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Abstract

Background: It is unknown whether carcinogenic and endocrine disrupting polychlorinated 

biphenyls (PCBs) influence mortality following breast cancer. We examined plasma levels of 17 

PCB congeners in association with mortality among women with breast cancer.

Methods: Participants included 456 white and 292 black women in North Carolina who were 

diagnosed with primary invasive breast cancer from 1993 to 1996, and who had PCB and lipid 

measurements from blood samples obtained an average of 4.1 months after diagnosis. Over a 

median follow-up of 20.6 years, there were 392 deaths (210 from breast cancer). We used Cox 

regression to estimate covariate-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) 

for all-cause and breast cancer-specific 5-year mortality, and 20-year mortality (conditional on 5-

year survival) in association with tertiles and continuous ln-transformed lipid-adjusted PCB levels.

Results: The highest (vs. lowest) tertiles of PCB74, PCB99, and PCB118 were associated with 

5-year breast cancer-specific mortality HRs of 1.46 (95%CI = 0.86–2.47), 1.57 (95%CI = 0.90–

2.73), and 1.86 (95%CI = 1.07–3.23), respectively. Additionally, one-ln unit increases in PCB74, 
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PCB99, PCB118, and total PCBs were each associated with 33–40% increases in 5-year breast 

cancer-specific mortality rates. The PCBs were not, however, associated with longer-term breast 

cancer-specific mortality. For all-cause mortality, one-ln unit increases in PCB118, PCB146, 

PCB153, PCB182, PCB187, and total PCBs were associated with 20–37% increases in 20-year 

all-cause mortality rates among women who survived at least 5 years.

Conclusion: PCBs may increase the risk of short-term breast cancer-specific mortality and long-

term all-cause mortality among women with breast cancer.
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1. Introduction

Polychlorinated biphenyls (PCBs) are synthetic organic chemicals manufactured in the 

United States (US) for half a century from 1929 to 1979 (United States Environmental 

Protection Agency, 2019). There are 209 PCB congeners, which are sequentially-numbered 

and distinguished by their degree and pattern of chlorination (Agency for Toxic Substances 

and Disease Registry (ATSDR) 2015). Because PCBs are very stable, non-flammable, and 

resistant to extreme temperatures and pressures, they were used in hundreds of industrial and 

commercial applications including in electrical and hydraulic equipment and in paints and 

plastics (United States Environmental Protection Agency, 2019). Although no longer 

produced in the US, environmental contamination by PCBs continues due to poorly 

maintained hazardous waste sites, disposal of PCB-containing products into landfills, and 

releases from electrical transformers (United States Environmental Protection Agency, 

2019). PCBs are also environmentally persistent and can be redistributed over long distances 

(Sinkkonen and Paasivirta, 2000), and because they are highly lipophilic and not easily 

degraded by metabolism, readily enter the food chain and are biomagnified (Agency for 

Toxic Substances and Disease Registry (ATSDR) 2015). While occupational studies (Chen 

and Luo, 1982; Wolff et al., 1992) and one study of Southeastern US women (Vo et al., 

2008) documented declines in PCB levels after their ban, PCB levels are hypothesized to 

still be of concern because of their known health effects, including cancer.

PCBs are classified by the International Association for Research on Cancer (IARC) as 

carcinogenic to humans due to studies documenting excess risk of melanoma in 

occupational cohort studies (Lauby-Secretan et al., 2013). PCBs or their metabolites have 

been shown to induce genotoxic effects, immune suppression, inflammatory responses, and 

endocrine effects via a number of mechanisms (Agency for Toxic Substances and Disease 

Registry (ATSDR) 2015). Because PCBs are readily absorbed and distributed in the body 

and accumulate in adipose tissue, PCBs are hypothesized to influence breast cancer risk. A 

meta-analysis of 25 studies with 12,866 participants from eight countries reported increases 

in breast cancer risk among women with the highest levels of group II (potentially anti-

estrogenic, immunotoxic, and dioxin-like) and group III (phenobarbital, CYP1A and CYP2B 

inducers), but not with group I, PCBs (Zhang et al., 2015). A congener-specific meta-

analysis reported an increase in the risk of breast cancer among women with higher levels of 

PCBs 99, 183, and 187 (Leng et al., 2016). Importantly, studies of early life exposure 

Parada et al. Page 2

Int J Hyg Environ Health. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicate that PCB exposures during developmentally sensitive periods may increase the risk 

of developing breast cancer (Cohn et al., 2012).

