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Abstract

Introduction.—Potentially carcinogenic hazardous air pollutants (air toxics) have been 

inconsistently associated with breast cancer. Whether metabolic factors modify these associations 

is unknown. We studied 29 non-metallic air toxics classified as mammary gland carcinogens in 

animal studies in relation to breast cancer risk.

Methods.—Participants included 49,718 women from the Sister Study. Census tract air toxic 

concentration estimates from the 2005 National Air Toxics Assessment were linked to enrollment 

residential addresses. Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for 

individual air toxics were estimated using Cox regression. Body mass index (BMI) was considered 

a potential modifier. Relevant mixtures were identified using classification trees.

Results.—Over follow-up (average=8.4 years), 2,975 women were newly diagnosed with breast 

cancer (invasive or ductal carcinoma in situ). Several air toxics, including methylene chloride, 

polycyclic organic matter, propylene dichloride, and styrene, were associated with increased risk. 

Of these, methylene chloride was most consistently associated with risk across multiple analyses. 

It was associated with overall (HRquintile 4vs1=1.21 (95%CI=1.07–1.38)) and estrogen receptor 

positive (ER+) invasive breast cancer (HRquintile 4vs1=1.28 (95%CI=1.08–1.52)) in individual 

pollutant models, although no dose-response was observed. Associations were stronger among 

overweight/obese (vs. non-overweight/obese) women (p<0.05) for six air toxics. The classification 

tree identified combinations of age, methylene chloride, BMI, and four other toxics (propylene 

dichloride, ethylene dibromide, ethylidene dichloride, styrene) related to overall breast cancer.
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Conclusions.—Some non-metallic air toxics, particularly methylene chloride, were associated 

with the hazard for overall and ER+ breast cancer. Overweight/obese women may be particularly 

susceptible to air toxics.
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1. INTRODUCTION

The United States (US) Environmental Protection Agency (EPA) Clean Air Act designates 

187 chemicals as hazardous air pollutants, or air toxics, because they are known or suspected 

carcinogens or cause other serious health effects [1]. Although levels of air toxics have 

declined in the US over the past few decades, millions of tons are still emitted annually from 

a variety of sources such as gas stations, vehicular traffic, dry cleaners, and manufacturers 

[2].

A number of air toxics demonstrate estrogen-like activity [3–6], increase oxidative stress [7–

16], or increase inflammation [8,9,17], which are hypothesized to play a role in breast 

carcinogenesis [18–25]. Breast cancer is the most common cancer among US women, with 

266,120 diagnoses estimated in 2018 [26]. Due to the high burden of breast cancer and the 

ubiquitous nature of air toxics, a better understanding of the association between air toxics 

and breast cancer risk is of substantial public health interest. Three studies have examined 

the association between non-metallic air toxics and breast cancer risk, and results have been 

inconsistent as to whether specific air toxics are related to breast cancer risk [27–29]. Only 

one study has examined the non-metallic air toxic associations on a US-wide scale [28].

Previous studies of non-metallic air toxics have not comprehensively considered effect 

measure modification by physical activity or body mass index (BMI). Physical activity is 

inversely associated with breast cancer incidence [30–32], can lead to higher clearance 

efficiency of inhaled pollutants, and can reduce oxidative stress [33]. However, being more 

physically active could lead to greater exposure, increased ventilation, and a higher 

respiratory rate [34]. Obesity is associated with elevated postmenopausal breast cancer risk 

[35,36]. Higher BMI is also related to oxidative stress which may act in concert with that 

from air toxics [37].

We examined breast cancer incidence in relation to 29 non-metallic hazardous air pollutants 

that were previously found to be mammary gland carcinogens in animal models [38] and 

were estimated as part of the 2005 National Air Toxics Assessment (NATA). We further 

evaluated effect-measure modification by physical activity and BMI. Since individuals are 

not exposed to air toxics in isolation, but inhale air pollution as a complex mixture, we also 

used classification trees to explore whether there are combinations of air toxics that are 

particularly related to breast cancer risk.
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2. MATERIALS AND METHODS

2.1. Study Design and Sister Study Population

We used data from the Sister Study, a prospective cohort of 50,884 women from across the 

US who were ages 35–74 at enrollment [39]. Participants were recruited from 2003–2009 

using a national advertising campaign in English and Spanish. Women were eligible for the 

Sister Study if they had a sister who had been diagnosed with breast cancer, but no prior 

breast cancer themselves.

