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Abstract

In April 2010, the Deepwater Horizon oil rig caught fire and exploded, releasing almost 5 million bar-
rels of oil into the Gulf of Mexico over the ensuing 3 months. Thousands of oil spill workers partici-
pated in the spill response and clean-up efforts. The GuLF STUDY being conducted by the National 
Institute of Environmental Health Sciences is an epidemiological study to investigate potential 
adverse health effects among these oil spill clean-up workers. Many volatile chemicals were released 
from the oil into the air, including total hydrocarbons (THC), which is a composite of the volatile com-
ponents of oil including benzene, toluene, ethylbenzene, xylene, and hexane (BTEXH). Our goal is to 
estimate exposure levels to these toxic chemicals for groups of oil spill workers in the study (hereaf-
ter called exposure groups, EGs) with likely comparable exposure distributions. A large number of air 
measurements were collected, but many EGs are characterized by datasets with a large percentage 
of censored measurements (below the analytic methods’ limits of detection) and/or a limited number 
of measurements. We use THC for which there was less censoring to develop predictive linear mod-
els for specific BTEXH air exposures with higher degrees of censoring. We present a novel Bayesian 
hierarchical linear model that allows us to predict, for different EGs simultaneously, exposure levels 
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of a second chemical while accounting for censoring in both THC and the chemical of interest. We 
illustrate the methodology by estimating exposure levels for several EGs on the Development Driller 
III, a rig vessel charged with drilling one of the relief wells. The model provided credible estimates in 
this example for geometric means, arithmetic means, variances, correlations, and regression coef-
ficients for each group. This approach should be considered when estimating exposures in situations 
when multiple chemicals are correlated and have varying degrees of censoring.

Keywords:   Bayesian statistics; bivariate left censoring; correlation; Deepwater Horizon oil spill; exposure assessment; 
total hydrocarbons (THC)

Introduction

On April 20, 2010, the Deepwater Horizon (DWH) oil 
rig exploded and sank two days later, resulting in the 
release of almost 5 million barrels of oil into the Gulf of 
Mexico over the ensuing 3 months. Thousands of work-
ers were involved in the response and clean-up effort 
(hereafter oil spill workers).

Oil can release many harmful chemicals into the air, 
which are typically reported as total hydrocarbons (THC). 
THC is a composite of the volatile components of oil. 
Some of the more volatile, toxic components include ben-
zene, toluene, ethylbenzene, xylene, and hexane (BTEXH). 
A review of the literature by Aguilera et al. (2010) found 
that increased exposure to oil-related chemicals in prior 
spills was associated with a variety of detrimental health 
effects. The National Institute for Environmental Health 
Sciences (NIEHS) is conducting the GuLF STUDY (Kwok 
et al. 2015) to investigate potential adverse health effects 
from exposure to these spill-related chemicals. Once esti-
mates of exposure levels have been developed, epidemi-
ologists will use these estimates to assess the relationships 
between various health outcomes and these exposures.

Exposures were measured using passive dosimeters 
worn by workers. Over 26,500 personal air samples 
(each sample was analyzed for 5–10 different chemicals 
resulting in about 150,000 measurements) that met the 
study criteria included a number of results at or below 
the analytic methods’ limits of detection (LODs). The 
proportion of measurements below the LOD is, in part, 
a function of the analytic method’s sensitivity and the 
duration of the sampling. Low levels of exposure are of 
interest for several reasons. In epidemiological studies, 
health effects at low level exposures have not always 
been studied. Possible additive or synergistic adverse 
health effects may occur in the presence of other expo-
sures experienced at the time (e.g. other oil components, 
dispersants, particulates, heat, and long working hours). 
The actual exposure threshold where adverse outcomes 
occur may not be known. Finally, a low exposed group 
is often used in epidemiological studies as the reference 

population to which higher exposed groups are com-
pared. Therefore, although measurement values may be 
below the LOD, the low or censored measurement val-
ues are not zero and could be informative.

We, therefore, sought a statistical model that allows 
us to predict exposure levels to oil-related chemicals 
using the corresponding THC measurements because 
censoring is much more prevalent among the BTEXH 
measurements. Equally important, we seek to quantify 
the uncertainty in both our estimate of each censored 
observation and in our estimate of the relationship 
between BTEXH and THC. This provides us insight 
beyond current approaches for handling censored 
observations. Therefore, we constructed a hierarchical 
Bayesian regression model that accounts for censored 
observations in both THC and the chemical of interest 
(including pairs when both the chemical and THC are 
censored). In this paper, we model THC concentration 
as the predictor (X) and consider the response (Y) to 
be the concentration of one of the BTEXH chemicals. 
After establishing a relationship between THC and the 
chemical, we can use this relationship to generate rela-
tively unbiased exposure estimates for that chemical for 
groups of workers expected to have similar exposure 
distributions [hereafter exposure groups (EGs)].

