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ABSTRACT

Samuel P. Rosin: SARS-CoV-2 Seroprevalence and Vaccine Correlate of Protection Standardization
(Under the direction of Michael G. Hudgens and Bonnie E. Shook-Sa)

In the COVID-19 pandemic, there was great interest in population seroprevalence estimation

of individuals with antibodies against SARS-CoV-2 and in evaluation of antibodies as surrogate

markers for vaccine efficacy. In the first paper, methods for estimation of seroprevalence from

surveys which can have selection bias and serologic tests which can have measurement error are

presented. These challenges are addressed with leveraging of auxiliary data, e.g., population census

data, and of laboratory studies of false positive and false negative rates. Direct standardization is

used for development of nonparametric and parametric seroprevalence estimators. The estimators

are proven consistent and asymptotically normal. Simulation studies demonstrate performance

across a variety of selection and misclassification biases scenarios. The proposed methods are

applied to SARS-CoV-2 seroprevalence studies in New York City, Belgium, and North Carolina.

Drawing simple comparisons of COVID-19 vaccine trial efficacy estimates is problematic

without considering factors affecting trial context and design, including characteristics of a study’s

population (Rapaka et al., 2022). A meta-analytic paradigm for surrogate endpoint evaluation entails

estimating an association between the treatment effects on the surrogate and clinical endpoints,

respectively, using data from multiple clinical trials. This approach can estimate the association

between vaccine induced anti-SARS-CoV-2 antibodies and vaccine efficacy against symptomatic

COVID-19 illnesss. In the second paper, multiple vaccine trials are standardized to a common

target population. Meta-analytic causal association parameters, estimators, and the asymptotic

distributions of the estimators are considered. A hypothesis test of an implication of a conditional

exchangeability assumption is proposed. Simulation studies demonstrate the methods in scenarios

motivated by data from several U.S. government Phase 3 SARS-CoV-2 vaccine trials.
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When data are fused across data sets, often the random variables are assumed to be independent

but not identically distributed, as in the preceding chapters. However, standard estimating equation

theory assumes an independent and identically distributed set up. In the third chapter, the consistency

and asymptotic normality of estimating equation estimators when data are independent but not

identically distributed is considered. Regularity conditions for consistency and asymptotic normality

in the non-iid setting are presented and examples for application of the estimating equation theory

to data fusion estimators are provided.
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CHAPTER 1: LITERATURE REVIEW

1.1 COVID-19 pandemic

According to World Health Organization (WHO) estimates, the COVID-19 pandemic has

caused more than 14 million deaths. (World Health Organization, 2022). This pandemic is the

deadliest since the influenza pandemic of 1918, a catastrophe for global health that killed over 50

million, and perhaps as many as 100 million, people worldwide (Johnson and Mueller, 2002). Over

the past half-century, spurred on greatly by reports of AIDS in 1978 and discovery of its viral cause

HIV, it has become clear to public health professionals that infectious diseases pose a major threat

to humans (Weber et al., 2016; Wilson, 1995). Most new and emerging infectious disease threats

are zoonotic, i.e., transmitting from animals, such as HIV, SARS-CoV-2, SARS, and Ebola (Weber

et al., 2016). Clinically, COVID-19 disease can be severe (Cevik et al., 2020). The most common

symptoms are fever, cough, fatigue, and muscle pain, and the disease can result in acute respiratory

distress syndrome and death. (Cevik et al., 2020).

Two important public health challenges during the pandemic have been the study of seropreva-

lence and the determination of vaccine correlates of protection. Seroprevalence, the proportion of

individuals in a population with antibodies to SARS-CoV-2, is a useful quantity for tracking the

pandemic’s severity and informing public health decisions. This proportion can be combined with

further assumptions and data to estimate the attack rate, cumulative incidence rate, and infection

fatality rate of SARS-CoV-2, among other quantities of interest (Takahashi et al., 2023; Shioda et al.,

2021; Buss et al., 2021; Perez-Saez et al., 2021; Brazeau et al., 2020). Seroprevalence estimates may

also be useful in modeling the proportion of people who have reduced susceptibility to SARS-CoV-2

insofar as antibody titers are associated with protection from COVID-19 (Earle et al., 2021; Khoury

et al., 2021). Seroprevalence is often estimated by survey research, but such studies are commonly

subject to misclassification bias due to false positives and negatives (Bouman et al., 2021) and
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selection bias due to the use of non-probability sampling techniques (Accorsi et al., 2021). These

challenges are addressed in Chapter 2.

About one year after SARS-CoV-2 was first discovered in humans, the Pfizer-BioNTech and

Moderna mRNA-based COVID-19 vaccines were successfully developed and authorized for emer-

gency use by the U.S. Food and Drug Administration (Office of the Commissioner, 2020b,a). The

speed of vaccine development was unprecedented, representing a tremendous scientific accomplish-

ment (Krammer, 2020), and these and other vaccines have shown high efficacy against COVID-19

disease (Lipsitch and Kahn, 2021). The Phase 3 trials that supported efficacy required thousands of

volunteers in addition to great effort and time. As SARS-CoV-2 mutates and new strains develop,

there has been substantial interest in determining an immune biomarker produced by the vaccines

that correlates significantly with the efficacy each vaccine demonstrated in the Phase 3 trials; partic-

ular attention has been given to the roles of neutralizing and binding antibodies (Krammer, 2021;

Khoury et al., 2021; Earle et al., 2021; Gilbert et al., 2022b; Addetia et al., 2020). However, the

vaccine efficacy trials also differed in terms of their study populations, timing (and thus which

strains of the virus were circulating), and definitions of endpoints, among other factors. As such, it

is difficult to compare the point estimates of vaccine efficacy without context (Rapaka et al., 2022).

Methods to conduct vaccine correlate of protection analyses while adjusting for selection bias across

trials are considered in Chapter 3.

1.2 Standardization and the parametric g-formula

In each paper, the generalization of estimates to target populations is considered; in particular,

the use of direct standardization (Neison, 1844) and the parametric g-formula (Robins, 1986). These

methods adjust for structural biases such as selection bias, confounding, and effect modification

(Hernán et al., 2004). In the first and second papers, proportions and causally interpreted parameters

are standardized using either direct standardization or the parametric g-formula. Consider measure-

ment of (vectors of) individual outcome data X and covariate data Z. Without loss of generality, the

covariates can be considered discrete and taking on one of k distinct realized strata z1, . . . , zk. The
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quantities ρj = E[X | Z = zj] for j = 1, . . . , k are estimated from the sample data. Presume that

the distribution of Z is known in the target population, i.e., Pr(Z = zj) is known for j = 1, . . . , k.

The standardized prevalence in (or generalized to) the target population is ρ =
∑k

j=1 ρj Pr(Z = zj).

The procedure applies to continuous covariates Z by integrating over the distribution of Z rather

than summing over its discrete levels.

The parametric g-formula, introduced by Robins (1986), generalized standardization to the time-

varying exposure setting in causal inference; for the purposes of this thesis, consider the g-formula

in the time-fixed setting. Let Y a be the potential outcome if, possibly counter to fact, exposure (or

treatment) were A = a. Standard assumptions for causal inference must be made to draw causal

conclusions with the g-formula. These assumptions are conditional exchangeability Y a ⊥⊥ A | Z,

causal consistency Y = Y aI(A = a), positivity fA|Z(a | Z) > 0 with probability 1 where

fA|Z(a | Z) is the conditional probability density function of A | Z, no interference between units

(Hudgens and Halloran, 2008), and no measurement error. If these assumptions hold, then the causal

quantities of interest can be identified from the data: E[Y a] =
∫
Z
E[Y | A = a, Z = Z] dFZ(z)

where FZ is the distribution function of Z.

In the causal inference setting, the parametric g-formula requires the fitting of an outcome

model for Y conditional on exposure A and covariates Z. Causal effects can also be consistently

estimated using inverse probability weighting, which involves fitting a propensity model to estimate

E[A | Z = Z], the conditional probability of being exposed given covariate values. Outcome and

propensity models can be combined in augmented inverse probability weighted estimators, which

feature the ‘double robustness’ property. The double robustness property assures the estimator

is consistent and asymptotically normal under regularity conditions if at least one of, but not

necessarily both of, the outcome or propensity models is correctly specified (Daniel, 2018).

1.3 Seroprevalence estimation

In Chapter 2, methods for estimating seroprevalence of SARS-CoV-2 are considered. Con-

sider a seroprevalence study as arising from random sampling of a target population. Estimating
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seroprevalence can then be seen as the general problem of estimating the prevalence π ∈ [0, 1] of

any population characteristic with a measurement instrument (assay, diagnostic test, or survey)

that may potentially have error. Such measurement error can be applied to diagnostic testing

(Gastwirth, 1987), survey research (Dean and Pagano, 2015; Hemenway, 1997), etc. The error can

have significant effects on prevalence estimates.

Notationally, there exists some unobserved random variable Y at the individual (or unit)

level which is distributed Bernoulli with expectation π. Two frequently-used measures of a test’s

efficiency are its sensitivity σe = Pr(X = 1 | Y = 1), the probability that someone who truly has

the condition tests positive, and specificity σp = Pr(X = 0 | Y = 0), the probability that someone

who truly does not have the condition tests negative (Wilson and Jungner, 1968). The observed

random variable is the test result X ∼ Bernoulli(ρ) where ρ = πσe+(1−π)(1−σp) by the law of

total probability. Sensitivity and specificity suffice for the population health aims of Chapter 2, but

other quantities such as the positive predictive value Pr(Y = 1 | X = 1) and negative predictive

value Pr(Y = 0 | X = 0) often have clinical relevance.

In many cases, a main study and two validation studies are conducted. (1) Measure sensitivity

by sampling n1 individuals from strata of the population having the characteristic, where ‘having

the characteristic’ is measured by a gold standard; (2) Measure specificity from a sample of n2

individuals from strata of the population not having the characteristic; (3) Sample n3 individuals

from the general population of interest. The samples are drawn from populations large enough such

that the probability of an individual being selected in more than one sample is negligible and thus

ignored.

1.3.1 Frequentist methods

An empirical estimator that plugs in sample proportions for their population parameters is a

simple prevalence estimator. Denote the sample proportions of positives in the three sample as σ̂e,

1− σ̂p, and ρ̂. The plug-in estimator π̂RG = {ρ̂− (1− σ̂p)}/{σ̂e − (1− σ̂p)} results from algebraic

manipulation of the definition for ρ. The estimator π̂RG is usually attributed to Rogan and Gladen
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(1978) (see also Gart and Buck, 1966; Marchevsky, 1979) and is widely used in biomedical and

epidemiologic applications (Messam et al., 2008; Greiner and Gardner, 2000; Manuel et al., 2010;

Maxim et al., 2014; Hens et al., 2012; Shoukri, 2003). Rogan and Gladen (1978) considered an

estimator of the variance of π̂RG derived from the delta method.

The simplicity of the Rogan-Gladen estimator makes it accessible for related work; for instance,

Lang and Reiczigel (2014) propose improvements to variance estimation using the ‘add two pseudo-

positives and -negatives’ idea of Agresti and Coull (1998). That said, a potential drawback to the

Rogan-Gladen estimator is that it can, in rare cases, fall outside of the range [0, 1]. This occurs

in the unlucky circumstances that ρ̂ < 1 − σ̂p, σ̂e < 1 − σ̂p, or ρ̂ > σ̂e (Hilden, 1979). The

estimator would be negative if σe < 1− σp, but testing ‘positive’ under such a process would mean

that one is more likely to be truly negative than positive, so some authors have considered such a

process to not be a “test” (Rogan and Gladen, 1978). The variance estimator is also justified by

large-sample approximation, which may not be appropriate in finite samples. Thus some statisticians

have advocated for Bayesian approaches. Frequentist developments arising from the COVID-19

pandemic are discussed in Chapter 2.

1.3.2 Bayesian methods

Bayesian methods for estimating prevalence account for uncertainty somewhat more naturally

through the use of prior distributions, but require the analyst to select the prior and also typically

demand more computational resources or time. A typical Bayesian approach is a beta-binomial

model, where X | {ρ, σe, σp} ∼ Bin(n3, ρ) and beta prior distributions are placed on ρ, σe, and

σp (Messam et al., 2008; Gelman and Carpenter, 2020). A Bayesian framework may be partic-

ularly helpful for epidemiologic and infectious disease modeling. Seroprevalence estimates can

parameterize models for key quantities such as the infection fatality rate, and the Bayesian approach

allows uncertainty in both the seroprevalence estimate and the underlying sensitivity and specificity

estimates to flow through these calculations (Larremore et al., 2021).
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1.3.3 Selection bias in seroprevalence studies

Non-probability sampling can lead to biased estimates of population quantities. Perhaps the

most infamous example from survey research is that of the Literary Digest straw poll to forecast

the 1936 presidential election. The poll incorrectly predicted that 60% of the vote would go to Alf

Landon over incumbent Franklin Roosevelt because of a combination of non-response and sampling

biases (Bryson, 1976). These biases and other survey sampling biases can be recast as examples of

selection bias. Specifically, observed and unobserved factors may affect both selection (whether

individuals enter the survey) and responses (Winship and Mare, 1992).

Ideally, seroprevalence studies would be performed using random sampling. However, non-

probability samples such as convenience samples are often used. Recruitment may happen more

quickly and for less cost with convenience samples, but without appropriate adjustment they

lead to estimates that often suffer from selection bias (Shook-Sa et al., 2020). Researchers have

recommended that surveys follow best practices of using representative sampling frames (e.g.,

address-based sampling) (Shook-Sa et al., 2020); when this is infeasible or fails to occur, post-hoc

adjustment of results is possible if covariates predictive of both survey participation and the outcome

are collected (Groves, 2006; Accorsi et al., 2021).

Standardized seroprevalence estimates for SARS-CoV-2 have been made by combining the

misclassification bias adjustment of Rogan and Gladen (1978) with direct standardization (Havers

et al., 2020; Barzin et al., 2020; Cai et al., 2022). This convenience sample based estimator makes

the assumption (either explicitly or implicitly) that each person in a covariate stratum is equally

likely to be in the sample, where the covariates defining the covariate strata are chosen by the

subject matter experts and analysts (Elliott and Valliant, 2017). The large-sample properties of this

nonparametric estimator, and a parametric variation on this estimator, are examined in detail in

Chapter 2.
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1.4 Correlates of protection and surrogate endpoints

In Chapter 3, problems arising in studies of correlates of protection for SARS-CoV-2 are

considered. The U.S. Food and Drug Administration typically requires that a large-scale, randomized

Phase 3 trial with thousands of participants be conducted to demonstrate efficacy. Such trials are

time-consuming, expensive, and demand great effort. Moreover, the different viral strains of

the novel coronavirus may necessitate updates to the vaccine each year. Influenza vaccines are

updated annually based on the predominant strains in circulation (Cox, 2013). However, conducting

expensive Phase 3 trials annually for COVID vaccines may be untenable.

Enter the correlate of protection (CoP). A CoP is an “immune response that is responsible for and

statistically interrelated with protection” (Plotkin, 2010), where protection may be vaccine efficacy

or another effect measure. The influenza vaccine is a successful example, where a hemagglutinin

inhibition antibody titer of 1:40 is a CoP that is used for annual licensure of the updated vaccines

(Cox, 2013). Plotkin (2020) reviews CoPs (also known as Correlated Immune Markers) against

20 diseases. These CoPs range from IgG antibodies against the protective antigen to anthrax, to

pertussis toxin antibodies, to T cell immune responses against zoster (the disease also known as

shingles).

Early in the pandemic, scientists were substantially interested in determining a correlate of

protection (Krammer, 2021; Openshaw, 2022). An immunological marker, i.e., antibody level, can

be measured in laboratory settings, and its determination leads to fewer trial participants and less

cost than Phase 3 placebo-controlled efficacy trials. There is evidence from multiple Phase 3 trials

that neutralizing antibody titer are correlates of protection for SARS-CoV-2, i.e., surrogate endpoints

for vaccine efficacy against symptomatic COVID-19 illness. (Gilbert et al., 2022a; Cromer et al.,

2022; Goldblatt et al., 2022). The FDA and European Medicines Agency recommended that the

approval of new vaccine strains and booster doses for SARS-CoV-2 vaccines can be based in part

on these correlates (mentioned in Gilbert et al., 2022a).

The analyses of Earle et al. (2021) and Khoury et al. (2021) are exemplars for the methodology

of Chapter 3 and are examples of meta-analytic approaches to surrogate outcome evaluation (Joffe

7



and Greene, 2009). Prentice (1989) gave criteria for surrogacy when one trial is under consideration.

In addition to the single-trial approach, surrogates can be validated with a meta-analysis of trials

(discussed in Albert et al., 1998). Daniels and Hughes (1997), Buyse et al. (2000), and Gail et al.

(2000) developed methods for the meta-analytic setting, where surrogates are assessed depending on

the association between the treatment effect on the clinical endpoint and the treatment effect on the

surrogate endpoint. Under appropriate conditions such as randomization of the trials, the association

can be termed a “causal association” (Joffe and Greene, 2009). There are several frameworks

for surrogate evaluation, including and not limited to principal surrogacy (Frangakis and Rubin,

2002; Gilbert et al., 2008). The meta-analytic model is a component of greater efforts to assess

surrogates, detailed in the U.S. government COVID-19 response team Statistical Analysis Plan

(USG COVID-19 Response Team / Coronavirus Prevention Network (CoVPN) Biostatistics Team

et al., 2022).

1.5 Estimating equation estimators and data fusion

A data fusion study design “combines data from different sources to answer a question that

could not be answered (as well) by data from subsets of these sources” (Cole et al., 2023). Fusion

estimators estimate quantities of interest from fusion designs such as correcting for measurement

error with auxiliary data (Rogan and Gladen, 1978), as in Chapters 2 and 4; bridged treatment

effects that compare effects across different trials (Bareinboim and Pearl, 2016; Breskin et al., 2021;

Shook-Sa et al., 2023), as in Chapter 3; and generalizability studies that use auxiliary covariate

information from a target population (Cole and Stuart, 2010), as in all the papers of this dissertation.

Data fusion estimators are sometimes estimating equation estimators (EE estimators), also

called M-estimators. M-estimation is typically attributed to Huber (1964) (see also Godambe, 1960;

Huber, 1967). Huber (1964) considered independent and identically distributed (iid) data vectors

Y1, . . . , Yn with common distribution function F (y − θ). Huber studied estimation of a parameter θ

with a statistic T = Tn(Y1, . . . , Yn) that minimizes the quantity
∑

i ρ(Yi − T ), where ρ(Yi, θ) is a

non-constant function. Huber called the maximum-likelihood-type estimator T an M-estimator, as
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it minimized an estimating equation analogously to how an MLE maximizes a likelihood. Huber

(1967) proved the consistency and asymptotic normality of M-estimators with iid data. An EE

estimator θ̂ is the solution to the vector equation
∑n

i=1 ψ(Yi, θ) = 0 (see primer by Stefanski and

Boos, 2002). That is, the EE estimator θ̂ satisfies
∑n

i=1 ψ(Yi, θ̂) = 0 where Y1, . . . , Yn are assumed

to be independent but not necessarily identically distributed, and ψ is a known function that does

not depend on i or n. The estimator θ̂ is usually called an M-estimator, as in Stefanski and Boos

(2002), although Huber originally defined M-estimators as maximizing an EE (discussed in van der

Vaart 1998, Chapter 5.1).

In the fusion setting, often data are independent across different sources but are not identically

distributed, i.e., are not iid, because the distributions of important factors differ across data sources.

Inagaki (1973) extended Huber’s theorem of consistency and asymptotic normality of M-estimators

for independent but not identically distributed data under regularity conditions for the estimating

equations. For the non-identically distributed case, Yuan and Jennrich (1998) developed regularity

conditions that may be more easily checked than those of Inagaki (1973). Under the conditions

of Yuan and Jennrich (1998), EE estimators in the independent but not identically distributed

setting are consistent and asymptotically normal, i.e.,
√
n(θ̂ − θ0)

d→ Normal(0, V (θ0)) with

V (θ0) = A(θ0)
−1B(θ0) [A(θ0)

−1]
T as n→ ∞, where θ0 is the true value of θ, A(θ) = E[∂ψ/∂θ],

and B(θ) = E[ψψT ]. The empirical sandwich variance estimator substitutes the ‘bread’ A(θ) and

‘filling’ B(θ) with their empirical counterparts.