In contrast to studies on breast cancer risk, the influence of PCBs on mortality following 

breast cancer has received limited scientific attention. However, there is accumulating 

evidence that PCBs and other organochlorine compounds may influence the risk of 

metastasis (Koual et al., 2019), recurrence (Muscat et al., 2003), and mortality following 

breast cancer (Parada et al., 2016a, 2016b, 2019). Furthermore, to our knowledge, these 

associations have not been examined in minority populations including black women. This is 

important given that US non-Hispanic blacks have been documented to have higher body 

burdens of pollutants than non-Hispanic whites (Pumarega et al., 2016) and black women 

have higher rates of breast cancer mortality than non-Hispanic white women (National 

Cancer Institute, 2019).

The aims of this study were to examine the associations between plasma levels of 17 PCB 

congeners and all-cause and breast cancer-specific mortality among women who participated 

in a population-based study of breast cancer. We also examined associations stratified by 

race and evaluated associations among black and white women separately. We hypothesized 

that higher plasma PCB levels are associated with greater risk of breast cancer-specific-

mortality and that higher levels in black women than in white women may contribute to the 

racial disparity in mortality.

2. Methods

2.1. Study population

Participants in this study were from the Carolina Breast Cancer Study Phase I (CBCSI), a 

population-based North Carolina study of breast cancer with follow-up for mortality among 

women with newly diagnosed invasive breast cancer from 1993 to 1996 (Newman et al., 

1995). In the CBCSI, 861 women with breast cancer were enrolled and interviewed. 

Approximately 98% of participants who were interviewed in-person by nurses provided 

three 10 mL blood samples an average of 4.1 months after diagnosis (range = 0.8–19.2 

months). Here, we included 456 white non-Hispanic and 292 black women with breast 

cancer who had available PCB and lipid measurements, as previously reported (Millikan et 

al., 2000; Parada et al., 2019). All procedures performed in the CBCS involving human 

participants were in accordance with the ethical standards of the Institutional Review Boards 

of the University of North Carolina at Chapel Hill.

2.2. Follow-up for mortality

CBCSI participant records were linked to the National Death Index (Centers for Disease 

Control and Prevention, 2017) to ascertain date and cause of death. International Statistical 

Classification of Diseases (ICD) codes ICD-9-174.9 and ICD-10-C-50.9 listed on the death 

certificate were used to identify breast cancer-related deaths. Follow-up for mortality 

occurred from date of diagnosis in 1993–1996 until December 31, 2016. For all-cause 

mortality, participants alive at the end of follow-up were censored. For breast cancer-specific 

mortality, participants who died from other causes were censored at the time of death. The 
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median survival time for the 748 women included in this study was 20.6 years (min = 0.4, 

max = 23.7 years), during which 392 women died from any cause, of whom 210 died from 

breast cancer.

2.3. Laboratory assessment

Plasma PCBs were measured using gas chromatography (GC) with electron capture 

detection, as previously reported (Millikan et al., 2000). In brief, plasma samples (2.0 mL) 

were treated with methanol (1.0 mL), spiked with a surrogate standard of PCB 198), and 

then extracted with three 2.5 mL portions of hexane:diethyl ether (1:1). The extract was 

fractionated using Florisil (R) open-column chromatography and eluted with 35 mL of 

hexane. The fraction was concentrated to 0.5 mL and spiked with octachloronaphthalene as 

an external quantitation standard. Individual compounds were identified based on 

chromatographic retention times relative to the internal standards and pattern recognition in 

the sample extract. Calibration solutions were prepared from certified standard solutions for 

each of the 35 individual congeners measured. Of these, 18 PCBs were detected in < 70% of 

participants; proportions below the limit of detection (LOD = 0.0625 ng/mL) ranged from 