In the next section, we briefly describe the measure-
ment of the chemicals and underlying chemical rela-
tionships. Then we describe the method and provide 
an example of xylene exposure estimates for a subset 
of EGs on a rig ship called the Development Driller III 
(DDIII), although this method should generalize to the 
other BTEH chemicals.

Exposures During the DWH Oil Spill

Airborne exposure measurements were collected by indus-
trial hygiene personnel working for a BP (the responsible 
party) contractor using 3M 3500, 3M 3520 or Assay 
Technology 521 passive organic vapor dosimeters. Sam-
pling lasted from <1 to >24 hours, but we use measure-
ments with durations of 4–18 hours to reflect the worker’s 



full-shift of 8–12 hours. Each measurement used in the 
model was analyzed for a number of chemicals, including 
THC, BTEX, and for a subset, hexane. THC was deter-
mined using a modified NIOSH method Naphthas 1550, 
whereas, BTEXH was determined using OSHA Organic 
Vapors Method 7 (NIOSH, 1994; OSHA, 2000). The gas 
chromatographs used in the analyses were equipped with 
dual detectors: one to determine the THC concentration 
and the other, the individual BTEXH chemicals concen-
trations. THC was determined as the composite of the 
volatile chemicals collected with the dosimeter: the area 
under all the peaks eluded from the sample (including 
the BTEXH chemicals) was integrated to determine the 
THC area-count. The THC detector was calibrated using 
known standards of n-hexane and reported in ppm. With 
the second detector, the area under each BTEXH chemical 
peak was integrated to determine an area-count (except 
for xylene that eludes as two peaks (m- and p-xylene as 
one peak and o-xylene as the other). The areas under both 
peaks were added to obtain a total xylene). Each BTEXH 
chemical was calibrated using a series of standards of 
the specific chemical. The LODs were established at the 
point where the detector response was significantly dif-
ferent from the corresponding response in the sampler 
blanks (generally about 3 times the response of the sam-
pler blanks). All samples were analyzed by laboratories 
accredited by the American Industrial Hygiene Associa-
tion Laboratory Accreditation Programs, LLC.

Approximately 10% by weight of the crude oil 
released in the DWH spill was THC and about 2% 
was BTEXH (see Supplementary Materials, available at 
Annals of Work Exposures and Health). This means for 
a particular exposure measurement, the concentration of 
the specific BTEXH chemical is a small fraction of the 
THC concentration. The analytical method is more sen-
sitive for BTEXH than for THC (about 3 ppb for the 
former vs. 100 ppb for THC). Despite the higher sensi-
tivity for BTEXH, the fact that the BTEXH components 
comprised <20% of the THC resulted in greater censor-
ing of BTEXH measurements than THC measurements.

In the Gulf STUDY, THC is correlated with each of 
these chemicals since the primary source of exposure 
was likely the crude oil, and the composition of the oil 
was approximately constant within each of the study’s 
time periods. These time periods were established based 
on events such as oil flowing from the well, activities 
being performed, and degree of oil weathering.

The bases for the relationships of the oil components 
or other mixtures are the Ideal Gas Law and Raoult’s 
Law (Stenzel and Arnold, 2015). The vapor concentra-
tion (VC) of a pure chemical in the air above a chemi-
cal’s liquid surface at a specific liquid temperature is the 

ratio of the chemical’s vapor pressure (VP) divided by 
the atmospheric pressure. With mixtures such as crude 
oil, the VP of each component in the mixture is lower 
than that of the pure chemical. The degree of VP low-
ering is related to the chemical’s percent composition 
in the mixture and its molecular weight. This lower VP 
is called the chemical’s adjusted vapor pressure (AVP). 
Once the AVP is determined, it can be divided by atmo-
spheric pressure to estimate the VC of the chemical in 
the air above the mixture surface. If the composition of 
the mixture (in mass percent) generating the vapor is 
constant, then the VC of each component will be con-
stant, resulting in the relative VCs of the components of 
the mixture being constant (Stenzel and Arnold, 2015). 
This relative relationship of two components in the air 
can be estimated from the correlation of the components 
in a group of two corresponding sets of air measure-
ments. The correlation (or linear regression) approach 
is often used in assessing exposure when data from one 
chemical in a mixture are used to estimate exposures to 
another chemical in the mixture (Stenzel and Arnold, 
2015). In this paper, we develop a regression equation 
for predicting the mean of Y for a group of interest of 
the form β0 + β1Xi containing an intercept (β0) and slope 
(β1) with predictor Xi.