At baseline, women completed a computer-assisted telephone interview and written 

questionnaires to assess demographics, lifestyle factors, medical and family history, and 

residential history. Participants complete annual health updates and triennial follow-up 

questionnaires to assess changes in health and risk factor information. Response rates have 

remained above 91% over follow-up [40].

All women provided written informed consent. The Institutional Review Boards of the 

National Institute of Environmental Health Sciences and the Copernicus Group approved the 

study. The research presented here includes follow-up through September 15th, 2016 (data 

release 6.0).

2.2. Air Toxics Exposure Assessment

NATA is a database created by the US EPA of modeled air toxic concentrations at the census 

tract level [41]. The estimates from the 2005 version were chosen for this study because they 

represented the middle of the enrollment period (2003–2009) for the Sister Study. Further, 

94% of women enrolled in 2005 or later, and thus the exposure assessment primarily 

predated enrollment for the majority of Sister Study participants. NATA methods have been 

described previously [42]. Briefly, emissions of air toxics from point (e.g. large factories/

waste incinerators), non-point (e.g. prescribed burns/dry cleaners/small manufacturers), and 

on-road and non-road mobile (e.g. cars/buses/boats) sources are compiled into the National 

Emissions Inventory (NEI). These emissions are used as inputs to two air dispersion models, 

ASPEN (non-point sources) and HEM-3 (point and mobile sources). The dispersion models 

account for a number of parameters, such as meteorological factors, census data, and the 

rates, location, and height of release from the source, to estimate the ambient concentration 

of each air toxic in a census tract. NATA also accounts for background (long-range transport 

or persistence from past years) and secondary formation (reactions causing formation or 

decay of air toxics in the atmosphere). Sister Study participants reported their residential 

address at baseline, which was geocoded and linked to NATA by census tract number.

The 2005 NATA includes 177 EPA-targeted air toxics. A review identified 216 chemicals as 

mammary gland carcinogens based on animal studies [38]. Of these, 37 were air toxics and 

were available in the 2005 NATA. However, eight had extensive missing information (>75%) 

so the remaining 29 were examined.
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2.3. Incident Breast Cancer

Women who reported a breast cancer diagnosis on the annual health updates or follow-up 

questionnaires were asked to provide additional diagnosis information, and to grant 

permission for the study to obtain medical records and pathology reports. Medical records 

were obtained for 81% of breast cancer diagnoses. Agreement between self-reported breast 

cancers and medical records was high (positive predictive value >99%) [39], so self-report 

was used when medical records were not available. Tumor characteristics (stage; histology; 

and estrogen receptor (ER) status) were abstracted from medical records, or self-reported.

2.4. Population Included in this Study

Of the 50,884 women in the Sister Study, we excluded 163 women whose breast cancer was 

diagnosed before their enrollment was complete or did not have follow-up information. 

Additionally, the baseline residential address for 1,003 (<2%) women could not be geocoded 

at the census tract level for linkage to NATA concentrations, so they were excluded from our 

study. Women with addresses that could not be geocoded include all Sister Study 

participants who were residents of Puerto Rico (n=882), as well as a small percentage of 

those who resided in West Virginia (n=19; 7.2% of participants from West Virginia), 

Missouri (n=16; 1.0% of participants from Missouri), and Oklahoma (n=11; 2.6% of 

participants from Oklahoma). Therefore, our study included 49,718 women.

For 1,4-dioxane, 2-chloroacetophenone, and acrylamide, air toxic concentrations were 

missing for 1,210 (2.4%), 369 (0.7%), and 4,096 (8.2%) women, respectively, because 

NATA modeling was not complete for their census tract; therefore, these women with 

missing air toxic estimates were not included in models that considered those three toxics or 

in the multipollutant analysis. Estimates for the remaining 26 air toxics were 100% complete 

for the 49,718 women in this study.

2.5. Covariates

Most covariates were assessed by self-report at the baseline interview. Confounders were 

determined using a directed acyclic graph (DAG) [43,44]. We reviewed the literature to 

determine risk factors for breast cancer that are also related to the exposure directly or 

through a relationship with another variable, for inclusion on our DAG (Supplemental Figure 

1). These consisted of age, race, education, cigarette smoking, marital status, menopausal 

status, parity, hormone replacement therapy use, BMI, and residence type. The final DAG-

determined minimally sufficient adjustment set used in our models was race (non-Hispanic 

white/non-Hispanic black/Hispanic/other), residence type (urban/suburban/small town/

rural), highest level of education (<high school/high school/some college/≥4-year degree), 

and cigarette smoking (never/past/current).