The asymptotic sandwich variance A(θ)−1B(θ) [A(θ)−1]
T can sometimes be derived in closed

form. However, the necessary derivations “may involve tedious and error-prone derivative and

matrix calculations” (Saul and Hudgens, 2020). Software was created in R (Saul and Hudgens, 2020)

and in Python (Zivich et al., 2022b) whereby analysts enter their vector of estimating equations ψ.

The software then computes the point estimator θ̂ and the empirical sandwich variance estimator,

i.e., computes the A(θ) and B(θ) matrices.

Though the independent and not identically distributed setting of Inagaki (1973), among others,

could be considered a generalization of the iid setting of Huber (1967), the iid setting is assumed in
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several standard references (e.g., Bang and Robins, 2005; Boos and Stefanski, 2013; Carroll et al.,

2006; Lunceford and Davidian, 2004; Huber and Ronchetti, 2009). When references for iid setups

such as these are cited for the asymptotic normality of fusion EE estimators in non-iid setups, the

asymptotic distributions of the estimators could be called into question. In Chapter 4, clarity is

provided regarding the consistency and asymptotic normality of data fusion estimators for non-iid

data. In particular, the conditions of Yuan and Jennrich (1998) are described. Examples of fusion

estimators claimed CAN in the literature are proven CAN in Chapter 4 via application of the Yuan

and Jennrich (1998) regularity conditions.
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CHAPTER 2: ESTIMATING SARS-CoV-2 SEROPREVALENCE

2.1 Introduction

Estimating the proportion of people who have antibodies to severe acute respiratory syndrome

coronavirus (SARS-CoV-2) is useful for tracking the pandemic’s severity and informing public

health decisions (Arora et al., 2021). Individuals may have detectable antibodies for different

reasons, including prior infection or vaccination. Antibody levels within a person are dynamic,

typically increasing after an infection or vaccination, and then eventually decreasing (waning) over

time. Thus individuals may not have detectable antibodies if never (or very recently) infected

or vaccinated, or if their antibody levels have waned below the limit of detection of the assay

being employed. To the extent that antibody levels are associated with protection from infection

with SARS-CoV-2 or COVID-19 disease (Earle et al., 2021; Khoury et al., 2021), seroprevalence

estimates may be helpful in modeling the fraction of a population which may be immune or less

susceptible to COVID-19. Likewise, cross-sectional seroprevalence estimates, combined with

certain modeling assumptions and other data, may permit inference about other parameters such as

the cumulative incidence of previous SARS-CoV-2 infection, infection fatality rate, or attack rate

(Takahashi et al., 2023; Shioda et al., 2021; Buss et al., 2021; Perez-Saez et al., 2021; Brazeau et al.,

2020).

Unfortunately, seroprevalence studies often suffer from at least two sources of bias: measure-

ment error due to false positives and negatives, and selection bias due to non-probability sampling

designs. Typically, blood tests for antibodies result in a continuous measure of a particular antibody

response, such as that of immunoglobulin G, M, or A (IgG, IgM, or IgA). Dichotomizing antibody

responses using a cut-off value almost always produces misclassification bias in the form of false

positives and false negatives (Bouman et al., 2021). The following example from Sempos and

Tian (2021) demonstrates how this measurement error can lead to biased seroprevalence estimates.
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Suppose that true seroprevalence is 1% and antibody tests are performed using an assay which

perfectly identifies true positives as positive, so with 100% sensitivity, and nearly perfectly identifies

true negatives as negative, with 99% specificity. Despite this assay’s high sensitivity and specificity,

it is straightforward to show that naively using the sample proportion of positive test results as a

seroprevalence estimator would, in expectation, lead to a seroprevalence estimate of nearly 2%

rather than 1%. To account for measurement error, sensitivity and specificity can be estimated and

incorporated into the seroprevalence estimator, e.g., using the method popularized by Rogan and

Gladen (1978) (see also Levy and Kass (1970); Marchevsky (1979)).

Many seroprevalence studies are conducted by non-probability sampling methods, which may

lead to selection bias when characteristics that drive participation in the study are also risk factors for

SARS-CoV-2 infection. Probability-based sampling studies are ideal because they are representative

by design and often lead to less biased estimates than non-probability samples with post-hoc

statistical adjustments (Shook-Sa et al., 2020; Accorsi et al., 2021). However, probability-based

sampling may not always be feasible due to time and cost constraints. For this reason, seroprevalence

studies often utilize convenience sampling by, for example, drawing blood samples from routine

clinic visitors (e.g., Barzin et al., 2020; Stadlbauer et al., 2021) or using residual sera from blood

donors (e.g., Uyoga et al., 2021) or commercial laboratories (e.g., Bajema et al., 2021). Convenience

sample-based estimators often assume that each person in a covariate-defined stratum has an equal

probability of being in the sample (Elliott and Valliant, 2017). Under this assumption, population

seroprevalence of SARS-CoV-2 can be estimated with direct standardization (Havers et al., 2020;

Barzin et al., 2020; Cai et al., 2022), though weighting methods such as calibration can be used

(e.g., Bajema et al., 2021).

In this paper, methods are considered which combine standardization and the Rogan–Gladen

adjustment to account for both measurement error and selection bias. The article is organized as

follows. Section 2.2 reviews prevalence estimation under measurement error. Non-parametric and

parametric standardized prevalence estimators and their large-sample properties are described in

Section 2.3. Section 2.4 presents simulation studies to evaluate the empirical bias and 95% confi-
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dence interval (CI) coverage of the standardized estimators across a range of assay characteristics

and bias scenarios. The methods are then applied in Section 2.5 to three studies that estimate

seroprevalence of SARS-CoV-2 in 2020 among all residents of New York City (NYC), all residents

of Belgium, and asymptomatic residents of North Carolina. Section 2.6 concludes with a discussion.

Proofs are in Appendix A.

2.2 Seroprevalence estimation under measurement error

2.2.1 Problem set-up

Let the true serology status for an individual in the target population be denoted by Y , with

Y = 1 if the individual has antibodies against SARS-CoV-2 and Y = 0 otherwise. Our goal is

to draw inference about the population seroprevalence π = P (Y = 1). Because of error in the

serology assay, Y is not observed directly. Let the result of the serology assay be denoted by X ,

with X = 1 if the individual tests positive (according to the antibody assay used) and X = 0

otherwise. Three key quantities are sensitivity, the probability that a true positive tests positive,

denoted by σe = P (X = 1 | Y = 1); specificity, the probability that a true negative tests negative,

denoted by σp = P (X = 0 | Y = 0); and the population expectation of the serology assay outcome,

denoted by ρ = E(X) = P (X = 1). Unless the assay has perfect sensitivity and specificity with

σe = σp = 1, ρ typically will not equal π and X will be a misclassified version of Y .

The sensitivity and specificity of a diagnostic test are commonly estimated by performing the

assay on ‘validation’ samples of known true positives and true negatives, respectively. Specifically,

measurements are taken on n1 independent and identically distributed (iid) units from strata of

the population where Y = 1 and on n2 iid units from strata where Y = 0. Thus n1 copies of X

are observed to estimate sensitivity and n2 copies of X are observed to estimate specificity. In

the COVID-19 setting, samples from patients who had a case confirmed with reverse transcription

polymerase chain reaction (PCR) testing are often assumed to be true positives. Remnant blood

samples that were drawn in 2019 or earlier are often assumed to be true negatives. To estimate
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seroprevalence in a target population, a ‘main’ study with n3 iid copies of X is then conducted,

among which true infection status is unknown.

Assume, as is realistic in many SARS-CoV-2 studies, that there is no overlap between the units

in each of the three studies. Let δi be an indicator of which study the ith individual’s sample Xi is

from, with δi = 1 for the sensitivity study, δi = 2 for the specificity study, and δi = 3 for the main

study. Note that
∑
I(δi = j) = nj for j = 1, 2, 3, where n = n1+n2+n3 and here and throughout

summations are taken from i = 1 to n unless otherwise specified. Assume nj/n→ cj ∈ (0, 1) as

n→ ∞.

2.2.2 Estimators and statistical properties

Let θ = (σe, σp, ρ, π)
T . Consider the estimator θ̂ = (σ̂e, σ̂p, ρ̂, π̂RG)

T , where σ̂e = n−1
1

∑
I(δi =

1)Xi, σ̂p = n−1
2

∑
I(δi = 2)(1−Xi), ρ̂ = n−1

3

∑
I(δi = 3)Xi, and π̂RG = (ρ̂+σ̂p−1)/(σ̂e+σ̂p−1).

The prevalence estimator π̂RG is motivated by rearranging the identity that ρ = πσe+(1−π)(1−σp)

and is sometimes referred to as the Rogan–Gladen (1978) estimator. Note the sample proportions

σ̂e, σ̂p, and ρ̂ are maximum likelihood estimators (MLEs) for σe, σp, and ρ, respectively, so π̂RG is a

function of the MLE of (σe, σp, ρ) (see Appendix A.1 for details).

The estimator θ̂ can be expressed as the solution (for θ) to the estimating equation vector

∑
ψ(Xi; δi, θ) =



∑
ψe(Xi; δi, θ)∑
ψp(Xi; δi, θ)∑
ψρ(Xi; δi, θ)

ψπ(Xi; δi, θ)


=



∑
I(δi = 1)(Xi − σe)∑
I(δi = 2){(1−Xi)− σp}∑
I(δi = 3)(Xi − ρ)

(ρ+ σp − 1)− π(σe + σp − 1)


= 0

where here and below 0 denotes a column vector of zeros. Since the samples were selected from three

different populations, the data X1, . . . , Xn are not identically distributed and care must be taken to

derive the large-sample properties of θ̂. In Appendix A.2, the estimator θ̂ is shown to be consistent

and asymptotically normal. Specifically, as n→ ∞,
√
n(θ̂−θ) →d N

(
0,A(θ)−1B(θ)A(θ)−T

)
and

√
n(π̂−π) →d N (0, Vπ,RG) assuming σe > 1−σp (as discussed below), where A(θ)−1B(θ)A(θ)−T
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is a covariance matrix with bottom right element

Vπ,RG =

{
π2σe(1− σe)

c1
+

(1− π)2σp(1− σp)

c2
+
ρ(1− ρ)

c3

}
(σe + σp − 1)−2. (2.1)

The proof of consistency and asymptotic normality is similar to proofs from standard estimating

equation theory (e.g., Boos and Stefanski, 2013, Equation 7.10), but because the data are not

identically distributed the Lindeberg-Feller Central Limit Theorem (CLT) is used in place of the

classical Lindeberg-Lévy CLT. Note that the asymptotic variance (2.1) consists of three components

corresponding to the sensitivity, specificity, and main studies. In some circumstances, investigators

may be able to decrease the variance of π̂RG by increasing the sample sizes of the sensitivity or

specificity studies compared to the main study (Larremore et al., 2020).

Let V̂π,RG denote the plug-in estimator defined by replacing σe, σp, ρ, π, and cj in (2.1) with

σ̂e, σ̂p, ρ̂, π̂RG, and nj/n for j = 1, 2, 3, and note that V̂π,RG/n is the variance estimator proposed

by Rogan and Gladen (1978). By the continuous mapping theorem, V̂π,RG is consistent for the

asymptotic variance assuming σe > 1− σp and can be used to construct Wald-type CIs that asymp-

totically attain nominal coverage probabilities. In finite samples, Wald-type CIs can sometimes

have erratic coverage properties when estimating a single binomial parameter (Brown et al., 2001;

Dean and Pagano, 2015). In Section 2.4, simulations are conducted to assess the performance of the

Wald-type CIs in seroprevalence estimation scenarios. Alternative approaches for constructing CIs

are discussed in Section 2.6.

2.2.3 Truncation

The Rogan–Gladen estimator π̂RG sometimes outside of [0, 1] when (i) σ̂e < 1 − σ̂p, (ii)

ρ̂ < 1− σ̂p, or (iii) ρ̂ > σ̂e. Indeed, (ii) occurred in the ScreenNC study discussed in Section 2.5.3.

Estimates are typically truncated to be inside [0, 1] because the true population prevalence must exist

in [0, 1] (Hilden, 1979). In this article, all point estimates and bounds of interval estimates are so

truncated. Note, though, that as the three sample sizes grow large the estimator π̂RG yields estimates

inside [0, 1] almost surely unless σe < 1− σp. In practice, settings where σe < 1− σp may be very
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unlikely; in such scenarios, the probability of a positive test result is higher for seronegative persons

than for seropositive persons, so such a measurement instrument performs worse in expectation

than random guessing. Throughout this manuscript, it is assumed that σe > 1− σp.

2.3 Standardized seroprevalence estimation

2.3.1 Problem setup

In some settings it may not be reasonable to assume the n3 copies of X from the main study

constitute a random sample from the target population. Suppose instead that for each copy of X

a vector of discrete covariates Z is observed, with Z taking on k possible values z1, . . . , zk. The

covariates Z are of interest because seroprevalence may differ between the strata; for instance,

Z might include demographic variables such as age group, race, or gender. Denote the mean of

X in the jth stratum as ρj = P (X = 1 | Z = zj) and the sample size for the jth stratum as

nzj =
∑
I(δi = 3, Zi = zj), so

∑k
j=1 nzj = n3.

The distribution of strata in the target population, if known, can be used to standardize estimates

so they are reflective of the target population (for a review of direct standardization, see van Belle

et al. (2004, Chapter 15)). Denote the proportion of the target population comprised by the jth

stratum as γj = P (Z = zj) and suppose that these stratum proportions are known with each

γj > 0 and
∑k

j=1 γj = 1. The stratum proportions are commonly treated as known based on census

data or large probability-based surveys (Lohr, 2010, Ch. 4.4; Korn and Graubard, 1999, Ch. 2.6).

Alternatively, γ1, . . . , γk could be estimated, e.g., from a random sample of the target population,

and the estimator of the seroprevalence estimator’s variance could be appropriately adjusted to

reflect the uncertainty in these estimated proportions.

Assume that all persons in a covariate stratum defined by Z have the same probability of inclu-

sion in the sample. Then the covariates Z in the main study sample have a multinomial distribution

with k categories, sample size n3, and an unknown sampling probability vector (s1, . . . , sk)T where∑k
j=1 sj = 1. For j = 1, . . . , k, the probability sj indicates the chance of a sampled individual

being in stratum j. Note that if the main study were a simple random sample from the target
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population, then the sampling probabilities would be equal to the stratum proportions (with sj = γj

for j = 1, . . . , k).

2.3.2 Non-parametric standardization

First, consider a seroprevalence estimator which combines non-parametric standardization and

the Rogan–Gladen adjustment to account for both selection bias and measurement error. Note

that ρ is a weighted average of the stratum-conditional means ρj , where each weight is a known

stratum proportion γj , i.e., ρ =
∑k

j=1 ρjγj . A non-parametric standardization estimator for ρ using

the sample stratum-conditional prevalences ρ̂j = n−1
zj

∑
I(Zi = zj, δi = 3)Xi for j = 1, . . . , k

is ρ̂SRG =
∑k

j=1 ρ̂jγj . A standardized prevalence estimator accounting for measurement error is

π̂SRG = (ρ̂SRG + σ̂p − 1)/(σ̂e + σ̂p − 1), which has been used in SARS-CoV-2 seroprevalence

studies (Havers et al., 2020; Barzin et al., 2020; Cai et al., 2022).

Let θs = (σe, σp, ρ1, . . . , ρk, ρ, π)
T . The estimator θ̂s = (σ̂e, σ̂p, ρ̂1, . . . , ρ̂k, ρ̂SRG, π̂SRG)

T

solves the vector
∑
ψ(Xi, Zi; δi, θs) = (

∑
ψe,

∑
ψp,

∑
ψρ, ψρ, ψπ)

T = 0 of estimating equations,

where
∑
ψe,

∑
ψp, and ψπ are defined in Section 2.2;

∑
ψρ is a k-vector with jth element∑

ψρj =
∑
I(Zi = zj, δi = 3)(Xi − ρj); and ψρ =

∑k
j=1 ρjγj − ρ. It follows that θ̂s is consistent

and asymptotically normal and that
√
n(π̂SRG − π) →d N (0, Vπ,SRG) where

Vπ,SRG =

{
π2σe(1− σe)

c1
+

(1− π)2σp(1− σp)

c2
+

k∑
j=1

γ2j ρj(1− ρj)

c3sj

}
(σe + σp − 1)−2. (2.2)

The asymptotic variance Vπ,SRG can be consistently estimated by the plug-in estimator V̂π,SRG

defined by replacing σe, σp, ρj, sj, π, and cl in (2.2) with σ̂e, σ̂p, ρ̂j, nzj/n3, π̂SRG, and nl/n for

j = 1, . . . , k and l = 1, 2, 3. Consistency of V̂π,SRG holds by continuous mapping, and a proof of

asymptotic normality and justification of (2.2) are in Appendix A.3.

Standardization requires estimating the stratum-conditional mean of X , ρj = P (X = 1 | Z =

zj). However, when nzj = 0 for some strata j, the corresponding estimator ρ̂j is undefined, and

ρ̂SRG is then undefined as well. Values of nzj may equal zero for two reasons. First, the study
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design may exclude these strata (sj = 0), a situation referred to as deterministic or structural

nonpositivity (Westreich and Cole, 2010). Second, even if sj > 0, random nonpositivity can occur

if no individuals with Z = zj are sampled, which may occur if sj is small or if n3 is relatively small.

When nonpositivity arises, an analytical approach often employed entails “restriction” (Westreich

and Cole, 2010), where the target population is redefined to consist only of strata j for which

nzj > 0. However, this redefined target population may be less relevant from a public health or

policy perspective.

2.3.3 Parametric standardization

Rather than redefining the target population, an alternative strategy for combatting positivity

violations is to fit a parametric model to estimate all stratum-conditional means ρj . Such parametric

models allow inference to the original target population and, when they are correctly specified,

typically outperform non-parametric approaches (Petersen et al., 2012; Rudolph et al., 2018; Zivich

et al., 2022a). Assume the binary regression model g(ρj) = βh(zj) holds, where g is an appropriate

link function for a binary outcome like the logit or probit function; β is a row vector of p regression

coefficients with intercept β1; and h(zj) is a user-specified p-vector function of the jth stratum’s

covariate values that may include main effects and interaction terms, with lth element denoted hl(zj)

and h1(zj) set equal to one to correspond to an intercept. Let supp(z) be the covariate support in

the sample, i.e., supp(z) = {zj : nzj > 0} with dimension dim{supp(z)} =
∑k

j=1 I(nzj > 0),

and assume p ≤ dim{supp(z)} ≤ k. (Note that dim{supp(z)} = k only when there is positivity,

and in that case π̂SRG can be used with no restriction needed.)

Under the assumed binary regression model, each ρj is a function of the parameters β and

the covariates zj that define the jth stratum, denoted ρj(β, zj) = g−1{βh(zj)}. A model-based

standardized Rogan–Gladen estimator of π is π̂SRGM = (ρ̂SRGM + σ̂p − 1)/(σ̂e + σ̂p − 1), where

ρ̂SRGM =
∑k

j=1 ρ̂j(β̂, zj)γj and β̂ is the MLE of β. Estimating equation theory can again be used

to derive large-sample properties by replacing the k equations for ρ1, . . . , ρk from Section 2.3.2

with p equations for β1, . . . , βp corresponding to the score equations from the binary regression.
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Let θm = (σe, σp, β1, . . . , βp, ρ, π)
T and θ̂m = (σ̂e, σ̂p, β̂1, . . . , β̂p, ρ̂SRGM , π̂SRGM)T . The esti-

mator θ̂m solves the vector
∑
ψ(Xi, Zi; δi, θm) = (

∑
ψe,

∑
ψp,

∑
ψβ, ψρ, ψπ)

T = 0 of estimating

equations, where
∑
ψe,

∑
ψp, and ψπ are as in Section 2.2;

∑
ψβ is a p-vector with jth element∑

ψβj
=

∑
I(δi = 3) [Xi − g−1 {βh(Zi)}]hj(Zi); and ψρ =

∑k
j=1 g

−1{βh(Zj)}γj − ρ. It fol-

lows that θ̂m is consistent and asymptotically normal and
√
n(π̂SRGM − π) →d N (0, Vπ,SRGM).

