medical conditions present among
older adults (Katz and McHorney, 1998). In addition, normal
human aging is associated with changes in sleep architecture
predisposing to reductions in sleep quality and quantity (Mander
et al., 2017). Based on the heterogeneity of factors contributing to
sleep loss in older adults, inclusion of white matter information
from MRI and inclusion of clinical information on medical
comorbidities like sleep apnea may improve deep learning
prediction of sleep disturbance symptoms in LLD.

4.1. Clinical implications

The clinical implications of our study are most applicable to
the estimated 40–50% of individuals with elevated anxiety as a
comorbid feature of their LLD, which may be a phenotype that
includes elevated suicide risk (Lenze et al., 2000). Older adults
with anxious depression may be less responsive to antidepressant
pharmacology (Andreescu et al., 2007), and therefore may need
alternative or adjunctive approaches targeting the ACC and OFC,
either directly or via functionally connected brain regions. Research
suggests that function of the ACC, particularly the subgenual
region, may be predictive of positive response to behavioral therapy
in LLD (Solomonov et al., 2020). Another potential alternative or
adjunctive treatment approach in LLD is transcranial magnetic
stimulation, in which studies have demonstrated treatment success
with major depressive disorder by targeting the ACC via its
connectivity to the DLPFC (Weigand et al., 2017); however, further
research is needed to test generalizability to LLD. With further
refinement to include additional MRI and clinical information,
deep learning models such as ours can be useful to defining
symptom phenotypes in LLD to improve precision treatment
selection.

4.2. Limitations and future work

The strengths of our study include a well-defined LLD sample
combined with a novel deep learning approach that can be
adapted to modest sample sizes. One limitation, however, was
that we employed only the T1-weighted structural MRI data,
without including other imaging modalities, such as T2-weighted,
FLAIR, and functional resting state). Previous studies have shown
that multimodal imaging data could contain complementary
information for depression analysis (Gray et al., 2020), as well as
integration of clinical data with multimodal imaging (Patel et al.,
2015). Another limitation is that we focused on a set of a priori ROI
regions informed by the research literature on LLD; however, it did
not include some potentially informative regions (e.g., thalamus,
middle temporal gyrus, fusiform gyrus, cerebellum). Future work
with deep-learning models should integrate whole brain multiple

imaging modalities and clinical data when there is adequate sample
size to do so.

5. Conclusion

The novel findings of this study suggest that the proposed
deep learning model has potential to predict depression symptom
phenotypes in LLD based on T1-weighted structural MRI data
with modest sample size requirements, but most effectively for an
anxious-depression phenotype in LLD with a prominent predictive
contribution from features in the ACC. Based on the promising
findings of our deep-learning model in a small sample tot T1
MRI data, future research should replicate our approach with a
larger sample size that facilitates modeling of multi-modalMRI and
clinical markers.
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