The concentration of these chemicals cannot be zero 
because each of these chemicals is found at ambient lev-
els due to consumer and industrial sources of release. 
Therefore, by using a naturally logged response and pre-
dictor, we prevent the predicted exposure for the chemi-
cal of interest from being exactly zero.

Occupational exposures are affected by a variety 
of determinants such as job title, activity, and location. 
Since EGs were identified for a unique set of deter-
minants, within an EG, exposure distributions were 
assumed to be similar. Exposure can vary among EGs 
because of variations in tasks performed and the dura-
tion of these tasks, but the correlations between the 
specific chemicals and THC concentrations should be 
constant because the dominant source of the exposure 
is likely the crude oil. Since the ultimate goal in expo-
sure assessment is to provide exposure estimates for 
each of these EGs, we simultaneously modeled multiple 
EGs, each having its own regression equation (intercept 
and slope coefficient) to distinguish different exposure 
levels among the EGs. To better inform estimates with 
limited information, we allowed the slope and intercept 
estimates to be influenced by other EGs in the model 
when censoring was high or sample size was low. This 
makes the model estimates for particular EGs more sta-
ble because the model formulates a global intercept and 
global slope estimate to use when information is limited.



Left censoring statistical methods
Several methods have been proposed to account for 
left-censored responses (May et al., 2011; Chen et al., 
2013; Ganser and Hewitt, 2010; Chu et al., 2005). After 
reviewing the most promising frequentist methods, 
Huynh et al. (2014) compared maximum likelihood 
estimation, β-substitution, and reverse Kaplan–Meier 
methods. Huynh et  al. (2014) concluded that the  
β-substitution method was less biased and provided 
lower root mean squared error estimates than the other 
two methods under conditions of high censoring (>50%)  
and small (n = 5–10) sample sizes. Huynh et al. (2016) 
then compared Bayesian models to the β-substitution 
method. At various censoring levels, Bayesian models 
performed similarly (for bias and root mean squared 
error) to the β-substitution method for generating expo-
sure estimates. The Bayesian models, however, also pro-
vided variance estimates, i.e. credible intervals, whereas 
the β-substitution method did not provide equations for 
calculating confidence intervals (comparable to credible 
intervals) for many statistics of interest (i.e. geometric 
means (GMs), geometric standard deviations (GSDs), 
and 95th percentiles). Therefore, Huynh et al. (2016) 
suggest that Bayesian models have advantages over fre-
quentist methods such as β-substitution for censored 
analyses in occupational health studies. Our contribu-
tion here is to expand upon the earlier work of Huynh 
et al. (2014, 2016) and propose a method for regression 
settings where either the dependent variable or the inde-
pendent variable, or both, may be censored in one or 
more EG(s).

Statistical Methods

Bayesian methods account for uncertainty by identify-
ing the posterior distribution of parameters of interest, 
including censored observations (see, e.g. Gilks et al., 
1996; Marin and Robert, 2007; Carlin and Louis, 2008; 
Gelman et al. 2013; Brooks et al., 2011).

First, consider a typical hierarchical linear regres-
sion framework assuming all measurements on Y (natu-
ral log of xylene) and X (natural log of THC) are above 
their respective LODs. Instead of focusing solely upon 
the conditional distribution of Y|X (Y given X), which 
proves restrictive when extending to censored or partially 
observed measurement pairs (X and Y), we prefer to work 
with a joint distribution for Y and X. We build this joint 
distribution by first modeling X N X∼ ( , )µ σ 2  where µ is the 
mean and σX

2  is the variance. Then, we use the following 
regression parameterization of the mean of Y [E(Y)].

EY X( ) = +β β0 1 � (1)

where β0 is the intercept, and β1 is the slope. This 
parameterization can be written more formally as 
Y X N X Y X| ( , )|∼ +β β σ0 1

2 . A Bayesian hierarchical model 
is formulated by assigning prior distributions on these 
parameters. We use a customary univariate normal prior 
for µ, the mean of X, with mean θµ and variance σ µ

2 , a
bivariate normal prior for β = (β0,β1) with mean vec-
tor µβ and variance–covariance matrix Vβ, and inverse-
gamma priors for the variances σX

2  and σY X|
2 . This yields 

the joint distribution of all model parameters
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where we use the standard parametrization for the nor-
mal N( , )⋅ ⋅  and inverse-gamma IG( , )⋅ ⋅  distributions, as 
given in, e.g. the text by Gelman et al. (2013). The shape 
parameters (a and c) and scale parameters (b and d) in 
the IG densities stipulate the extent of prior informa-
tion on the variance components. The a priori means for 
σY X|

2  and σX
2  are b

a −1
 and d

c −1
 (for a > 1 and c > 1), 

respectively, while the variances are b
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 (for a > 2 and c > 2), respectively.

