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Introduction
The United States Coast Guard (USCG) deployed personnel in 
response to the Deepwater Horizon oil spill (DWH), a disaster 
in 2010 wherein the explosion of the Deepwater Horizon off-
shore drilling rig in the Gulf of Mexico caused one of the largest 
oil spills in US history.1 There were 87 days of continuous oil 
discharge before effective well-capping, resulting in an unprec-
edented amount of oil spilling into the Gulf. There were over 
47,000 response personnel at the peak of response operations 
during the summer of 2010, with nearly 9,000 from the USCG.1

The Deepwater Horizon Oil Spill Coast Guard Cohort 
(DWH-CG) is a prospective cohort study designed to assess 
the potential acute and long-term health effects of exposures 
encountered during USCG response efforts.2 Previous research 
conducted with this cohort identified positive associations of 
crude oil and oil dispersant exposure with acute respiratory,2,3 
neurological,2–4 and dermal2 symptom onset, as well as with lon-
ger term respiratory and dermal health outcomes.2 These find-
ings are consistent with other literature on the health effects 
of oil spill exposure,5,6 and with findings of impaired lung 
function and respiratory outcomes investigated in another pro-
spective cohort study of DWH response workers, the Gulf Long-
Term Follow Up (GuLF) Study.7–9 In addition, previous studies 
reported novel associations of crude oil exposure with acute 
gastrointestinal and genitourinary symptoms in the DWH-CG 
study,2 as well as associations between heat exposure and 
heat-related symptoms during the DWH response.10

Background: The Deepwater Horizon Oil Spill was an environmental crisis for which multiple groups, including the United 
States Coast Guard (USCG), provided emergency response services. A cohort of 5,665 USCG oil spill responders completed post-
deployment surveys eliciting information on a variety of topics, including oil spill–related exposures and experiences. Our objective 
was to determine the most common exposure patterns among USCG responders.
Methods: We used latent class analysis based on six indicator variables reflecting different aspects of the responders’ experiences: 
exposure to oil, exposure to engine exhaust fumes or carbon monoxide, hand sanitizer use, sunblock use, mosquito bites, and level 
of anxiety. We validated our interpretation of these latent classes using ancillary variables.
Results: The model distinguished four distinct exposure profiles, which we interpreted as “low overall exposure” (prevalence esti-
mate = 0.18), “low crude oil/exhaust and moderate time outdoors/anxiety (prevalence estimate = 0.18), “high crude oil/exhaust and 
moderate time outdoors/anxiety” (prevalence estimate = 0.25), and “high overall exposure” (prevalence estimate = 0.38). The valida-
tion analysis was consistent with our interpretation of the latent classes.
Conclusions: The exposure patterns identified in this analysis can help inform future studies of the health impacts of exposure mix-
tures among USCG oil spill responders.
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What this study adds

This study used a latent class analysis modeling approach to 
characterize the overall patterns of exposure, considering multi-
ple exposure domains, that were commonly reported on surveys 
by Coast Guard responders to the Deepwater Horizon Oil Spill. 
The latent class model suggested four prevailing exposure pat-
terns in this responder population.
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While associations between specific exposures (e.g., expo-
sure to oil) have been considered individually in relation to 
health outcomes, this approach is limited. There are myriad 
environmental exposures encountered during an oil spill 
response, and although several of the exposures have been 
assessed for epidemiological relevance, other less well-stud-
ied exposures could also be contributing to health outcomes. 
Identifying the most problematic under-studied exposures is 
an important challenge for environmental epidemiology and 
one which if addressed as an agnostic search can be like find-
ing the proverbial “needle in the haystack”: inefficient and 
intractable without enormous resources. The search might be 
more efficient by identifying informative subsets of the pop-
ulation who are discordant both on health outcomes and on 
a close surrogate of the unknown exposure.11 The main goal 
of this study was to provide measurement of an exposure 
surrogate for a suite of unmeasured exposures potentially 
important for health outcomes following an oil spill disaster 
response.

