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Abstract

Integrative approaches that simultaneously model multi-omics data have gained increasing

popularity because they provide holistic system biology views of multiple or all components

in a biological system of interest. Canonical correlation analysis (CCA) is a correlation-

based integrative method designed to extract latent features shared between multiple

assays by finding the linear combinations of features–referred to as canonical variables

(CVs)–within each assay that achieve maximal across-assay correlation. Although widely
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acknowledged as a powerful approach for multi-omics data, CCA has not been systemati-

cally applied to multi-omics data in large cohort studies, which has only recently become

available. Here, we adapted sparse multiple CCA (SMCCA), a widely-used derivative of

CCA, to proteomics and methylomics data from the Multi-Ethnic Study of Atherosclerosis

(MESA) and Jackson Heart Study (JHS). To tackle challenges encountered when applying

SMCCA to MESA and JHS, our adaptations include the incorporation of the Gram-Schmidt

(GS) algorithm with SMCCA to improve orthogonality among CVs, and the development of

Sparse Supervised Multiple CCA (SSMCCA) to allow supervised integration analysis for

more than two assays. Effective application of SMCCA to the two real datasets reveals

important findings. Applying our SMCCA-GS to MESA and JHS, we identified strong associ-

ations between blood cell counts and protein abundance, suggesting that adjustment of

blood cell composition should be considered in protein-based association studies. Impor-

tantly, CVs obtained from two independent cohorts also demonstrate transferability across

the cohorts. For example, proteomic CVs learned from JHS, when transferred to MESA,

explain similar amounts of blood cell count phenotypic variance in MESA, explaining 39.0%

~ 50.0% variation in JHS and 38.9% ~ 49.1% in MESA. Similar transferability was observed

for other omics-CV-trait pairs. This suggests that biologically meaningful and cohort-agnos-

tic variation is captured by CVs. We anticipate that applying our SMCCA-GS and SSMCCA

on various cohorts would help identify cohort-agnostic biologically meaningful relationships

between multi-omics data and phenotypic traits.

Author summary

Comprehensive understanding of human complex traits may benefit from incorporation

of molecular features from multiple biological layers such as genome, epigenome, tran-

scriptome, proteome, and metabolome. CCA is a correlation-based method for multi-

omics data which reduces the dimension of each omic assay to several orthogonal compo-

nents–commonly referred to as canonical variables (CVs). The widely-used SMCCA

method allows effective dimension reduction and integration of multi-omics data, but suf-

fers from potentially highly correlated CVs when applied to high-dimensional omics data.

Here, we improve the statistical independence among the CVs by adopting a variation of

the GS algorithm. We applied our SMCCA-GS method to proteomic and methylomic

data from two cohort studies, MESA and JHS. Our results reveal a pronounced effect of

blood cell counts on protein abundance, suggesting blood cell composition adjustment in

protein-based association studies may be necessary. Finally, we present SSMCCA which

allows supervised CCA analysis for the association between one phenotype of interest and

more than two assays. We anticipate that SMCCA-GS would help reveal meaningful sys-

tem-level factors from biological processes involving features from multiple assays; and

SSMCCA would further empower interrogation of these factors for phenotypic traits

related to health and diseases.

Introduction

In recent years, there has been rapid growth in high-dimensional multi-omics datasets (includ-

ing DNA methylation, RNA-sequencing, metabolomics, proteomics, genomics, microbiome,

PLOS GENETICS Multi-Omics CCA

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010517 May 22, 2023 2 / 22

Funding: APR is funded by National Institutes of

Health (NIH) grant R01HL146500 (from National

Heart, Lung, and Blood Institute). LMR was

supported by NIH grants R01AG075884 (from

National Institute on Aging), T32HL129982 (from

National Heart, Lung, and Blood Institute) and

KL2TR002490 (from National Center for Advancing

Translational Sciences). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: LMR is a consultant

for the TOPMed Administrative Coordinating Center

(through Westat).

https://doi.org/10.1371/journal.pgen.1010517


etc.). However, careful analyses with integrative methods are needed to fully utilize these rich

datasets and provide mechanistic insights into health and disease related outcomes. While

many methods have been published [1–3], few studies have evaluated these methods on large-

scale datasets from human samples. In addition, despite quite a few successful examples of

integrating two omics data-types [4–8], particularly detection of quantitative trait loci using

genomic data, there are much fewer such examples of integrative analyses across more than

two omics data types.