The asymptotic variance Vπ,SRGM can be consistently estimated by V̂π,SRGM , the lower right ele-

ment of the empirical sandwich variance estimator of the asymptotic variance of θ̂m. A proof of

asymptotic normality and the empirical sandwich variance estimator are given in Appendix D. An

R package for computing π̂SRG, π̂SRGM , and their corresponding variance estimators is available at

https://github.com/samrosin/rgStandardized.

2.4 Simulation study

Simulation studies were conducted to compare π̂RG, π̂SRG, and π̂SRGM . Four data generating

processes (DGPs) were considered, within which different scenarios were defined through full

factorial designs that varied simulation parameters π, σe, σp, n1, n2, and n3. These DGPs featured

no selection bias (DGP 1), selection bias with two strata (DGP 2), and more realistic selection bias

with 40 strata and 80 strata (DGPs 3 and 4).

For each DGP and set of simulation parameters, sensitivity and specificity validation samples

of size n1 and n2 were generated with X distributed Bernoulli with a mean of σe or 1 − σp,

respectively. In DGPs 1 and 2, a main study of size n3 was then generated where Y was Bernoulli

with mean π and X | Y was Bernoulli with mean σeY + (1 − σp)(1 − Y ); in DGPs 3 and 4, X

was generated from the distribution of X | Z, as described below. Simulation parameter values

were selected based on the seroprevalence studies described in Section 2.5. Sensitivity was varied

in σe ∈ {.8, .99}, specificity in σp ∈ {.8, .95, .99}, and prevalence in π ∈ {.01, .02, . . . , .20}.

Sample sizes were n1 = 40, n2 = 250, and n3 = 2500. The full factorial design led to 120

scenarios per DGP, and within each scenario 1,000 simulations were conducted unless otherwise

specified. Performance was measured by: (a) mean bias, computed as the mean of π̂ − π for
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each estimator π̂; (b) empirical coverage, i.e., whether the 95% Wald-type CIs based on each

variance estimator V̂π contained the true prevalence; (c) mean squared error (MSE), computed as

the mean of (π̂ − π)2 for each estimator π̂. R code implementing the simulations is available at

https://github.com/samrosin/rgStandardized_ms.

2.4.1 No selection bias

For DGP 1, 10,000 simulations were conducted to assess the performance of π̂RG when no

selection bias was present. The estimator π̂RG was generally unbiased, as seen in Figure A.1.

Performance improved as σe and σp tended toward 1, with σp being a stronger determinant of

bias. An exception to these results occurred when π ≤ 0.05 and σp ≤ 0.95, in which case π̂RG

overestimated the true prevalence. The Rogan–Gladen estimator without truncation was also

evaluated in this DGP to determine if truncation caused the bias. While the non-truncated estimator

was slightly biased, the magnitude of the bias was less than 0.002 in all scenarios, suggesting the

bias of π̂RG in low prevalence, low specificity settings is due largely to truncation.

Wald CIs based on V̂π,RG attained nominal coverage in almost every scenario, as seen in

Figure A.2. However, when some parameters were near their boundaries, coverage did not reach

the nominal level. For instance, when π was 0.01 and σp was 0.99, 95% CIs covered in 90%

and 91% of simulations for two values of σe. These variable CI coverage results concord with

previous simulation studies evaluating V̂π,RG (Lang and Reiczigel, 2014). The MSE of π̂RG, shown

in Figure A.3, tended to increase with π and decrease as σe and σp approached 1.

2.4.2 Low-dimensional selection bias

In DGP 2, the target population was comprised of two strata defined by a covariate Z ∈ {z1, z2}

with proportions γ1 = γ2 = .5. Within the main study, Z was generated from a binomial distribution

of sample size n3 and sampling probabilities (.2, .8). Individuals’ serostatuses were generated from

the conditional distribution Y | Z, which was such that P (Y = 1 | Z = z1) = 1.5π and
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P (Y = 1 | Z = z2) = 0.5π for each value of π. In each simulation π̂RG and π̂SRG and their

corresponding 95% CIs were computed.

The non-parametric standardized estimator π̂SRG was empirically unbiased for true prevalences

π ≥ 0.05, as seen in Figure A.4, and 95% CIs based on V̂π,SRG attained nominal coverage in almost

every scenario, as seen in Figure A.5. As with π̂RG in DGP 1, CI coverage for π̂SRG was slightly

less than the nominal level for very low π and for σp near the boundary, e.g., coverage was 91%

for π = .01 and σe = σp = .99. MSE trends for π̂SRG were similar to those of π̂RG in DGP 1, as

seen in Figure A.6. Figures A.4 through A.6 show that π̂RG performed poorly under selection bias,

with large negative bias, CI coverage far less than the nominal level in most cases, and much greater

MSE than π̂SRG.

2.4.3 More realistic selection bias

2.4.3.1 DGP 3

DGPs 3 and 4 compared π̂SRG and π̂SRGM in scenarios with larger numbers of strata. In

DGP 3, three covariates were defined as Z1 ∈ {z10, z11}, Z2 ∈ {z20, z21, z22, z23}, and Z3 ∈

{z30, z31, z32, z33, z34}, leading to k = 40 strata with proportions (γ1, . . . , γ40). Within the main

study, Z was generated as multinomial with size n3 and known sampling probabilities. Figure 2.1(a)

shows the structure of selection bias in DGP 3 by comparing the stratum proportions and sampling

probabilities. Some low-prevalence strata that frequently occur in the population were oversampled,

while most remaining strata were undersampled. Individuals’ test results were generated from the

conditional distribution X | Z, where

logit{P (X = 1 | Z)} = β0 + β1I(Z1 = z11) + β2I(Z2 = z20) + β3I(Z2 = z21)

+ β4I(Z3 = z30) + β5I(Z3 = z31).

The parameters β1 = −1, β2 = −.6, β3 = .8, β4 = .6, and β5 = .4 were set to reflect differential

prevalences by stratum, while a “balancing intercept” β0 (Rudolph et al., 2021) was set to different

values so that π equalled (approximately) {.01, .02, . . . , .20}. The non-parametric estimator π̂SRG
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and corresponding CI were computed using a restricted target population when random nonpositivity

arose; the values of π used to compute bias and coverage were based on the total (unrestricted)

population, which is the parameter of interest. The parametric estimator π̂SRGM was computed

with a correctly-specified logistic regression model, with parameters estimated using maximum

likelihood.
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Figure 2.1: Panels A and B represent selection bias in the simulation studies of DGPs 3 and 4,
described in Sections 2.4.3.1 and 2.4.3.2, respectively. Circle size is proportional to prevalence.
Points are jittered slightly for legibility, and the diagonal lines denote equality between γj (stratum
proportion) and sj (sampling probability).

Both π̂SRG and π̂SRGM performed well in this scenario. Figure 2.2 shows that the estimators

were generally empirically unbiased, though modest bias occurred when σp = 0.8 and π was low.

As in DGP 2, π̂RG exhibited substantial bias and the CIs based on π̂RG did not attain nominal
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coverage. Figure A.7 shows 95% CIs based on either V̂π,SRG or V̂π,SRGM attained nominal coverage,

with slight under-coverage for π < 0.05, similar to the results from DGPs 1 and 2. For π = .01

and σp = .99, coverage was 92% and 90% based on V̂π,SRG and 91% and 90% based on V̂π,SRGM

for σe ∈ {.8, .99}, respectively. The two standardized estimators had roughly equivalent MSE

(Figure A.8). On average across all 120 scenarios, positivity was present in 89% (range of 86%-92%)

of simulated datasets, i.e., these datasets included all strata in the target population.
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Figure 2.2: Empirical bias of the Rogan–Gladen (π̂RG), non-parametric standardized (π̂SRG), and
logistic regression standardized (π̂SRGM ) estimators from simulation study for DGP 3, described
in Section 2.4.3.1. The six facets correspond to a given combination of sensitivity (‘Sens’) and
specificity (‘Spec’).
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2.4.3.2 DGP 4

Data were generated as in DGP 3, but the inclusion of a fourth covariate Z4 ∈ {z40, z41} led

to 80 strata. The conditional distribution X | Z was such that logit{P (X = 1 | Z)} = νh(Z),

where h(Z) here contains the same terms as in DGP 3 plus a main effect for I(Z4 = z41) with

corresponding coefficient ν6. Regression parameters were a balancing intercept ν0, ν1 = −1,

ν2 = 3.25, ν3 = .8, ν4 = .6, ν5 = .4, and ν6 = .1. The larger value for ν2, as compared to β2, led

to a stronger relationship between X and Z than was present in DGP 3. Figure 2.1(b) displays

selection bias in DGP 4. Some of the highest-prevalence and most commonly-occurring strata were

undersampled to a greater degree than occurred in DGP 3, so in this sense there was more selection

bias in DGP 4. The parametric estimator π̂SRGM was again computed with a correctly-specified

logistic regression model using maximum likelihood for parameter estimation.

Results for the DGP 4 simulations are shown in Figure 2.3 and Figures A.9 through A.11.

Figure 2.3 shows that only π̂SRGM was generally unbiased under DGP 4, although there was positive

bias when σp = .8 and π < .1. The non-parametric π̂SRG typically had a moderately negative

bias. Nonpositivity almost always occurred (in either all or all but one of the simulations, for each

of the 120 scenarios). The worse bias of π̂SRG may be explained by restriction leading to bias

under nonpositivity. CIs based on V̂π,SRGM typically attained nominal or close-to-nominal coverage,

unlike those based on V̂π,SRG or V̂π,RG, as seen in Figure A.9. For instance, when σp = 0.8,

the lowest coverage for CIs based on V̂π,SRGM was 92% across all 40 combinations of σe and

π. However, the V̂π,SRGM based CIs exhibited undercoverage when σp = .99 and prevalence π

was low. For example, coverage of these CIs was only 59% when π = 0.01 and σe = σp = .99;

Figure A.10 shows this undercoverage is due to 39% of the π̂SRGM estimates being truncated to

0 with corresponding CIs which were overly narrow. Note that V̂π,SRGM was negative for two

simulations in a single scenario, and these “Heywood cases” (Kolenikov and Bollen, 2012) were

ignored in the coverage calculation for that scenario. The MSE of π̂SRGM tended to be less than

that of π̂SRG (Figure A.11).
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Figure 2.3: Bias results from simulation study on DGP 4, described in Section 2.4.3.2. Figure layout
is as in Figure 2.2.

In summary, both the non-parametric and parametric standardized estimators π̂SRG and π̂SRGM

had low empirical bias and close to nominal 95% CI coverage when there was positivity or near

positivity. As the number of covariates, amount of selection bias, and potential for nonpositivity

increased, the (correctly-specified) parametric π̂SRGM generally maintained its performance while

π̂SRG had greater empirical bias and the intervals based on V̂π,SRG did not attain nominal coverage

levels.

2.4.4 Model misspecification

The performance of π̂SRGM was assessed in scenarios similar to DGPs 3 and 4, but under

model misspecification. Here, the true conditional distributions of Y | Z were logit{P (Y = 1 |
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Z)} = βh(Z) and logit{P (Y = 1 | Z)} = νh(Z), where βh(Z) and νh(Z) are the specifications

used in the models for logit{P (X = 1 | Z)} in DGPs 3 and 4, respectively. The test results X

were generated from X | Y as in DGPs 1 and 2. The results shown in Figures A.12 through A.17

demonstrate that, in terms of bias, 95% CI coverage, and MSE, inferences based on π̂SRGM were

generally robust to this misspecification. For DGP 3 the true X | Z distribution was Pr(X =

1 | Z) = [logit−1{βh(Z)} + σp − 1]/[σe + σp − 1], while the model-based estimator incorrectly

assumed Pr(X = 1 | Z) = logit−1{βh(Z)}, and likewise for DGP 4 with νh(Z) replacing βh(Z).

Thus the degree of misspecification was determined by σe and σp, with values farther from 1 leading

to greater misspecification. For all simulation scenarios σe ≥ 0.8 and σp ≥ 0.8 such that the overall

degree of misspecification was generally mild, potentially explaining the robustness of π̂SRGM to

model misspecification in these simulations.

Robustness of the model-based estimator π̂SRGM was also assessed when the model was mis-

specified by omitting a variable. Under DGP 3, π̂SRGM was estimated based on three misspecified

logistic regression models, each omitting one of the three variables Z1, Z2, or Z3 (i.e., omitting

all indicator variables that included the variable). Results displayed in Figure A.18 show the

empirical bias of π̂SRGM depended on which variable was omitted, with substantial bias when Z2

was not included in the model. These results demonstrate that π̂SRGM may not be robust to model

misspecification due to variable omission.

2.5 Applications

2.5.1 NYC seroprevalence study

The methods were applied to a seroprevalence study in New York City (NYC) that sampled

patients at Mount Sinai Hospital from February 9 to July 5, 2020 (Stadlbauer et al., 2021). Patients

were sampled from two groups: (1) a ‘routine care’ group visiting the hospital for reasons unrelated

to COVID-19, including obstetric, gynaecologic, oncologic, surgical, outpatient, cardiologic, and

other regular visits; (2) an ‘urgent care’ group of patients seen in the emergency department or

admitted to the hospital for urgent care. Analyses were stratified by these two care groups. The

26



urgent care group may have included individuals seeking care for moderate-to-severe COVID-

19 (Stadlbauer et al., 2021); this would potentially violate the assumption of equal sampling

probabilities within strata, but standardized analysis of the urgent care group is included here to

demonstrate the methods. The routine care group was thought to be more similar to the general

population (Stadlbauer et al., 2021). Serostatus was assessed using a two-step enzyme-linked

immunosorbent assay (ELISA) with estimated sensitivity of σ̂e = 0.95 from n1 = 40 PCR-

confirmed positive samples and estimated specificity of σ̂p = 1 from n2 = 74 negative controls, 56

of which were pre-pandemic and 18 of which did not have confirmed SARS-CoV-2 infection.

In this analysis, the samples were grouped into five collection rounds of approximately equal

length of time. The demographics considered were sex, age group, and race. Sex was catego-

rized as male/female, with one individual of indeterminate sex excluded. Five age groups were

[0, 20), [20, 40), [40, 60), [60, 80), and [80, 103]. Race was coded as Asian, Black or African Amer-

ican, Other, and White, with 446 individuals of unknown race excluded. After exclusions, the

sample size ranged from n3 = 937 to 1576 in the routine care group and n3 = 622 to 955 in

the urgent care group across the collection rounds. The target population for standardization was

NYC (8,336,044 persons), with stratum proportions and population size obtained from the 2019

American Community Survey (US Census Bureau, 2019). Table 2.1 compares the distributions of

sex, age group, and race in the routine and urgent care groups to the NYC population. Women were

overrepresented in the routine care group relative to the general population of NYC. Persons aged

0-19 were underrepresented in both groups, and persons aged 60 and older were overrepresented.

Persons with race classified as Other were overrepresented in both groups relative to the NYC

population. There was slight nonpositivity in four of the five collection rounds for the routine group

and five of the five rounds for the urgent care group, and π̂SRG made inference to restricted target

populations. The model-based estimators π̂SRGM included main effects for sex, age group, and race

and an interaction term between sex and age group.

Seroprevalence estimates are presented in Figure 2.4. Adjusting for assay sensitivity and

specificity resulted in slightly higher estimates and slightly wider CIs than the naive estimator
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Table 2.1: Demographic comparisons of the New York City (NYC) seroprevalence study (Feb 9 -
July 5, 2020) routine and urgent care group samples with the NYC population. Data on the NYC
population are from the 2019 American Community Survey(US Census Bureau, 2019). Sample
size is denoted by n.

Routine care Urgent care NYC
n % n % n %

6,348 100 3,898 100 8,336,044 100

Sex
Female 4,274 67 1,789 46 4,349,715 52
Male 2,074 33 2,109 54 3,986,329 48

Age

0-19 238 4 93 2 1,887,268 23
20-39 2,624 41 551 14 2,608,394 31
40-59 1,396 22 1,065 27 2,080,599 25
60-79 1,780 28 1,633 42 1,426,301 17
80+ 310 5 556 14 333,482 4

Race

Asian 562 9 217 6 1,202,530 14
Black or African-American 1,287 20 1,051 27 2,057,795 25
Other 1,774 28 1,514 39 1,528,503 18
White 2,725 43 1,116 29 3,547,216 43

ρ̂. Standardization had the largest impact on the estimates in the third round, when π̂RG and the

standardized estimators differed by as much as 9 percentage points. The standardized estimates

were accompanied by wider CIs relative to ρ̂ and π̂RG, reflecting greater uncertainty associated with

estimating seroprevalence when not assuming the main study data constitute a random sample from

the target population. The CIs were wider as time went on and the point estimates approached 0.5,

with the narrower intervals in collection periods 1 and 2.

2.5.2 Belgium seroprevalence study

The standardized Rogan–Gladen methods were applied to a nationwide SARS-CoV-2 sero-

prevalence study in Belgium conducted across seven week-long collection rounds between March

and October 2020 (Herzog et al., 2022). The final collection round took place before the first

vaccine authorization in the European Union in December 2020. Residual sera were collected in

a stratified random sample from private laboratories encompassing a wide geographical network,

with stratification by age group (10 year groups from 0-9, 10-19, . . . , 90-plus), sex (male or female),

and region (Wallonia, Flanders, or Brussels). The presence of SARS-CoV-2 IgG antibodies was
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Figure 2.4: Estimates and corresponding 95% confidence intervals for each of five collection rounds
for the NYC seroprevalence study (Stadlbauer et al., 2021), stratified by routine and urgent care
groups, described in Section 2.5.1.

determined using a semi-quantitative EuroImmun ELISA. Based on validation studies of n1 = 181

reverse transcription PCR-confirmed COVID-19 cases and n2 = 326 pre-pandemic negative con-

trols, sensitivity and specificity were estimated to be σ̂e = .851 and σ̂p = .988 (Herzog et al., 2022,

Table S1.1). The number of samples for assessing seroprevalence varied between n3 = 2,960 and

n3 = 3,910 across the seven collection rounds.

In this analysis, nationwide seroprevalence in Belgium was estimated during each collection

round standardized by age group, sex, and province (11 total), using 2020 stratum proportion

data from the Belgian Federal Planning Bureau (2021). Province was used rather than region to

match the covariates selected for weighting in Herzog et al. (2022). Table 2.2 compares the sex,
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Table 2.2: Demographic comparisons of the 2020 Belgium seroprevalence study sample participants
in collection rounds 1 (30 March - 5 Apr) and 7 (9 - 12 Sept) with the Belgium population. Data on
the Belgium population are from the Federal Planning Bureau (2021). Sample size is denoted by n.

Round 1 Round 7 Belgium
n % n % n %

3,910 100 2,966 100 11,492,641 100

Sex
Female 2,111 54 1,589 54 5,832,577 51
Male 1,799 46 1,377 46 5,660,064 49

Age

0-9 36 1 68 2 1,269,068 11
10-19 294 8 405 14 1,300,254 11
20-29 436 11 402 14 1,407,645 12
30-39 461 12 397 13 1,492,290 13
40-49 468 12 397 13 1,504,539 13
50-59 498 13 400 13 1,590,628 14
60-69 507 13 406 14 1,347,139 12
70-79 506 13 204 7 924,291 8
80-89 493 13 160 5 539,390 5
90+ 211 5 127 4 117,397 1

Province

Antwerp 819 21 473 16 1,869,730 16
Brussels 204 5 288 10 1,218,255 11
East Flanders 388 10 392 13 1,525,255 13
Flemish Brabant 261 7 317 11 1,155,843 10
Hainaut 245 6 271 9 1,346,840 12
Liege 515 13 425 14 1,109,800 10
Limburg 318 8 280 9 877,370 8
Luxembourg 254 7 177 6 286,752 3
Namur 352 9 170 6 495,832 4
Walloon Brabant 145 4 101 3 406,019 4
West Flanders 409 10 72 2 1,200,945 10

age group, and province distributions in collection rounds 1 and 7 to the Belgian population as

a whole. The seroprevalence study samples were similar to the population, although the study

overrepresented older persons and underrepresented younger persons relative to the population. In

six of the seven collection rounds nonpositivity arose, with between 2 to 15 of the 220 strata not

sampled, so restricted target populations were used for computation of π̂SRG. For π̂SRGM , each

logistic regression model had main effects for age group, sex, and province, as well as an interaction

term between age group and sex.