Now consider the situation we face: some mea-
surements on X and Y are below the LOD and, 
hence, not known exactly. Let LODj (X) and LODj 
(Y) be the LODs on a natural log scale for the j-th
observation on X and Y, respectively. Let CX = {j:Xj

≤ LODj(X)} and CY =  {j:Yj ≤ LODj(Y)} be the sets
of indices for which Xs and Ys are censored, and let
OX and OY denote the observed values of X and Y,
respectively. The Bayesian hierarchical model is the
joint distribution (of all model parameters and cen-
sored values)
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where Ф(u) denotes a standard normal cumulative den-
sity function (CDF) at u. To obtain standard normal 
distributions of X and Y, respectively, we standardize all 
values (using its mean and standard deviation). There-
fore, if Z is a standard normal random variable, then 
Ф(u) = P(Z ≤ u) is the value of integral of a standard 
normal density below the value u.



The above assumes that the relationship between Y 
and X remains the same across EGs. We now extend 
(equation 3) to multiple EGs by allowing the slope and 
intercept to vary across EGs (here called the hierarchical 
Bayesian EG model). Let Yij and Xij be the j-th measure-
ment on Y and X, respectively, in EG i, where i = 1, 2, …,  
NEG, and j = 1, 2, …, mj. With analogous definitions of 
OX, OY, CX, and CY, the joint distribution of all model 
parameters and censored values is
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where β0i and β1i are the intercept and slope parameters 
for EG i, µi is the mean of X’s for each EG i, σY Xi|

2  is the
conditional variance of Y Xi|  for EG i and σXi

2  is the vari-
ance of Xi for EG i. These two variances are assumed to 
be distributed independently across the EGs as inverse-
gamma distributions. While the shape and scale of these 
inverse-gamma distributions are allowed to vary across 
the EGs in (equation 4), in practice it is difficult to have 
strong prior information regarding these distributions, 
so we will assume that ai = a, bi = b, ci = c, and di = d and 
specify values for a, b, c, and d. The µi’s are also modeled 
a priori as normal distributions, independent across EGs. 
For prior distributions on the regression coefficients, 
we define βi = (β0i,β1i) as the 2 1×  vector containing the 
intercept and the slope for EG i, which is distributed as 
a bivariate normal distribution with mean µβ and a 2 2×
variance–covariance matrix Vβ. Again, these coefficients 
are assumed to be independent across EGs, but they bor-
row strength by shrinking the EG means to µβ. Finally, µβ 
is assigned a Gaussian prior and Vβ is modeled a priori 
with an inverse-Wishart (IW) distribution with param-
eters S−1 and ω (see, e.g. Gelman et al., 2013).

The posterior distribution for the model parameters 
is proportional to the corresponding joint distribution 
in the respective models in equations (2), (3), and (4). 
The posterior distribution is evaluated using numeri-
cal methods, arguably the most popular being Markov 
chain Monte Carlo (MCMC) algorithms such as the 
Gibbs sampler (as described in Gelfand et al., 1992 for 
censored data) and Metropolis-Hastings algorithms 
(see, e.g. Gilks et al., 1996; Marin and Robert, 2007; 

Carlin and Louis, 2008; Gelman et al., 2013; Brooks 
et al., 2011). MCMC algorithms produce samples from 
the marginal posterior distribution of each unknown 
parameter in equation (2). All subsequent inference 
proceeds from these samples. Models in equations (2), 
(3), and (4) are easily implemented in both OpenBUGS 
(http://www.openbugs.net/w/FrontPage; last accessed 
11 November 2016) and RJAGS (https://cran.r-project.
org/web/packages/rjags/rjags.pdf; http://mcmc-jags.
sourceforge.net/; last accessed 11 November 2016) 
and easily evaluated. Censored observations using the 
above standard normal CDF notation were introduced 
in OpenBUGS using the I(,) notation. In JAGS, censored 
observations were implemented using the dinterval() 
function (for programs see Supplementary Materials, 
available at Annals of Work Exposures and Health). 
Descriptions of GM, arithmetic mean (AM), and GSD 
calculations can be found in the Supplementary Materi-
als, available at Annals of Work Exposures and Health.