37.1% for PCB105 to 99.3% for PCB185 (Supplemental eTable 1). These 18 PCBs were not 

considered in analyses of individual PCB congeners. Additionally, four PCB pairs were 

quantitated and reported as the sum of their concentrations because they co-elute during GC 

analysis. Thus, here we report on nine individual PCB congeners and four pairs of PCB 

congeners. PCB levels below the LOD were imputed as LOD/√2 (Phillips et al., 1989) 

(Supplemental eTable 1). Total PCBs were determined by summing the wet-weights of all 

35 measured PCB congeners, as previously reported in the CBCS (Millikan et al., 2000). In 

sensitivity analyses, we summed moles per gram of lipid, which gave similar results as 

summing wet weights. Here, we present results based on wet-weights.

Plasma lipid profiles were measured using automated enzymatic assays, as previously 

reported (Millikan et al., 2000). Lipids were used to adjust PCB levels to account for non-

fasting variation (Phillips et al., 1989) and to better approximate adipose tissue levels 

(López-Carrillo et al., 1999).

2.4. Interview and medical records data

As part of the in-person interview, participants reported on demographic and behavioral 

characteristics including self-reported race, education, smoking status, and parity and 

lactation history. At the time of the interview, nurses also collected anthropometric 

measurements in duplicate including height and weight, which were used to compute body 

mass index (BMI in kg/m2). Breast cancer stage at diagnosis, grade, tumor size, nodal status, 

and estrogen receptor (ER) status were obtained from medical records. Potential 

confounders were selected based on their known associations with PCB levels (Wolff et al., 

2005) or breast cancer mortality (Soerjomataram et al., 2008).

2.5. Statistical analysis

Plasma PCB levels were first lipid-adjusted by dividing their concentrations by total lipids 

and then ln-transformed. We examined Spearman rank-order correlations between the ln-

transformed lipid-adjusted PCBs among all women. We categorized levels of lipid-adjusted 
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PCB congeners into tertiles using the 33rd and 66th percentiles as cut-points (Supplemental 

eTable 1). We used Kaplan-Meier survival curves to examine all-cause and breast cancer-

specific survival in association with each PCB/PCB pair. In general, the Kaplan-Meier 

curves revealed a divergence in survival curves by PCB tertiles five years following breast 

cancer diagnosis, violating the proportional hazards assumption. Thus, in multivariable 

models, we examined associations within five years of diagnosis, as well as 20 years after 

diagnosis conditional on 5-year survival. We used Cox regression with a heaviside function 

(Kleinbaum and Klein, 2012) (due to the violations in the proportional hazards assumption) 

to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations 

between tertiles of lipid-adjusted PCB levels and all-cause and breast cancer-specific 

mortality. We first included adjustment for age and race, then added smoking status, 

education, BMI, parity/lactation history, stage, and ER status. Tests for log-linear trend (i.e., 

PTrend) used continuous ln-transformed lipid-adjusted PCBs in full covariate-adjusted 

regression models. For PCBs that were statistically significantly associated with breast 

cancer-specific mortality, we examined effect measure modification by race by conducting 

stratified Cox models. Multiplicative interactions were evaluated by comparing regression 

models with continuous PCB-by-race interaction terms to models without the interaction 

terms (i.e., PInteraction).

All statistical analyses were conducted using SAS version 9.4 (SAS Institute Inc., Cary, 

NC).