Figure 2.5 displays point estimates and CIs for π̂RG, π̂SRG, and π̂SRGM alongside those for the

unadjusted, or naive, sample prevalence ρ̂ for each collection round (with exact Clopper-Pearson
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95% CIs). The naive estimates ρ̂ were typically greater than the other three estimates and had

narrower CIs. The greatest differences were between ρ̂ and π̂RG, which can be attributed to

(estimated) measurement error in the assay. Both standardized estimates π̂SRG and π̂SRGM were

similar in value to π̂RG in most collection periods. These estimates, in combination with the stratified

random sampling design, suggest that the magnitude of measurement error in this study may have

been larger than that of selection bias.
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Figure 2.5: Estimates and corresponding 95% confidence intervals for each of seven collection
rounds for the 2020 Belgian seroprevalence study (Herzog et al., 2022), described in Section 2.5.2.

2.5.3 North Carolina seroprevalence study

The standardization methods of Section 2.3 were also applied to ScreenNC, which tested a

convenience sample of n3 = 2,973 asymptomatic patients age 20 and older in North Carolina
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(NC) for antibodies to SARS-CoV-2 between April to June 2020 (Barzin et al., 2020), before the

authorization of vaccines in the United States. These patients were seeking unrelated medical care

at eleven sites in NC associated with the University of North Carolina (UNC) Health Network.

The presence of antibodies was determined with the Abbott Architect SARS-CoV-2 IgG assay.

Based on validation studies of n1 = 40 reverse transcription PCR confirmed positive patients and

n2 = 277 pre-pandemic serum samples assumed to be negative, sensitivity was estimated as σ̂e = 1

and specificity as σ̂p = 0.989.

In our analysis, seroprevalence was estimated in two relevant target populations. First, stan-

dardization was made to the population patients accessing the UNC Health Network during a

similar timeframe (21,901 patients from February to June of 2020). The main study sample differed

from this UNC target population in terms of age group, race, and sex characteristics, as seen in

Table 2.3, and meta-analyses suggested that prevalence of COVID-19 infections differed between

levels of these covariates in some populations (Pijls et al., 2021; Mackey et al., 2021), supporting

the covariates’ use in standardization. Note that several racial classifications, including patient

refused and unknown, were reclassified as ‘Other’. Second, standardization was made to the 2019

NC population over the age of 20 (7,873,971 persons) using covariate data from the American

Community Survey (US Census Bureau, 2019). The assumption of equal sampling probabilities

may be less reasonable for this target population because not all NC residents are in the UNC Health

Network and because there were some geographic areas where no patients in the study sample were

from. There was no sample data in the main study for two covariate strata that existed in the UNC

Health Network, so restriction was used for π̂SRG. Logistic regression models with main effects for

sex, race, and age group were used to compute π̂SRGM ; interaction effects were not included as the

small number of positive test results could have led to model overfit.

The sample proportion of positive tests was ρ̂ = 24/2973 = 0.81%. The sample false positive

rate was 1− σ̂p = 1.08%, so the data are, at first appearance, consistent with a population prevalence

of 0%. Indeed, the Rogan–Gladen seroprevalence estimate was π̂RG = 0% (95% CI 0%, 1.00%).

Likewise, the UNC target population had non-parametric and parametric standardized estimates
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Table 2.3: Demographic comparisons of the ScreenNC study sample, UNC Hospitals patient
population, and North Carolina population aged 20+. Data on the NC population are from the 2019
American Community Survey (US Census Bureau, 2019). Several racial classifications including
Patient Refused and Unknown were reclassified as Other. Sample size is denoted by n.

ScreenNC UNC Hospitals NC
n % n % n %

2,973 100 21,901 100 7,873,971 100

Sex
Female 1,955 66 13,926 64 4,108,603 52
Male 1,018 34 7,975 36 3,765,368 48

Race

Asian 67 2 460 2 230,759 3
Black or Af.-Am. 395 13 5,109 23 1,640,311 21
Other 311 10 1,799 8 455,600 6
White or Cauc. 2,200 74 14,533 66 5,547,301 70

Age

20-29 342 12 2060 9 1,400,918 18
30-39 599 20 2,763 13 1,344,647 17
40-49 518 18 3,382 15 1,351,156 17
50-59 602 20 4,200 19 1,360,357 17
60-69 489 17 4,548 21 1,228,123 16
70-79 310 11 3,325 15 806,002 10
80+ 77 3 1,623 7 382,768 5

of π̂SRG = 0% (0%, 1.11%) and π̂SRGM = 0% (0%, 1.13%), and the NC target population had

corresponding estimates of 0% (0%, 1.10%) and 0% (0%, 1.11%). All estimates were truncated

into [0, 1]. The closeness of the standardized and unstandardized results may be due to the small

number of positive test results and similarities between the sample and the target populations. Note

that the limited violations of positivity and modest demographic differences (Table 2.3) make

this application more similar to DGP 3 than DGP 4. Simulation results suggest the standardized

estimators and corresponding CIs may perform well in settings similar to DGP 3, even if the true

prevalence is low; e.g., see the lower right facets of Figure 2 and Figure A.7, where σe = σp = .99.

2.6 Discussion

Non-parametric and model-based standardized Rogan–Gladen estimators were examined, and

their large-sample properties and consistent variance estimators were derived. While motivated by

SARS-CoV-2 seroprevalence studies, the methods considered are also applicable to estimation of

proportions for settings where validation data can be used to estimate the measurement instrument’s
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sensitivity and specificity and when standardization is helpful. Simulation studies demonstrated that

both standardized Rogan–Gladen methods had low empirical bias and nominal CI coverage in the

majority of practical settings. The empirical results in Section 2.4 highlight the tradeoffs inherent in

choosing which method to use for a seroprevalence study. The parametric standardized estimator

π̂SRGM was empirically unbiased even when the number of strata and covariates, and with them the

potential for random nonpositivity, increased. A drawback to π̂SRGM is the need to correctly specify

the form of a regression model. On the other hand, the non-parametric standardized estimator

π̂SRG does not require model specification and performed well in scenarios with lower amounts of

selection bias and nonpositivity. As the number of strata and covariates grew, however, π̂SRG was

empirically biased and its corresponding 95% CIs did not attain nominal coverage.

In this paper, the validation samples were not standardized, so the methodology implicitly

assumed that X ⊥̸⊥ Z but X⊥⊥ Z | Y , i.e., sensitivity and specificity are constant across covariates

Z. Sensitivity and specificity could be corrected for selection bias. In particular, the proposed

nonparametric standardization estimator corrects for selection bias and then for measurement error.

An alternative estimator that changes the order of corrections is π̃ = (ρ̃+ σ̃p − 1)/(σ̃e + σ̃p − 1)

with tildes denoting standardized estimators, (i.e., σ̃e could be
∑k

j=1 P̂r(Y = 1 | X = 1, Z =

zj) Pr(Z = zj)). Test performance sometimes varies across subgroups in the spectrum effect

phenomenon (Mulherin and Miller, 2002). For instance, the n1 individuals in the validation sample

of true positives might be based on hospitalized patients who on average have more severe disease

than the general population of seropositive individuals that are sampled in the main study, and if so

sensitivity may be overestimated and seroprevalence may be underestimated. Takahashi et al. (2023)

used an estimator with ρ̃ and σ̃e. However, stratum-specific data from the sensitivity and specificity

datasets are necessary for this alternative estimator, and the validation datasets are typically much

smaller than the main study dataset, as in all three examples in Section 2.5. Moreover, it is unclear

if covariate data is commonly collected on sensitivity and specificity samples.

The limitations of Wald-type confidence intervals as they relate to parameters near their

boundary values are mentioned in Sections 2.2.2 and 2.4. Alternative confidence intervals could
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be considered based on the bootstrap (Cai et al., 2022), Bayesian posterior intervals (Gelman and

Carpenter, 2020), test inversion (DiCiccio et al., 2022), or fiducial confidence distributions (Bayer

et al., 2023). In particular, extensions of CIs designed to guarantee coverage at or above the nominal

levels (Bayer et al., 2023; Lang and Reiczigel, 2014) could be developed to accommodate potential

selection bias due to unknown sampling probabilities.

Extensions of the estimators in this paper could be considered which make additional assump-

tions (e.g., smoothness, monotonicity) about the longitudinal nature of seroprevalence. Another

possible extension could consider variations in assay sensitivity, which may depend on a variety

of factors such as the type of assay used; the recency of infection or vaccination of an individual;

disease severity in infected individuals; the type and dose of vaccine for vaccinated individuals;

and so forth. Additionally, inverse probability of sampling weights (Lesko et al., 2017) or inverse

odds of sampling weights (Westreich et al., 2017) could be considered rather than standardization.

Standardization and weighting methods could possibly be combined for the development of a doubly

robust Rogan–Gladen estimator.
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CHAPTER 3: DOUBLY STANDARDIZED SURROGATE ENDPOINTS FOR SARS-CoV-2
VACCINES

3.1 Introduction

In the COVID-19 pandemic, vaccine efficacy estimates from Phase 3 trials supported autho-

rization and approval of vaccines by the U.S. Food and Drug Administration and regulatory bodies

worldwide. The trials took several months and were conducted under equipoise that enabled random

assignment to treatment or placebo for tens of thousands of participants; similar placebo-controlled

randomization for evaluation of vaccines and boosters for COVID-19 variants may be unethical

because of proven vaccine efficacy. There was thus substantial interest in determining a correlate of

protection, i.e., a surrogate immunological vaccine outcome that reliably correlates with vaccine

efficacy (Krammer, 2021; Openshaw, 2022). Such a correlate can expedite the approval of vaccines

and can be measured in the laboratory in fewer trial participants. There is strong evidence for both

serum anti-spike IgG concentration and neutralizing antibody titer as correlates of protection, i.e.,

possible surrogate endpoints for vaccine efficacy against symptomatic COVID-19 illness. (Gilbert

et al., 2022a; Cromer et al., 2022; Goldblatt et al., 2022). The FDA and European Medicines Agency

have recommended approval of new vaccine strains and booster doses for SARS-CoV-2 vaccines be

based on these surrogate endpoints (Gilbert et al., 2022a).

Beyond SARS-CoV-2, the use of surrogate endpoints for drug and vaccine development has

received great attention over the past 40 years. Between 2010 and 2012, 45% of FDA approvals

were based on a surrogate endpoint (U.S. Food and Drug Administration, 2017). Examples include

hemoglobin A1c for diabetes, hemagglutination inhibition antibody titer for influenza vaccines,

and progression-free or disease-free survival for several kinds of cancer (U.S. Food and Drug

Administration, 2022).
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Statistical methods for the evaluation and validation of surrogate endpoints can be divided into

methods for a single trial and meta-analytic methods for a collection of trials. The earliest devel-

opments, including Prentice’s (1989) landmark paper that defined and gave criteria for surrogacy,

considered the single-trial setting. Thereafter a National Institute of Allergy and Infectious Disease

workshop on HIV surrogate endpoints recognized limitations of the single-trial approach and the

importance of replicating surrogate validation in a meta-analysis of trials (Albert et al., 1998). Some

of the first methodological developments for the meta-analytic setting were by Daniels and Hughes

(1997), Buyse et al. (2000), and Gail et al. (2000). These methods fit in the “causal association”

paradigm, where “good” surrogates are ones with strong associations between the treatment effect

on the surrogate endpoint and the treatment effect on the clinical endpoint (Joffe and Greene, 2009).

Such meta-analytically validated surrogates have been named “general surrogates” and deemed

the highest level of a hierarchy of surrogates (Qin et al., 2007; Gilbert et al., 2008). Conceptual

frameworks and methods for the single-trial setting and connections between the single-trial and

meta-analytic paradigms were reviewed by Joffe and Greene (2009) and Alonso et al. (2015). As an

example of the meta-analytic approach, Figure 3.6 displays a meta-analysis of seven COVID-19

vaccine trials that found the surrogate endpoint of neutralizing antibody titers to be strongly as-

sociated with vaccine efficacy against symptomatic COVID-19 (Earle et al., 2021). Khoury et al.

(2021) found evidence for neutralizing antibodies as a correlate of protection using a meta-analytic

approach as well.

Drawing a simple comparison of COVID-19 vaccine trial efficacy estimates is problematic

without considering the factors affecting the trial context and design, including characteristics of a

study’s population (Rapaka et al., 2022). The SARS-CoV-2 vaccine trials underrepresented older

adults and the inclusion of racial/ethnic groups differed across trials (Rapaka et al., 2022; Michiels

et al., 2022). It is important to measure factors such as age, sex, and sociodemographic group as

possible effect modifiers for COVID-19 vaccine efficacy (World Health Organization, 2021).

In this paper, methods are presented to standardize trial-based estimates of surrogate and clinical

effects to a common target population that may differ from the target populations of individual
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Figure 3.6: Figure 1(c) from Earle et al. (2021). Titers of SARS-CoV-2 neutralizing antibodies,
calibrated to human convalescent sera measured with the same assay, are highly correlated with
vaccine efficacy against symptomatic COVID-19 in seven trials. Error bars indicate 95% confidence
intervals and the dashed line is a nonparametric LOESS regression fit. Further details can be found
in Earle et al. (2021). The figure is reproduced under a Creative Commons CC-BY license.
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trials in terms of demographic, geographic, and clinical factors. A direct standardization (i.e.,

parametric g-formula) estimator of the causal association between the clinical treatment effect

and the surrogate treatment effect in a target population is proposed in Section 3.2. The causal

association parameter is shown to be identifiable from the observed data under a set of identification

assumptions, and three choices for the parameter are considered. An estimator is proposed for each

example parameter, and with the asymptotic scheme where the trial sample sizes grow large but

the number of trials is constant, two of the estimators are consistent and asymptotically normal. A

hypothesis test for detection of violations of a key exchangeability assumption is proposed. The

estimators are evaluated empirically in simulation studies guided by data from five Phase 3 vaccine

trials (USG COVID-19 Response Team / Coronavirus Prevention Network (CoVPN) Biostatistics

Team et al., 2022) in Section 3.3. Section 3.4 concludes with a discussion. Technical details and

supplemental information are in Appendix B.

3.2 Methodology

3.2.1 Preliminaries

Consider randomized placebo-controlled trials of a treatment class, e.g., SARS-CoV-2 vaccines,

with each trial measuring a clinical (primary) endpoint and a possible surrogate endpoint. Denote

the clinical endpoint for individual i as Yi and the surrogate endpoint as Si. Let treatment be

Ai ∈ A = {0, 1, . . . ,m}, with Ai = 0 denoting receipt of placebo and Ai = a denoting receipt of

treatment in trial a for a ∈ A−0 = {1, . . . ,m}. An individual’s potential outcomes if they were

to receive treatment A = a are Y a
i and Sa

i for the clinical and surrogate outcomes, respectively.

Suppose a covariate vector Xi is observed for participants in all trials. Denote the trial by Ti ∈ T =

{1, . . . ,m}. Assume without loss of generality that trial T = 1 is a random sample from the target

population, denoting A−1 = {0, 2, . . . ,m}. Let Ri = I(Ti = 1) be an indicator that a participant is

randomly sampled from the target population. Subscripts for individuals i are mostly omitted until

Section 3.2.3 for notational ease. In trial t, the observed data are nt independent and identically
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distributed (iid) observations of (T = t,X, Y, S,A,R) for all t ∈ T . The data combined across

trials are assumed to be independent but not necessarily identically distributed. Let n =
∑

t∈T nt.

The treatment effects on the clinical and surrogate outcomes (clinical, and surrogate, effects)

in the target population can be defined as τa = g (E[Y a | R = 1], E[Y 0 | R = 1]) and δa =

h (E[Sa | R = 1], E[S0 | R = 1]) respectively for functions g and h of the mean potential outcomes

such that g (E[Y a | R = 1], E[Y a | R = 1]) and h (E[Sa | R = 1], E[Sa | R = 1]) are equal to the

null values of the effect measures τa and δa. For example, if the functions are defined to be

g(x, y) = 1 − x/y and h(x, y) = x − y and if Y is binary, the effects would be vaccine efficacy

τa = 1− E[Y a | R = 1]/E[Y 0 | R = 1] (one minus a causal risk ratio) and an average treatment

effect δa = E[Sa | R = 1]−E[S0 | R = 1]. Defining τ = (τ 1, . . . , τm) and δ = (δ1, . . . , δm), the

causal association parameter ρ = f(τ , δ) quantifies the association between the treatment-level

clinical and surrogate effects with a function f . In general, the analyst chooses the function f such

that ρ is suitable for the scientific application. In the context of estimating correlates of protection

for SARS-CoV-2 vaccine trials, three choices of f , and thus three choices of the target parameter ρ,

are considered in Section 3.2.4.

3.2.2 Causal association parameter identifiability

The causal association parameter ρ is identifiable under the following assumptions, wherein

a ∈ A and t ∈ T except when specified otherwise.

Assumption 3.1 (No measurement error).

Assumption 3.2 (Causal consistency). Y = Y aI(A = a) and S = SaI(A = a).

For notational parsimony, letO be a generic outcome variable such that, within each assumption

or equation, O can be substituted by the clinical outcome Y or by the surrogate outcome S. Thus

assumption 3.2 can be written as O = OaI(A = a), for instance.

Assumption 3.3 (No interference). For individuals i and i′ where i ̸= i′, Oa
i are unaffected by

whether individual i′ receives treatment a or a′ for all a, a′ ∈ A .
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Let FX(x | T ) be the distribution function of X | T .

Assumption 3.4 (Conditional exchangeability of treatment in each trial). Oa ⊥⊥ A | T,X .

Assumption 3.5 (Positivity of treatment assignment in each trial). Pr(A = a | T,X) > 0 for

X = x with dFX(x | T = t) > 0.

Assumption 3.6 (Conditional exchangeability of trial). Oa ⊥⊥ T | X for a ∈ A−0.

Assumption 3.7 (Positivity of trial participation). Pr(T = t | X = x) > 0 for x with dFX(x) > 0.

Assumption 3.8 (Conditional exchangeability of trial for placebo). O0 ⊥⊥ T | (A = 0, X).

Assumption 3.9 (Positivity of trial participation within covariate strata for placebo). Pr(T = t |

A = 0, X) > 0 for x with dFX(x) > 0.

Assumption 3.10 (Asymptotic non-negligibility). nt/n→ πt ∈ (0, 1) as n→ ∞.

Assumption 3.2 usually holds in settings where there is no treatment variation (Cole and Fran-

gakis, 2009). Multi-site randomized trials such as the SARS-CoV-2 vaccine trials that motivated

this work may feature limited interference between trial participants, supporting assumption 3.3.

Assumption 3.4 is guaranteed by marginal or stratified randomization in each trial, and assump-

tion 3.5 is guaranteed by marginal randomization or plausible with stratified randomization in each

trial. Assumptions 3.6 and 3.8 are the critical links from the trials to the target population. As-

sumption 3.8 is not necessary, but may be realistic in SARS-CoV-2 vaccine trials that used identical

saline placebos (USG COVID-19 Response Team / Coronavirus Prevention Network (CoVPN)

Biostatistics Team et al., 2022) and enables pooling of the placebo data across trials. A diagnostic

test for plausibility of assumption 3.8 is proposed in Section 3.2.5. Assumptions 3.7 and 3.9 state

that, in each trial, there is a positive probability of inclusion for all covariate combinations in the

target population. These two assumptions are likely reasonable for the large-scale SARS-CoV-2

vaccine trials, and if they are violated, several approaches for changing the target parameter or using

parametric models are possible (Petersen et al., 2012; Westreich and Cole, 2010). Assumption 3.10

is commonly made in the biased sampling literature (e.g., Bickel and Kwon, 2001).
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The identification of the potential outcome means of the clinical and surrogate endpoints

in the target population (‘target potential outcome means’) is shown in Appendix B.1. That is,

E[Oa | R = 1] is equal to a function of the observable random variables (A,O, T,X) for a ∈ A .