One promising method for using multi-omics data to explain phenotypic variation in

health outcomes is canonical correlation analysis (CCA) [9]. CCA is a statistical technique to

identify associations among two assays where each assay contains multiple variables. Specifi-

cally, CCA finds a linear combination of variables in each assay that leads to the maximal cor-

relation of the two linear combinations. Principal component analysis (PCA) can be

considered as a special case of CCA as the optimization objective is the same in the case that

the same data is used for the two assays. CCA is a commonly adopted dimension reduction

and information extraction method in genomic studies [1,10–13] as increasingly more modern

genomic studies collect data from multiple assays.

An extension of CCA by Witten & Tibshirani [1] called sparse multiple CCA (SMCCA) allows

for the input of multiple assays. We hypothesized that this method would be helpful for high-

dimensional multi-omics data exploration and for understanding and extracting omics signatures

that reflect biologically relevant variations. Specifically, we here leverage our CCA-based method

extended from Witten & Tibshirani’s SMCCA to extract low-dimensional latent variables from

high-dimensional multi-omics data and use them to explain phenotypic traits, focusing on blood

cell indices, along with basic demographic and anthropometric characteristics. We perform CCA-

based analyses in two studies with rich multi-omics data in hundreds of individuals, the Multi-

Ethnic Study of Atherosclerosis (MESA) and the Jackson Heart Study (JHS).

Results

CCA pipeline

A typical CCA-based method generates orthogonal canonical variables (CVs), which are low-

dimensional summaries to represent latent variables underlying the multi-assay input data.

Fig 1 is a cartoon illustration where we have three assays (X, Y, and Z) for three samples. Fea-

tures are assumed to be continuous with no distributional assumptions. For presentation brev-

ity, we only show how we obtain the top 4 CVs. For each assay, CCA infers 4 vectors of

weights (e.g., WX1, WX2, WX3, and WX4 for assay X), which leads to four CVs. For example,

CVX1, the top CV for assay X, is obtained by X×WX1. The weights are inferred by maximizing

the correlation of CVs across three assays. Note that in the rightmost CV matrices, each col-

umn of a CV matrix is one CV of the corresponding assay. In addition, CVs corresponding to

the same column cross assays are expected to have maximal correlation (for instance, CVX1,

CVY1, CVZ1,are most correlated), while CVs in different columns are expected to be orthogo-

nal or independent from each other in the same assay.

Modified gram-schmidt algorithm improves orthogonality

SMCCA implemented in the PMA R package does not always provide the expected orthogonal

CVs, preventing effective extraction of independent CVs and sometimes causing serious mul-

ticollinearity issues in subsequent association analysis. For example, Fig 2A and 2B shows

results from PMA’s implementation of unsupervised SMCCA when applied to MESA proteo-

mics and methylomics data (detailed in Methods) where we observe extensive correlation

among the CVs. In the presence of undesired correlated CVs, users will have to perform a
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secondary filtering step to generate a list of non-redundant CVs, or else variation in omics

data captured by the later CVs may overlap with variance captured by former CVs. Therefore,

we sought to improve orthogonality among generated CVs for capturing distinct information

from the integrated multi-omics data. Specifically, we follow the Gram–Schmidt (GS) strategy

[14] which generates CVs sequentially by progressively subtracting the previous CV from the

input matrices (detailed in Methods). Fig 2C and 2D shows substantially improved orthogo-

nality among the CVs when applied to the same MESA proteomics and methylomics data.

Similar patterns were observed when SMCCA was applied to JHS data (S1 Fig).