Posterior predictive model comparisons
Once the posterior distribution has been evaluated, e.g. 
using MCMC, Bayesian model assessment often pro-
ceeds from simulating replicates of the observed data 
(e.g. Gelman et al., 2013). To be specific, for equation 
(2), the joint posterior predictive distribution of the rep-
licates for the i-th observation, Yrep,i and Xrep,i, is given by

p Y X y x N Y X

N

rep i rep i obs obs rep i rep i Y X( , | , ) ( | , )

(

, , , , |= + ×∫ β β σ0 1
2

XX p y x drep i X obs obs, | , ) ( | , ) ,µ σ θ θ2 ×
(5)

where yobs and xobs are the observed Y’s and X’s, respec-
tively, and θ β β µ σ σ= { , , , , }|0 1

2 2
X Y X . We draw samples from 

equation (5) by first sampling θ( )l  from the posterior dis-
tribution p y xobs obs( | , )θ , then sampling X Nrep i

l l
X
l

,
( ) ( ) ( )( , )∼ µ σ 2 ,  

and finally sampling Y N Xrep i
l l l

rep i
l

Y X
l

,
( ) ( ) ( )

,
( )

|
( )( , )∼ +β β σ0 1

2 . This is 
repeated for i = 1, 2, …, n.

For the censored model in equation (3), how 
the replicates will be generated depends upon how 
X and Y have been measured. If both X and Y are 
above their respective LODs for the i-th observation, 
the posterior predictive distribution is the same as 
in equation (5), and we generate the replicates Yrep,i 
and Xrep,i as described above. When X is above the 
LOD for the i-th observation, we draw the replicates 
X Nrep i

l l
X
l

,
( ) ( ) ( )( , )∼ µ σ 2  for each posterior sample θ( ).l  This 

is done irrespective of whether Y is above its LOD for 
that observation.

Now suppose that for the i-th observation, Y is above 
its LOD, but X is below its LOD. Bayesian inference 
treats unquantified variables as unknown parameters, 
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and any imputation of unquantified variables must be 
carried out by sampling from the posterior distribution 
of the unmeasured variable. To be specific, let Xc,i be 
the random variable denoting the unquantified, or cen-
sored, X for the i-th observation. Note that replicates are 
defined only for observed data, so Xc,i is not a replicate 
and will not be used in model assessment. However, it 
will be sampled in order to correctly sample the repli-
cate Yrep,i. Using the posterior samples µX

l( ) and σX
l2( ), we

will draw X N I X LOD Xc i
l

X
l

X
l

c i j c i,
( ) ( ) ( )

( , ) ( , )( , ) ( ( ))∼ <µ σ 2 , where 
these values can be described as samples from a normal 
distribution (with mean µX

l( ) and variance σX
l2( )) below the 

LODj (Xc,i) (Gelfand et al., 1992). Then, for each Xc i
l
,
( ) , 

we draw Y N Xrep i
l l l

c i
l

Y X
l

,
( ) ( ) ( )

,
( )

|
( )( , )∼ +β β σ0 1

2 .
Finally, consider the model in equation (4). This 

extends equation (3) by allowing the parameters to vary 
by EG. Sampling the replicates will be the same as for 
equation (3) with θ now being the collection of all model 
parameters in equation (4).

For model comparisons, we use the replicated data to 
construct Gelfand and Ghosh’s “D-statistic” for Bayesian 
predictive model assessment. The “D-statistic” can be com-
puted for each model and used to compare different models 
fitted to the same dataset. Specifically, we compare the rep-
licated data to the observed data by computing a goodness-
of-fit measure G and a predictive variance P that penalizes 
more complex models. For equation (4), we compute

G y x
i j O

ij Y ij
i j O

ij X ij

Y

rep
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rep
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where yij and xij are the observed measurements on Y 
and X, respectively, µY ijrep ,

 and µX ijrep ,
 are the means, and

σYrep ij,

2  and σXrep ij,

2  are variances of Yrep ij,  and Xrep ij, , respec-
tively. The means and variances of Yrep,ij and Xrep,ij used in 
equation (6) are computed from their samples. We then 
calculate D = G + P as a metric for comparing models. 
Lower D-statistics are preferred (Gelfand and Ghosh, 
1998).

Our model was first assessed through simulation 
studies at low, moderate, and moderate-to-high cen-
soring levels in Y while censoring remained low in X. 
Results indicated that under a scenario where groups 
of workers were set to have different slopes and inter-
cepts, our hierarchical Bayesian EG model would be 
preferred based on the D-statistic compared to simpler 
models, regardless of the percentage censoring. Like-
wise, credible intervals contained the true parameters 
in all scenarios (see Supplementary Materials, available 
at Annals of Work Exposures and Health).

Results: Illustrative Example of Estima-
tion of Xylene Exposure During the DWH 
Oil Spill

In this preliminary analysis, we focused on seven EGs 
between May 15 and July 15, 2010 on the DDIII, a 
rig ship charged with drilling a relief well. During this 
time, other vessels were trying to stop or contain the oil 
release. In addition, dispersants were being injected near 
the Gulf floor and on the surface of the water to break 
up the oil and reduce atmospheric concentrations of oil-
derived substances. Our goal is to estimate summary 
statistics for exposure to xylene, one of the volatile oil 
components from the THC measurements. Censoring in 
these measurements ranged from 0 to 25% and in the 
xylene measurements from 0 to 32.3% (Table 1). Cen-
soring was higher for xylene than for THC in most of 
groups. Sample sizes ranged from 6 to 96 measurements.