The set of environmental exposures encountered during 
a disaster response is structured both by the actions of the 
responders and by the environments in which the responders 
act. We therefore expected that exposure patterns in the DWH 
Oil Spill Coast Guard Cohort population would be clustered, to 
the extent that persons had similar experiences during the disas-
ter response efforts. These clusters could be useful for informing 
more efficient epidemiological studies evaluating novel risk fac-
tors, because the clusters are reasonable surrogates for multiple 
unmeasured exposures.

In this study, we describe the development of a latent class 
model to characterize common patterns of lived experience 
during the spill response and concomitant environmental expo-
sures in the DWH-CG Study.

Methods

Study population

The DWH-CG study population has been described previously.2 
Briefly, the full cohort includes 8,696 oil spill responders and 
44,823 other Coast Guard personnel who did not respond to 
the DWH oil spill (nonresponders), and categorizes personnel 
as active duty or in the Selected Reserve between 20 April and 
17 December 2010. Of the oil spill responders included in the 
cohort, 65% (N = 5,665) completed at least one of two surveys 
administered at the end of their DWH deployment (hereafter 
referred to as “exit surveys”), which gathered data on exposures 
and symptoms experienced during their oil spill deployment. 
We included all 5,665 responders who completed a survey in 
the current latent class analysis. The responder exposure survey 
participants had a similar sex distribution and race distribution 
to the nonparticipants.2

This study was approved by the Institutional Review Boards 
(IRB) of the Uniformed Services University (USU), the USCG, 
and the University of North Carolina, Chapel Hill. A waiver for 
informed consent was approved by the USU IRB.

Exposure data

Two exit surveys were conducted: survey 1, launched on 25 June 
2010, and survey 2, launched on 1 November 2010. Both sur-
veys asked responders about deployment-related factors such 
as duration and timing, location, mission category, exposures 
to crude oil/oily water, burning crude oil, oil dispersants, com-
bustion engine exhaust, animal/insect bites, personal protective 
equipment (PPE) use, acute symptoms and injuries, and life-
style factors. In this study, “mission category” denotes various 
duties carried out by USCG personnel during deployment. In 
general, many of the factors assessed were similar between the 
two surveys. However, survey 1 assessed exposures on an ever/

never scale, and survey 2 assessed frequency of exposures using 
a 5-point scale (1 = never, 2 = rarely, 3 = sometimes, 4 = most 
of the time, 5 = all of the time). To maximize sample size for 
statistical analysis, we harmonized survey 1 and 2 responses by 
limiting the scope of this study to common variables between 
the two surveys, and dichotomizing survey 2 responses on an 
ever/never scale. All survey 2 responses graded above a 1 on the 
5-point scale were coded as “ever,” and those graded as a 1 were 
coded as “never.”

Statistical analysis

Selection of candidate indicators from exposure domains

We considered 54 candidate exposure variables, or “candidate 
indicators” across an initial grouping of seven broad categories 
of exposure, or “exposure domains,” for inclusion as indicator 
variables in the latent class analysis (LCA) based on what we 
deemed most relevant to the exposure scenarios of the USCG 
responders. The exposure domains were (1) sleep, (2) insect and/
or animal bites, (3) smoking, (4) exposure to crude oil, exhaust 
fumes or carbon monoxide exposure through any exposure 
route, (5) injury and subsequent care-seeking experiences, (6) 
anxiety and other psychosocial stressors, and (7) use of PPE 
(Table S1; http://links.lww.com/EE/A188).

