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A B S T R A C T   

Transportation disruptions caused by COVID-19 have exacerbated difficulties in health care delivery and access, 
which may lead to changes in health care use. This study uses mobile device data from SafeGraph to explore the 
temporal patterns of visits to health care points of interest (POIs) during 2020 and examines how these patterns 
are associated with socio-demographic and spatial characteristics at the Census Block Group level in North 
Carolina. Specifically, using the K-medoid time-series clustering method, we identify three distinct types of 
temporal patterns of visits to health care facilities. Furthermore, by estimating multinomial logit models, we find 
that Census Block Groups with higher percentages of elderly persons, minorities, low-income individuals, and 
people without vehicle access are areas most at-risk for decreased health care access during the pandemic and 
exhibit lower health care access prior to the pandemic. The results suggest that the ability to conduct in-person 
medical visits during the pandemic has been unequally distributed, which highlights the importance of tailoring 
policy strategies for specific socio-demographic groups to ensure equitable health care access and delivery.   

1. Introduction 

Transportation is widely recognized as a critical factor in health care 
access (Syed et al., 2013). Nearly 5.8 million Americans in 2017 re-
ported delaying medical care because of a lack of transportation options 
(Wolfe et al., 2020). COVID-19 has significantly disrupted transport and 
health systems. Early indications are that these changes, combined with 
lockdown requirements and a desire to limit exposure, reduced access to 
health care. For example, 35% of US adults reported delaying health 
care because of COVID-19 (Household Pulse Survey, 2020, May), and 
many news outlets have reported decreases in preventive services (e.g., 
Smith, 2020; Martin et al., 2021). 

In response to COVID-19, health care systems implemented policies 
that made accessing care both harder and easier. During the initial 
months of the pandemic, most systems eliminated or significantly 
reduced access to elective or non-emergency services. Hospitals also 
placed restrictions on whether patients could have individuals accom-
pany them to appointments. While these policies reduced access to in- 

person health care, providers and insurers increased support for tele-
medicine visits (Chen et al., 2021; Medicare Telemedicine Health Care 
Provider Fact Sheet, 2020). COVID-19 also disrupted transportation 
options. Shared mobility options, including fixed-route transit, para-
transit, and ride-hailing, became less available as agencies and firms 
decreased service in response to safety concerns and ridership declines 
(Hu and Chen, 2021; APTA, 2021). 

The purpose of this study is to assess the impacts of COVID-19 on 
health care access in North Carolina (NC). We do this by using mobile 
device data from SafeGraph to identify visits to health care facilities and 
then use time-series clustering to identify Census Block Groups (CBGs) 
exhibiting similar medical visit patterns during 2020. We then examine 
the association between these temporal patterns and the socio- 
demographic and spatial characteristics of CBGs in NC. The findings 
reveal social and spatial inequalities in health care use before and during 
the COVID-19 pandemic. As part of our work, we also assess the reli-
ability of the mobile device data. 

The research contributes to existing studies on the impacts of the 
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pandemic on activity-travel behavior in two aspects. First, mobile phone 
data provides a viable data source to capture large-scaled human 
mobility and has been widely used to map mobility patterns and identify 
activity hotspots during the COVID-19 pandemic. However, few studies 
(e.g., Atkinson et al., 2020) have checked the quality of mobile phone 
data to measure mobility during the COVID-19 pandemic. As a result, it 
is difficult to know the validity of these findings. Our study validates the 
use of mobile phone data to measure mobility patterns and activities by 
using weekly pattern data from SafeGraph, specifically for health care 
related activities. Second, the research examines the correlation be-
tween socio-demographic and spatial characteristics and medical visits 
during the pandemic. A better understanding of these associations could 
inform the design of appropriate policies to deliver health care services 
in a safe, equitable, and timely manner. 

2. Background 

2.1. Health care services during COVID-19 

The COVID-19 pandemic drastically changed peoples’ access to and 
use of health care services. These changes include health insurance loss, 
health facility closure, and the increasing use of telemedicine (Chen 
et al., 2021). During the pandemic, more than 40 million Americans lost 
their jobs, which further caused many of them to lose their 
employer-based health insurance (Blumenthal et al., 2020). As a result, 
they may have been forced to delay necessary but noncritical treatments 
(Blumenthal et al., 2020). These impacts also tend to be dispropor-
tionately distributed. Minorities and people with low educational 
attainment and low incomes have experienced disproportionate job loss 
and delayed care (Kurtzleben, 2020). 

The pandemic also caused significant economic threats to the 
viability of some health care providers, especially those located in rural 
and poor communities (Blumenthal et al., 2020; Chen et al., 2021). The 
pre-existing accessibility to health care facilities in rural and poor 
communities is comparatively lower (Ghorbanzadeh et al., 2021; Guida 
and Carpentieri, 2021). Many providers were temporarily closed during 
the pandemic, which may have further decreased geographic access to 
local health care and further influenced health care use. 

Telemedicine is another key change in health care services. Many 
health care systems increased telemedicine options for patients during 
the pandemic. Health insurers also expanded their coverage to include 
telemedicine. With these changes, the use of telemedicine increased 
significantly during the pandemic to replace in-person care (Mann et al., 
2020). However, not everyone has equal access to telemedicine. People 
with limited internet access, language barriers, and cognitive limitations 
may not be able to use telemedicine, and telemedicine is not suitable for 
all medical services (Chen et al., 2021). 