Details on the prior specifications can be found in the 
Supplementary Materials, available at Annals of Work 
Exposures and Health. In this paper, we present results 
using weakly informative inverse-gamma priors on the 
variance components. We compared these results to 
a setting where we had informative uniform priors on 
the standard deviation of the natural log of THC and 
standard deviation of the natural log of xylene | THC 
(restricting the GSDs 1.01–12 based on known charac-
teristics of our data). Figures of the intercepts, slopes, 
correlation coefficients, GMs, GSDs, and AMs using the 
uniform priors are provided in the Supplementary Mate-
rials, available at Annals of Work Exposures and Health.

Convergence diagnostics, as assessed by Gelman 
Rubin statistics and trace plots, indicated that con-
vergence was almost immediate. The Gelman Rubin  

Table 1.  Description of EGs (number of EGs = 7) on the 
DDIII between May 15 and July 15, 2010, assessed in this 
preliminary analysis as part of the GuLF STUDY.

Exposure Group N % Censored  
THC

% Censored  
xylene

Derrick hand 6 0.0 0.0

Floorhand/roughneck 10 10.0 10.0

Crane operator 16 12.5 31.3

Roustabout 96 19.8 32.3

Operations technician 

or operator

10 20.0 20.0

ROV technician 12 25.0 25.0

IH-safety 19 10.5 5.3

These exposure groups included Derrick hands, floorhands/roughnecks, crane 

operators, roustabouts, operation technicians and operators, remotely operated 

vehicle (ROV) technicians, and IH-safety workers.



diagnostics were less than 1.2 for all parameters of inter-
est for the first 5000 iterations of the model. Therefore, 
to ensure all parameters had converged adequately, we 
used 25,000 iterations after 5000 iterations of burn-in.

A plot of the non-censored datapoints and separate 
linear regression lines for each EG shows that particular 
EGs had slightly different linear relationships (Figure 1). 
In general, most points tended to follow a linear trend 
that could be summarized by a single regression line. 
However, the censored information needs to be included 
to know how the relationships differed among EGs. The 
plot also indicates that a few of the observations may be 
outliers. Since every point is considered real in our data-
set, outliers were not excluded.

We compared our Hierarchical Bayesian EG model 
to other simpler models. For model comparisons, we 
replicated the observed Xs and observed Ys from the 
respective models. In the first model, only an intercept 
was included for prediction of X and Y; X was not used 
in the estimation of Y, and each EG was modeled sepa-
rately. This assumed different variances for each EG 
where we simply modeled means, not accounting for 
additional information. The second model had a com-
mon intercept and common slope, where EGs were not 
modeled separately but as one EG. The third model used 
varying intercepts for EGs but assumed that all EGs had 
the same slope estimate. In all of the above models, we 
account for censoring in X and Y. D-statistics were used 
to compare models.

The common intercept and slope model accounting 
for censoring in X and Y had the lowest D-statistic of 

the models tested (Table 2). This is likely due to the rela-
tively low degree of censoring in this example and the 
highly linear trend among most of the non-censored data 
points (Figure 1). In addition, the P-statistic was elevated 
in the hierarchical Bayesian EG model because many 
additional parameters were estimated compared to other 
models. However, we still argue that our hierarchical 
model provides additional inference that may be useful. 
The common slope and common intercept model uses all 
the data as one EG, and does not allow us to differenti-
ate differences among EGs. Meanwhile, the Hierarchical 
Bayesian EG model allows us to model each EG sepa-
rately and compare the relationships among the different 
EGs. Although these findings suggest that the common 
intercept and common slope and intercept model per-
formed the best, the Hierarchical Bayesian EG model 
was the best choice for our analytic needs, which include 
the ability to distinguish between the EGs.

Limited work has been done to incorporate a linear 
relationship in estimation while accounting for censor-
ing in X and Y in previous studies. From this model 
comparison, we can see that a common slope with a 
common intercept model and a common slope with a 
varying intercept model were superior to the intercept 
only model. Therefore, accounting for the additional 
information from the linear relationship was useful.

The global parameter estimate from the Hierarchi-
cal Bayesian EG model shows that the overall intercept 
posterior median estimate was −1.49 in natural log units 
and non-significant (Table 3). The lack of significance 
suggests that when ln(THC) = 0 (or THC = 1 ppb), 

Figure 1.  Non-censored relationships by EG on the DDIII from May 15 to July 15, 2010. The plot displays all the non-censored 
datapoints for each EG and the corresponding linear relationship for each of those non-censored EG datasets.



ln(xylene) = 0 (or xylene = 1 ppb). The global slope 
estimate was significantly positive with a median poste-
rior estimate of 0.70. This indicates that for every unit 
increase in ln(THC), there is a corresponding 0.70 ln 
unit increase in ln(xylene). The large amount of variance 
in the intercepts (33.31) is likely due to the low accuracy 
and precision of the analytical method near the chemi-
cal’s LOD. However, the relatively low variability in the 
slope estimates (0.06) suggests that there is likely to be 
only one major source generating these exposures.