To select the set of indicators used for latent class estimation 
from across the exposure domains, the following criteria were 
used: (1) each indicator had to be of a high enough prevalence 
within the DWH Oil Spill Coast Guard Cohort, to help ensure 
that the final joint contingency table of indicator combinations 
would have low data sparsity; (2) the indicators were sampled 
so to include multiple exposure domains in our latent class defi-
nition; and (3) the indicators were selected such that we would 
not expect strong residual relationships between indicators to 
exist within each of the finally estimated latent classes (Figure 1). 
This approach increased the content validity for our latent class 
enumeration, as the different survey response patterns across 
the final set of indicators would more broadly capture the range 
of exposure experiences of DWH responders while minimizing 
correlated residual errors among the indicators.12 These residual 
errors, if present, could bias model output during latent class 
analysis.

To confirm there would not be too much extrapolation over 
sparse data in the latent class model estimation, we looked at 
the full joint contingency table of the response patterns of the 
candidate indicator set (Figure S1; http://links.lww.com/EE/
A188). Our final model included six highly prevalent indicators 
with at least one observation for each possible exposure combi-
nation (e.g., 26= 64 strata with n > 0 per stratum): (1) ever expo-
sure to crude oil, (2) ever exposure to exhaust fumes or carbon 
monoxide, (3) hand sanitizer use, (4) sunscreen use, (5) expe-
rience of mosquito bites, and (6) experience of anxiety during 
deployment. No indicators from the domains of sleep, smoking, 
or injury and subsequent care-seeking experiences were selected 
for the latent class enumeration. It is possible that residual asso-
ciation between crude oil and exhaust fumes or carbon monox-
ide conditional on latent class may or may not influence latent 
class estimation in this application.12

Enumeration of latent classes for the latent class 
measurement model

LCA methods classify people into different subgroups based on 
shared sets of indicator response patterns.13 We leverage LCA 
in our study to classify participants into different subgroups of 
exposure experiences based on how their self-reported responses 
to the six candidate survey indicators cluster together. The latent 
class measurement model we applied used a series of jointly esti-
mated logistic regression models to predict each of the six selected 
binary indicators as a function of latent class membership. We 
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used the six selected indicators to fit 2-class, 3-class, 4-class, and 
5-class measurement models. Goodness-of-fit for each latent 
class measurement model was assessed via entropy metrics,14 
Akaike Information Criterion (AIC),15 and Bayesian Information 
Criterion (BIC).16 Estimation of the number of latent classes was 
done before inclusion of any covariates into the model.17 Although 
we assumed independence among the DWH study participants for 
the purpose of latent class estimation, it is possible that due to the 
spatiotemporal clustering of participants (e.g., shared service loca-
tions, timing of deployment to each location), which were inade-
quately measured, some residual clustering remained. This could 
have led to an unmodeled multilevel data structure, and therefore 
an over-estimation of classes by fit statistics.18 Therefore, in addi-
tion to quantitative fit metrics, we also used our own judgment to 
evaluate model reasonableness and validated our interpretation of 
the preferred model (favored by BIC and judgment of the investi-
gative team) using tests for convergent construct validity,19 which 
led us to prioritize a 4-class model.

Construct validity: validation of latent class measurement 
model by other indicators using constrained models

As a validation of our interpretation of the four-class latent class 
measurement model, we examined the relationship of the latent 
classes to other measured variables whose relationships to the 
latent classes were predictable (i.e., expected a priori) using logis-
tic regression with the latent class predicting the new validation 
indicator variable. The validation indicators were selected on the 
subjective basis of our ability to understand them well enough 
to make a priori predictions of how those should be related to 
our latent classes if we are right about how we are interpret-
ing the latent classes. Our test for convergent construct validity 
was performed in two stages. First, we constrained the four-class 
measurement model by fixing the class probabilities between 
the six latent class measurement model indicators and each of 
the four latent classes. In the next step, we added one additional 
measured “validation variable” as another latent class indicator 
which was allowed to be freely estimated while the six “mod-
el-defining” indicators were constrained. The validation indica-
tors we considered were spending at least some time outdoors, 
use of personal floatation equipment, Camelbak use, use of bug 
spray, use of nitrile gloves, and use of Tyvek suit. A separate 
model was fitted for each of these validation indicators.