Proteomics CVs explain considerable amounts of variation in blood cell

counts

We also applied our implementation to proteomics and methylomics data in JHS. As these

unsupervised CVs are anticipated to capture shared latent variables underlying the proteomics

Fig 1. Cartoon illustration of a typical CCA-based method for three assays. X, Y, and Z are three assays with 4, 5, and 6 features respectively. When applying

a CCA-based method on them to compute 4 canonical variables (CVs), we would first get their weight matrices WX, WY, WZ, each of which contains 4 weight

vectors. By multiplying each assay matrix (left panel) and its corresponding weight matrix (middle panel), we obtain the CV matrix for the assay (right panel)

where each column corresponds to one CV.

https://doi.org/10.1371/journal.pgen.1010517.g001
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and methylation datasets, we hypothesized that the CVs may explain a non-negligible amount

of variation in various phenotypes. Our primary phenotypes of interest in this work are blood

cell traits, including white blood cell count (WBC), red blood cell count (RBC) and platelet

count (PLT). We also considered age, sex, and body mass index (BMI), as “control” pheno-

types which have been widely reported to explain considerable variability in proteomics and

methylomics data. For each of the six outcome phenotypes, we fit regression models to esti-

mate the percent of variation explained by the top 50 CVs from each of the two omics data,

namely proteomics and methylomics (detailed in Methods). For each cohort (MESA or JHS),

we had two sets of CVs, one derived from the cohort’s own omics data, the other derived from

applying the CV weights inferred from the other cohort.

We found that top CVs, from each of the two omics data, explain considerable amounts of

variation in almost all of the outcomes evaluated (Fig 3). For example, top 50 methylomics

CVs inferred in JHS explained 72%, 100%, 35%, 37%, 34%, 30% of variation in age, sex, BMI,

Fig 2. Improved orthogonality among CVs by adopting the Gram–Schmidt (GS) strategy. CVs are inferred from MESA proteomics and

methylomics data using unsupervised SMCCA. Each row and column represent one CV, ranging from CV1 to CV50. (A-B) Results from the PMA

R package, implementation of the original SMCCA methods without the incorporation of GS algorithm. (C-D) Results from our SMCCA-GS, with

the GS strategy incorporated. Left panel (A and C) show proteomics CVs, and right panel (B and D) methylomics CVs.

https://doi.org/10.1371/journal.pgen.1010517.g002
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WBC, RBC, and PLT respectively, in JHS (Fig 3A). We also observe high transferability

between MESA and JHS, by first applying SMCCA-GS separately to each cohort and then

transferring the inferred CVs to the other cohort. For example, the top 50 methylomics CVs

inferred in MESA explained similar amounts of variation in RBC: 33% in MESA (itself) (Fig

3C) and 30% when applied to JHS (Fig 3D). Such high transferability suggests that latent vari-

ables learned by CCA might reflect biological processes shared across cohorts. We also note

that these r2‘s from methylomics data were most likely under-estimated because the CVs were

constructed using the top 10,000 most variable CpG sites (see Methods) instead of the entire

~700,000 sites, for computational reasons. These findings are not surprising: for instance,

blood cell composition (notably for white blood cell subtypes) has been long known to influ-

ence the methylome. For that reason, in epigenome-wide association studies (EWAS), it has

been standard practice to first estimate the leukocyte proportions from methylomics data and

adjust for these cell type proportions in subsequent association analysis [15]. Given shared pre-

cursors for all hematological cell types, we found it relatively unsurprising that RBC and PLT

also had a high percent variation explained by methylomics CVs. Similarly, age [16], sex

[17,18] and BMI [19] have been known to explain substantial variability in methylomics data,

and are commonly adjusted for as covariates.

More interestingly, the amounts of variation in various outcomes explained by top 50 prote-
omics CVs are even higher, ranging 39% - 100% in JHS and 39% - 100% in MESA. Large r2 for

age, sex, and BMI are expected since all have been reported to rather broadly affect protein

profiles [20,21]. However, strikingly, r2 for blood cell traits are also considerable, and compara-

ble to BMI, 50%, 45%, 39% respectively for WBC, RBC and PLT in JHS using CVs inferred in

MESA -> JHS

JHS -> MESA

MESA

JHS

Fig 3. Proportion of variation in outcomes explained by CVs. (A) CVs were inferred using proteomics and methylomics in JHS. The top 50 CVs were used

to calculate the r2 (Y-axis) for each outcome (X-axis). (B) We obtained CVs in JHS by applying the weights inferred from MESA, and then calculated r2 in the

same way as in A. (C) CVs were inferred using proteomics and methylomics in MESA. (D) CVs were obtained in MESA by applying the weights inferred from