BMI and physical activity were examined as potential modifiers of the air toxic-breast 

cancer associations. Height and weight were measured by trained examiners during a 

baseline home visit and used to calculate BMI. At the baseline interview, women were asked 

to report what sport/exercise activities they participated in during the past 12 months and the 

number of months, days per week and amount of time per day that they did each activity. 

This was used to calculate the average hours/week of exercise. To maximize power for the 
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modification analyses, BMI was dichotomized as <25.0 kg/m2 and ≥25 kg/m2, and physical 

activity as ≤median (≤2 hours/week) and >median (>2 hours/week).

2.5. Statistical Analysis

2.5.1 Single Pollutant Analysis.—In single pollutant models, air toxics were 

categorized based on quintiles of each exposure among the study population. We considered 

models that examined the air toxic exposures continuously, but the assumption of linearity 

did not hold so we only reported the categorized results. We estimated hazard ratios and 

95% confidence intervals (CIs) comparing index categories of exposure to exposures below 

the first quintile using Cox proportional hazards regression [45], with age as the time scale. 

Individuals were considered at-risk from study enrollment until the earliest of date of breast 

cancer diagnosis, date of study withdrawal, last follow-up, or death. We estimated p-values 

for trend by using a linear term for the quintile-category specific median of each exposure. 

The proportional hazards assumption was evaluated by conducting a Wald test for an 

interaction between the continuous form of the air toxic measure and time; violations were 

not observed. We estimated HRs for overall breast cancer (ductal carcinoma in situ (DCIS) 

and invasive combined) as well as for breast cancer stratified by invasive ER status (ER 

status was less frequently available for in situ tumors so the analysis by ER status was 

restricted to invasive tumors), and by pre-/post- menopause status. Women who transitioned 

from premenopausal to postmenopausal during follow-up were censored at the age of 

menopause for premenopausal risk time. Person-time occurring after menopause contributed 

to postmenopausal risk time.

Effect-measure modification by BMI and physical activity were each examined on the 

additive and multiplicative scales. On the additive scale, single referent hazard ratios were 

used to calculate the interaction contrast ratio (ICR) and 95% CIs [46–48]. On the 

multiplicative scale, an interaction term was used to estimate stratified HRs in each category 

of the modifier, and the ratio of the HRs (and corresponding 95% CIs). To further examine 

multiplicative modification, nested models (with and without an interaction term) were used 

to compute the likelihood ratio test (α=0.05) [49].

In sensitivity analyses, we examined whether the single-pollutant associations with overall 

breast cancer changed when: (a) restricted to invasive disease; (b) restricted to non-Hispanic 

whites (85% of the study population); (c) restricted to those who had lived at their baseline 

address >10 years (49% of the study population); (d) restricted to those who enrolled in 

2005 or later (94% of the study population); (e) restricted to cases confirmed by medical 

record (81% of cases); and (f) additionally adjusted for US region (Northeast/Midwest/

South/West) of residence. All analyses were completed in SAS 9.4 (Cary, NC.).

2.5.2 Multipollutant Analysis.—We used Classification and Regression Tree (CART) 

methods to explore whether there are combinations of pollutants that may be more or less 

harmful for breast cancer than would be expected based on exposure to only a single 

pollutant in isolation, while also addressing co-pollutant confounding [50,51]. CART is a 

forward-selection approach that selects, at each step, the variable with the strongest 

association with the outcome and performs a binary split according to that variable. Further 
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partitions occur within the previous partitions, which forms “branches” that characterize the 

expected risk in strata of the variables on the branch. Risk is estimated for each individual by 

taking the average outcome among the participants in the end of each branch in which that 

participant is partitioned. We included the 29 air toxics, age at baseline, BMI, and physical 

activity in the classification trees. Age, BMI, and physical activity were included to parallel 

the single pollutant analyses. The most common splitting criterion for classification trees, 

and the one used in this analysis, is the Gini index [51]. For the stopping criteria, we 

specified that the tree grow to a maximum depth of five levels and that the minimum number 

of total observations in a node be 12 (leading to at least five cases per node). Cost-

complexity pruning [50] was used to create a tree with a total of 11 terminal nodes. These 

specifications were used to control the size of the tree so that it wouldn’t be too large and 

lose interpretability, while still identifying meaningful groups. The final tree was chosen by 

balancing model fit and interpretability across combinations of maximum depth, node size, 

and number of terminal nodes. CART was conducted using SAS function PROC HPSPLIT.