We reported the median and 95% credible intervals 
for the intercept, slope, correlation, GSD of xylene, GSD 
of THC, GSD of xylene |THC, AM of THC, and AM of 
xylene (Table 4). The corresponding figures, including 
figures for the GMs, are included in the Supplementary 
Materials, available at Annals of Work Exposures and 
Health.

The EGs of floorhand/roughneck and the operations 
technician/operator had the highest median GSDs and 
AMs for both THC and xylene, as well as the highest 
credible intervals for these statistics. These EGs were 
characterized by having some very high and some very 
low measurements for each of the two chemicals (e.g. for 
the floorhand/roughneck, the measurements ranged for 

THC >5000 ppb to <LOD of 100 ppb). These groups 
were directly involved in the drilling, tasks that had the 
highest exposures, but the day-to-day work was quite 
variable, resulting in the high GSDs.

The correlation estimates between ln(THC) and 
ln(xylene) were all quite strong; all were significantly 
positive with median posterior estimates above 0.6. The 
correlations were strongest for the Remotely Operated 
Vehicle (ROV) technician (median correlation posterior 
estimate: 0.94) and IH-safety (0.89). The floorhand/
roughneck and operations technician/operator had the 
lowest median correlation posterior estimates but the 
credible intervals were once again very wide. Given the 
various activities performed, these jobs may have more 
than one source of THC or xylene exposure.

Discussion

Importance of censored data
Censoring levels are moderate to high in our study data-
sets overall (19–88% for THC and BTEXH). We evalu-
ated the influence of censored data on the relationship 
between oil-related chemicals. To do so, we analyzed 
data from various EGs on one of the drilling rigs charged 
with stopping the oil release, the Discoverer Enterprise. 
While our primary analysis focuses on xylene exposure 
on the DDIII, the Discoverer Enterprise provides a par-
ticularly vivid example of the importance of censored 
data. An overall regression was performed of all outside 
measurements of workers who spent most of the time 
outside of the rig’s living areas accounting for censoring 
and not accounting for censoring. Associated 95% cred-
ible intervals were obtained for the slope and intercept. 
We found that there was a difference in the intercepts 
and slopes between the two sets of measurements. For 
example, for benzene and THC, approximately 86% 
and 11%, respectively, of the measurements in this sub-
set of the data were censored. We found a significantly 
positive 95% credible interval for the slope when includ-
ing censored data [median = 0.81, confidence interval 
(CI) = (0.62, 1.10)], while the credible interval for the
slope included 0 when censored data were excluded
[median = 0.03, CI = (−0.10,0.18)].

Although we recognize that bias cannot be formally 
assessed using the comparison of these two datasets due 
to not knowing the true concentration, we believe that 
these findings demonstrate that additional censored data 
provide important information that could result in bias-
ing the results if not used. If the slope was truly 0, we 
would expect the benzene exposure levels to be constant 
for all levels of THC. This is contrary to expectations 
arising from the oil composition. After accounting for 

Table 3.  Posterior inference for the hyperparameter 
(global parameter) estimates in equation (4) on the DDIII 
between May 15 and July 15, 2010.

Model Parameter Median 95% Credible 
interval

µβ0 −1.49 (−6.47, 3.46)

µβ1 0.70 (0.45, 0.97)

V11 33.31 (13.06, 123.21)

V22 0.06 (0.02, 0.27)

ρ(β0,β1) −0.16 (−0.75, 0.58)

The parameters V11 and V22 are the diagonal elements of Vβ. The correlation 

between the intercepts and slopes is reported as ρ(β0,β1). It was not significant 

and does not feature in the substantive inference.

Table 2.  Model comparisons metrics for the different 
models discussed in the text relating worker exposure to 
xylene on the DDIII.

Model D-statistic P G

Intercept only model 772.0 479.1 292.8

Common intercept and  

common slope

732.4 406.0 326.4

Common slope and varying  

intercepts

750.3 440.6 309.8

Hierarchical Bayesian EG model 790.2 471.0 319.2



censored information, we clearly saw that lower THC 
levels were associated with lower benzene exposure lev-
els, as expected from physical and chemical laws. Simi-
lar discrepancies in slope and intercept estimates were 
found for TEXH when comparing non-censored models 
to models including censored data (not shown). Thus, 
including the censored observations allows us to uti-
lize more information over a wider range of values and 
yields more statistical power (because of larger sample 
sizes) to detect significant relationships between the 
chemicals.