JHS.

https://doi.org/10.1371/journal.pgen.1010517.g003
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JHS. Confirming these results, when applying CV weights inferred from MESA to JHS, we

obtained similar r2‘s: 44%, 47%, 39% for WBC, RBC and PLT respectively. Similar patterns

were also observed in MESA using both MESA and JHS derived weights. These considerable

amounts of variations in blood cell counts explained by top proteomics CVs have important

implications for association studies involving proteomics data: we should consider adjusting

for blood cell proportions in these association studies, under the same rationale in EWAS (var-

iability driven by blood cell subtype abundance is likely not of interest for many disease out-

comes of interest whose association with proteomics data is being examined).

CVs vs Principal Components (PCs)

Although CVs are inferred jointly from multi-omics data, we have focused on analyzing CVs

from each omics data type separately for their predictive power of outcomes of interest. Thus,

we naturally are interested in comparing the CCA-based approach with the standard PCA

approach since we can obtain PCs separately for each omics data. Note first that we expect

larger and more assay-specific batch effects in JHS than MESA. For example, JHS proteomics

data was generated in 3 batches [22], and separately from the methylomics data. In contrast,

MESA proteomics and methylomics data were all generated through the MESA TOPMed pilot

over a short time period [23,24]. Results shown in Fig 4 supported our expectations: overall we

observe that a lower number of JHS inferred CVs are needed to explain the outcomes with

higher r2 compared to JHS inferred PCs, indicating that top CVs inferred from JHS data tend

to capture biological variations while top PCs tend to reflect more assay-specific technical vari-

ations. We note that this is supported by the stronger association for CVs vs PCs with technical

factors (S6 and S7 Figs), notably for proteomics data which has been subjected to less pre-pro-

cessing to account for technical effects related to batch/plate (prior to any of the analyses con-

ducted here). The contrasts are most pronounced with age and WBC for proteomics data, and

with age for methylomics data. For example, in JHS, proteomics-CV1 explained 33% variation

in WBC (blue "+" on the leftmost side of Fig 4A3) while proteomics-PC1 only explained 7.7%

(purple "+" on the leftmost side of Fig 4A3). This noticeable advantage continued until ~20

CVs/PCs. For instance, the top 15 proteomics-CVs in JHS explained 44% variation in WBC

(blue "x" in Fig 4A3) while top 15 proteomics-PCs only explained 29% (purple "x" in Fig 4A3).

Similar advantages of CVs over PCs were observed in MESA, but were less pronounced as

expected due to the smaller and less assay-specific batch effects in MESA. Reassuringly, apply-

ing JHS inferred CV weights to MESA showed advantages similar to those in JHS, more pro-

nounced than using CVs inferred in MESA itself, further demonstrating the power of CVs to

capture biologically relevant variations under the presence of assay-specific batch effects.

Supervised sparse multiple CCA

Extending supervised sparse CCA to supervised sparse Multiple CCA. So far, we have

generated and evaluated unsupervised CCA where the CVs are inferred from multi-omics data

only, without considering any outcomes of interest. Although we assessed the relationship

between unsupervised CVs and several outcomes of interest, the CVs themselves were inferred

without knowledge of the outcomes. In practice, when we are primarily interested in a particu-

lar outcome, supervised approaches can be more effective and powerful. The PMA R package

implements a sparse supervised CCA (SSCCA) method. However, this implementation only

accepts two omics data at a time, which limits our capabilities in real datasets where there are

more than two assays. For instance, in both MESA and JHS, we also have whole genome

sequencing (WGS) data [25]. We implemented a sparse supervised multiple CCA (SSMCCA)

method to accommodate more than two assays of omics data. Our implementation follows the
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Fig 4. Comparison of r2, PCs vs CVs. Each column corresponds to one outcome. Within each panel, top row (JHS) shows results in