2.2. Transportation during COVID-19 

Transportation provides access to health care. Despite the increasing 
popularity of telemedicine, transportation is still important for people 
who need in-person care. Thus, the pandemic’s disruptions of travel 
demand and transportation services may influence health care access 
and use. In response to stay-at-home orders and social distancing regu-
lations, travel demand decreased (Dasgupta et al., 2020; Pepe et al., 
2020). Some people may also have reduced their health care trips, 
delayed medical visits, or used telemedicine to meet critical health care 
needs (Cochran, 2020). Others may have had more time and flexibility 
to commit to conducting health care activities because of their flexible 
work schedules. Mobility reduction also varies among different 
socio-demographic groups and geographic locations (Dasgupta, 2020; 
Pepe et al., 2020; McLaren 2020). Thus, the ability to conduct medical 
trips may also vary among people with different socio-demographic 
characteristics and living in different geographic locations. Neighbor-
hoods with higher percentages of minorities and people with low 

incomes and low educational attainment tended to show less reduction 
in mobility perhaps due to reduced options for remote work (Dasgupta, 
2020; Pepe et al., 2020; McLaren 2020). Jones (2020) documented that 
54% of urban residents, 42% of suburban residents, and 27% of rural 
residents viewed COVID-19 as a major threat. The disparities in 
COVID-19 threat awareness may partially contribute to the geographic 
differences in mobility change. Scholsser et al. (2020) revealed that 
mobility declined more in large cities in Germany compared to less 
dense population areas. Do Lee et al. (2021) found that population 
density is positively associated with more mobility reduction in the 
United States. 

Transportation services also changed. Nationally, public transit 
ridership dropped by 80% at the start of the pandemic and remained 
approximately 60% below 2019 levels (APTA, 2021). Public transit 
agencies cut services because of reduced ridership and revenues. For 
example, in response to reduced revenues, Los Angeles’ transit agency 
(LA Metro) cut its budget by 1.2 billion and service by 20% (Nelson, 
2020). MARTA, in the Atlanta region, cut most of its bus routes in April 
and is still operating at low capacity, and King County Metro in Seattle 
cut service by 15% in September (Bellis, 2020). Ride-sourcing programs, 
such as Uber and Lyft, suspended their pooled and shared ride options in 
response to the spread of COVID-19. Changes in public transit and 
ride-hailing programs left some people, particularly those who rely more 
on transit and shared rides, such as individuals with disabilities, facing 
greater challenges accessing transportation and health care (Cochran, 
2020). 

2.3. Mobile phone data and measuring mobility 

Mobile phone data, which consist of Call Detail Records (CDR) or 
Global Position System (GPS) data, have been widely used in trans-
portation research. These data offer a rich source of information on 
continuous space–time geography in urban areas. These data have been 
used to develop human mobility models (e.g., Deville et al., 2016), to 
develop traffic models (e.g., Demissie et al., 2018; Breyer et al., 2018), 
and to estimate trip rates (e.g., Çolak et al., 2015). 

Given the popularity of mobile device data in mobility studies, its 
representativeness has attracted increasing attention. Ranjan et al. 
(2012) assessed the accuracy of CDR data in measuring human mobility. 
They revealed that sparsely sampled CDRs have biases, which are 
associated with the ratio of CDRs in an individual’s trajectory. GPS data 
comparatively have fine granularity in spatial and temporal aspects. 
However, because people’s phone activities in space and time are un-
even, mobile phone location data also suffers from the problem of sparse 
sampling (Becker et al., 2013). As a result, mobile device data based on 
GPS locations also introduces biases in measuring human mobility. For 
example, Lu et al. (2017) analyzed the representativeness of mobile 
phone location data on the estimation of human mobility. They revealed 
that mobile phone location data underestimates human mobility as 
mobile phone location data is incomplete. 

Because mobile phone data can capture large-scale human mobility 
patterns, it also has been used in COVID-19 related studies to map 
human mobility patterns (e.g., Gao et al., 2020), identify activity hot-
spots (e.g., Li et al., 2021), and set parameters for disease transmission 
models (e.g., Chang et al., 2021). Chen et al. (2021) and Kang et al. 
(2020) demonstrated that the aggregate trends derived from SafeGraph 
data match the aggregate trends revealed in Google Mobility Data in the 
US. 

3. Study area and data 

3.1. Study area 

Our study area is North Carolina (NC), consisting of three large 
metropolitan areas, Charlotte Metro, Research Triangle Area, and 
Piedmont Triad. In response to COVID-19, NC declared a state of 
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emergency on March 10, 2020, and issued stay-at-home orders on March 
14, 2020, to close all K–12 public schools and ban gatherings of more 
than 100 people. Additional stay-at-home orders were implemented 
continually over March to close non-essential businesses and enforce 
social distancing measures. On May 8, 2020, NC moved to phase 1, 
reopening retail businesses and childcare facilities. On May 22, 2020, 
NC moved to phase 2, reopening restaurant dine-in services; bars and 
nightclubs with capacity limits; and allowing gatherings of 10 people. 
On September 1, 2020, NC moved to phase 2.5, reopening indoor ex-
ercise facilities and increasing mass gathering limits to 25 people in-
doors and 50 people outdoors. On October 2, 2020, NC moved to phase 
3, allowing the reopening of bars, entertainment venues, and movie 
theaters with capacity restrictions. On December 8, 2020, NC further 
lifted stay-at-home orders but continued encouraging people to stay 
home between 10 p.m. and 5 a.m.; and required restaurants, bars, 
entertainment venues, personal care businesses, and other businesses to 
close at 10:00 p.m. 

3.2. Data 

We obtained data on visits to medical facilities in NC from Safe-
Graph, a data company that aggregates anonymized location data from 
mobile device applications. SafeGraph data is a type of GPS data, 
tracking devices which opted in via apps with GPS. It tracks the move-
ment of mobile devices from their home CBGs to points of interest (POIs) 
across the United States. SafeGraph defines each device’s home CBG as 
the most common nighttime location over the previous six weeks. The 
study period spans 52 weeks from January 6, 2020, to the week starting 
on December 28, 2020. 