3. RESULTS

3.1. Population Characteristics

After an average of 8.4 years of follow-up 2,975 (658 DCIS and 2,309 invasive) breast 

cancers were diagnosed. Characteristics of women in the Sister Study have been described 

previously [39]. Among the 49,718 women (98% of Sister Study participants) included in 

this study, 85.1% were non-Hispanic white, 51.0% had a college degree or higher, 48.9% 

had lived in their baseline address >10 years, 55.8% never smoked, and 61.7% were 

overweight/obese (Supplemental Table 1).

In our study population, the mean census tract estimated air toxic concentrations ranged 

from 2.30×10−7μg/m3 for benzidine to 2.21μg/m3 for toluene (Table 1). Quintile cutpoints 

for each air toxic are also provided in Table 1.

3.2. Results from Single Pollutant Models

Methylene chloride was associated with an increased risk of overall (HRquintile 4vs1=1.21; 

95% CI=1.07–1.38) (Table 2) and ER+ invasive breast cancer (HRquintile 4vs1=1.28; 95% 

CI=1.08–1.52) (Table 3). However, the associations were non-monotonic. For ER+ breast 

cancer, HRs were elevated for all quintile-based categories of exposure relative to the lowest 

category. The positive association with methylene chloride was also observed for 

postmenopausal breast cancer, and was maintained across sensitivity analyses when 

restricting, separately, to invasive cases, non-Hispanic whites, those who enrolled in 2005 or 

later, cases confirmed by medical record, and when adjusted for region (data not shown). 

Methylene chloride was also identified as a variable of importance in the classification tree 

(Figure 1). The combination of these results indicates that, among the 29 air toxics we 

considered, methylene chloride was most consistently associated with elevated breast cancer 

risk.

Suggestive positive associations were also observed for overall breast cancer in the top 

category for acrylamide (HR=1.08; 95% CI: 0.96, 1.22), polycyclic organic matter 
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(HR=1.07; 95% CI: 0.95, 1.21), propylene dichloride (HR=1.10; 95% CI: 0.98, 1.23), and 

styrene (HR=1.08; 95% CI: 0.95, 1.23) (Table 2). However, monotonic trends for air toxics 

with overall breast cancer were not observed.

Associations were also evident for ER+ breast cancer, particularly the top category of 

polycyclic organic matter (HR=1.18; 95% CI=1.00–1.38), styrene (HR=1.15; 95% CI=0.97, 

1.37), and propylene dichloride (HR=1.19; 95% CI=1.02–1.38), which demonstrated 

evidence of a monotonic trend (p=0.01) (Table 3). 2,4-toluene diisocyanate, chloroprene, 

ethylbenzene, and styrene were associated with reduced ER- breast cancer risk, while 

acrylamide and benzidine were associated with increased ER- breast cancer risk, including a 

significant trend for acrylamide (p=0.01) (Table 4). Ethylbenzene demonstrated an inverse 

association with ER- breast cancer in all categories above the referent.

When we considered single pollutant associations stratified by menopausal status, the results 

for postmenopausal breast cancer were similar to those for overall breast cancer, while 

many, but not all, of those for premenopausal breast cancer were slightly attenuated and less 

precise (data not shown). Tests of heterogeneity revealed no differences by menopausal 

status.

There was evidence of synergistic effect-measure modification, on the additive and 

multiplicative scales, by BMI for six air toxics, including 2,4-toluene diisocynate, 

benzidene, ethylene dichloride, ethylene oxide, hydrazine, and propylene dichloride (Table 

5). In the stratified analyses, the direction of the modification suggested a stronger 

association between the air toxics and breast cancer among those who were overweight/

obese compared to those who were not. For example, on the multiplicative scale, ≥median 

vs. <median concentration of propylene dichloride was associated with a HR of 1.11 (95% 

CI: 1.01–1.22) among those who were overweight/obese, but a HR of 0.89 (95% CI: 0.79–

1.01) among those who were not overweight/obese (ratio of HR=1.25; 95% CI: 1.07–1.45; 

LRT p=0.003). Physical activity did not modify the air toxic-breast cancer associations 

(Supplemental Table 2).