Regression of latent classes on deployment mission categories
We expected that the clustering of reported exposures among 
responders to the Deepwater Horizon Oil Spill would be a function 

of the kind of work done by the responders to the oil spill. Data 
on the deployment missions performed by the USCG responders 
were available for all study participants. These missions reflect the 
general tasks responders were involved in and have been described 
previously.2 Responders reported being involved in up to 27 dif-
ferent missions. To capture the overall oil spill response clean-up 
experience of each responder, individual missions and mission 
combinations were evaluated by a former Coast Guard industrial 
hygienist and two of the authors (J.A.R. and H.D.-R.) with regard 
to crude oil exposure opportunity. The unique mission combina-
tions of each responder were categorized as missions with lower 
crude oil exposure opportunity (administrative-like missions), 
medium crude oil exposure opportunity (low oil/mixed missions), 
and higher crude oil exposure opportunity (oil-related missions). 
To test the relationships between mission and latent classes, we 
initially added mission category as a three-level covariate predict-
ing the latent classes of our four-class, six-indicator measurement 
model in a jointly estimated unconstrained model (Table S2; http://
links.lww.com/EE/A188). However, that model which jointly esti-
mated the relationship of mission to latent class, and of latent class 
to the model defining indicators, had several parameters (i.e., indi-
cator probabilities given class membership) at the boundary values 
(e.g., probability equals zero or probability equals one), suggesting 
unstable estimation. To stabilize model estimation, we constrained 
the relationships between the four latent classes and six indica-
tors (at the point estimates from the latent class model without 
a covariate) and only allowed the relationship of mission to the 
latent class to be flexibly estimated. We report the constrained 
model output in our main results, but also provide the flexibly 
estimated model output in our Supplementary Materials; http://
links.lww.com/EE/A188. We calculated odds ratios (OR) and 
95% confidence intervals (CI) using the administrative-like mis-
sion category as the reference group.

Software

Descriptive data analysis (e.g., prevalence of exposures) was 
conducted using Stata 14.2 S/E (StataCorp, College Station, 
TX). Latent class models were estimated using MPlus version 
7.4 (Múthen & Múthen, Los Angeles, CA).

Results

Selected candidate indicators: response patterns and 
assessment of data sparsity

Individual response frequencies for candidate indicators con-
sidered for the latent class measurement model are reported 

Figure 1.  Relationships between variables.
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in Table S1 and Figure S1; http://links.lww.com/EE/A188. 
The 5,665 survey respondents varied in their exposure to the 
six indicator variables used in latent class estimation: 49% 
reported ever having crude oil exposure, 34% reported ever 
having exhaust fume or carbon monoxide exposure, 37% 
reported ever being bitten by a mosquito, 14% reported ever 
experiencing anxiety, 34% reported ever using sunscreen, and 
37% reported ever using hand sanitizer. Across these six indi-
cators, there was at least one observation for all 64 possible 
item response patterns for any given DWH survey respondent 
(Figure S1; http://links.lww.com/EE/A188). Twelve of the 64 
response patterns had fewer than 10 observations, with the 
sparsest response pattern reported by two survey respondents 
whose response pattern was being exposed to crude oil expo-
sure, never exposed to exhaust fumes or carbon monoxide, 
ever bitten by a mosquito, ever experienced anxiety, never used 
sunscreen, and never used hand sanitizer.

Latent class measurement model

We considered several six-indicator latent class models with 
the number of latent classes ranging from 2 to 5. The four-class 
model had the lowest BIC of the models considered (Table 1). 
The entropy was equivalent (0.63) for the three-, four-, and five-
class models, but higher for the two-class model (0.78), indi-
cating that the two-class model was most distinctly able to sort 
participants into “high” and “low” exposure categories, and 
more nuanced groupings (i.e., a higher number of latent classes) 
made it more challenging to sort participants as distinctly. 
Despite this, we prioritized the four-class model since it would 
potentially distinguish a greater number of exposure pattern 
subtypes than the two- or three-class models, while being more 
parsimonious (with a lower BIC) than the five-class model that 
had the same entropy. We therefore used the four-class model 
in subsequent validation analyses and in relation to the mission 
covariate.