Specifically, we used SafeGraph’s Core Places and Weekly Patterns 
datasets to identify trips to health care facilities. For each POI, these 
datasets provide the North American Industry Classification System 
(NAICS) code as well as estimates of weekly visits and visitors and the 
home CBG of each visitor. Weekly visits are the aggregated raw counts of 
visits with the duration at least 4 min to the POI per week, and weekly 
visitors are the aggregated number of unique devices to the POI per 
week. 

We aggregated estimates of weekly visitors from each home CBG to 
all medical POIs. Medical facilities are POIs with the designation “office 
of physicians (NAICS code 621,111)”, “office of dentists (NAICS code 
621,210), “office of other health practitioners (NAICS code 6213), “of-
fice of outpatient care centers” (NAICS code 6214), and “general med-
ical and surgical hospitals” (NAICS code 622,110) (Table S-1 in 
Supplementary Materials). Medical facility POIs are usually concen-
trated spatially, especially in urban areas. It is challenging to measure 
visitors to each medical POI accurately. Furthermore, multiple medical 
POIs are usually identified for a large medical facility. For example, POIs 
of the office of physicians are inaccurately identified within the building 
boundary of the Duke University Hospital. These POI data issues further 
challenge the accuracy of assigning visits to each medical POI and 
differentiating visits to different types of medical facilities. Thus, for 
each CBG, we aggregated the estimates of weekly visitors to all these 
types of health care facilities. 

We used American Community Survey (ACS) 2019 5-Year Estimates 
to measure socio-demographic and economic characteristics at the CBG 
level. We included metrics in five domains: (1) age; (2) race and 
ethnicity; (3) education; (4) economic status; and (5) transportation 
disadvantage. We also derived the percent of the population without 
internet access and the percent of commuters working at home as proxy 
measures for the potential of using telemedicine from ACS 2019 5-Year 
Estimates. 

For spatial variables, we used the urban-rural classification scheme 
from the National Center for Health Statistics to categorize CBGs into six 
types: large central metropolitan, large fringe metropolitan, medium 
metropolitan, small metropolitan, micropolitan, or noncore county. We 
also calculated population density for each CBG, defined as the number 

of people per square mile. We further used the medical POI data from 
SafeGraph to derive the measure of the density of health care facilities, 
defined as the count of the number of health care facilities per square 
mile for each CBG. 

4. Methods 

Our study aimed to assess the reliability of SafeGraph data for 
analyzing trips to medical facilities and patterns of travel to medical 
facilities during 2020. 

4.1. Reliability of SafeGraph data 

To assess the reliability of SafeGraph data, we used three approaches. 
First, we estimated sample geographic representativeness by comparing 
the number of sampled devices with 2019 Census Bureau population 
counts at different geographic levels, from the CBG, Census Tract, 
county, and state levels. Census Tracts are designed to be relatively 
homogeneous units in terms of population characteristics, economic 
status, and living conditions and have a population of 4000 (U.S. Census 
Bureau Definition, 2021). A CBG is a subdivision of a Census Tract and is 
a geographic unit that typically has a population of 600 and 3000 
people. The CBG is also the smallest geographic entity for which the 
sample data from the decennial census is available. Using American 
Community Survey 2019 5-year estimates, we also estimated the ex-
pected demographic characteristics of sampled devices and compared to 
state averages. Second, we compared SafeGraph medical facility POIs 
with the Centers for Medicare and Medicaid Services (CMS) list of health 
care providers (CMS, 2020) to check the accuracy and representative-
ness of medical facility POIs. Third, we compared and correlated Safe-
Graph estimates of medical facility visit volumes with the in-person 
outpatient visit volume to facilities under the UNC Health Care system. 
The in-person encounter visit volume data was obtained from Carolina 
Data Warehouse for Health. 

4.2. Analysis of temporal travel trends to medical facilities 

4.2.1. Data preprocessing 
We conducted several preprocessing steps on the medical visitor flow 

data to ensure that CBGs contained sufficient and valid records to derive 
stable estimates of visitors for analyzing temporal patterns. We removed 
CBGs with zero population, as sampled devices in CBGs with zero pop-
ulation are likely to be misidentified. The number of devices in some 
CBGs dropped significantly across 2020 from thousands or hundreds to 
only a few. To address this, we included CBGs where weekly counts of 
sampled devices were at least 2% of the CBG’s population and removed 
CBGs with fewer than 10 sampling devices. The analysis results are not 
sensitive to our selection of cut points. Our final preprocessing yielded 
52 weeks of data for 5565 of the 6155 NC CBGs. The number of devices 
sampled for each CBG in the SafeGraph data varies each week. Because 
of this, we normalized aggregated number of visitors from each CBG to 
medical facility POIs by the reported number of sampled devices in the 
CBG and focused our analysis on the number of medical visitors per 
device per week from each CBG. 

4.2.2. Time-series clustering 
After preprocessing, each CBG has a time series sequence with a 

length of 52, representing the number of medical care visitors per device 
per week across 52 weeks in 2020. We have 5655 (CBGs) time series 
sequences. We employed time-series clustering to group CBGs with 
similar temporal patterns in medical care visitors per device together. 
Time-series clustering partitions time series datasets into clusters based 
on a similarity measure (Das et al., 1998; Aghabozorgi et al., 2015). 

We experimented with two common distance measures for deter-
mining the similarity, Euclidean distance and Dynamic Time Warpping 
(DTW) distance. Euclidean distance is a common measure of similarity 
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in clustering analysis Keogh and Pazzani (1999); 2001. However, 
Euclidean distance for time-series datasets requires the exact alignment 
of the time axis and is very sensitive to small distortion in the time axis 
(Keogh and Pazzani, 1999; 2001) (See Equation (1)); Euclidean distance 
requires that the ith point in one sequence is exactly aligned with the ith 
point in the other. Thus, we chose a distance measure based on dynamic 
time warpping, with a window size of 2 for warpping, which allows us to 
compare the similarity in the absolute number of medical visitors per 
device in time and therefore allows for small distortions of the time axis 
(See Figure S-1). Equation (2) represents the DTW distance between any 
two time-series sequences. 