In sensitivity analyses, results were similar to the results for all women when we restricted 

models to invasive breast cancer alone (Supplemental Table 3) or to non-Hispanic whites, 

those who enrolled in 2005 or later, or those who had lived at their baseline address for >10 

years, and when additionally adjusted for region (data not shown). Results were slightly 

attenuated, but interpretation did not change, when restricted to the cases confirmed by 

medical record (data not shown).

Results of this study were interpreted with an emphasis on the magnitude of point estimates 

and precision of confidence intervals rather than statistical significance testing. Further, air 

toxics were selected for this study based on biological plausibility and a review of animal 

studies. Therefore, our results are focused on those not adjusted for multiple comparisons. 

However, due to the large number of air toxics and associations examined we explored a 

multiple comparisons adjustment using the false discovery rate method as a sensitivity 

analysis [52]. Associations for overall, ER+, ER- breast cancer, and modification by BMI 
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observed in the primary analyses were not significant when adjusted for multiple 

comparisons.

3.3. Results from the Multipollutant Classification Tree

Classification tree methods were used in exploratory analyses to identify patterns and 

combinations of the 29 air toxics and other covariates of interest (age, BMI, physical 

activity). As shown in Figure 1, in addition to age, BMI, and methylene chloride, ethylidene 

dichloride, styrene, propylene dichloride, and ethylene dibromide were important in the 

formation of the groups. The terminal nodes exhibiting the highest risk of breast cancer 

consisted of those: (1) younger than 58.7, with higher (≥5.89μg/m3) methylene chloride; (2) 

older than 58.7, with a BMI <29.7kg/m2 and with higher (≥3.84μg/m3) methylene chloride; 

or (3) older than 58.7, with a BMI ≥29.7kg/m2 and with both higher (≥0.001μg/m3) 

ethylidene dichloride and higher (≥0.389μg/m3) styrene. The most common subgroup on the 

tree consisted of those between the ages of 40 and 58.7, with methylene chloride 

<5.89μg/m3 and propylene dichloride <0.002μg/m3. It is noteworthy, however, that when the 

classification tree determined the best splitting point for some air toxics, it was occasionally 

at a high concentration. As an example, the distribution of methylene chloride 

concentrations in this population (overall and among those < age 58.7) shown in 

Supplemental Figure 2 demonstrates that the cutpoints identified by the tree (≥5.89μg/m3 or 

≥3.84μg/m3) would be well into the top quintile (>0.412μg/m3) that was used for single 

pollutant analyses.

4. DISCUSSION

In this large, US-wide cohort study, methylene chloride was consistently associated with 

breast cancer across different single and multipollutant models. Evidence of increased 

overall or ER+ breast cancer risk was also observed for multiple other air toxics, including 

acrylamide, polycyclic organic matter, propylene dichloride, and styrene. Results were 

inconsistent for ER- breast cancer; two air toxics demonstrated a positive association, while 

multiple others demonstrated an inverse association. BMI, but not physical activity, modified 

some air toxic-breast cancer associations in the direction of a stronger association among 

women who were overweight/obese.

The increased hazard of overall and ER+ breast cancer for multiple air toxics is biologically 

plausible. Some air toxics have been shown to have estrogenic activity [3–6], and increase 

oxidative stress [7–16] and inflammation [8,9,17], all processes implicated in breast cancer 

[18–25]. Specifically, methylene chloride, an industrial solvent in a variety of products, has 

been classified as Group 2A (probably carcinogenic to humans) by the International Agency 

for Research on Cancer (IARC) [53]. Methylene chloride is mutagenic, as it induces 

chromosomal instability and DNA damage [54] and is metabolized through two pathways, 

CYP2E1 and glutathione S-transferase (GST), that can lead to the formation of reactive 

intermediates. The importance of the GST pathway was primarily determined from lung and 

liver cancer models, but GSTT1 (a key enzyme in the pathway) activity has been detected in 

mammary tissue [54].
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Styrene, propylene dichloride, and polycyclic organic matter had suggestive associations for 

overall and ER+ breast cancer. In a study using MCF-7 estrogen-sensitive human breast 

cancer cells, styrene oligomers increased cell proliferation, demonstrated estrogenicity, and 

had an affinity to estrogen receptor alpha [55]. Propylene dichloride has been classified by 

IARC as Group 1 (carcinogenic to humans) [53]. In mice it has been shown to increase 

oxidative stress through cytochrome P450 metabolism [56] and to induce mammary 

adenocarcinoma [57]. The primary components of polycyclic organic matter are polycyclic 

aromatic hydrocarbons, which have shown estrogenic and anti-estrogenic activity in vitro 

[58–62] and have been associated with breast cancer risk in previous studies [63–66].