The causal association parameter ρ = f(τ , δ) is identifiable because it is a function of the treatment-

level effects τa and δa, which are in turn identifiable because they are functions of the target potential

outcome means.

3.2.3 Estimation and inference

Let ρ̂ be the plug-in causal association estimator ρ̂ = f(τ̂ , δ̂), where τ̂ = (τ̂ 1, . . . , τ̂m), δ̂ =

(δ̂1, . . . , δ̂m), τ̂a = g(Ê[Y a | R = 1], Ê[Y 0 | R = 1]), and δ̂a = h(Ê[Sa | R = 1], Ê[S0 | R = 1]).

Direct standardization, i.e., Robins’ (1986) parametric g-formula (see also Hernán and Robins,

2020, Chapter 13) can be used to estimate each target potential outcome mean E[Oa | R = 1]

for a ∈ A−1, i.e., Ê[Oa | R = 1] = n−1
1

∑n
i=1{I(Ti = 1)Ê[O | X = x,A = a]}. For

treatment a ∈ A−1, constructing the estimator entails first fitting conditional mean models within

subsets of participants with treatment a and then standardizing the model estimates to the covariate

distribution of X in the target population. The covariate distribution of X in the target population

is estimated from the empirical distribution function of X in trial 1. The data used for estimation

of Ê[Oa | R = 1] combine data from the trial(s) where A = a with covariate data from trial 1.

With the exception of Ê[O1 | R = 1], estimation of Ê[Oa | R = 1] requires pooling data from

multiple trials. Observations of participants in these trials are independent, but not necessarily

identically distributed. In this paper, parametric outcome models Ê[Y | X = x,A = a; θ̂a] and

Ê[S | X = x,A = a; η̂a] indexed by finite-dimensional parameters θa and ηa for a ∈ A−1 are fit,

assumed correctly specified, and estimated by maximum likelihood. For treatment A = 1, which is

given in trial 1 which is a random sample of the target population, the sample mean from trial 1,

Ê[O1 | R = 1] = {
∑n

i=1 I(Ai = 1)Oi} /
∑n

i=1 I(Ai = 1), is a natural estimator of E(O1|R = 1).

For a finite set of m trials, as n→ ∞ and m remains fixed, Ê [Oa | R = 1] is, under regularity

conditions, strongly consistent, i.e., converges almost surely to E[Oa | R = 1], and asymptotically
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normal (Dahabreh et al., 2022). The causal association estimator ρ̂ can be expressed as a function j

of the 2m+ 2 treatment-specific estimators. If j is continuous, then the causal association estimator

ρ̂ is strongly consistent by the continuous mapping theorem. If the function j has 2m+2 continuous

first partial derivatives at the true value of the 2m + 2 parameters, with at least one derivative

nonzero, then ρ̂ is asymptotically normal by the delta method (Rao, 1973, Chapter 6). For many

choices of the causal association parameter ρ, an estimating equations approach can be used to

consistently estimate the asymptotic variance of ρ̂ with an empirical sandwich variance estimator

(Stefanski and Boos, 2002), from which Wald-type confidence intervals can be computed.

3.2.4 Causal association parameter choice

In the context of correlates of protection for SARS-CoV-2 vaccines, consider three causal

association parameters: the slope of a linear regression of τ on δ, a Pearson correlation coefficient,

and a Spearman rank correlation coefficient.

Consider the simple linear regression of τ on δ. Let (β0, β) = argmin(b0,b)

∑m
a=1{τa −

(b0 + bδa)}2 for scalars (b0, b) and (β0, β). The slope parameter β summarizes a dose-response

relationship between the surrogate and treatment effects, such that larger values of β are indicative of

stronger surrogates. The ordinary least squares estimator β̂ satisfies (β̂0, β̂) = argmin(b0,b)

∑m
a=1{τ̂a−

(b0 + bδ̂a)}2. The estimator β̂ is continuous and has the continuously differentiable property defined

in Section 3.2.3, so β̂ is a strongly consistent and asymptotically normal estimator of β. Estimating

equations are defined in Appendix B.2.1 from which a sandwich variance estimator of Var(β̂)

and Wald-type confidence intervals for β can be obtained. The causal association parameter β is

analogous to parameters considered by Daniels and Hughes (1997) and Dai and Hughes (2012)

in meta-analytic settings. In the SARS-CoV-2 vaccine setting, regressions of clinical effects on

surrogate effects were fit by Earle et al. (2021, Figure 1c) and Khoury et al. (2021, Figure 1a).

The Pearson correlation coefficient ρp measures the linear correlation between τ and δ. Stronger

surrogates have values of ρp closer to 1. The plug-in correlation coefficient estimator is ρ̂p =

Cov(τ̂ , δ̂)/SD(τ̂ )SD(δ̂), where Cov is defined to be the sample covariance and SD the sample
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standard deviation. The estimator ρ̂p is continuous and has the continuously differentiable property

defined in Section 3.2.3, and so is strongly consistent for ρp and asymptotically normal. The

variance of ρ̂p can be estimated using the stacked estimating equations given in Appendix B.2.1.

The squared coefficient ρ2p is analogous to the squared correlation considered by Dai and Hughes

(2012) and the R2
trials(r) parameter of Buyse et al. (2000) when the latter parameter is computed

from a linear model.

Spearman correlation has been used in the evaluation of surrogate endpoints, e.g., for SARS-

CoV-2 vaccine correlates of protection (Earle et al., 2021), colon cancer (Sargent et al., 2007), and

colorectal cancer (Tang et al., 2007). The Spearman rank correlation ρs is a nonparametric measure

of association between τ and δ defined as Pearson’s correlation coefficient between the rank statistics

R(τ ) and R(δ), where R(τ ) is defined so that the values of τ are ranked from highest to lowest and

R(τa) is the rank of τa. Each (τ̂a, δ̂a) pair is asymptotically distributed bivariate normal as n grows

large, as shown in Appendix B.2.2. However, under the present asymptotic regime with a finite and

fixed number of trials m, the plug-in estimator ρ̂s = Cov(R(τ̂ ), R(δ̂))/SD(R(τ̂ ))SD(R(δ̂)) has a

discrete distribution and a finite support as n → ∞. In this case, interval estimation approaches

based on asymptotic normal approximations are inappropriate. A bootstrap approach can be used

for interval estimation of ρs can be used, with an algorithm of resampling the data from each trial

t ∈ T , estimating ρ̂(b)s for each of b = 1, . . . , B samples, and constructing percentile bootstrap

intervals using ρ̂(1)s , . . . , ρ̂
(B)
s .

3.2.5 Diagnostic test of assumption of conditional exchangeability of trial for placebo

In this section, a diagnostic test is proposed to assess assumption 3.8 of conditional ex-

changeability of trial for placebo, i.e., O0 ⊥⊥ T | (A = 0, X). The assumption implies

E[O0 | A = 0, T = 1, X] = · · · = E[O0 | A = 0, T = m,X], in turn implying a null hy-

pothesis of

H0 : E[O | A = 0, T = 1, X] = · · · = E[O | A = 0, T = m,X] = E[O | A = 0, X].
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by assumption 3.2 of causal consistency. An alternative hypothesis is

H1 : E[O | A = 0, T = t,X] ̸= E[O | A = 0, T = t′, X] for some t, t′ ∈ T with t ̸= t′.

These statistical hypothesis can be tested from the data.

When each endpoint Y and S has a distribution in an exponential family, a simple method for

testing the null hypothesis uses nested generalized linear models. Denote a vector of covariates

containing X , T , and possibly interactions between X and T by XT . For each outcome O, the

nested regression models are E[O | X,A; ξ0] = k−1
O (ξ0X) and E[O | X,T,A; ξT ] = k−1

O (ξTXT )

with an appropriate link function kO and row vectors of regression parameters ξ0 and ξT . When

O = Y , ξ0 = θ0 defined in Section 3.2.3, and when O = S, ξ0 = η0 from Section 3.2.3. The null

hypothesis H0 corresponds to the regression coefficient on T equaling 0. In this paper, H0 is tested

with a likelihood ratio test (LRT), although the Wald or score tests can be used. Denoting the true

parameter by ξ, the LRT hypothesis test is H0 : ξ = ξ0 vs. H1 : ξ = ξT . Letting the log-likelihoods

of the models be ℓ(ξ0) and ℓ(ξT ), respectively, the LRT statistic is LRTO = −2[ℓ(ξ̂)−ℓ(ξ̂T )]. Under

the asymptotic regime with fixed m, as n→ ∞ the test statistic has an asymptotic distribution of

LRTO
d→ χ2

df , where df = dim(ξT )− dim(ξ0).

The p-value corresponding to the likelihood ratio test statistic can be obtained with a permutation-

type approach, and likely have the advantage of superior type I error control (Hayes, 1996). An

algorithm for the permutation approach is as follows: permute the trial variable T and compute the

test statistic to generate a permutation distribution of size nperm of the test statistic, and then take

p = #(L̃RTO > LRTO)/nperm as the p-value, where L̃RTO are the nperm permuted values and

LRTO is the observed test statistic.

45



3.3 Simulations

3.3.1 Simulation settings

A simulation study was conducted to evaluate the performance of the three causal association

estimators. Motivated by the USG Phase 3 COVID-19 vaccine trial data, five trials were considered

and trial 1 was considered to be a random sample from the target population. Each trial had nt

participants for t ∈ {1, . . . , 5}. Two baseline covariates X = (X1, X2) were generated with X1

an indicator for being at high risk of severe COVID-19 illness based on baseline trial factors

(USG COVID-19 Response Team / Coronavirus Prevention Network (CoVPN) Biostatistics Team

et al., 2022) and X2 age in years. The at-risk for COVID-19 indicator was generated from a

Bernoulli distribution with probabilities of 0.3, 0.4, and 0.2 for trials T = 1, T ∈ {2, 3}, and

T ∈ {4, 5}, respectively. Age in years was generated from a normal distribution with means

55, 65, and 45 and variances 22.32, 242, and 182 for trials T = 1, T ∈ {2, 4}, and T ∈ {3, 5}

respectively. Age was then truncated into [18, 85]. For trial T = 1, the above parameters were based

on simulation guidelines from the CoVPN Statistical Analysis Plan (USG COVID-19 Response

Team / Coronavirus Prevention Network (CoVPN) Biostatistics Team et al., 2022).

Potential outcomes were generated as Y a ∼ Bernoulli (expit(X ′θa)) and Sa ∼

Normal (X ′γa, σ
2
a) for values of 3-vectors θa and γa and scalar σ2

a for a ∈ A . Treatment assignment

was random, i.e., within each trial, Pr(A = 0) = Pr(A = a) = 0.5 where a = t ∈ {1, 2, 3, 4, 5}.

The observed endpoints were Y = Y aI(A = a) and S = SaI(A = a) by assumption 3.2. The

true value of each causal association parameter was determined empirically based on the average

potential outcomes from 20,000,000 participants in trial T = 1, the random sample from the target

population.

Three simulation scenarios were considered, each with different parameter values of θa, γa,

and σ2
a. Scenarios 1 and 2 had sample sizes of nt = 3000 for all trials while scenario 3 had

nt = 8000 for all trials t ∈ {1, . . . , 5}. In the first two scenarios, the potential outcome mean for

the true outcome in the target population E[Y a | R = 1] (‘target potential outcome mean’), was
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E[Y 0 | R = 1] = 0.49 for placebo. The target potential outcome means E[Y a | R = 1] for a = 1

through a = 5 in these scenarios varied from 0.02 to 0.10 in scenario 1 and 0.03 to 0.40 in scenario

2. The vaccine efficacy values τ 1, . . . , τ 5 ranged from 0.81 to 0.96 in scenario 1 and from 0.20 to

0.93 in scenario 2. In scenario 3, the target potential outcome means were closer to the sample

event rates from the USG COVID-19 vaccine trials, ranging from .002 for .034 among treatments

and equaling 0.049 for placebo. In scenarios 1 and 3, the true causal association parameters were

all approximately equal to 0, while in scenario 2, the true causal association parameters were

approximately β = .18, ρp = .90, ρs = .90. The parameter values used to generate the simulations

and the true values of each τa and δa are listed in Table B.1.

For evaluation of the diagnostic test of Section 3.2.5, a fourth scenario was simulated where

assumption 3.8 of conditional exchangeability of trial for placebo did not hold and thus the null

hypothesis of Section 3.2.5 was false. Let the potential outcomes be indexed by both treatment

and trial. Potential outcomes were generated as Y a,t ∼ Bernoulli (expit(X ′θat)) and Sa,t ∼

Normal ((X ′γat), σ
2) for fixed values of 3-vectors θat and γat and scalar σ2

at for all combinations

of a ∈ A and t ∈ T under consideration, i.e., for each trial t ∈ {1, 2, 3, 4, 5}, a ∈ {0, t}. The

parameter values for this scenario are listed in Table B.2.

For each of the first three scenarios, the proposed estimators β̂, ρ̂p, and ρ̂s were computed

over 1000 iterations, using correctly specified logistic regression models E[Y | X,A] and linear

regression models E[S | X,A] for each estimator. For β̂ and ρ̂p, the empirical sandwich variance

estimator was used to estimate standard errors from which 95% Wald-type confidence intervals

were constructed. Sandwich variance estimates were computed with the geex package (Saul and

Hudgens, 2020) in R (R Core Team, 2022) using the ‘simple’ numerical differentiation method from

the numDeriv package . For ρ̂s, the percentile bootstrap interval with 10,000 bootstrap samples

was used to compute 95% confidence intervals, and the standard error of ρ̂s was estimated from the

bootstrap distribution.

For comparison, naive point estimators of β, ρp, and ρs were computed with each potential

outcome mean estimated without standardization, i.e., the sample proportion Ê[Oa | R = 1] =
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∑n
i=1 I(Ai = a)Oi/

∑n
i=1 I(Ai = a) for a ∈ A . For all four scenarios, the diagnostic test of

Section 3.2.5 was performed, with both permutation p-values based on 10,000 permutations and

asymptotic p-values computed for the likelihood ratio test statistics LRTY and LRTS .

3.3.2 Simulation results

The proposed estimators β̂ and ρ̂p generally had little to no bias and the 95% confidence intervals

attained nominal coverage, while the naive estimators were substantially biased, as displayed in

Table 3.4. The average estimated standard errors of β̂ and ρ̂p, were generally similar to the empirical

standard errors. An exception was ρp in scenario 3, where bias of ρ̂p was .006 and empirical

confidence interval coverage was 91%.

In the first scenario, 6 of the 1000 simulations had complete or quasi-complete separation of

the true endpoint Y by the at-risk indicator X1 within at least one treatment group A = a. In these

cases, the maximum likelihood estimate for the regression coefficient corresponding to X1 did not

exist or its estimated variance was extremely large, leading to computational challenges for variance

estimation of β̂ and ρ̂p. For this scenario, 6 additional simulations were run so there were 1000

simulations.

Naive estimator Proposed estimator
Scenario nt Parameter Bias Bias ESE ASE CI

1 3000
β = 0.00 -0.060 0.000 0.01 0.01 0.95
ρp = 0.00 -0.760 0.003 0.10 0.10 0.95

2 3000
β = 0.18 -0.122 0.000 0.01 0.01 0.96
ρp = 0.90 -0.446 -0.001 0.02 0.02 0.95

3 8000
β = 0.00 0.004 0.000 0.03 0.03 0.95
ρp = 0.00 0.042 0.006 0.17 0.17 0.91

Table 3.4: Average bias of the naive and proposed estimators, and empirical standard error (ESE),
average estimated standard error (ASE), and 95% confidence interval (CI) coverage (%) of the
estimators of the causal association parameters β and ρp from 1000 simulations of three scenarios
described in Section 3.3.1. True values of the causal association parameters were determined
empirically based on the average potential outcomes from 20,000,000 participants in trial T = 1,
the random sample from the target population.

Performance of the proposed Spearman correlation estimator ρ̂s was mixed, as displayed in

Table 3.5. The point estimator was, on average, biased in two of the three scenarios, albeit less
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biased than the naive estimator. The estimator was median-unbiased in all three scenarios, though,

i.e., the empirical median of ρ̂s was approximately equal to ρs. Interval estimation was challenging.

The percentile bootstrap had 100% or near-100% coverage in all three scenarios. In scenario 2, all

1000 point estimates were ρ̂s = 0.9, perhaps due to the wide spread in the true values of τa and

relatively small variability induced by the data generating mechanism (see Table B.1), and so the

empirical SE was 0. Most intervals were simply the point set {0.9}, and the average interval width

was less than 0.01. However, in scenarios 1 and 3, the intervals were wide, with average widths

of 0.56 and 0.38, respectively. Interval estimation for the Spearman correlation is challenging for

low sample sizes. For instance, considering estimation of the Spearman correlation for data pairs

(Xi, Yi), i = 1, . . . , n (and no nuisance parameters), Borkowf (2000) evaluated several interval

estimation methods in a simulation study and found that none worked well in general for n = 5 or

n = 8.

Naive est. bias Proposed est. bias Proposed estimator
Scen ρs Mean Med Mean Med ESE ASE Coverage

1 0.00 -0.78 -0.80 -0.05 0.00 0.164 0.163 0.999
2 0.90 -0.28 -0.30 0.00 0.00 0.000 0.007 1.000
3 0.00 -0.07 -0.20 0.06 0.00 0.144 0.136 0.999

Table 3.5: Mean and median (Med) bias of the naive and proposed estimators (est.), and empirical
standard error (ESE), average bootstrap standard error (ASE), and 95% confidence interval coverage
of the proposed estimator of the causal association parameter ρs from 1000 simulations of three
scenarios (Scen) described in Section 3.3.1. True values of the causal association parameters were
determined empirically based on the average potential outcomes from 20,000,000 participants in
trial T = 1, the random sample from the target population.

The diagnostic test for violations of exchangeability assumptions proposed in Section 3.2.5

generally performed as expected. The null hypothesis of homogeneity was true in scenarios 1-3, and

in these scenarios the Type I error of the test was approximately equal to the nominal significance

level of .05 for both the tests based on LRTY and LRTS . In scenario 4, the null hypothesis of

homogeneity was false, and the diagnostic test had high power, correctly rejecting the null in more

than 99.5% of simulations for both LRTY and LRTS . The permutation and asymptotic tests gave

similar results.
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Perm p-value Asy p-value
Scenario LRTY LRTS LRTY LRTS

1 .061 .058 .061 .058
2 .051 .043 .051 .044
3 .054 .054 .054 .056
4 99.6 99.9 99.7 99.9

Table 3.6: Type I error (scenarios 1-3) and power (scenario 4) of the diagnostic hypothesis test
described in Section 3.2.5 for 1,000 simulations of four scenarios described in Section 3.3.1.

3.4 Discussion

In this chapter, three causal association parameters were considered for the evaluation of

surrogate endpoints while standardizing both true and surrogate effects to a target population.

These meta-analytic parameters were shown to be identifiable from the observed data and direct

standardization (parametric g-formula) point and variance estimators for each parameter were

proposed. The regression slope and Pearson correlation estimators β̂ and ρ̂p were shown to be

strongly consistent and asymptotically normal for the true parameter. A diagnostic test procedure

was proposed to measure the conditional exchangeability of trial assumption, using likelihood ratio

tests based on nested generalized linear models. Simulation studies were conducted motivated by

U.S. government Phase 3 COVID-19 trial data (USG COVID-19 Response Team / Coronavirus

Prevention Network (CoVPN) Biostatistics Team et al., 2022). The estimators β̂ and ρ̂p were

empirically unbiased and their interval estimators attained nominal coverage in most simulation

scenarios.