Dist(Euclidean)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=0
(pi − qi)

2

√

(1)  

where p and q are two time-series sequences of length n (n = 52 here); i 
is time index, representing the week number. 

Dist(DTW)=min

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑k

k=1
(wk)

√
√
√
√ (2) 

To determine the DTW distance for p and q, we firstly derive a n by n 
distance matrix between p and q, D. The value of individual cell (dij) in 

the matrix D is calculated as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(pi − qj)
2

√

. wk is the cell (i, j)k in matrix D 

that is also the kth element of a wrapping path, W = {w1,w2,…wk}. A 
wrapping path is a series of neighboring elements in the distance matrix, 
D that links the bottom left cell (w1 = d11) with the top right cell (wk =

dnn). There would be many wrapping paths from the bottom left cell to 
the top right cell. We are interested in the wrapping path with the 
minimized length. DTW uses the following dynamic programming to 
find the shortest path (See Equation (3) (4)). 

Dp,q (i, j)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
pi − qj

)2
√

+min(Dp,q (i − 1, j − 1),Dp,q (i − 1, j),Dp,q (i, j − 1)
)

(3)  

|i − j| ≤ Δt (4)  

where Dp,q (i, j) is the sum of current cell (dij) and the minimum of the 
cumulative distances of the adjacent cells. The resulting Dp,q (i, j)denotes 
the DTW distance between p and q. Δt is the wrapping window. It is a 
constraint on the wrapping path searching. Euclidean distance has a 
wrapping window size of 0. Unconstrainted DTW has a wrapping win-
dow size of n-1. In the study, we choose a wrapping window size of 2. 

Various clustering algorithms are available (Aghabozorgi et al., 
2015; Jain, 2010). K-means and K-medoid are commonly used. K-means 
is often used in conjunction with the Euclidean distance, and K-medoid 
is more appropriate for time-series clustering with DTW (Aghabozorgi 
et al., 2015). Thus, we adopted the K-medoid clustering algorithm. The 
core steps of k-medoid clustering are as following: (1) specify the 
number of clusters k; (2) select k samples from time-series objects as the 
initial center of the k clusters; (3) assign each object to the nearest center 
based on the DTW distance; (4) find the center within each cluster, the 
object with the minimum average DTW distance to the remaining ob-
jects; and (5) repeat steps (3) and (4) until none of the objects change 
their cluster memberships. 

In this study, we present results with three clusters. We selected k = 3 
by running the DTW distance-based K-Medoid clustering algorithm with 
values of k from 2 to 7. The clustering outcomes of different numbers of 
clusters were visually compared and explored (see Supplementary Ma-
terials for details). We selected the value of k = 3 based on our 
exploration. 

4.2.3. Statistical analysis 
We characterized differences across time-series clusters by 

comparing socioeconomic characteristics using unadjusted (ANOVA) 

and adjusted (multinomial logit regression) approaches. 

5. Results 

5.1. Reliability of SafeGraph medical facilities data 

The SafeGraph sample averaged 631,835 devices in NC during 2020. 
The proportion of population sampled (sampled device counts/state 
population) ranged from 4.5 to 8% 2020 (Fig. 1). The number of sam-
pling devices decreased significantly during the lockdown period (from 
Mid-March to May). SafeGraph sources data from phone applications, 
such as navigation and social media apps, where people could opt into 
location tracking. Thus, stay-at-home orders may decrease the use of 
apps with location tracking and therefore decrease the number of 
sampled devices. At the county level, the sample averaged 6318 devices 
(6% of population; IQR 5%–7%). At the census tract level, the sample 
averaged 287 devices (6% of total population; IQR 5%–7%). At the CBG 
level, the sample averaged 102 devices (6% of total population; IQR 4%– 
8%). The correlation coefficients between average device counts and 
Census population estimates ranged from 0.98 to 0.99 at the county 
level, 0.77 to 0.85 at the census tract level, and 0.72 to 0.83 at the CBG 
level. The ratio of devices to census population also varied spatially with 
the ratio being higher in metropolitan areas compared to non- 
metropolitan areas (Fig. 2). 

We analyzed how closely the device data matched state demographic 
averages by assuming that sampled devices in a CBG have the same 
demographic characteristics as the CBG (Table 1). In terms of age 
composition, the weekly device sample across 2020 is slightly over- 
represented for the over age 45 population while under-represented 
for those under age 45. But overall, the device sample is well-sampled 
across age groups. The sample is generally over-represented on Whites 
but under-represented on non-Whites (those identifying as Black and 
Hispanic). The sample is generally well-sampled for educational 
attainment categories. It is slightly over-represented for those with 
higher education levels and under-represented for those with high 
school degrees or below. The sample is under-represented for lower 
household income categories (annual income between $15,000 and 
$35,000, and less than $15,000) and over-represented for higher 
household income categories (income between $50,000 and $100,000, 
and higher than $100,000). 

Compared with the CMS list of medical facilities, the spatial distri-
bution of medical POIs from SafeGraph is well-balanced. The distribu-
tion of medical facilities at the county level derived from both datasets is 
similar; counties with a higher number of CMS providers also have a 
higher number of medical facility POI from the SafeGraph dataset 
(Pearson correlation coefficient = 0.89). There are no medical facilities 
in 594 census tracts (27%), based on the two datasets. 42 tracts have one 
or two CMS providers, which are not identified in the SafeGraph POI. 
There are no medical facilities in 3316 CBGs (54%), based on both 
datasets. 107 CBGs have one or two CMS providers, which are not 
identified in SafeGraph POI. The correlation coefficients at the census 
tract and CBG levels are moderate, at 0.58 and 0.54, respectively. As 
mentioned before, medical POIs are usually concentrated spatially, and 
multiple POI points are often identified for large medical facilities. For 
example, POIs of offices of physicians in SafeGraph are often identified 
within the boundary of medical centers. Thus, one provider in the CMS 
list often corresponds to several POIs in SafeGraph POI data. The data 
issues may contribute to the moderate correlation coefficients (0.58 at 
the tract level and 0.54 at the CBG level) at the tract and CBG levels. 