JHS using JHS-inferred CVs. Second row (JHS->MESA) shows results in MESA, also using JHS-inferred weights. Third row (MESA)

shows results in MESA, this time using MESA-inferred CVs. Last row (MESA->JHS) shows results in JHS, also using MESA-inferred

weights. (A) Proteomics. Proteomics CVs explain more variation in white blood cell count (WBC) than PCs. For example, proteomics-

CV1 explains 33% of the variation in WBC (blue "+" in Fig 4A3), while proteomics-PC1 only explains 7.7% (purple "+" in Fig 4A3). This

pattern persists until approximately 20 CVs/PCs. The top 15 proteomics-CVs in JHS explain 44% of the variation in WBC (blue "x" in
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idea in Witten et al., (2009) [1] where a feature selection step is performed within each assay to

retain (by default) top ~80% features most correlated with the outcome of interest. Features

selected from each assay form new input matrices to which we then apply our implementation

of unsupervised SMCCA with the adapted Gram-Schmidt algorithm.

To ensure our SSMCCA implementation generates sensible supervised CVs, we first com-

pared results from PMA’s SSCCA implementation, when there are two assays of data. Specifi-

cally, we compared correlations between inferred supervised CV1 and the corresponding

outcomes of interest. We compared SSCCA and our SSMCCA by running two methods with

100 different random seeds and for each seed, testing the variation of each outcome explained

by supervised proteomics CVs and supervised methylomics CVs (Fig 5). We found that in

most cases, the amount of variation in outcomes captured by SSMCCA CVs is comparable or

significantly higher than SSCCA, indicated by large red circles. For example, Fig 5A third row

third column (red “x” on Fig 5A) shows a large red circle which annotates a case where our

SSMCCA outperforms the original SSCCA. In this example, SSMCCA proteomics CV1

explains 4.17% variation in PLT in MESA, while SSCCA 3.48% (p-value = 8E-9 for difference).

The larger the difference, the darker the color. In a few cases, the amount of variation captured

by SSMCCA CV1 is significantly smaller than SSCCA CV1. For example, Fig 5B row 2 column

1 shows a large blue circle (light blue “+” on Fig 5B) which indicates a case where the original

SSCCA outperforms our SSMCCA. However, although the difference in terms of percent vari-

ation explained in RBC by SSCCA vs SSMCCA methylomics CV1 is highly significant (p-

value = 3E-28), the absolute difference (4.27E-8 percent variance explained) is tiny, suggesting

the difference between the performance of two methods is negligible.

Biologically meaningful features detected by SSMCCA

We applied SSMCCA to three assays–proteomics, methylomics, and genotypes–from MESA

to obtain 50 CVs for each assay, and then used standard regression models to assess associa-

tions with phenotypes–age, BMI, WBC, RBC, and PLT. CV-phenotype pairs were considered

to be significantly associated when p-value < 1E-4 (Bonferroni correction), adjusting for

covariates detailed in S2 Table. In MESA, we identified 58 significant CV-phenotype pairs,

and 5 of them were validated in JHS with the same p-value threshold of 8.62E-4 and same

direction of effect (S3 Table). For example, WBC and proteomics CV3 were strongly associ-

ated in both cohorts (p-value = 2.7E-15 in MESA, 6.8E-16 in JHS, S3 Table). Features with

high absolute weight coefficients in this CV (S5 Table) are biologically relevant for WBC. For

example, stem cell factor soluble receptor, which has the highest weight, is known to play a key

role in hematopoiesis [26]. Lipocalin 2, with the second highest weight, has been reported to

be associated with human neutrophil granules [27].

For each phenotype, we then assembled all features from each assay (i.e., both methylomics

and proteomics) with non-zero weight for phenotype-associated CVs in S3 and S4 Tables, and

annotated each feature to a gene, on which we performed pathway enrichment analysis

(described in Methods). For comparison, we also performed the same pathway enrichment

analysis using features individually associated with each phenotype, where association is

declared when FDR < 5% for each assay-phenotype-cohort combination. Comparing these

two sets of pathway enrichment results, we found several pathways only revealed (p.

adjust < 0.05) by our SSMCCA, including the growth factor binding gene ontology (GO)

[28,29] term and the DisGeNET [30] progressive chronic graft-versus-host disease (GVHD)

Fig 4A3), while the top 15 proteomics-PCs explain only 29% (purple "x" in Fig 4A3). (B) Methylomics. In each sub-figure, X-axis

indicates the number of CVs or PCs used and Y-axis the proportion of variation explained in the outcome (i.e., r2).

https://doi.org/10.1371/journal.pgen.1010517.g004
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and polypoidal choroidal vasculopathy genesets. All of these pathways have been reported to

be related to BMI in previous literature [31–34].