The probabilities for each of the six indicators within each 
class of the four-class model are reported in Table 2. Estimated 
class probabilities of crude oil exposure, exhaust fume or car-
bon monoxide exposure, mosquito bite, and experience of anx-
iety had generally monotonic increases across these four latent 
classes. We labeled the four latent classes as reflecting four pos-
sible exposure experiences of the DWH responders: “low overall 
exposure,” “low crude oil/exhaust exposure with moderate out-
door time/anxiety,” “high crude oil/exhaust exposure with mod-
erate outdoor time/anxiety,” and “high overall exposure.” For the 
purposes of our labeling of the classes, the “outdoor time” label 
was based on how strongly hand sanitizer use, sunblock use, 
and mosquito bites loaded onto the classes, as these indicators 
are reflective of either PPE (hand sanitizer, sunblock) or other 
exposures (mosquito bites) that DWH responders experienced 
when they worked outdoors. The middle two classes in the four-
class model were also distinguished by their probabilities of hand 
sanitizer use, sunblock, and mosquito bite: persons in the sec-
ond class had higher hand sanitizer and sunblock use and lower 
probability of mosquito bite, than persons in the third latent 
class, but probability of sunblock use and mosquito bites in both 
suggested moderate time outdoors relative to the other classes.

Construct validity of the 4-class measurement model

Class probabilities for each of the six indicators within the four-
class measurement model were constrained to the probabilities 
reported in Table  2, and a seventh validation indicator was 
added to assess construct validity. The resulting estimates of class 
probabilities for different validation indicators are reported in 
Table 3. For the “low overall exposure” experience latent class, 
low class probabilities were reported across each of the valida-
tion variables: personal flotation equipment use, Camelbak use, 
bug spray use, nitrile glove use, and Tyvek suit use. Similarly, the 
“high overall exposure” latent class had the highest class proba-
bilities for each of these validation variables. For the intermedi-
ate latent classes, Camelbak use and bug spray use distinguished 
these two classes. Persons with latent class membership to class 
2 “low crude oil/exhaust exposure with moderate outdoor time/
anxiety” had a higher class probability of bug spray (53%) than 
those with latent class membership to class 3 “high crude oil/
exhaust exposure with moderate outdoor time/anxiety” (10%). 
The difference in class probability for CamelBak use was not as 
strong between those in class 2 (18%) and class 3 (5%).

Regression of latent class on deployment mission 
categories

Associations between mission categories and latent classes, from 
the model where latent classes were predefined (i.e., relation-
ships of latent class indicators to the latent classes are fixed 
while the association of the mission covariate with latent class 
was freely estimated) are reported in Table 4. Compared with 
responders with administrative-like missions, responders who 
performed missions with higher crude oil exposure opportu-
nities were much more likely to belong to “higher-exposure” 
latent classes. We observed increasing monotonic dose–response 
relationships across latent classes for both the responders with 
low crude oil/mixed missions and those with crude oil-related 
missions.

Discussion

Potential utility of the estimated latent classes

This latent class analysis suggests there are clustered patterns 
of similar exposure encountered across participants in the 
Deepwater Horizon Oil Spill Coast Guard Cohort Study, asso-
ciated with the broad categories of mission tasks completed 
by Coast Guard responder personnel. These distinct patterns 
of exposure help distinguish more similar from less similar 
participants with respect to a variety of measured, as well as 
unmeasured, exposures, and may be useful for informing future 
analyses of the DWH-CG study population. We identify four 
clusters of the responder population distinguished by their oil/
exhaust exposure, and their anxiety/time outdoors. These four 
groupings of similar persons may correspond to additional 
exposures that were not directly assessed by questionnaire or 
included in these models, but that might be amenable to future 
studies (e.g., biomarker-based exposure assessments).