Overall, trends of medical facility visits from SafeGraph and the UNC 
Health Care system are comparable, exhibiting similar temporal pat-
terns (Fig. 3). The number of medical visits started to drop in the middle 
of March when NC’s governor declared a State of Emergency and 
reached their lowest values in early April. Visits to facilities in the UNC 
Health Care system dropped more (over 70%) during the lockdown 
period than visits measured from SafeGraph data. The gaps may result 
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from the disparities in what types of visits were recorded in the two 
datasets. SafeGraph captures all visits to health care facilities in NC, 
including inpatient visits, outpatient visits, and all other types of visits 
such as those by employees. The in-person encounter volume to clinics 
in the UNC Health Care system data only contains outpatient care visits. 

Compared to inpatient and employee visits, outpatient visits were more 
likely to be deferred during the lockdown. Furthermore, most medical 
facilities in the UNC Health Care system are in central urban areas where 
declines in travel during the lockdown were greater than in more 
outlying and rural areas (Do Lee et al., 2021; Schlosser et al., 2020) 
(Figure S-2). In May, when the stay-at-home order was lifted and NC 
entered Phase 2, medical visits recovered, as revealed by both datasets. 
The correlation coefficient between the two groups is strong, at 0.83. 

Based on these assessments, we concluded that, overall, SafeGraph 
data are well-balanced in terms of geographic and demographic repre-
sentativeness of population but slightly under-represented in minority 
and low-income groups and have a well-balanced sampling of POIs. The 
aggregated trends in medical visits revealed in SafeGraph data some-
what matched up to the aggregated trends inpatient volumes to facilities 
in the UNC Health Care system. However, we still need to be cautious 
that SafeGraph data have limited coverage in outlying and rural areas; 
limited representativeness in low-income populations who often have 
limited access to smartphones with GPS; limited accuracy of POI loca-
tion identification; and limited coverage for POIs of small size. As a 
result, medical visits derived from SafeGraph by low-income people, and 
medical visits to small size hospital POIs, especially in rural areas, may 
not be accurately recorded in SafeGraph data. 

5.2. Temporal patterns of medical facility visits 

We identified three clusters of CBGs that exhibited similar temporal 
trends for trips to medical facilities. Medical care visits of CBGs in all 
three clusters dropped at the start of the pandemic and did not return to 
pre-pandemic levels by the end of 2020 (Fig. 4). 

Fig. 1. Weekly sampled device counts vs. state population from ACS 2015–2019.  

Fig. 2. Ratio of mean weekly sampled device counts in 2020 to the population from the ACS 2019 estimates at CBG level. NA represents zero population.  

Table 1 
Comparison of device demographics to Census demographics for NC.   

Sample Mean (range 
across 52 weeks) 

Census 
Bureau 

Ratio (sample/ 
census) 

% Female 51.3 (51.2–51.4) 51.3 1.00 (1.00–1.00) 
Age groups 

% Under 18 22.1 (21.9–22.4) 22.4 0.99 (0.98–1.00) 
% 18–44 34.5 (33.9–35.3) 35.5 0.97 (0.95–0.97) 
% 45–65 27.0 (26.6–27.3) 26.3 1.03 (1.01–1.04) 
% Over 65 16.2 (15.8–16.6) 15.9 1.02 (1.00–1.04) 

Race and ethnicity 
% White 66.6 (65.1–67.8) 63.1 1.06 (1.03–1.07) 
% Black 18.7 (17.9–19.8) 21.1 0.89 (0.85–0.94) 
% Hispanic 8.6 (8.4–8.9) 9.4 0.92 (0.89–0.95) 

Education 
% High school 
or below 

37.2 (36.7–37.7) 37.9 0.98 (0.97–1.00) 

% BA or more 31.5 (30.8–32.2) 31.3 1.01 (0.99–1.03) 
Household income ($) 

% Less than 15 
k 

10.9 (10.6–11.1) 11.4 0.95 (0.93–0.97) 

% 15 k-35 k 20.1 (19.9–20.3) 20.6 0.98 (0.97–0.99) 
% 35 k-50 k 13.7 (13.6–13.8) 13.9 0.98 (0.98–0.99) 
% 50 k-100 k 30.7 (30.5–30.9) 30.4 1.01 (1.00–1.01) 
% 100 k+ 24.7 (24.0–25.1) 23.7 1.04 (1.03–1.06) 

Note: Calculation of sample demographics assumes sampled devices in a CBG 
have the same demographic characteristics as the CBG. 
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• Cluster 1. CBGs in this cluster (n = 1899) have lower medical visits all 
the time. These CBGs also responded to the lockdown in April with a 
strong reduction in medical visits. As the COVID-19 restrictions were 
gradually lifted, these CBGs experienced a moderate and slow in-
crease in medical visits.  

• Cluster 2. CBGs in this cluster (n = 1208) have higher numbers of 
medical visits per device per week and responded to the stay-at-home 
orders implemented in March and April strongly; CBGs in this cluster 
saw a significant decrease in medical visits during the lockdown 
period. Compared to CBGs in cluster 1, medical visits bounced back 
sooner but were lower than pre-pandemic levels when NC imple-
mented a re-opening phase in mid-May.  