Assigning CpG sites to genes is a challenging task. We adopted the simple nearest gene

approach. Other reasonable approaches include promoter-centric assignment [35], leveraging

differentially methylated regions [36], or using expression quantitative trait methylation

(eQTM) [37] information. We explored the eQTM approach as we have both methylation and

gene expression measurements in a subset of samples in JHS and MESA. However, due to lim-

ited number of CpGs included in significant CVs, we had only 25–257 genes (with the number

of genes implicated by CpGs varying across different outcomes, detailed in S6 Table) based on

significant eQTMs (Methods) for pathway enrichment analysis (results summarized in S7 and

S8 Tables). We anticipate to benefit more from this approach when eQTM sample size

increases.

Discussion

Large quantities of data across multiple omics (transcriptomics, proteomics, metabolomics,

genomics, methylomics, etc.) modalities is currently being generated, for example through

efforts funded by NIH’s Precision Medicine Initiative [25,35] as well as other large federally

funded studies [36]. These high dimensional and complex multi-assay data are unfortunately

still too often analyzed only separately (e.g., applying PCA separately to genotype, gene expres-

sion, or methylation data) or in a pairwise manner (for example mQTL analysis examining

relationships between genome and methylome, or pQTL analysis examining relationships

between genome and proteome). Many innovative methods have been proposed (https://

github.com/mikelove/awesome-multi-omics [accessed on 2022-07-25]) for integrative analysis

but evaluations in large-scale real omics data are still lacking, with fewer impartial appraisals

available to guide method choice in practice.

In the work presented here, we apply CCA-based methods to complex multi-omics datasets

to assess their capabilities and limitations. In particular, for the widely used PMA implementa-

tion of the SMCCA methods, we identified two limitations: non-orthogonal CVs and inability

to accommodate more than two assays for supervised analysis. We provide method extensions,

SMCCA-GS and SSMCCA, to address the two limitations. Applying SMCCA-GS to real data

in MESA and JHS, we found that CVs are consistent and transferable across cohorts, suggest-

ing that CVs capture constitutive biological relationships shared across cohorts, and are not

driven primarily by assay-specific technical variation. This cross-cohort consistency, to our

knowledge, has not been well explored in the literature and has important implications for

making method choices (e.g., CCA vs PCA) for multi-omics data with or without extensive

assay-specific batch effects.

Importantly, our CCA-based analyses reveal that blood cell indices are substantially associ-

ated with multiple omics assays including methylomics and proteomics. The former associa-

tion has been widely appreciated and exerted paradigm-shifting impact on analysis: in

methylation association studies, white blood cell composition is adjusted for in methylation

analyses in standard practice. The latter association, where CVs from proteomics data showed

even more pronounced association with blood cell indices, has been under-appreciated, with

Fig 5. Comparison of SSCCA and SSMCCA. (A) proteomics, and (B) methylomics. Each row corresponds to a phenotype (from bottom to top,

Age, BMI, WBC, RBC, and PLT). Circle size reflects the significance of the difference in variation explained between two methods. Color reflects the

size of difference between the variation of phenotype explained by SSCCA and our SSMCCA. Therefore, a larger circle means a more significant

difference between the two methods. Note that we use rectangles for insignificant difference with p> 0.01. Red means that our SSMCCA explains

more phenotypic variation while blue means that SSCCA explains more. The darker the color, the larger the difference (the scale is different for

parts A and B, annotated in “diff” column on side of figure).

https://doi.org/10.1371/journal.pgen.1010517.g005
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blood cell traits not considered in most current proteomic analyses [22,37–39]. Our findings

indicate that blood cell composition should be accounted for (or at least considered) in protein

association studies where feasible, similar to what is standard practice for methylation studies.