Strengths and limitations

This analysis had several major strengths. In this study popula-
tion, for the six indicators used in the latent class model, there was 
no combination of indicators with zero observations, mitigating 
issues of data sparseness and boundary parameter estimates.20 
After inclusion of these six indicators, there were a large number 
of additional variables that could be used in sensitivity analyses 
to evaluate our interpretation of the latent classes as a test for 
convergent construct validity.21 These tests for construct validity 
supported our interpretation of a four-class model as reflecting 
clustering along two major axes of exposure: exposure to crude 

Table 1.

Model fitting diagnostics.

 2 Class 3 Class 4 Class 5 Class

Entropy 0.78 0.63 0.63 0.63
AIC 36,974 36,656 36,369 36,353
BIC 37,060 36,788 36,548 36,578

AIC indicates Akaike Information Criterion; BIC, Bayesian Information Criterion.
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oil and exhaust; and time outdoors/ anxiety. The use of ancillary 
variables as a basis for selecting substantively meaningful latent 
classes can help compensate for the limitations of data-driven 
decision rules,22 allowing us some flexibility around some of the 
likely limitations of our analysis (e.g., residual dependence of 
indicators given latent class). The availability of mission data 
(a three-level categorical variable) also allowed us to consider 
the reasonableness of our latent classes, again providing reas-
surance that a four-class model was a reasonable description of 
exposure patterns in this population.

This study had limitations. We did not know a participant’s 
timing, frequency, or location of exposures; this could lead to 
some clustering of participants in our analysis based on cumula-
tive experience of ever having had exposures whose actual lived 
experience did not overlap much. We suspect there is variability 
across participants within each of the latent classes that is a 
function of their mission, but we were unable to stably estimate 
the latent classes conditional on the mission covariate without 
constraining the latent class model, or to test for differential 
measurement of indicators by the mission covariate. Common 
statistical decision-rules for deciding on the optimal number of 
latent classes such as the bootstrapped likelihood ratio test23 
and the Lo–Mendell-Rubin likelihood ratio test24 rely on cor-
rect specification of dependencies between participants (e.g., 
no unmodeled data hierarchy, such as Coast Guard respond-
ers clustered in locations), and on conditional independence of 

indicators within latent class which may have been violated in 
this analysis (e.g., exhaust and oil exposure),25 so some subjec-
tive judgment is needed for selection of a preferred model. When 
we evaluated models by AIC,15 BIC,16 and entropy,14 it was to 
inform, but not decisively determine, the final model selection. 
We recommend use of the four-class model as the basis for 
designing future studies, based on the substantive reasonable-
ness in light of our ancillary variables25 as well as the reason-
ableness of that model by some quantitative fit metrics (e.g., 
lowest BIC, similar entropy and AIC to several other models), 
but this recommendation is tempered by the recognition that 
another group of investigators may have different preferences 
regarding the weighting of entropy versus other considerations 
in model selection. Entropy favored a two-class model.

The latent classes estimated in this study are intended pri-
marily for use in the design of future studies within this study 
population aiming to cost-effectively maximize interindividual 
variation in yet-unmeasured exposures, while minimizing con-
founding. Therefore, the estimated odds ratios of specific indica-
tors given latent classes are less critical in this study than in many 
other latent class analyses where the goal is inference on the rela-
tionship of latent classes to other variables. These latent classes 
are informative about which people will be more informative to 
study in future study (e.g., for biomarker-based exposure assess-
ment), but may not generalize to other external populations. 
This latent class model is parsimonious and excluded several 

Table 2.

Exposure profiles in the Deepwater Horizon Oil Spill Coast Guard Cohort Study (n = 5,665).