3. Results

As shown in Table 1, 39.0% of the participants included in this study were black, 44.1% had 

some college education or greater, and 58.6% were diagnosed with breast cancer before the 

age of 50. The majority of women (88.2%) were diagnosed with stage I or stage II breast 

cancer and 58.6% had ER+ tumors. Total PCB levels increased with increasing age and with 

decreasing education. PCB levels were generally similar across other demographic and 

clinical characteristics. By race, black women had higher mean levels of total PCBs as 

compared to white women. Furthermore, as compared to white women, black women had 

more aggressive disease (stage III/IV, 14.8% vs. 9.9%; grade III, 48.6% vs. 38.2%; tumor 

size >2.0 cm, 51.1% vs. 39.0%, node positive status, 43.5% vs. 24.0%; and ER+, 52.1% vs. 

62.9%) and lower median overall survival (14.7 years vs. 21.0 years). Of the 292 black 

women, 180 (61.6%) died over the follow-up period and of the 456 white women, 212 

(46.5%) died over the follow-up period.

3.1. 5-Year mortality

From the Kaplan-Meier curves, most PCBs were not associated with 5-year all-cause or 

breast cancer-specific mortality when comparing the highest to the lowest PCB tertiles (Fig. 

1). After covariate adjustment, however, 5-year breast cancer-specific mortality HRs were 

1.46 (95%CI = 0.86–2.47) for PCB74, 1.53 (95%CI = 0.89–2.64) for PCB138, 1.57 (95%CI 

= 0.90–2.73) for PCB99, and 1.86 (95%CI = 1.07–3.23) for PCB118, comparing the highest 

to the lowest tertiles (Table 2). Furthermore, one-ln unit increases in PCB74, PCB99, 

PCB118, and total PCBs were associated with 5-year breast cancer-specific mortality HRs 

Parada et al. Page 5

Int J Hyg Environ Health. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of 1.33 (95%CI = 1.02–1.74), 1.35 (95%CI = 1.03–1.78), 1.40 (95%CI = 1.02–1.92), and 

1.35 (95%CI = 0.89–2.03), respectively. Breast cancer-specific mortality rates were elevated 

among women with the highest versus lowest tertiles of PCBs 138, 146, and 153, but 

confidence intervals were wide and included the null. The remaining PCBs were not 

associated with 5-year mortality.

Because PCBs 74, 99, 118, and the total PCBs were significantly associated with 5-year 

breast cancer-specific mortality, we examined effect measure modification by race for these 

three PCBs and for total PCBs. As shown in Table 3, a one-ln unit increase in PCB74 was 

associated with a 47% (HR = 1.47; 95%CI = 1.01–2.14) increase in breast cancer-specific 

mortality risk among black women, and a 19% (HR = 1.19; 95%CI = 0.79–1.77) increase in 

breast cancer-specific mortality risk among white women (PInteraction = 0.05).

3.2. 20-Year conditional mortality

From the Kaplan-Meier curves, most PCBs were associated with 20-year all-cause mortality 

when comparing the highest to the lowest PCB tertiles (Supplemental eFigure 1). 

Furthermore, the breast cancer-specific mortality survival curves tended to cross roughly 5-

years after diagnosis for PCB156+PCB171 and PCB194. We therefore performed long-term 

survival analysis conditioning upon survival to five years. Among those who survived at 

least five years, PCBs were not associated with 20-year breast cancer-specific mortality 

(Table 4). Additionally, while PCBs 74, 99, and 118 were associated with 5-year breast 

cancer-specific mortality, associations were attenuated at 20-years. For 20-year conditional 

all-cause mortality, most PCBs were associated with an increased risk of mortality, though 

not all associations were statistically significant. HRs comparing the highest to the lowest 

tertiles ranged from 1.33 (95%CI = 0.92–1.93) for PCB156+PCB171 to 1.96 (95%CI = 

1.33–2.89) for PCB153. Furthermore, there was an apparent dose-response association for 

most PCBs as shown by the log-linear trend analyses (Table 4).