As demonstrated in Fig 4, our SMCCA-GS is in some cases more useful than PCA in

explaining variability in phenotypes, using an identical number of PCs/CVs. However, there

are also many cases where the methods are nearly equivalent. We hypothesize that our

SMCCA-GS demonstrates more consistent advantages in explaining trait variability in JHS

versus MESA due to the presence of more substantial JHS batch effects. Due to funding limita-

tions, JHS proteomics and metabolomics data was generated in multiple batches across several

years, while the MESA data used here was generated concurrently, funded by NHLBI’s

TOPMed program. Thus, for proteomics in particular, more batch effects are anticipated in

JHS; our SMCCA-GS is particularly advantageous in cases where there is increased assay-spe-

cific technical variation.

In multi-omics data, it is commonplace to have drastic differences in the dimension of dif-

ferent omics data. For example, methylomics data, when generated by the widely used Illumina

MethylationEPIC BeadChip array, contains almost 106 features; transcriptomics data are com-

monly summarized into ~104 expressed genes; and metabolomics and proteomics typically

even smaller: only ~102−103 features depending on the platforms used. Witten et al. (2009) [1],

introducing the SMCCA method, analyzed data with 19,672 gene expression measurements

and 2,149 comparative genomic hybridization measurements, showing that their method

could accommodate such imbalance. Our methods, derived from SMCCA, are also expected

to accommodate omics dimension imbalance. In our analyses, results using ~700K CpG sites,

while computationally challenging to fit repeatedly, led to similar conclusions as using top

10,000 CpG sites (detailed in Methods and S4 and S5 Figs), further suggesting the robustness

of sparse CCA methods to imbalance in omics dimension.

We note that CCA-based methods as implemented in our analyses still have several key lim-

itations. Notably, we had to considerably reduce the dimensionality of methylation array and

sequencing data in order for our CCA-based method to be computationally feasible (at least

for the repeated analyses necessary for methods development and testing). While we were able

to fit models for the entire set of CpG sites a single time, with similar overall results in terms of

phenotype variance explained (S4 and S5 Figs), our SMCCA-GS approach will require further

innovation to be scalable for large-scale datasets. Recently developed methods allow for effi-

cient calculation of generalized CCA solutions across reduced dimensions of each distinct

assay, which alleviates some of the computational issues that arise, though sparse identification

of individual omics features from the original assay data may still be desired [40].

Methods

Cohorts

Ethics statement. All participants included in this analysis provided written, informed

consent for use of genetic and multi-omics data, and all study protocols conform to the 1975

Declaration of Helsinki guidelines. The Jackson Heart Study (JHS) and Multi-Ethnic Study of

Atherosclerosis (MESA) studies were approved by the Institutional Review Boards of all partic-

ipating institutions.

JHS. JHS recruited 5,306 African American participants from the Jackson, Mississippi,

metropolitan tri-county area (Hinds, Madison, and Rankin) into a prospective, community-

based cohort designed to investigate risk factors for cardiovascular disease among African

Americans [41–43]. Demographics of JHS individuals involved in the analysis are displayed in

S1A Table.
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Multi-omics data utilized in JHS analyses including methylomics (n = 1,750, Illumina

MethylationEPIC BeadChip array) [44] and proteomics (n = 2,144, SOMAscan 1.3k array)

[22], both from the baseline visit, and whole genome sequencing (WGS) data as described

below. Methylation levels are quantified by beta values [45]. Traits examined include age, sex,

BMI, and hematological traits (WBC, RBC, and PLT). We limited our analyses in JHS to indi-

viduals with complete data for proteomics, methylomics, and traits examined (total n = 881,

S2A Fig).

MESA. The MESA study was initiated in July 2000 to investigate the prevalence, corre-

lates, and progression of subclinical cardiovascular disease (CVD) in a population-based sam-

ple of 6,814 men and women aged 45–84 years. The cohort was selected from six US field

centers. Based on self-reported race/ethnicity, approximately 38% of the cohort are White,

28% African American, 23% Hispanic, and 11% Chinese American. More demographic infor-

mation of MESA individuals involved in the analysis is in S1B Table.