The Spearman correlation estimator ρ̂s had empirical bias in some scenarios, although it was

empirically median-unbiased. The percentile bootstrap confidence intervals for ρs over-covered

substantially, with nearly 100% coverage in all scenarios, and may have been wider than necessary.

These limitations of the Spearman estimators encourage the complementary use of all three causal

association parameters and estimators for surrogate endpoint evaluation. Future work could explore

alternative interval estimation methods for ρs such as the bias corrected and accelerated bootstrap

(reviewed by Diciccio and Romano, 1988), transformation approaches (Bishara and Hittner, 2012),
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or quantile-based methods (Borkowf, 2000). Improved interval estimation of ρp for the low target

potential outcome mean setting may be possible as well.

This paper considers a binary clinical endpoint, but trials usually have right-censoring from

loss to follow up and administrative censoring. Thus evaluation of time-to-event clinical endpoints

using, e.g., Cox proportional hazards outcome models, is useful. That said, for situations with rare

endpoints and low rates of loss to follow up, such as the SARS-CoV-2 vaccine trials, treating the

endpoint as binary may be satisfactory (USG COVID-19 Response Team / Coronavirus Prevention

Network (CoVPN) Biostatistics Team et al., 2022).

In the COVID-19 setting, the circulating SARS-CoV-2 variants and strains and the force of

infection affect vaccine efficacy, and these factors may differ across trials (Rapaka et al., 2022).

Phase 3 correlates analyses have been limited to COVID-19 caused by original or variant lineages

and ongoing studies are measuring antibody titers CoPs for omicron and future lineages (Gilbert

et al., 2022a). To the extent that calendar times of trials overlap, calendar time could be included as

a covariate. The possible lack of robustness when variables such as calendar time are not included

is important. Sensitivity analyses could be performed such as computation of nonparametric bounds

for the potential outcome means (Cole et al., 2019) and/or the causal association parameter.

Future research will apply the method to Phase 3 trial data from 5 or 6 USG / COVID-19

Response Team trials. The antibody markers in the trials were measured with a case-cohort design.

The immunogenicity subcohorts consist of breakthrough cases at Day 59 and baseline positives

and a random sample of trial participants stratified by key baseline covariates. Future analysis will

adjust for the case-cohort design using inverse probability of sampling weights (USG COVID-19

Response Team / Coronavirus Prevention Network (CoVPN) Biostatistics Team et al., 2022).
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CHAPTER 4: ON APPLICATION OF ESTIMATING EQUATIONS TO DATA FUSION

4.1 Introduction

Combining data from multiple sources to improve estimation is of interest in many fields

of research including biostatistics, epidemiology, statistics, and computer science. For instance,

data from a randomized trial and an observational study might be fused in order to generalize or

transport causal effects estimated in the randomized trial to a target population represented by an

observational cohort. In these cases, the data are independent across the multiple sources, but often

are not identically distributed (Pearl and Bareinboim, 2014; Bareinboim and Pearl, 2016). Several

systematic reviews and tutorials of data fusion–also called data integration, data combination, and

combining information–are available ( Cole et al., 2023; Colnet et al., 2023; Dahabreh, 2023;

Degtiar and Rose, 2023; Ridder and Moffitt, 2007, Section 6; Shi et al., 2023. In this chapter, the

implications of the non-identically distributed data for statistical inference of estimating equation

estimators is considered.

Both generally and in data fusion, an estimator θ̂ of a parameter θ ∈ Θ ⊂ Rp can frequently

be expressed as the solution to a vector of equations
∑n

i=1 ψ(Oi; θ) = 0 with ψ a known vector

function of the observed data Oi for unit i, with i = 1, . . . , n and n total units summing over

all samples. The equations are known as the estimating equations (EEs) or estimating functions

(Godambe, 1960). Maximum likelihood estimators, the generalized method of moments, least

squares, and generalized estimating equations can all be expressed as solutions to
∑
ψ(Oi; θ) = 0

for suitable choices of the ψ function. The estimator θ̂ is termed an EE estimator in this chapter,

although the term M-estimator is widely used; note that M-estimators were originally defined as

maximizing an EE (Huber 1964; discussed in van der Vaart 1998, Chapter 5.1). Stefanski and Boos

(2002) provide a tutorial on estimation and inference with EE estimators/M-estimators.
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In this chapter, the consistency and asymptotic normality (CAN) of EE estimators is considered,

i.e., proving
√
n(θ̂ − θ0)

d→ N (0, V (θ0)) with V (θ0) = A(θ0)
−1B(θ0) [A(θ0)

−1]
T as n → ∞,

where θ0 is the true value of θ and the components A(θ0) and B(θ0) of the ‘sandwich’ variance

V (θ0) are defined in Section 4.2. The asymptotic normality of θ̂ is the basis for an empirical

sandwich variance estimator V (θ̂) that replaces unknown quantities in V (θ0) with their estimates

(Stefanski and Boos, 2002). When data are independent and identically distributed (iid) from a

probability model and regularity conditions for the EEs hold, then θ̂ is consistent and asymptotically

normality (Huber, 1967), well-known results (Bang and Robins, 2005; Boos and Stefanski, 2013;

Carroll et al., 2006; Lunceford and Davidian, 2004; Huber and Ronchetti, 2009). When the data

Oi are iid, regularity conditions are assumed for an arbitrary summand from
∑
ψ(Oi; θ). Inagaki

(1973) extended Huber’s results to the case of independent but not necessarily identically distributed

(inid) data under conditions similar to those in Huber (1967), except on each summand ψ(Oi; θ). For

the non-identically distributed case, Yuan and Jennrich (1998) (hereafter YJ) developed regularity

conditions YJ described as “natural yet general“ and “more direct and easier to verify than those

in Inagaki (1973)”. Note that semiparametric and empirical process theory (van der Vaart, 1998;

Kosorok, 2008) can be used to demonstrate consistency and asymptotic normality.

In data fusion, data are often inid across sources and a nuance of the standard EE theory is that

it does not imply consistency and asymptotic normality for iid data. The inid EE theory of (Inagaki,

1973) or YJ does imply CAN. In this chapter the YJ conditions for consistency and asymptotic

normality of EE estimators using non-identically distributed data are described in Section 4.2. Here

it is shown the YJ conditions hold for two common fusion designs in Section 4.3 and thus the

estimators are indeed CAN. A brief discussion concludes the chapter.

4.2 Estimating equation asymptotic theory

In this section the EE framework of YJ is described. Consider the EEs
∑n

i=1 ψ(Oi; θ) = 0 with

the data Oi assumed to be independent but not necessarily identically distributed. The solution to
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the EEs is the EE estimator θ̂. Let Gn(θ) = n−1
∑
ψ(Oi; θ) with summations taken from i = 1 to

n and Ġn(θ) = ∂Gn(θ)/∂θ.

Condition 4.1. Gn(θ0)
a.s.→ 0 (converges almost surely) as n→ ∞.

Condition 4.2. There is a neighborhood of θ0 on which with probability one −Gn(θ) is continuously

differentiable; and −Ġn(θ) converges uniformly to a non-stochastic limit which is non-singular at

θ0.

Condition 4.3.
√
nGn(θ0)

d→ N (0, B(θ0)) (converges in distribution).

Under conditions 4.1 and 4.2, θ̂ a.s.→ θ0, i.e., θ̂ is a strongly consistent estimator of θ (YJ Theorem

2). Under conditions 4.1, 4.2, and 4.3, θ̂ is asymptotically normal, i.e.,
√
n(θ̂ − θ0)

d.→ N (0, V (θ0))

(YJ Theorem 4).

The alternative regularity conditions 4.4 and 4.5 from Yuan and Jennrich (1998) were

Condition 4.4. For all i, E[ψ(Oi; θ0)] = 0 and Cov{ψ(Oi; θ0)} = Bi(θ0) with B̄(θ0) =

n−1
∑
Bi(θ0) → B(θ0) for positive definite B(θ0).

Condition 4.5. For all Bi(θ0), there exist positive numbers δ and N such that for all i,

E
∣∣ψ(Oi; θ0)

T{I +Bi(θ0)}−1ψ(Oi; θ0)
∣∣1+δ ≤ N

Condition 4.4 implies condition 4.1 (YJ Theorem 5) and conditions 4.4 and 4.5 together imply

condition 4.3 (YJ Theorem 6). Importantly, the conditions must hold for all individuals i, whereas

in the iid setting conditions similar conditions can omit the subscript on i (as detailed in Boos and

Stefanski, 2013, Chapter 7.5). Under condition 4.4, an unbiased set of EEs are used and the variance

of the EE vector converges to a positive definite matrix.

Let Θ denote a compact neighborhood of θ0.

Condition 4.6. With probability one, the EEs ψ(Oi; θ) are twice continuously differentiable on Θ.

Condition 4.7. For each θ ∈ Θ, E[−Ġn(θ)]
p→ −Ġ(θ) = A(θ) with A(θ0) non-singular, and

−Ġn(θ)
a.s.→ A(θ).
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Condition 4.8. For each i, there exists a function q(Oi; θ) such that ∥−ψ̈(Oi; θ)∥ ≤ q(Oi; θ) and

Pr(supi≥1 q(Oi; θ) <∞) = 1.

Under conditions 4.6 through 4.8, −Ġn(θ)
a.s.→ −Ġ(θ) uniformly and can be used for checking

condition 4.2 (Yuan, 1997; Yuan and Jennrich, 1998, Lemma 6).

4.3 Examples

4.3.1 Prevalence estimation under misclassification bias with external validation data

Consider prevalence estimation of a binomial parameter π = Pr(Y = 1) where the variable

of interest Y is unobserved. The observed data X are measured by an instrument subject to

misclassification bias, i.e., has possibly imperfect sensitivity Se = Pr(X = 1 | Y = 1) and

specificity Sp = Pr(X = 0 | Y = 0). For instance, Y may be disease status and X the result

of a laboratory assay. The population proportion of positive results is p = Pr(X = 1). The

parameter of interest π can be expressed as a function of the nuisance parameters θ = (Se, Sp, p),

as π = f(θ) = (p+ Sp− 1)/(Se+ Sp− 1).

Suppose a main study is drawn as a random sample from the population of interest. Also

suppose validation studies are conducted on samples from strata of the population where it is

known that Y = 1 and that Y = 0 (true positives and true negatives), in order to estimate the

sensitivity and specificity of the measurement instrument. There are three independent samples

with X1, . . . , Xn1

iid∼ Bernoulli(Se) for the sensitivity validation study, Xn1+1, . . . , Xn1+n2

iid∼

Bernoulli(1− Sp) for the specificity validation study, and Xn1+n2+1, . . . , Xn3

iid∼ Bernoulli(p) for

the main study with n = n1 + n2 + n3. Let S denote the sample each unit is in with Si = 1 for the

sensitivity study, Si = 2 for the specificity study, and Si = 3 for the main study, with S treated

as a fixed constant. Assume (n1/n, n2/n, n3/n) → (c1, c2, c3) ∈ (0, 1)3 as n→ ∞. The observed

data are Oi = (Xi, Si) for i = 1, . . . , n. The sample proportions Ŝe = n−1
1

∑
I(Si = 1)Xi,

Ŝp = n−1
2

∑
I(Si = 2)(1 − Xi), and p̂ = n−1

3

∑
I(Si = 3)Xi are consistent estimators of the

nuisance parameters. The plug-in estimator of π is π̂ = (p̂+ Ŝp− 1)/(Ŝe+ Ŝp− 1) (Rogan and

Gladen, 1978; Marchevsky, 1979).
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Consider the asymptotic distribution of π̂. Let θ̂ = (Ŝe, Ŝp, p̂). The estimator θ̂ solves the

vector of estimating equations

ψ(Oi; θ) =


ψSe

ψSp

ψp

 =


I(Si = 1){Xi − Se}

I(Si = 2){(1−Xi)− Sp}

I(Si = 3){Xi − p}

 = 0

(Cole et al., 2023; Rosin et al., 2023). Note E[ψSe] = E[Xi − Se | Si = 1]Pr(Si = 1) = 0 by the

law of total expectation and likewise E[ψSp] = E[ψp] = 0. Let Bi(θ0) = Cov{ψ(Oi; θ0)} with

Bi(θ0) = diag (I(Si = 1)Se(1− Se), I(Si = 2)Sp(1− Sp), I(Si = 3)p(1− p)) ,

B̄(θ0) = n−1
∑

Bi(θ0) = n−1 diag (n1Se(1− Se), n2Sp(1− Sp), n3p(1− p)) ,

and

B̄(θ0) → diag (c1Se(1− Se), c2Sp(1− Sp), c3p(1− p)) .

When the population parameters Se, Sp, and p are not on the boundaries of their parameter spaces,

i.e., assuming (Se, Sp, p) ∈ (0, 1)3, the limiting matrix is positive definite because c1, c2, c3 > 0

and Condition 4.4 holds.
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For all i,

E
∣∣ψ(Oi; θ0)

T{I +Bi(θ0)}−1ψ(Oi; θ0)
∣∣2

= E

∣∣∣∣ I(Si = 1)(Xi − Se)2

1 + I(Si = 1)Se(1− Se)
+
I(Si = 2)((1−Xi)− Sp)2

1 + I(Si = 2)Sp(1− Sp)
+

I(Si = 3)(Xi − p)2

1 + I(Si = 3)p(1− p)

∣∣∣∣2
≤ E

∣∣∣∣I(Si = 1)(Xi − Se)2

1 + Se(1− Se)
+
I(Si = 2)((1−Xi)− Sp)2

1 + Sp(1− Sp)
+
I(Si = 3)(Xi − p)2

1 + p(1− p)

∣∣∣∣2
= E

[
I(Si = 1)(Xi − Se)4

(1 + Se(1− Se))2

]
+ E

[
I(Si = 2)((1−Xi)− Sp)4

(1 + Sp(1− Sp))2

]
+ E

[
I(Si = 3)(Xi − p)4

(1 + p(1− p))2

]
+ 2E

[
I(Si = 1)I(Si = 2)(Xi − Se)2((1−Xi)− Sp)2

(1 + Se(1− Se))
(1 + Sp(1− Sp))

]
+ 2E

[
I(Si = 1)I(Si = 3)(Xi − Se)2(Xi − p)2

(1 + Se(1− Se))
(1 + p(1− p))

]
+ 2E

[
I(Si = 2)I(Si = 3)((1−Xi)− Sp)2(Xi − p)2

(1 + Sp(1− Sp))(1 + p(1− p))

]
= E

[
(Xi − Se)4

(1 + Se(1− Se))2
| Si = 1

]
Pr(Si = 1)

+ E

[
((1−Xi)− Sp)4

(1 + Sp(1− Sp))2
| Si = 2

]
Pr(Si = 2)

+ E

[
(Xi − p)4

(1 + p(1− p))2
| Si = 3

]
Pr(Si = 3) (4.3)

≤ E[(Xi − Se)4 | Si = 1]Pr(Si = 1) + E[((1−Xi)− Sp)4 | Si = 2]Pr(Si = 2)

+ E[(Xi − p)4 | Si = 3]Pr(Si = 3)

≤ Pr(Si = 1) + Pr(Si = 2) + Pr(Si = 3)

≤ 3

with (4.3) holding by the law of total probability so Condition 4.5 holds with δ = 1 and = 3. The

matrix −ψ̇i(Oi; θ) = diag(I(S = 1), I(S = 2), I(S = 3)) and −ψ̈(Oi; θ) = 0, so the EEs are

infinitely continuously differentiable and conditions 4.6 and 4.8 hold. The matrix E[−Ġn(θ)] equals

n−1
∑

diag (I(Si = 1), I(Si = 2), I(Si = 3)) = n−1 diag(n1, n2, n3)→ diag(c1, c2, c3) = A(θ)
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since S is treated as a fixed constant and A(θ0) is non-singular because c1, c2, c3 ∈ {0, 1} (with

the convergence non-stochastic). The matrix −Ġn(θ) → A(θ) by the same logic, so condition 4.7

holds.

Thus the nuisance estimator θ̂ is CAN with
√
n(θ̂ − θ0)

d→ N (0, V (θ0)). The prevalence

estimator π̂ is CAN with asymptotic variance ḟ(θ0)Vθ0 ḟ(θ0)
T by the delta method.

4.3.2 Generalizing randomized trials using inverse probability of sampling weights

4.3.2.1 Problem setup and notation

Suppose a randomized trial is conducted with n participants and the goal is generalization of

the trial results to a target population of size N , from which m < N individuals are randomly

sampled. Let A denote a treatment indicator with A = 1 for treatment and A = 0 otherwise. Define

Y a
i as the potential outcome if individual i were to receive treatment A = a, a ∈ {0, 1}. Covariates

Xi are observed on all n+m individuals combining the trial and the sample from the cohort. For

parsimony, presume the trial is marginally randomized, although extensions to stratified trials by

X are straightforward. Denote the randomization probabilities by πa = Pr(A = a | S = 1) for

a ∈ {0, 1}. Let Si indicate trial participation with Si = 1 for the trial and Si = 0 otherwise. The

main parameter of interest is the population average treatment effect τ = E[Y 1 − Y 0] = µ1 − µ0

with µ1 and µ0 denoting the mean potential outcomes in the target population (assuming the potential

outcomes are integrable).

Following Buchanan et al. (2018), the observed data are n+m independent (inid) copies ofOi =

(Si, Xi, Si(Ai, Yi)) for individuals i = 1, . . . , n+m, and the data are stacked such that the data are n

iid copies of (Yi, Xi, Ai | Si = 1) from the trial and m iid copies of (Xi | Si = 0) from the random

sample from the target population. Several assumptions enabling causal identification. The stable

unit treatment value assumption (Rubin, 1980) assumes Yi = Y 1
i A+Y 0

i (1−A) (causal consistency)

and assumes no interference between individuals, i.e., one individual’s potential outcomes are

not affected by another individual’s treatment assignment. Assume treatment exchangeability

Y a
i ⊥⊥ Ai | Si = 1 and treatment positivity Pr(Ai = a | Si = 1, Xi) > 0 which are guaranteed
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by marginal randomization. Assume sampling exchangeability Y a
i ⊥⊥ Si | Xi and trial positivity

Pr(Si = 1 | Xi = x) ≥ b > 0 for some constant b and all x such that dFX(x) > 0, where FX(x)

is the distribution function of X . For elucidation of the asymptotic theory, assume the sampling

weights (scores) wi(Xi) = Pr(Si = 1 | Xi) are known functions of the covariates, although

generally when combining data the weights must be estimated, e.g., from a parametric model. The

sampling weights are positive by trial positivity.

Inverse probability of sampling weighting (IPSW) is an approach for estimation of the sampling

(selection) scores (Cole and Stuart, 2010; Stuart et al., 2010; Lesko et al., 2017; Buchanan et al.,

2018; Egami and Hartman, 2021; Colnet et al., 2022). An IPSW estimator of τ with Hájek-type

stabilized weights is

τ̂ = µ̂1 − µ̂0 =

∑
i SiYiAi/wi∑
i SiAi/wi

−
∑

i SiYi(1− Ai)/wi∑
i Si(1− Ai)/wi

with summations taken from i = 1 to n+m (Buchanan et al., 2018; Colnet et al., 2023, Appendix

E.1.1) (Buchanan et al., 2018). Let θ̂ = (µ̂1, µ̂0) denote the estimator of θ = (µ1, µ0). Buchanan

et al. (2018) introduced unbiased estimating equations for θ:

ψ(Oi; θ) =

 SiAi(Yi − µ1)/wi(Xi)

Si(1− Ai)(Yi − µ0)/wi(Xi)

 = 0.