• Cluster 3. Compared to CBGs in cluster 2, CBGs in this cluster (n =
2458) have a medium level of medical visits. CBGs in this cluster also 
experienced a moderate decrease in medical visits during the lock-
down period and a moderate and low increase after. 

5.3. Spatial distribution of clusters 

Fig. 5 shows the spatial distribution of the three clusters across NC. 
CBGs in cluster 1 are more likely to be in central urban core and outlying 
rural areas. CBGs in cluster 2 are more concentrated in the suburban 
areas of large metropolitan areas. CBGs in cluster 3 are more spatially 
dispersed. The spatial patterns imply that socio-demographic and spatial 

Fig. 3. Temporal trends of medical facility visit change. 
Note: Visits to facilities under UNC health Care system are available until the week starting on July 12, 
2020. Two lines represent the percent change in visits (UNC Health Care system) and visits per device (SafeGraph) since the first week of 2020. 

Fig. 4. Clustering Results (Smoothed Lines) of DTW K-Medoid Clustering Algorithms: Three Identified Clusters. 
Note: grey lines represent the medoids of the three identified clusters. 

Fig. 5. Spatial distribution of the three clusters.  
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variables may explain observed disparities in medical care-seeking 
before and during the pandemic. 

5.4. Descriptive analysis 

CBGs in the three clusters are significantly different on all selected 
socio-demographic variables (Table 2). CBGs in cluster 2 comparatively 
have a higher percentage of persons over age 65. For racial composition, 
CBGs in clusters 2 and 3 have higher percentages of Whites. CBGs in 
clusters 1 and 3 have higher percentages of Blacks and Hispanics. As for 
education, compared to CBGs in cluster 1, CBGs in cluster 2 and 3 have 
high percentages of adults with higher educational attainment. In terms 
of household income, CBGs in cluster 2 and 3 show a similar distribution 
of a lower percentage of low-income households and a higher percent-
age of high-income households, while CBGs in cluster 2 have a 
comparatively higher percentage of households with annual incomes 
greater than $100,000. Compared to CBGs in cluster 2 and 3, CBGs in 
cluster 1 have a higher percentage of zero-car households and house-
holds without internet access. 

Significant disparities in all spatial variables (except non-metro 
variables) are revealed among CBGs in the three clusters. 20% of CBGs 
in cluster 1 are in large central areas, and 48% of CBGs in cluster 1 are in 
medium and small metros. 21% of CBGs in cluster 2 are in fringe areas of 
large metros. In periphery non-metro areas (micropolitan and noncore), 
the distribution of CBGs in the three clusters is similar. CBGs in cluster 1 
and 3 tend to have a higher population density. 

5.5. Regression results 

We estimated a multinomial logit model to examine how socio- 
demographic and spatial characteristics at the CBG level are associ-
ated with cluster types (Table 3; Table 4). We chose cluster 2 as the 
reference cluster because CBGs in cluster 2 comparatively have higher 
medical visits, and CBGs in cluster 2 exhibit a typical pattern of medical 
visits, decreasing significantly during the lockdown and recovering 
after. The socio-demographic variables are strongly correlated, and thus 
we presented our final model without any multicollinearity issues. The 
model overall has a moderate fit (Pseudo R2 = 0.10). 

CBGs in cluster 1- the cluster with the lowest rate of medical visits 
and slowest recovery in the rate of visits – have a higher proportion of 
residents over age 65, with incomes under 35,000, without household 

vehicles, and with higher pre-pandemic rates of telework. These CBGs 
also have a lower proportion of residents that self-identify as White. 

CBGs in cluster 3, compared to those in cluster 2-the cluster with 
slower recovery in the rate of in-person visits during the re-opening 
stages, have a lower proportion of residents with incomes over 
$100,000 and who identify as White. 

Spatial variables play an important role in determining temporal 
patterns of visits to medical POIs. CBGs in cluster 1 are more likely to be 
in large central metros and less likely to be located in large fringe 
metros. These CBGs also tend to have higher population density and less 
geographic proximity to health care POIs. Compared to CBGs in Cluster 
2, CBGs in cluster 3 are less likely to be located in large fringe metros and 
are generally located in areas with fewer number of health care POIs. 

6. Discussion 

Our study aimed to analyze patterns of travel to medical facilities 
during 2020 and assess the reliability of SafeGraph data for analyzing 
trips to medical facilities. 

6.1. Disparate patterns of visits to medical facilities 

We found three distinct clusters of temporal patterns of visits to 
medical POI during 2020. All three clusters experienced a reduction in 
medical care visits during the lockdown but differed in their extent and 
recovery patterns. 

CBGs with lower medical visits before the pandemic (cluster 1) 
experienced a slower recovery. CBGs with higher percentages of elderly 
persons, minorities, low-income individuals, and people without vehicle 
access (cluster 1) had limited use of health care before and during the 
pandemic and experienced a slower recovery after the lockdown. These 
socio-demographic disparities confirm the necessity of health systems to 
care adequately for these groups under normal conditions and during a 
pandemic. 

CBGs with higher population density and in central areas are more 
likely to be in cluster 1. Higher population density areas and central 
areas are usually areas with higher public transit use (Taylor and Fink, 
2003), but public transit is also highly likely to be affected by the 
pandemic. As a result, people living in these areas may be more likely to 
have difficulty accessing health care during COVID-19 and experience a 
lower recovery after the lockdown. The positive association between a 

Table 2 
Socio-demographics characteristics by the three clusters.   