4. Discussion

We examined the associations between 17 PCB congeners and the sum of 35 measured PCB 

congeners and mortality following breast cancer among black and white women who 

participated in a population-based study of breast cancer. PCBs 74, 99, and 118 and total 

PCBs were associated with 33–40% increase in 5-year mortality. The effect of PCBs on 

breast cancer outcomes may vary over time in survivorship with the strongest effects in the 

early years following diagnosis. Among patients who survived at least five years, PCBs had 

no effect on breast cancer-specific mortality. Furthermore, PCB74 was associated with a 

larger elevated risk of 5-year breast cancer-specific mortality among black women than 

among white women. Most PCBs were associated with increases in all-cause mortality, but 

only among women who survived at least 5 years.

Only three studies have examined PCBs in association with mortality following breast 

cancer (Høyer et al., 2000; Parada et al., 2016a; Roswall et al., 2018), with most 

emphasizing all-cause mortality. The first study was conducted among 195 Danish women 

who provided blood samples in 1976–1978 and again in 1981–1983 and who were followed 

for vital status until 1996 (Høyer et al., 2000). In their study, the highest versus the lowest 
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quartile of the sum of 27 PCBs was associated with a 44% increase in the risk of overall 

mortality. In contrast, a more recent Danish study of 399 postmenopausal women reported 

an inverse association between the sum of 18 PCBs measured in buttock tissue biopsies and 

overall mortality following breast cancer over a median follow-up of 16.1 years (Roswall et 

al., 2018). In the first US-based study, in a sample of 627 primarily non-Hispanic white 

women, the highest versus lowest tertile of PCB174 was associated with a twofold increase 

in all-cause mortality. This was the only one of the three studies that examined breast-cancer 

specific mortality, and found a three-fold increase in breast cancer-specific mortality within 

five years of diagnosis. In that study, PCB174 remained associated with breast cancer-

specific mortality 15 years post-diagnosis (Parada et al., 2016a). Thus, the tendency for 

PCBs to be associated with mortality outcomes is consistent with our findings.

Some differences between these studies and our findings are noteworthy. In the CBCSI, 

PCB174 and PCB177 levels were below the LOD for 98% and 67.2% of women, 

respectively. We were therefore unable to evaluate these congeners. Differences in exposure 

patterns may help explain some discrepancies with previous studies. In particular, we found 

no effects on breast cancer-specific mortality after conditioning on 5 years survival (in 

contrast to Parada et al. 2016a,b (Parada et al., 2016a)). First, the differences in the 

congeners and levels detected in this study are likely attributed to different sources of 

exposure including geographic and cultural differences, though the time-periods during 

which the biological samples were collected were similar. Different PCB profiles may 

contribute to mortality risk differently. Second, the racial distribution of the women in this 

study differed from previous studies. To our knowledge, no previous study has examined 

PCB-mortality associations among black women with breast cancer. Racial differences in 

polymorphisms of metabolism genes have been reported (Dreisbach et al., 2005; Kidd et al., 

2001; Tabrizi et al., 2002; Weiserbs et al., 2003). Thus, biological differences in the 

efficiency with which PCBs are metabolized, stored in adipose tissue, and eliminated may 

influence mortality, although we only found evidence of differences by race for one of the 

PCBs examined here. Lastly, US black women are more likely to be diagnosed with more 

aggressive breast cancer subtypes (O'Brien et al., 2010). It is possible that the associations 

between PCBs and mortality may vary by breast cancer subtypes, which we were unable to 

evaluate here.

PCBs are known to accumulate in human breast tissue (Ellsworth et al., 2015) where they 

are hypothesized to directly and indirectly modulate the microenvironment to influence 

cancer initiation, progression, and therapeutic response (Casey et al., 2015). Mechanisms of 

carcinogenicity by PCBs and PCB metabolites have been investigated using a variety of 

study designs. A number of mechanisms have been proposed including the formation of 

reactive oxygen species and highly reactive electrophilic quinones, resulting in genotoxic 

effects, immune suppression, inflammatory responses, and endocrine effects (Agency for 