Put Pr(Si = 1) = n/N as the marginal probability of an individual in the target population

participating in the trial and, following Buchanan et al. (2018), assume limn,N→∞ n/N = Pr(S =

1). Similarly put the limiting ratio of the trial size to the combined size of the trial and the sample

from the target as limn,m→∞ n/(n+m) = c ∈ (0, 1). Assume EY,X|S=1[(Y − µa)
m/w(X)m | S =

1] ∈ (0,∞) for m ∈ {2, 3} and a ∈ {0, 1}. Lastly, assume the empirical distribution function of X

converges almost surely to a distribution function.
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4.3.2.2 Consistency and asymptotic normality

The unbiasedness of the estimating equations is directly implied from a proof of consistency of

IPSW estimators (Colnet et al., 2022, Theorem A.2) as well as more research on asymptotics of

IPSW estimators (Buchanan et al., 2018; Egami and Hartman, 2021). A proof is straightforward

and is omitted. The variance of the EEs for individual i is

Bi(θ) = Var(ψ(Oi; θ))

= E
[
Si diag(Ai(Yi − µ1)

2, (1− Ai)(Yi − µ0)
2)/wi(Xi)

2
]

= E
[
diag(Ai(Yi − µ1)

2, (1− Ai)(Yi − µ0)
2)/wi(Xi)

2 | S = 1
]
Pr(Si = 1)

=
n

N
EY,X|S=1

[
diag(π1(Y − µ1)

2, π0(Y − µ0)
2)/w(X)2 | S = 1

]
with the last equality holding because the data are iid conditional on S, so

B̄(θ) = (n+m)−1

n+m∑
i=1

Bi(θ) = (n+m)−1

n∑
i=1

Bi(θ)

=
n

n+m

n

N
EY,X,A|S=1

[
diag(A(Y − µ1)

2, (1− A)(Y − µ0)
2)/w(X)2 | S = 1

]
a.s.→ cPr(S = 1)EY,X,A|S=1

[
diag(A(Y − µ1)

2, (1− A)(Y − µ0)
2)/w(X)2 | S = 1

]
= B(θ)

with the second equality holding because the data are iid conditional on S. The asymptotic variance

B(θ) is positive definite by the assumption that c ∈ (0, 1) and finitude ofE[(Y −µa)
2/w(X)2 | S =

1]. The Pr(S = 1) term in the variance is only identifiable from the data if the target population size

N is defined (see Colnet et al., 2023, Section 2.1 and Appendix C for a discussion of identifiability).

Weighted logistic regression (Scott and Wild, 1986; Buchanan et al., 2018; Egami and Hartman,

2021) incorporates the target population size in estimation.
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A special case of assumption 4.5 is the boundness of E∥ψ(Oi; θ0)∥3 (YJ). Letting δ = 1/2,

E∥ψ(Oi; θ0)∥3 = = E
[
(SiAi(Yi − µ1)

2/wi(Xi)
2 + Si(1− Ai)(Yi − µ0)

2/wi(Xi)
2)3/2

]
= E[SiAi(Yi − µ1)

3/wi(Xi)
3 + Si(1− Ai)(Yi − µ0)

3/wi(Xi)
3]

= E[π1(Yi − µ1)
3/wi(Xi)

3 + π0(Yi − µ0)
3/wi(Xi)

3 | Si = 1]Pr(Si = 1)

=
n

N
EY,X|S=1[π1(Y − µ1)

3/w(X)3 + π0(Y − µ0)
3/w(X)3 | S = 1]

is bounded by finitude of E[(Y − µa)
3/w(X)3 | S = 1] so condition 4.5 holds.

All derivatives of −ψ̇(Oi; θ) = diag(SiAi/wi, Si(1− Ai)/wi) equal 0 so ψ(Oi; θ) is infinitely

continuously differentiable and condition 4.6 holds. The matrix

E[−Ġn(θ)] = (n+m)−1

n+m∑
i=1

E [diag(Ai, 1− Ai)Si/wi(Xi))]

= (n+m)−1

n∑
i=1

E[diag(Ai, 1− Ai)/wi(Xi) | Si = 1]Pr(Si = 1)

=
n

n+m

n

N
diag(π1, π0)EX|S=1 [1/wi(Xi) | S = 1]

a.s.→ cPr(S = 1) diag(π1, π0)EX|S=1[1/w(X) | S = 1]

= A(θ)

with the third equality from iid data conditional on S. The limit A(θ0) is non-singular by the

assumption c ∈ (0, 1) and by trial positivity. From the above, it is straightforward that −Ġn(θ)
a.s.→

A(θ) by the strong law of large numbers and thus condition 4.7 holds. Since −ψ̈(Oi; θ) = 0

condition 4.8 holds. Thus θ̂ is CAN and τ̂ is CAN by the delta method.

4.4 Discussion

In the prevalence estimation example, an assumption was made that the true parameter θ0 =

(Se0, Sp0, p0) was on the interior of the parameter space [0, 1]3 (not on the boundary). The parameter

boundary is important in prevalence estimation because point estimates of Se and Sp are sometimes
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1 and point estimates of the probability of testing positive are near 0 at the beginning of pandemics.

The parameter interior assumption is a limitation of the approach used in YJ, as it was necessary to

ensure that the asymptotic variance of the nuisance estimator was positive definite. Andrews (1999)

introduced an approach to extremum estimation (of which M-estimation is a subclass) when the

parameter is on the boundary that could be used in fusion problems. However, for the particular case

of prevalence estimation with misclassification bias, new developments motivated by the COVID-19

pandemic suggest interval estimation approaches not based on asymptotic normal approximations

have advantages (Gelman and Carpenter, 2020; DiCiccio et al., 2022; Cai et al., 2022; Bayer et al.,

2023, etc.).

It could be possible to prove that the EE estimator is a uniformly consistent estimator, a stronger

convergence than the almost sure convergence used in this chapter. A proof of uniform consistency

might require stronger conditions. For instance, a condition such as the uniform convergence of

Gn(θ0) might be necessary, rather than the almost sure convergence in condition 4.1.While these

examples and the example in Yuan and Jennrich (1998) used the alternative conditions, it could be

interesting to use the those of Inagaki (1973) or conditions 4.1 through 4.3. Lastly, future directions

for this research could investigate the asymptotic distribution of the inverse probability of sampling

weights estimator when the regression coefficients are estimated.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 2

This appendix contains proofs and figures supplemental to the main text of Chapter 2.

A.1 Maximum likelihood estimation of (σe, σp, ρ)

Consider estimation of the parameter vector (σe, σp, ρ). The likelihood is a product of three

binomial distributions corresponding to the sensitivity, specificity, and main study datasets. Letting

T1 =
∑n1

i=1Xi, T2 =
∑n1+n2

i=n1+1Xi, and T3 =
∑n1+n2+n3

i=n1+n2+1Xi, the log-likelihood is proportional to

T1 log σe+(n1−T1) log(1−σe)+(n2−T2) log σp+T2 log(1−σp)+T3 log ρ+(n3−T3) log(1−ρ).

Therefore the maximum likelihood estimator (MLE) of (σe, σp, ρ) is (σ̂e, σ̂p, ρ̂) where σ̂e = T1/n1,

σ̂p = (n2 − T2)/n2, and ρ̂ = T3/n3.

A.2 Proofs for Section 2.2

A.2.1 Proof of asymptotic normality

Taylor expansion of n−1
∑
ψ(Xi; δi, θ̂) around the true parameter θ yields

0 = n−1
∑

ψ(Xi; δi, θ̂) = n−1
∑

ψ(Xi; δi, θ) + n−1
∑

ψ̇(Xi; δi, θ)(θ̂ − θ) +R

where ψ̇(Xi; δi, θ) = ∂ψ(Xi; δi, θ)/∂θ
T and R is a remainder term. Rearranging and multiplying

by
√
n yields

√
n(θ̂ − θ) =

{
n−1

∑
−ψ̇(Xi; δi, θ)

}−1√
n
{
n−1

∑
ψ(Xi; δi, θ)

}
+
√
nR∗ (A.1)

where R∗ is a new remainder defined below. It is shown below that n−1
∑

−ψ̇(Xi; δi, θ) →p A(θ),
√
n{n−1

∑
ψ(Xi; δi, θ)} →d N{0,B(θ)}, and

√
nR∗ →p 0, where A(θ) and B(θ) are defined

below. Therefore, by Slutsky’s theorem,
√
n(θ̂ − θ) →d N

{
0,A(θ)−1B(θ)A(θ)−T

}
.
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First, define

An(X, δ, θ) = n−1
∑

−ψ̇(Xi; δi, θ)

= n−1
∑



I(δi = 1) 0 0 0

0 I(δi = 2) 0 0

0 0 I(δi = 3) 0

π −1 + π −1 σe + σp − 1


and let

A(θ) =



c1 0 0 0

0 c2 0 0

0 0 c3 0

π −1 + π −1 σe + σp − 1


.

As n → ∞, An(X, δ, θ) → A(θ) by the assumption that n−1
∑
I(δi = j) = nj/n → cj ∈ (0, 1)

for j ∈ {1, 2, 3}.

Second, for brevity, let ψe denote ψe(Xi; δi, θi), and similarly for ψp, ψρ, and ψπ. Define

Bn(X, δ, θ) = n−1
∑

E
{
ψ(Xi; δi, θ)ψ(Xi; δi, θ)

T
}

= n−1
∑

E



ψ2
e 0 0 ψeψπ

0 ψ2
p 0 ψpψπ

0 0 ψ2
ρ ψρψπ

ψπψe ψπψp ψπψρ ψ2
π


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and let

B(θ) =



c1σe(1− σe) 0 0 0

0 c2σp(1− σp) 0 0

0 0 c3ρ(1− ρ) 0

0 0 0 0


.

Note that B(θ) = limn→∞ Bn(X, δ, θ) as E(ψ2
e) = E{I(δi = 1)(Xi − σe)

2} = I(δi = 1)σe(1− σe)

and likewise for E(ψ2
p) and E(ψ2

ρ). It follows that
√
n {n−1

∑
ψ(Xi; δi, θ)} →d N{0,B(θ)} by the

Lindeberg-Feller CLT. In particular, let s2n =
∑

{Var(ψe) + Var(ψp) + Var(ψρ) + Var(ψπ)} =

n1σe(1 − σe) + n2σp(1 − σp) + n3ρ(1 − ρ) and let ∥·∥ denote the Euclidean norm. Note that

maxi∥ψ(Xi; δi, θ)∥ ≤
√
2 as the maximum magnitude of each element of ψ(Xi; δi, θ) is 1, and for

a given observation Xi it is always true that two of the indicators δ1, δ2, δ3 equal zero and the third

indicator equals one. Therefore for all ϵ > 0,

lim
n→∞

s−2
n

∑
E
{
∥ψ(Xi; δi, θ)∥2I(∥ψ(Xi; δi, θ)∥ ≥ ϵsn)

}
≤ lim

n→∞
2s−2

n

∑
P (

√
2 ≥ ϵsn) = 0,

implying the Lindeberg condition holds.

Third, it remains to prove
√
nR∗ →p 0. The outline of the proof of Boos and Stefanski

(2013) Theorem 7.2 can be followed, but their assumption of identically distributed data must

be removed. Consider the second-order Taylor series expansion of the jth element of the vector

n−1
∑
ψ(Xi; δi, θ̂), denoted n−1

∑
ψj(Xi; δi, θ̂), around the true value θ:

0 = n−1
∑

ψj(Xi; δi, θ̂) = n−1
∑

ψj(Xi; δi, θ) + n−1
∑

ψ̇j(Xi; δi, θ)(θ̂ − θ)

+
1

2
(θ̂ − θ)Tn−1

∑
ψ̈j(Xi; δi, θ̃j)(θ̂ − θ)

where θ̃1, . . . , θ̃4 are on the line segment joining θ̂ and θ and ψ̈j(Xi; δi, θj) is a 4× 4 matrix with

entry (j, k) equal to ∂2ψj(Xi; δi, θj)/∂θj∂θk for j, k ∈ {1, 2, 3, 4}. Writing these 4 equations in

matrix notation yields

0 = n−1
∑

ψ(Xi; δi, θ) + R̃(θ̂ − θ) (A.2)
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where R̃ =
{
n−1

∑
ψ̇(Xi; δi, θ) + (1/2)Q̃

}
and

Q̃ =



0 0 0 0

0 0 0 0

0 0 0 0

σe − σ̂e σp − σ̂p 0 0


is the 4× 4 matrix with jth row given by (θ̂ − θ)Tn−1

∑
ψ̈j(Xi; δi, θ̃j). Note that Q̃ →p 04×4 by

the Weak Law of Large Numbers, where in general 0r×c denotes an r × c matrix of zeros. Also

note that n−1
∑
ψ̇(Xi; δi, θ) →p −A(θ), where −A(θ) is nonsingular under the assumption that

σe > 1− σp. It follows that as n→ ∞, R̃ is invertible with probability one. On the set Sn where R̃

is invertible, (A.2) can be rearranged to yield

θ̂ − θ =
(
−R̃

)−1 {
n−1

∑
ψ(Xi; δi, θ)

}
. (A.3)

Define

R̃∗ =
1

1 + g

{
n−1

∑
−ψ̇(Xi; δi, θ)

}−1

(1/2)Q̃
{
n−1

∑
−ψ̇(Xi; δi, θ)

}−1

where g = Tr

[
−(1/2)Q̃

{
n−1

∑
−ψ̇(Xi; δi, θ)

}−1
]

, and note that R̃∗ →p 04×4 by Slutsky’s

theorem because Q̃→p 04×4. Since (1/2)Q̃ has rank one, an application of the Sherman-Morrison-

Woodbury formula (Miller, 1981) can be used to show
(
−R̃

)−1

=
{
n−1

∑
−ψ̇(Xi; δi, θ)

}−1

+ R̃∗.

Thus, substituting this expression for (−R̃)−1 into (A.3) and multiplying by
√
n yields (A.1),

where R∗ = R̃∗ {n−1
∑
ψ(Xi; δi, θ)}. Therefore, because limn→∞ Pr(Sn) = 1, R̃∗ →p 04×4, and

√
n {n−1

∑
ψ(Xi; δi, θ)} →d N (0,B(θ)), by Slutsky’s theorem

√
nR∗ →p 0.
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A.2.2 Computation of asymptotic variance

Since A(θ) is lower triangular, it follows that

A(θ)−1 =



1/c1 0 0 0

0 1/c2 0 0

0 0 1/c3 0

− π

c1(σe + σp − 1)

1− π

c2(σe + σp − 1)

1

c3(σe + σp − 1)
(σe + σp − 1)−1


,

and therefore A(θ)−1B(θ)A(θ)−T equals



σe(1− σe)/c1 0 0 ∗

0 σp(1− σp)/c2 0 ∗

0 0 ρ(1− ρ)/c3 ∗

∗ ∗ ∗ Vπ,RG


,

where * denotes quantities not expressed explicitly and

Vπ,RG =

{
π2σe(1− σe)

c1
+

(1− π)2σp(1− σp)

c2
+
ρ(1− ρ)

c3

}
(σe + σp − 1)−2.

A.3 Proofs for Section 2.3.2

A.3.1 Proof of asymptotic normality

The Taylor expansion of n−1
∑
ψ(Xi, Zi; δi, θ̂s) around the true parameter θs yields

√
n(θ̂s − θs) =

{
n−1

∑
−ψ̇(Xi, Zi; δi, θs)

}−1√
n
{
n−1

∑
ψ(Xi, Zi; δi, θs)

}
+
√
nR∗,

which is similar in form to (A.1), except here the estimating equations are dependent on covariates

Z. The remainder R∗ here is distinct from that in Appendix A.2.1, and in general symbols may be

reused and notation may not hold the same meaning across appendices. Below it is established,
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using an analogous approach to that of Appendix A.2.1, that n−1
∑

−ψ̇(Xi, Zi; δi, θs) →p A(θs),
√
n{n−1

∑
ψ(Xi, Zi; δi, θs)} →d N{0,B(θs)}, and

√
nR∗ →p 0. Therefore, by Slutsky’s theorem,

√
n(θ̂s − θs) →d N{0,A(θs)−1B(θs)A(θs)−T}.

First, define

An(X,Z, δ, θs) = n−1
∑{

−ψ̇(Xi, Zi; δi, θs)
}
=

 A′ 0(k+2)×2

C D


as a block matrix where A′ = diag (n1/n, n2/n, nz1/n, . . . , nzk/n) is (k + 2)× (k + 2),

C =

 0 0 −γ1 . . . −γk

π −1 + π 0 . . . 0


is 2× (k + 2), and

D =

 1 0

−1 σe + σp − 1

 .
Let

A(θs) =

 A 0(k+2)×2

C D


where A = diag{c1, c2, c3s1, . . . , c3sk}, and note that A(θs) = limn→∞ An(X,Z, δ, θs) since

nj/n → cj for j ∈ {1, 2, 3}. Note that s1, . . . , sk are all nonzero due to positivity, without

which π̂SRG is undefined.

Second, define

Bn(X,Z, δ, θs) = n−1
∑

E{ψ(Xi, Zi; δi, θs)ψ(Xi, Zi; δi, θs)
T} =

 E ′ 0(k+2)×2

02×(k+2) 02×2

 ,
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where

E ′ = diag{n1σe(1− σe)/n, n2σp(1− σp)/n, nz1ρ1(1− ρ1)/n, . . . , nzkρk(1− ρk)/n},

since E(ψ2
ρj
) = E{I(Zi = zj, δi = 3)(Xi − ρj)

2} = I(Zi = zj, δi = 3)ρj(1− ρj). Define B(θs) to

have the same form as Bn(X,Z, δ, θs) except E ′ is replaced by

E = diag{c1σe(1− σe), c2σp(1− σp), c3s1ρ1(1− ρ1), . . . , c3skρk(1− ρk)}.

Since B(θs) = limn→∞ Bn(X,Z, δ, θs),
√
n {n−1

∑
ψ(Xi, Zi; δi, θs)} →d N{0,B(θs)} by the

Lindeberg-Feller CLT. In particular, let

v2n =
∑

{Var(ψe) + Var(ψp) + Var(ψρ1) + · · ·+Var(ψρk) + Var(ψρ) + Var(ψπ)}

= n1σe(1− σe) + n2σp(1− σp) +
k∑

j=1

nzjρj(1− ρj),

and note that maxi∥ψ(Xi, Zi; δi, θs)∥ ≤
√
3 because at most one of ψe, ψp, ψρ1 , . . . , ψρk is nonzero

and each element of ψ(Xi, Zi; δi, θs) has a maximum value of one. Therefore for all ϵ > 0,

lim
n→∞

v−2
n

∑
E
{
∥ψ(Xi; δi, θ)∥2I(∥ψ(Xi; δi, θ)∥ ≥ ϵvn)

}
≤ lim

n→∞
3v−2

n

∑
P (

√
3 ≥ ϵvn) = 0,

implying the Lindeberg condition holds.

Third, let Q̃s be analogous to Q̃ from Appendix A.2.1. Denote the jth entry of θs as θsj and note

that |∂2ψj(Xi, Zi; δi, θs)/∂θsjθsl | ≤ 1 for all j, l ∈ {1, 2, . . . , k + 4}. Thus there exists a function

g(Xi, Zi, δi) such that, for each θ∗s in a neighborhood of θs,
∣∣∣∂2ψj(Xi, Zi; δi, θs)/∂θ

∗
sj
∂θ∗sl

∣∣∣ ≤

g(Xi, Zi, δi) holds for all Xi, Zi, δi where
∫
g(Xi, Zi, δi)dF (Xi, Zi, δi) < ∞; e.g., let

g(Xi, Zi, δi) = 2. Therefore, each entry in Q̃s is bounded by ∥θ̂s − θs∥n−1
∑
g(Xi, δi) = op(1),

so Q̃s →p 0(k+4)×(k+4). This fact can be used to prove
√
nR∗ →p 0 with the same technique as in

Appendix A.2.1, so we omit the rest of the proof.
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A.3.2 Computation of asymptotic variance

Note that A(θs) is block lower triangular, and thus

A(θs)−1 =

 A−1 0(k+2)×2

−D−1CA−1 D−1


and therefore

A(θs)−1B(θs)A(θs)−T =

 A−1EA−1 −A−1EA−1CTD−T

−D−1CA−1EA−1 D−1CA−1EA−1CTD−T

 .
The bottom right submatrix of A(θs)−1B(θs)A(θs)−T , and specifically the bottom right element of

that submatrix, is of primary interest. Since A and E are both diagonal,

A−1EA−1 = diag{c−1
1 σe(1− σe), c

−1
2 σp(1− σp), c

−1
3 s−1

1 ρ1(1− ρ1), . . . , c
−1
3 s−1

k ρk(1− ρk)}.