Acrylamide and benzidine were associated with increased ER- breast cancer risk, but other 

air toxics, particularly 2,4-toluene diisocyanate, benzene, chloroprene, ethylbenzene, and 

styrene, were associated with reduced ER- breast cancer risk. These inverse associations 

were unexpected. However, a few studies on air pollution have also found inverse 

associations for some other pollutants with ER- breast cancer [28,67,68] so this area 

warrants further study, particularly in a population with a greater number of ER- cancers.

The finding of effect-measure modification by BMI for multiple air toxics is consistent with 

our a priori hypothesis that associations would be stronger among women who are 

overweight/obese. Obesity, which is associated with postmenopausal breast cancer [35,36], 

leads to increases in oxidative stress and inflammation [36,37,69]. Given that air toxics also 

increase oxidative stress, a synergy between the oxidative stress and inflammation from 

obesity and air toxics is plausible [37,70]. Additionally, obesity has been shown to impair 

the oxidant defense system which could make obese individuals more susceptible to the 

oxidative stress from air toxics [37,71]. Given that over 70% of US adults are overweight/

obese [72] and the prevalence continues to increase [73], this is an important, potentially 

vulnerable subgroup that should be considered in the regulation of air toxics.

Our use of classification tree methods was useful in recognizing complex relations between 

air toxics and covariates in our population and also supported findings from the single 

pollutant analyses. Similar to the single pollutant analysis, methylene chloride appeared to 

be an air toxic of relevance for breast cancer; among women <58.7 years of age, breast 

cancer risk was higher among those with higher vs. lower methylene chloride. Further, 

among women >58.7 years of age and with a BMI <29.7kg/m2, breast cancer risk was 

elevated among those with higher vs. lower methylene chloride. However, the best cut-point 

identified by the classification tree was at a high concentration in the methylene chloride 

distribution. Therefore, although the 4th quintile was most strongly associated with breast 

cancer risk in the single pollutant models, the multipollutant models indicated that very high 

levels may also be of relevance (which could have been masked in the 5th quintile as a whole 

in the single pollutant models). Due to the ease with which CART handles non-linear and 

non-additive associations, CART methods were able to identify this grouping. While it was a 

strength that CART identified important cutpoints that would not have been found using 

traditional regression methods, the results based on these splits should be interpreted 

cautiously as the number of women impacted by them is small. Propylene dichloride and 

styrene were also identified as important in the formation of multipollutant groups in the 

classification tree and showed some evidence of association with breast cancer risk in the 
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single pollutant models. The tree methodology was used as a tool for exploring complex 

relations between the air toxics that may reflect harmful co-exposures for breast cancer of 

interest for future evaluation. We considered different combinations of the number of total 

terminal nodes, minimum number of observations in a node, and maximum depth before 

settling on our final tree that was not too large to lose interpretability, but still identified 

potentially important groups. Generally, the nodes at the top of our tree were most robust to 

changes in stopping parameters, but the known instability of trees to changes in parameters 

is a limitation worth noting [74]. However, we emphasize that this analysis was exploratory 

as CART does not provide measures of statistical precision and the size of the tree is 

controlled by investigator-specified parameters.

Only one previous study has reported on associations between the non-metallic air toxics 

and breast cancer risk on a US-wide scale [28]. In the Nurses’ Health Study II (NHSII), 1,2-

dibromo-3-chloropropane was the only air toxic that demonstrated a consistent increased 

risk of breast cancer (HRquartile 4vs1=1.12; 95% CI: 0.98–1.29; p-trend=0.004). Although in 

our study there was a suggestive association in the 3rd quintile of 1,2-dibromo-3-

chlorpropane (HR=1.09; 95% CI: 0.97–1.19), there was no evidence of a monotonic trend 

and the magnitude was not as strong as for other air toxics. The NHSII found additional 

suggestively elevated risks for overall or ER+ breast cancer for 1,3-butadiene, 2,4-

dinitrotoluene, 2,4-toluene diisocyante, benzene, carbon tetrachloride, hydrazine, 

nitrobenzene, propylene oxide, and vinylidene chloride. We similarly found an increased 