Cluster 1 Cluster 2 Cluster 3 ANOVA  

mean std mean std mean std P-value Sig  

Socio-demographics 
% Age over 65 17.1 10.6 18.5 7.8 17.9 8.8 0.000 *** 
% White 54.1 29.9 77.0 19.1 68.8 23.1 0.000 *** 
% Black 29.3 26.6 12.4 15.4 17.6 18.6 0.000 *** 
% Hispanic 10.7 12.2 6.2 8.0 8.2 9.5 0.000 *** 
% Below high school 42.3 18.3 38.9 16.7 39.2 17.4 0.000 *** 
% Bachelor and above 26.7 19.7 29.0 19.7 29.2 19.6 0.000 *** 
% Income<35 k 40.5 18.9 29.6 14.4 31.2 15.7 0.000 *** 
% Income 35-50 k 14.9 8.6 13.3 7.3 14.2 7.8 0.000 *** 
% Income 50 k-100 k 27.9 12.0 31.2 10.3 31.2 10.3 0.000 *** 
% Income 100 k+ 16.7 15.1 25.9 17.3 23.4 17.2 0.000 *** 
% No vehicle households 9.1 10.3 4.2 5.1 4.8 5.9 0.000 *** 
% No internet access 19.8 14.0 16.0 11.5 16.2 11.8 0.000 *** 
% Work from home 5.0 5.9 5.0 5.4 5.4 5.5 0.065   

Spatial Characteristics 
Large central metro 20.1  9.6  16.7  0.000 *** 
Large fringe metro 6.8  21.1  14.8  0.000 *** 
Medium & small metro 47.5  43.7  42.8  0.007 ** 
Non-metro 25.6  25.6  25.7  0.994  
Population density (1000 residents/sq.miles) 1.7 1.9 0.8 1.1 1.1 1.5 0.000 *** 
Health care facility density 4.1 11.7 4.5 25.6 3.3 12.0 0.076  

Note: *** significance at p < 0.001; ** significance at p < 0.01; * significance at p < 0.05. 
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lower facility density and the likelihood of being in cluster 1 also sug-
gests the limited physical access to health care resources for CBGs in 
cluster 1, highlighting the importance of ensuring equal access to health 
care resources (Guida and Carpenteri, 2021). 

CBGs in the other two clusters with comparably higher medical visits 
(cluster 2 and cluster 3); cluster 3 has a relatively slower and modest 
recovery. The socio-demographic and spatial characteristic variables 
also explain the disparities in recovery patterns between cluster 2 and 
cluster 3. It is important to note that these significant associations tend 
to be small in magnitude, suggesting recovery patterns of medical care 
visits after the lockdown are not sensitive to socio-demographic and 
spatial characteristics. However, the effect sizes of two variables, per-
centages of White individuals and the highest-income individuals are 
still comparable. CBGs with higher percentages of Whites and people in 
the highest income class (greater than $100,000) have the highest 
medical visits and reduced their medical visits during the lockdown but 
increased their visits soon after the lockdown. 

Taken together, these results suggest that areas most at-risk for 
decreased health care access during a pandemic are the same neigh-
borhoods where residents exhibited lower health care access prior to the 
pandemic. 

6.2. Using mobile phone data to measure medical trips 

Our assessment of the accuracy and reliability of mobile device data 
from SafeGraph to analyze visits to medical facilities shows that the data 
has good geographic representativeness of population at different 
geographic scales (county, tract, and CBG). The data was spatially 
balanced when sampling health care facility POIs and could measure the 
overall temporal patterns of visits to medical facility POIs at the state 
level. However, the study limits the comparison between outpatient 
visits to clinics in the UNC Health Care system and medical care visits of 
SafeGraph, which calls for more research on assessing the accuracy in 
using mobile device data on measuring visits to POIs. Furthermore, the 
data still suffers from a slight under-representativeness of low-income 
people and non-White individuals. The data issues may indicate that 
SafeGraph data does not accurately record medical visits by low-income 
people, especially in rural areas. The study’s focus on longitudinal 
analysis and spatially balanced distribution of health care POI would 
help alleviate potential sampling bias. 

Our assessment also showed a significant decrease in sampled de-
vices, which may be attributed to the inability of mobile phone data to 
track a population staying at home not using phone apps with GPS 
tracking. However, SafeGraph data does not reveal the information 
about which phone apps with GPS tracking are recorded in the data 
collection process. Different socio-demographic groups may use their 
phone apps differently. Without data transparency about phone apps, it 
would be difficult for us to evaluate and correct the potential bias of the 
sampling. 

6.3. Strengths and limitations 

Timely delivery and access to health care are essential under normal 
circumstances and during a pandemic. This study is among the few to 
examine medical care visits during COVID-19. Distinct from other 
studies, ours is based on a geographically extensive sample of mobile 
devices across the state of NC, allowing for interpretation beyond the 
context of a single geographic setting and a small sample of patients. 

Several caveats should be considered when interpreting the research 
results. First, tthe data suffers from some under-representativeness is-
sues revealed in our assessment. The data tracks a device instead of an 
individual, and thus it could not distinguish multiple people traveling 
with one sampled device. These data issues are still unclear, and this 
study does not differ from most studies using mobile device data. 

Table 3 
Modeling results.   

Cluster 1 (vs. Cluster 2) Cluster 3 (vs. Cluster 2)  

Coef. SE Sig. Coef. SE Sig.  