Toxic Substances and Disease Registry (ATSDR) 2015). The mechanisms by which PCBs 

may influence overall and breast cancer-specific mortality are unknown. Here, PCBs 74, 99, 

and 118 were associated with 5-year breast cancer-specific mortality. PCBs 74 and 118 are 

potentially anti-estrogenic, immunotoxic, and dioxin-like, while PCB99 is a phenobarbital- 

and CYP1A/2B-inducer (Wolff et al., 1997). Dioxinlike PCBs are able to bind the aryl 

hydrocarbon receptor (AhR) resulting in sustained upregulation or downregulation of 
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numerous genes controlling cell proliferation, inhibition of apoptosis, suppression of cellcell 

communication and adhesion, and increased cell invasiveness (Lauby-secretan et al., 2016). 

In addition, the AhR is also implicated as a regulator of energy metabolism (Casals-Casas 

and Desvergne, 2011).

This study had several strengths including the inclusion of a more racially diverse sample of 

women than previously considered, the use of a biomarker to estimate body burdens of 

PCBs, and the long follow-up, which allowed us to examine associations with mortality for 

over 20 years following breast cancer diagnosis. However, these results should be interpreted 

in light of the limitations. First, too few congeners were detected from each of the a priori 
PCB groupings, so we were not able to evaluate meaningful functional groupings relevant to 

breast cancer progression. Furthermore, the PCBs that were detected with high frequency 

were highly correlated (Supplemental eTable 2). Therefore, as with many studies of complex 

mixtures, it is unclear whether the associations observed here are confounded by other 

measured and unmeasured PCB congeners or other pollutants (Braun et al., 2016). Second, 

we only had one baseline measurement of PCBs and so we did not consider changes in PCB 

levels over time. However, PCBs have long biological half-lives (Agency for Toxic 

Substances and Disease Registry (ATSDR) 2015). Therefore, baseline measurements may 

still be relevant to long-term mortality. Third, although we examined associations by race, it 

is unclear whether racial differences are due to greater exposure in black women or due to 

biological differences. Here, we were underpowered to examine associations by other 

important indicators such as ER status and stage or by age and body mass index. Fourth, 

although lipid standardization is useful for comparing exposure concentrations across 

specimens or across study populations, several alternatives for modeling the relationships 

between PCBs, lipids, and health outcomes have been proposed, which may yield varying 

results depending on the true underlying causal structure (Schisterman et al., 2005). Fifth, 

blood samples drawn after diagnosis may be impacted by breast cancer treatment. However, 

in the CBCS case-control design, estimates were not different when stratified by weight loss 

or gain, as well as stage of disease, suggesting that disease or treatment-related effects may 

have minimal impact on PCB levels (Millikan et al., 2000). Finally, we were unable to 

determine the sources of PCB exposure and thus cannot make recommendations on specific 

ways that women may be able to reduce exposure to PCBs following breast cancer aside 

from avoiding contact with known contaminated soils and reducing the consumption of 

animal fats.

The aim of this study was to examine the associations between 17 PCB congeners measured 

in blood samples from women who were diagnosed with breast cancer and mortality 

following breast cancer. In this study, PCB74, PCB99, and PCB118 were associated with 5-

year, but not longer-term, breast cancer-specific mortality. By race, PCB74 was associated 

with a greater increase in breast cancer-specific mortality among black women than among 

white women. Additional studies aimed at understanding the underlying biological 

mechanisms, and more broadly, evaluating how environmental exposures may affect breast 

cancer survivorship may be warranted. Furthermore, as PCB levels have declined since their 

ban, studies are needed that examine contemporary levels in association with mortality 

following breast cancer. These are important considerations given that an estimated 276,000 

women are diagnosed with breast cancer annually (Siegel et al., 2020).
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Fig. 1. 
Kaplan–Meier survival curves for breast cancer-specific mortality and tertiles (Tertile 3, 

solid line vs. Tertile 1, dashed line) of lipid-adjusted plasma polychlorinated biphenyls 

among CBCSI women diagnosed with breast cancer in 1993–1996 (n = 748). The x-axis 

shows times to death in years; the y-axis shows proportion of participants alive.
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