risk for 2,4-toluene diisocyanate (quintiles 2 and 3) and ER+ breast cancer, but not the 

others. Differences in approaches between the NHSII and our study reported here could 

explain the differing results. The NHSII utilized the 2002 NATA, whereas the 2005 version 

was used in our study. The 2005 version included multiple updates to improve upon the 

exposure assessment in earlier versions (including use of an up-to-date NEI with more 

recent information on industrial and other sources, use of HEM with AERMOD (a refined 

dispersion model) for more source types, and a new dataset for airport-related emissions 

with 5-times as many airports [42]). Additionally, the follow-up for the NHSII was 

conducted from 1989–2011, whereas Sister Study follow-up was from 2003–2009 through 

2016. Therefore, changes in air toxics levels or distributions over those periods could 

partially explain the differences between the two studies.

A previous study that also used the Sister Study population reported that metal air toxics, 

particularly mercury, cadmium, and lead, were associated with an increased risk of 

postmenopausal breast cancer in individual pollutant models and as a mixture using a 

weighted quantile sum [68]. Together, the results from both of these Sister Study-based 

studies support an association between some air toxics, metallic or non-metallic, and breast 

cancer risk.

Limitations of our study relate to exposure misclassification from NATA. Concentrations at 

the census tract level do not fully account for variation in an individual’s daily activities that 

could lead to higher or lower exposure, and all women within a census tract are assigned the 

same concentration. Although NATA captures many ambient sources that are a major 

contributor to an individual’s exposure, exposure to some air toxics can also come from 

cigarette smoke, occupation, indoor air, and drinking water; sources not captured by NATA. 
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Finally, the air toxics levels from NATA were linked to Sister Study women’s baseline 

residential addresses, so an assumption of our study is that these levels represent those from 

relevant etiologic exposure periods for breast cancer or that recent exposure is an important 

window. Given that NATA air toxic concentration estimates represent a one-year average 

[42] they may be indicative of a long-term or typical, rather than acute, exposure. The Sister 

Study population has been residentially stable; nearly half of the population had lived in 

their baseline address for at least 10 years and 80% have remained in that address 

throughout follow-up. This increases the likelihood that the residential levels at baseline 

reflect past residential levels and those until diagnosis.

The Sister Study is a fairly homogenous population composed mostly of women who are 

non-Hispanic White, well-educated, and postmenopausal. Further, these women have a 

family history of breast cancer. These aspects do not affect the internal validity of our study 

results, but may limit generalizability to other groups.

This study has a number of strengths. The Sister Study is a large, prospective cohort, which 

provided sufficient study power to examine the main air toxic-breast cancer associations as 

well as modification of these associations by obesity and physical activity. Additionally, 

these Sister Study participants came from all 50 US states which allowed us to examine 

nationwide associations and have a larger range of exposure upon which to estimate 

associations compared to focusing on a population limited to one state or geographic region. 

We used the 2005 NATA, which had undergone a number of modeling improvements to 

increase the scope and improve the modeling techniques compared to the 1996, 1999, and 

2002 versions [42]. Further, given that NATA provides the only available nationwide data on 

air toxics, it is a valuable resource. Ours is the first study to comprehensively examine 

physical activity and BMI as effect modifiers for these air toxics with breast cancer risk and 

the first to explore multipollutant combinations that could be relevant for further 

examination. Further, we conducted a large number of sensitivity analyses and found that 

our primary results were robust to factors such as adjustment for residential region, 

restriction to non-Hispanic whites, and restriction to those that lived in their baseline address 

>10 years.

5. CONCLUSIONS

In a large, US-wide population, methylene chloride, along with several other hazardous air 

pollutants (including polycyclic organic matter, propylene dichloride, and styrene), showed 

some evidence of association with an increased risk of overall and ER+ breast cancer. We 

also found that the air toxic-breast cancer associations were stronger among overweight/

obese women. Complex relations between air toxics involving methylene chloride, 

ethylidene dichloride, propylene dichloride, ethylene dibromide, and styrene were identified 

with exploratory classification tree methods and warrant further study.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Methylene chloride was positively associated with overall and ER+ breast 

cancer

• Multiple other air toxics were also associated with increased risk

• Body mass index (BMI) modified air toxic-breast cancer associations

• Classification trees were used to explore complex relations between the air 

toxics
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Figure 1. 
Classification tree of hazardous air pollutants and breast cancer, the Sister Study
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