Binary exposure (yes/no)

Class 1 (~18%) 
“low overall  
exposure”

Class 2 (~18%) 
“low crude oil/exhaust exposure  

with moderate outdoor time/anxiety”

Class 3 (~25%) 
“high crude oil/exhaust exposure  

with moderate outdoor time/anxiety”
Class 4 (~38%) 

“high overall exposure”

Any crude oil exposure 0.05 0.20 0.61 0.83
Exhaust fumes or carbon monoxide 0.06 0.20 0.95 0.97
Hand sanitizer 0.12 0.69 0.47 0.94
Sunblock 0.11 0.78 0.51 0.96
Mosquito bite 0.10 0.47 0.69 0.92
Anxiety 0.05 0.11 0.15 0.20

Probability of self-reporting “yes” to each exposure, occurring at any time, among members of each latent class, is shown in cells. Estimated prevalence of each latent class across the population is shown 
in parentheses.

Table 3.

Checks of construct validity (n = 5,665).

Validation variable

Class 1 (~18%) 
“low overall  
exposure”

Class 2 (~18%) 
“low crude oil/exhaust exposure  

with moderate outdoor time/anxiety”

Class 3 (~25%) 
“high crude oil/exhaust exposure  

with moderate outdoor time/anxiety”

Class 4 (~38%) 
“high overall  

exposure”

Outdoors at least sometimes 0.34 0.63 0.67 0.97
Personal floatation equipment use 0.03 0.54 0.41 0.91
CamelBak use <0.01 0.18 0.05 0.39
Bug spray use <0.01 0.53 0.10 0.80
Nitrile gloves use <0.01 0.26 0.21 0.83
Tyvek suit use <0.01 0.05 0.04 0.25

Probability of self-reporting “yes” to exposure to each of the validation variables, among members of each latent class. Models were fit separately to allow a new “validation indicator” each, augmenting the 
same underlying (constrained) latent classes defined per Table 2.

Table 4.

Odds ratios (OR) and 95% confidence intervals (CI) of belonging to either of the moderate exposure experience latent class (2 and 3) or high expo-
sure class (4) versus the low exposure experience class (1), by mission category compared with the “administrative-like missions” group (n = 5,665).

Mission category
OR (95% CI) for class 2 membership  

versus class 1 membership
OR (95% CI) for class 3 membership  

versus class 1 membership
OR (95% CI) for class 4 membership 

versus class 1 membership

Administrative-like missions Reference Reference Reference
Low oil/mixed missions 4.20 (3.17, 5.57) 6.28 (4.90, 8.05) 33.91 (25.48, 45.13)
Oil-related missions 10.12 (6.25, 16.40) 11.60 (6.25, 16.40) 57.07 (36.02, 90.40)

These results are from the latent class with covariate model constrained to have class-specific indicator response probabilities equal to those of the noncovariate measurement latent class model.
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exposures relevant to health but not highly prevalent in the sam-
ple (e.g., smoking). We opted for some indicators we thought 
might have weaker violation of the conditional independence 
given latent class assumption (e.g., ever using hand sanitizer, ever 
using sunscreen) over some others that were more prevalent but 
that we thought might violate the assumption more strongly. 
Several variables that were not used in building our latent class 
models, for example sleep duration, may be studied in relation to 
these latent classes in future study. The choice to include anxiety 
as an indicator in our model reflects our belief that anxiety may 
function as a moderator of the impact of other exposures and 
thus be an important dimension of composite exposures experi-
enced by USCG responders to the oil spill.

Conclusions
In summary, in this study, we used retrospective exposure ques-
tionnaire data to group participants in the Deepwater Horizon 
Oil Spill Coast Guard Cohort Study into four underlying dis-
tributions of similar exposure patterns. We hope these modeled 
exposure patterns will be useful for informing future investiga-
tion of health effects of exposures during the oil spill.
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