Next, note

D−1C =

 0 0 −γ1 . . . −γk
π

σe + σp − 1

−1 + π

σe + σp − 1

−γ1
σe + σp − 1

. . .
−γk

σe + σp − 1

 .
Therefore, D−1CA−1EA−1 equals

 0 0 −γ1c−1
3 s−1

1 ρ1(1− ρ1) . . . −γkc−1
3 s−1

k ρ1(1− ρ1))

πσe(1− σe)

c1(σe + σp − 1)

(−1 + π)σp(1− σp)

c2(σe + σp − 1)
− γ1ρ1(1− ρ1)

c3s1(σe + σp − 1)
. . . − γkρk(1− ρk)

c3sk(σe + σp − 1)


and thus

D−1CA−1EA−1CTD−T =

 ∗ ∗

∗ Vπ,SRG


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where * denotes quantities not expressed explicitly and

Vπ,SRG =

{
π2σe(1− σe)

c1
+

(1− π)2σp(1− σp)

c2
+

k∑
j=1

γ2j ρj(1− ρj)

c3sj

}
(σe + σp − 1)−2.

A.4 Proof for Section 3.3

The proof that θm is asymptotically normal is given for the case of logistic regression, but it

extends to any link function g(·) appropriate for binary regression. Recall that the (p+ 4)-vector of

estimating equations is

∑
ψ(Xi, Zi; δi, θm) =

(∑
ψe,

∑
ψp,

∑
ψβ, ψρ, ψπ

)T

= 0.

In the above vector
∑
ψe,

∑
ψp, and ψπ are identical to the equations used in Appendices A.2

and A.3; ψρ =
∑k

j=1 logit
−1{βh(Zj)}γj − ρ; and

∑
ψβ is a p-vector with jth element

∑
ψβj

=∑
I(δi = 3)

[
Xi − logit−1{βh(Zi)}

]
hj(Zi). The Taylor expansion of n−1

∑
ψ(Xi, Zi; δi, θ̂m)

around the true parameter θm yields

√
n(θ̂m − θm) =

{
n−1

∑
−ψ̇(Xi, Zi; δi, θm)

}−1√
n
{
n−1

∑
ψ(Xi, Zi; δi, θm)

}
+
√
nR∗.

The rest of the proof is similar to Appendices A.2.1 and A.3.1. Namely, first define

An(X,Z, δ, θm) = n−1
∑{

−ψ̇(Xi, Zi; δi, θm)
}
=


A′ 02×p 02×2

0p×2 B′ 0p×2

C D E


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as a block matrix where A′ = diag(n1/n, n2/n), B′ is p×p with entry (j, k) equal to n−1
∑
I(δi =

3)hj(Zi)hk(Zi) exp{βh(Zi)}/ [1 + exp{βh(Zi)}]2,

C =

0 0

π −1 + π

 ,

D =

 −
∑k

j=1 h1(Zj)
exp{βh(Zi)}

[1 + exp{βh(Zi)}]2
γj . . . −

∑k
j=1 hp(Zj)

exp{βh(Zi)}
[1 + exp{βh(Zi)}]2

γj

0 . . . 0


is 2× p, and

E =

 1 0

−1 σe + σp − 1

 .
Let A(θm) have the same form as An(X,Z, δ, θm), replacing A′ with A = diag(c1, c2) and B′ with

B, with entry (j, k) of B equal to c3E
(
hj(Z)hk(Z) exp{βh(Zi)}/ [1 + exp{βh(Zi)}]2

)
. Note that

An(X,Z, δ, θm) →p A(θm) by the Weak Law of Large Numbers.

Second, define

Bn(X,Z, δ, θm) = n−1
∑

E(ψ(Xi, Zi; δi, θm)ψ(Xi, Zi; δi, θm)
T ) =


F ′ 02×p 02×2

0p×2 G′ 0p×2

02×2 02×p 02×2


where F ′ = diag {n1σe(1− σe)/n, n2σp(1− σp)/n} and G′ is a p × p matrix with entry (j, k)

equal to (n3/n)E
(
hj(Z)hk(Z)

[
X − logit−1{βh(Z)}

]2). Let B(θm) be of the same form as

Bn(X,Z, δ, θm) except with F and G replacing F ′ and G′, where F = diag{c1σe(1−σe), c2σp(1−

σp)} and G is identical to G′ except with c3 replacing n3/n in each element. Noting that B(θm) =

limn→∞ Bn(X,Z, δ, θm), it follows that
√
n {n−1

∑
ψ(Xi, Zi; δi, θm)} →d N {0,B(θm)} by the

Lindeberg-Feller CLT. Specifically, note that the range of the inverse logit function is [0, 1] and

that all elements of h(Z), the user-specified function of the covariates, must be finite. Then the

Lindeberg condition holds by the same logic as in Appendices A.2.1 and A.3.1.
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Finally,
√
nR∗ →p 0 can be proved as in Appendix A.3.1. Letting θmj

denote the jth entry

of θm, the proof follows from the fact that |∂2ψj(Xi, Zi; δi, θm)/∂θmj
∂θmk

| < ∞ for all j, k ∈

{1, 2, . . . , p+ 4}. Therefore, by Slutsky’s Theorem

√
n(θ̂m − θm) →d N

{
0,A(θm)−1B(θm)A(θm)−T

}
and

√
n(π̂ − π) →d N (0, Vπ,SRGM)

where the bottom right element of A(θm)−1B(θm)A(θm)−T is denoted as Vπ,SRGM . The asymp-

totic variance of θ̂m can be consistently estimated by the empirical sandwich variance estimator

A(θ̂m)−1B(θ̂m)A(θ̂m)−T ; the bottom right element of the sandwich estimator is V̂π,SRGM .
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A.5 Supplementary figures
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Figure A.1: Empirical bias of the Rogan-Gladen (π̂RG) estimator and the non-truncated Rogan-
Gladen estimator (π̃RG) from simulation study for DGP 1, described in Section 2.4. The six facets
correspond to a given combination of sensitivity σe (‘Sens’) and specificity σp (‘Spec’). 10,000
simulations were conducted for this scenario.
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Figure A.2: Confidence interval coverage of the Rogan-Gladen (π̂RG) estimator from simulation
study for DGP 1, described in Section 2.4.1. 10,000 simulations were conducted for this scenario.
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Figure A.3: Mean squared error of the Rogan-Gladen (π̂RG) estimator from simulation study for
DGP 1, described in Section 2.4.1. 10,000 simulations were conducted for this scenario.
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Figure A.4: Empirical bias of the Rogan-Gladen (π̂RG) and nonparametric standardised (π̂SRG)
estimators from simulation study for DGP 2, described in Section 2.4.2.

77



Spec: 0.8 Spec: 0.95 Spec: 0.99

S
ens: 0.8

S
ens: 0.99

0.
05

0.
10

0.
15

0.
20

0.
05

0.
10

0.
15

0.
20

0.
05

0.
10

0.
15

0.
20

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Prevalence

95
%

 C
I C

ov
er

ag
e π̂RG

π̂SRG

Figure A.5: Confidence interval coverage of the Rogan-Gladen (π̂RG) and nonparametric standard-
ised (π̂SRG) estimators from simulation study for DGP 2, described in Section 2.4.2.
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Figure A.6: Mean squared error of the Rogan-Gladen (π̂RG) and nonparametric standardised (π̂SRG)
estimators from simulation study for DGP 2, described in Section 2.4.2.

79



Spec: 0.8 Spec: 0.95 Spec: 0.99

S
ens: 0.8

S
ens: 0.99

0.
05

0.
10

0.
15

0.
20

0.
05

0.
10

0.
15

0.
20

0.
05

0.
10

0.
15

0.
20

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Prevalence

95
%

 C
I C

ov
er

ag
e

π̂RG

π̂SRG

π̂SRGM

Figure A.7: Confidence interval coverage of the Rogan-Gladen (π̂RG), nonparametric standard-
ised (π̂SRG), and parametric standardised (π̂SRGM ) estimators from simulation study for DGP 3,
described in Section 2.4.3.1.
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Figure A.8: Mean squared error of the Rogan-Gladen (π̂RG), nonparametric standardised (π̂SRG),
and parametric standardised (π̂SRGM ) estimators from simulation study for DGP 3, described in
Section 2.4.3.1. The y-axis is truncated at 0.005 for ease of distinguishing π̂SRG and π̂SRGM .
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Figure A.9: Confidence interval coverage of the Rogan-Gladen (π̂RG), nonparametric standard-
ised (π̂SRG), and parametric standardised (π̂SRGM ) estimators from simulation study for DGP 4,
described in Section 2.4.3.2.
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Figure A.10: A random sample of 200 point estimates π̂SRGM and 95% confidence interval estimates
based on V̂π,SRGM from DGP 4, where the data were generated with σe = σp = .99 and π = .01.
59% of the intervals covered the true value of π = .01. The x-axis is truncated at 0.015 for visibility
of the estimates.
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Figure A.11: Mean squared error of the Rogan-Gladen (π̂RG), nonparametric standardised (π̂SRG),
and parametric standardised (π̂SRGM ) estimators from simulation study for DGP 4, described in
Section 2.4.3.2. The y-axis is truncated at 0.015 for ease of distinguishing π̂SRG and π̂SRGM .
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Figure A.12: Empirical bias of the estimators from simulation study for DGP 3 under model
misspecification, described in Section 2.4.4.
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Figure A.13: Confidence interval coverage of the estimators from simulation study for DGP 3 under
model misspecification, described in Section 2.4.4.
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Figure A.14: Mean squared error of the Rogan-Gladen (π̂RG), nonparametric standardised (π̂SRG),
and parametric standardised (π̂SRGM ) estimators from simulation study for DGP 3 under model
misspecification, described in Section 2.4.4. The y-axis is truncated at 0.005 for ease of distinguish-
ing π̂SRG and π̂SRGM .
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Figure A.15: Empirical bias of the estimators from simulation study for DGP 4 under model
misspecification, described in Section 2.4.4.
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Figure A.16: Confidence interval coverage of the estimators from simulation study for DGP 4 under
model misspecification, described in Section 2.4.4.
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Figure A.17: Mean squared error of the Rogan-Gladen (π̂RG), nonparametric standardised (π̂SRG),
and parametric standardised (π̂SRGM ) estimators from simulation study for DGP 4 under model
misspecification, described in Section 2.4.4. The y-axis is truncated at 0.01 for ease of distinguishing
π̂SRG and π̂SRGM .
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Figure A.18: Empirical bias in simulation study for DGP 3 with the model-based estimator π̂SRGM

misspecified by omitting Z1, Z2, and Z3, respectively, described in Section 2.4.4.
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 3

This appendix contains material supplemental to the main text of Chapter 3.

B.1 Identification of target potential outcome means

For all treatments a ∈ A , E[Oa | R = 1] = E[Oa | T = 1] by the assumption of random

sampling from the target population.

For treatments a ∈ A−0, T is a function of A, i.e., A = a implies T = a, implying that

Z ⊥⊥ T | A for any variable Z. The target potential outcome means for these treatments equals

E[Oa | T = 1] = E[E[Oa | T = 1, X] | T = 1] (B.1)

= E[E[Oa | T = a,X] | T = 1] (B.2)

= E[E[Oa | A = a, T = a,X] | T = 1] (B.3)

= E[E[Oa | A = a,X] | T = 1] (B.4)

= E[E[O | A = a,X] | T = 1]. (B.5)

All equalities require assumption 3.1 of no measurement error. The equality (B.1) holds by iterated

expectation, (B.2) by assumption 3.6 of conditional exchangeability of trial, (B.3) by assumption 3.4

of conditional exchangeability of treatment within trial, (B.4) because T is a function of A for

a ∈ A−0, and (B.5) by assumption 3.2 of causal consistency. Treatment A = 1 is only measured in

trial T = 1, enabling simplification of (B.5) to E[O | A = 1, X].

For placebo A = 0,

E[O0 | T = 1] = E[E[O0 | T = 1, X] | T = 1] (B.6)

= E[E[O0 | A = 0, T = 1, X] | T = 1] (B.7)

= E[E[O0 | A = 0, X] | T = 1] (B.8)

= E[E[O | A = 0, X] | T = 1] (B.9)
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with (B.6) holding by iterated expectation, (B.7) by assumption 3.4 of conditional exchangeability

of treatment within trial, (B.8) by assumption 3.8 of conditional exchangeability of trial for placebo,

and (B.9) by assumption 3.2 of causal consistency.

B.2 Asymptotic distributions of causal association estimators

B.2.1 Asymptotic distribution of ρ̂

Let µa = E[Y a | R = 1] and λa = E[Sa | R = 1] for a ∈ A , and denoteµ = (µ0, µ1, . . . , µm)

and λ = (λ0, λ1, . . . , λm). Denote θ = (θ0, θ2, . . . , θm) and η = (η0, η2, . . . , ηm) where each θa

and ηa are regression parameters for outcome models for Y and for S respectively, as in Section 3.2.3.

Let ζ = (θ,η,µ,λ, ρ) for a general causal association parameter ρ = f(τ , δ). The estimator ζ̂

uses the estimators for component parameter θa, ηa, µa, λa, and ρ defined in the main text. The

estimator ζ̂ is the solution to the vector of estimating equations
∑
ψ(Yi, Si, Xi, Ai, Ri; ζ) = 0

where

ψ(Y, S,X,A,R; ζ) =



ψθ(Y,X,A,R = 0;θ)

ψη(Y,X,A,R = 0;η)

ψµ(Y,X,A,R = 1;θ,µ)

I(A = 1)(Y − µ1)

ψλ(S,X,A,R = 1;η,λ)

I(A = 1)(S − λ1)

ψρ(τ , δ;θ,η,µ,λ)



= 0

with ψθ = (ψθ0 , ψθ2 , . . . , ψθm) the vector of score equations for the m regressions of Y on

X , ψη = (ψη0 , ψη2 , . . . , ψηm) the vector of score equations for the m regressions of S on

X , ψµ = (ψµ0 , ψµ2 , . . . , ψµm) with ψµa = I(R = 1)
(
Ê[Y | X = x,A = a; θa]− µa

)
and

ψλ = (ψλ0 , ψλ2 , . . . , ψλm) with ψλa = I(R = 1)
(
Ê[S | X = x,A = a; ηa]− λa

)
using the pre-

dicted values from the regressions. The final estimating equation ψρ(τ , δ) depends on the choice

of causal association parameter ρ. For the linear regression slope β considered in Section 3.2.4,

ψρ = ψβ(τ , δ) = Cov(τ̂ , δ̂)/Var(δ̂)−β where Cov is defined to be the sample covariance between
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the estimates τ̂ and δ̂ and Var the sample variance. For the Pearson correlation ρp considered in

Section 3.2.4, ψρ = ψρp(τ , δ) = Cov(τ̂ , δ̂)/{SD(τ̂ ) SD(δ̂)} − ρp.

For specific choices of the causal association parameter ρ and the final estimating function

ψρ, such as the two choices β and ρp described above, the estimator ζ̂ is strongly consistent and

asymptotically normal, as shown in Sections 3.2.3 and 3.2.4. Specifically, for either of these choices

of ρ,
√
n(ζ̂ − ζ) d→ N (0,Σ) and

√
n(ρ̂− ρ)

d→ N (0, Vρ),

where the asymptotic variance of ρ is Vρ, the lower right element of Σ, with Σ =

A(ζ)−1B(ζ) [A(ζ)−1]
T , A(ζ) = E[−∂ψ(ζ)/∂ζT ], and B(ζ) = E[ψ(ζ)ψ(ζ)T ].

B.2.2 Asymptotic distribution of (τ̂a, δ̂a)

An estimating equations approach can be used to show the asymptotic normality of τ̂ and of

δ̂ and the asymptotic bivariate normality of each (τ̂a, δ̂a) pair. Denote ζτ,δ = (θ,η,µ,λ, τ , δ)

where θ, η, µ, λ are defined in Appendix B.2.1. The estimator ζ̂τ,δ is the solution to the vector of

estimating equations
∑
ψ(Yi, Si, Xi, Ai, Ri; ζτ,δ) = 0 which replaces the last element ψρ from the

vector of estimating equations
∑
ψ(Yi, Si, Xi, Ai, Ri; ζ) from Appendix B.2.1 with the elements

ψτ (Y,X,A,R;θ,µ, τ ) and ψδ(S,X,A,R;η,λ, δ). The vector ψτ = (ψτ1 , . . . , ψτm) with ψτa =

(1− µa/µ0)− τa and the vector ψδ = (ψδ1 , . . . , ψδm) with ψδa = (λa − λ0)− δa. By the continuity

of the g and h functions that define τa and δa (as defined in Section 3.2.1 of the main text), each τa

and δa is strongly consistent and asymptotically normal. Thus ζ̂τ,δ is also strongly consistent and

asymptotically normal. As a consequence, each (τ̂a, δ̂a) pair is asymptotically bivariate normal.

B.3 Simulation settings
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Scenario nt a τa δa θa0 θa1 θa2 µa0 µa1 µa2 σ2
a

1 3000

0 – – -6 1.5 .1 -5.5 1.5 .1 0.642

1 0.81 3.13 -8.18 1.5 .082 -1.135 1 .08 0.282

2 0.96 3.56 -10 1.5 .028 -.908 1.5 .081 0.642

3 0.92 3.48 -9.5 1 .0808 -1.33 1 .09 0.642

4 0.94 3.04 -10.08 1.15 .09 -2.356 1.15 .1 0.642

5 0.88 4.30 -9.36 1.5 .09 -1.197 1.5 .1 0.642

2 3000

0 – – -6 1.5 .1 -5.5 1.5 .1 0.642

1 0.20 1.29 -6.69 1.5 .1 -2.971 1 .08 0.282

2 0.45 0.69 -6.42 1.5 .081 -3.775 1.5 .081 0.642

3 0.93 4.09 -9.7 1 .088 -0.718 1 .09 0.642

4 0.59 2.58 -8.1 1.15 .1 -2.818 1.15 .1 0.642

5 0.86 3.83 -9.52 1.5 .095 -1.668 1.5 .1 0.642

3 8000

0 – – 10.38 1.5 0.1 -5.849 1.5 0.1 0.642

1 0.96 4.00 -12.5 1.5 0.81 -0.61 1 0.08 0.282

2 0.82 3.66 -10.72 1.3 0.081 -1.152 1.5 0.081 0.642

3 0.73 2.66 -10.82 1 0.09 -2.494 1 0.09 0.642

4 0.45 1.34 -10.9 1.15 0.1 -4.404 1.15 0.1 0.642

5 0.31 5.13 -10.54 1.1 0.099 -0.715 1.5 0.1 0.642

Table B.1: Parameter values used in the simulation study described in Section 3.3. The true values
of τa and δa for a ∈ {1, 2, 3, 4, 5} were determined empirically based on the average potential
outcomes from 20,000,000 participants in trial T = 1, the random sample from the target population,
and are presented rounded to two decimal places. The parameter values θaj and µaj for a ∈ A and
j ∈ {0, 1, 2} were simulation inputs. Dashes indicate entries that are not applicable.

a t θ0t0 θ0t1 θ0t2 µ0t0 µ0t1 µ0t2 σ2
0t

0 1 -6 1.5 .1 -5.5 1.5 .1 0.642

0 2 -5.6 1.5 .1 -5.4 1.5 .1 0.642

0 3 -5.8 1.5 .1 -5.45 1.5 .1 0.642

0 4 -6.2 1.5 .1 -5.55 1.5 .1 0.642

0 5 -6.4 1.5 .1 -5.6 1.5 .1 0.642

Table B.2: Parameter values used in the simulation studies described in Section 3.3, when assump-
tion 3.8 of conditional exchangeability of trial for placebo did not hold.
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