Socio-demographics 
% Age over 65 0.020 0.005 0.000 *** 0.010 0.005 0.034 * 
% White − 0.025 0.002 0.000 *** − 0.014 0.002 0.000 *** 
% Income<35 k 0.013 0.004 0.001 *** − 0.004 0.004 0.340  
% Income 100 k+ − 0.026 0.004 0.000 *** − 0.017 0.003 0.000 *** 
% No vehicle households 0.024 0.008 0.002 ** − 0.003 0.008 0.707  
% Work from home 0.050 0.009 0.000 *** 0.030 0.008 0.000 ***  

Spatial Characteristics 
Spatial locations (ref. = non-metro)         
Large central metro 0.766 0.184 0.000 *** 0.502 0.168 0.003 ** 
Large fringe metro − 0.894 0.144 0.000 *** − 0.300 0.115 0.009 ** 
Medium-small metro 0.055 0.103 0.590  − 0.052 0.093 0.576  
Pop density 0.297 0.042 0.000 *** 0.159 0.040 0.000 *** 
Health care facility density − 0.012 0.003 0.000 *** − 0.010 0.003 0.000 *** 
Constant 1.159 0.270 0.000 *** 1.851 0.250 0.000 *** 
Log Likelihood − 5326 
Pseudo R2 0.100 

Note: *** significance at p < 0.001; ** significance at p < 0.01; * significance at p < 0.05; % blacks and % Hispanics are strongly correlated with % Whites (correlation 
coefficient>0.75). Four measures of household income are strongly correlated. We kept the percentage of income less than 35 k and income greater than 100 k. 
Measures of education attainment and internet access are strongly correlated with measures of household income (correlation coefficient>0.75). Thus, these measures 
were removed from the final model. 

Table 4 
Elasticities.   

Cluster 1 Cluster 2 Cluster 3  

Socio-demographics 
% Age 65+ 0.16*** − 0.19*** − 0.02 
% White − 0.72*** 0.89*** − 0.05 
% Income less than 35 k 0.31*** − 0.13 − 0.25*** 
% Income 100 k+ − 0.25*** 0.32*** − 0.03 
% No vehicle households 0.08*** − 0.07 − 0.09*** 
% Work from home 0.10*** − 0.16*** 0.003  

Spatial variables 
Spatial locations (ref. = non-metro)    
Large central metro 0.28*** − 0.48*** 0.02 
Large fringe metro − 0.46 0.44*** 0.14* 
Medium-small metro 0.06 0.004 − 0.05 
Pop density 0.12*** − 0.25*** − 0.05** 
Health care facility density − 0.02* 0.03*** − 0.006 

Note: *** significance at p < 0.001; ** significance at p < 0.01; * significance at 
p < 0.05. 
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Second, tthe data also cannot capture sub-CBG without individual in-
formation. This study focuses on area-level associations rather than 
individual-level associations; however, area-level characteristics are 
significantly associated with health behavior independent of individual 
characteristics (Turrell et al., 2010), suggesting the value of considering 
area-level characteristics. Third, this study only examined the data of 
year 2020 and may conflate the seasonality with the impacts of 
COVID-19, which calls for future studies with the incorporation of data 
of previous years. Finally, we only considered the state-wide restrictions 
and did not consider the disparities in restrictions across counties. 
Counties may have had different levels of restrictions during COVID-19, 
and future studies could benefit from considering more fine-scale re-
striction disparities. 

While our focus on NC was useful for understanding broader 
geographic disparities, especially urban and rural disparities, it could 
also mask variation within metropolitan areas which usually have more 
apparent disparities in the distribution of socio-demographic charac-
teristics. Thus, it would be interesting to conduct similar research in a 
single metropolitan area as a supplement to this study’s findings. 

7. Conclusion and policy implications 

Analysis of the temporal patterns of visits to medical POI across 2020 
and their associations with socio-demographic and spatial characteris-
tics at the CBG level reveals two key findings. The findings may be useful 
for policymakers seeking to improve health care delivery and access. 

CBGs with higher percentages of elderly persons, minorities, low-income 
individuals, and people without vehicle access (cluster 1) had lower use of 
health care before the pandemic and experienced a slower recovery in med-
ical visits after the lockdown. Health policymakers and transportation 
planners need to develop appropriate strategies to address persistent 
inequalities in health care use by these social groups. First, health pol-
icymakers need to make telemedicine a viable option for people living in 
these less-advantaged CBGs. Historically vulnerable populations, such 
as racial minorities, adults over age 65, and low-income households, 
have limited digital literacy and access (Smith, 2020). Community 
health centers, which provide safety-net care for low-income and 
uninsured people, also have financial constraints to implement tele-
medicine (Kim et al., 2020). Health care providers need to develop 
training programs to teach populations in these areas the digital skills to 
use telemedicine and offer language interpreter access. Health care 
systems may also need to provide community health centers located in 
less-advantaged areas with funding to support telemedicine. 

Second, public transportation agencies, private transportation pro-
viders, health care providers, and governments should work together to 
provide low-cost and reliable transportation options for people living in 
these less advantaged CBGs. Transportation agencies should ensure that 
transit and paratransit options for health care are still operating for these 
CBGs. People may also be less willing to use transit to conduct health 
care visits because of safety concerns. Thus, transportation and health 
care agencies may need to make efforts to partner with private trans-
portation providers, like ride-hailing services (e.g., Uber), to provide 
low-cost ride-hailing options for vulnerable populations to access care. 

CBGs in the central areas of large metropolitans or with higher population 
density tend to have a slow recovery of health care visits (cluster 1 and 3 vs. 
cluster 2). The results may be attributed to significant disruptions in 
transportation in these areas. When transit services become unavailable 
in these dense and central areas, transportation agencies, health care 
providers, and private transportation providers should support alternate 
transportation options for people living in central and dense areas. Ride- 
hailing companies like Uber and Lyft have provided Non-Emergency 
Medical Transportation (NEMT) since 2018 in select geographies. 
Studies have shown that using ridesharing NEMT has produced positive 
results, such as fewer missed appointments (Power et al., 2016). Health 
care providers and insurers could continue partnerships with 
ride-hailing companies for people living in these areas to access health 

care. Transportation agencies could also collaborate with bike-share 
companies to provide free or low-cost bike-share in these areas. Bike 
share programs in Chicago, Boston, and New York have offered health 
care workers free access during the pandemic (BicycleRetailer, 2021). 
Bicycling may not be a good transportation option for all people who 
need care. However, the availability of bike-share programs could 
expand mode options and reduce the number of transit transfers for 
people who live in the central areas and rely on transit to access health 
care. 
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