Results from the DWH oil spill
The exposures to THC and BTEXH as experienced 
by workers who participated in the DWH oil spill 
response, could have come from a number of sources. 
These include the spilled crude oil; various solvents 
used in cleaning agents or in paints; chemicals associ-
ated with specific activities such as using drilling mud 
when drilling of the relief wells or operating equipment 
and vessels; fuels; or engine exhaust. The composi-
tion of the chemicals of interest varies substantially in 
these substances and their use/presence varied across 
the EGs. Therefore, exposure to BTEXH likely varies 
substantially among EGs, resulting in a differing and 
less consistent picture than shown in Figure 1. If the 
predominant source of the THC was crude oil, and the 
composition of the oil did not change over the period 
of these measurements, a strong correlation should be 
observed between the measurements for each of the 
chemicals and THC across the various EGs, as shown 
in Figure 1 (effect of oil weathering see Supplementary 
Materials, available at Annals of Work Exposures and 
Health). In contrast, if the predominant source of expo-
sure was the solvents and other chemicals in the work-
place, weaker correlations would be expected because 
the composition of the solvents and other chemicals 
likely varied across the products used at the worksites 
and thus across the EGs. If the primary source was fuel 
or fuel exhausts, the composition of the fuel or exhaust 
would be relatively constant but neither would be con-
sistent with the composition of crude oil, so that a dif-
ferent correlation would be observed for those EGs 
whose primary exposure was fuel/exhaust.

Our application of the methodology to the GuLF 
STUDY data for xylene indicated patterns consistent 
with the measurement data and tasks being performed. 
Expected high exposure jobs that involved a variety of 
tasks had higher exposure levels, higher variability, and 
wider credible intervals than jobs that were expected 
to have lower exposures. Higher censoring and smaller 
sample sizes increased the width of the credible intervals.Ta
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These results for xylene suggest that the correlation 
between THC and its volatile components may be a pow-
erful tool to use for generating exposure estimates, par-
ticularly when censoring is lower in one chemical than in 
another chemical. The correlations (ρ) between ln(xylene) 
and ln(THC) were surprisingly strong (median posterior 
estimates from 0.64 to 0.94) in all EGs. Due to the strength 
of these linear relationships, these linear associations can 
be used as reasonable Bayesian priors (along with other 
pertinent information) when assessing exposure.

General discussion
This method also properly accounts for censored data 
by allowing there to be a distribution for the censored 
observations. Instead of simply ignoring censored data 
or substituting a single value, we are able to estimate 
the distribution of each chemical and account for uncer-
tainty in each censored observation. Our simulation 
study showed that the model performed well under low, 
moderate, and moderate-to-high levels of censoring in Y 
while having censoring levels low in X. D-statistics indi-
cated that our model was consistently the best model in 
each scenario of the simulation study. Estimation was 
relatively robust for small sized EGs or with EGs with 
higher levels of censoring (see Supplementary Materials, 
available at Annals of Work Exposures and Health). We 
were able to use the known information that the chemi-
cal was censored to generate estimates. This helped us 
avoid having potentially biased estimates.

Our results are dependent on the level of censoring. 
Although we evaluated a range of censoring for X and 
Y in the simulation study, for some EGs in our study, we 
see even higher censoring or smaller sample sizes. These 
occurrences are likely to result in increased uncertainty, 
and therefore, it is recommended that our model be used 
with caution at higher levels (>80%) and smaller sample 
sizes (<5) than evaluated in the simulation study.

These results depended on the relationship between 
THC and its volatile components being linear in nature, 
even below the LOD. If the relationships were not linear, 
this methodology would not work sufficiently. We also 
assumed that each volatile component on a natural log 
scale was normally distributed. Other distributions were 
not investigated.

Future work could also incorporate repeated mea-
surements within a worker. Kim et al. (2011), Xing et al. 
(2013), and Tielemans et al. (1998) have shown that 
accounting for within worker variability in epidemiolog-
ical studies is important for inference and leads to nar-
rower standard error estimates on the effect of exposure 
on the heath outcomes of interest. Burstyn et al. (2000) 
and Rappaport et al. (2009) provide excellent examples 

of how repeated measures should be treated in epidemi-
ological studies.

Additionally, here only one chemical was used for 
predicting each BTEXH chemical. Future work should 
explore expanding this work to a scenario with multi-
ple X censored variables. It is possible that by includ-
ing multiple chemicals as predictors, we can obtain even 
stronger estimates of exposure.

Supplementary Data

Supplementary data are available at Annals of Work 
Exposures and Health online.
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