Longitudinal multi-omics data was generated in MESA through a pilot program from

NHLBI’s Trans-Omics for Precision Medicine Initiative (TOPMed) at exam 1 (2000–2002)

and exam 5 (2010–2011), including ~ 1,000 participants for each exam with methylomics data

(Illumina MethylationEPIC BeadChip array) [45] and proteomics (SOMAscan 1.3k array)

[22,23]. Methylation levels are quantified by beta values [45]. WGS data are described below.

Basic covariates examined include age, sex, BMI, recruitment site, self-reported race/ethnicity,

and the same hematological traits as in JHS. We limited our analyses in MESA to individuals

with complete data for proteomics, methylomics, and phenotypes examined (total n = 777,

S2B Fig). Use of the same platforms for multi-omics assessment as in JHS allowed comparison

analyses for CVs derived by SMCCA-GS or SSMCCA across cohorts.

Whole Genome Sequencing (WGS) data

Genotypes are derived from TOPMed WGS data (freeze 8). Data harmonization, variant dis-

covery, and genotype calling were previously described [25,46]. In our analysis, to reduce data

dimensionality, we first extracted SNPs associated with blood cell traits from Chen et al.

(2020) [47] and highly correlated (linkage disequilibrium r2 > 0.8 where r2 is the in-sample

squared Pearson correlation between the corresponding genotype vectors) variants were

removed, resulting in 3,789 SNPs for JHS and 3,562 SNPs for MESA in our supervised CCA

analysis. Genotypes are coded into numerical values 0, 1, and 2 for our analysis. Population

principal components calculated by PC-AiR [48] were adjusted for as covariates. In addition,

for WBC, we additionally adjusted for the Duffy null polymorphism (SNP rs2814778 at chro-

mosome 1q23.2) [49].

Transcriptomics

We involve transcriptomics data in eQTM analysis to map our selected 10k CpG sites to genes

for pathway enrichment analysis, but we do not include transcriptomics in our multi-omics

integration analysis because a considerable number of individuals could not be included in the

analysis if we incorporate transcriptomics (S2 Fig). For both JHS and MESA, RNA-seq was

measured from peripheral blood mononuclear cells and normalized to transcript per million

(by Northwest Genomics Center for MESA, as previously described [50], NWGC for JHS

using similar pipelines).

Initial quality control (QC) and transformation of multi-omics data

In both cohorts, we applied QC on each assay including sample outlier removal and feature fil-

tering. For each protein in the proteomics data, we first applied log transformation, followed
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by inverse normal transformation. After QC, we had 1,317 proteins measured in both cohorts,

which made validation across cohorts straightforward.

Methylomics of JHS [44] was normalized using the “noob” normalization method imple-

mented in minfi R package [58,59]. We further removed batch, plate, row, and column effects

using the ChAMP R package [51]. For MESA methylation data, which had already been sub-

jected to functional normalization to reduce batch effects [52], we excluded samples with (1)

call rate< 95%; (2) sex mismatches; and (3) concordance between SNP probes and

genotypes < 0.8. Methylation levels were marked as missing when the detection p-value

was> 0.01, and we imputed these missing values using ChAMP R package [51], as our CCA-

like methods cannot accommodate missing data. For both JHS and MESA, CpG sites whose

probes overlap any SNP with minor allele frequency (MAF) > 1% were also excluded [53].

After QC, we had 754,767 and 741,727 CpG sites for MESA and JHS respectively. For building

validation across cohorts, we only kept the 721,334 CpG sites which passed QC in both

cohorts.

Finally, we only kept samples with complete data including proteomics, methylomics, and

phenotypes (age, BMI, WBC, RBC, PLT, site, race, sex for MESA; age, BMI, WBC, RBC, PLT,

sex for JHS), which led to 881 samples for JHS and 777 samples for MESA. We further identi-

fied sample outliers by PCA-IQR plot (Section 2 in S1 Text and S3 Fig). Four outliers in JHS–

one sample with the largest proteomics IQR (wedge pointed on S3A Fig) and three samples

with largest methylomics IQR (wedges pointed on S3B Fig)–were removed; and three outliers

in MESA were removed–all three with largest methylomics IQR (wedges pointed on S3D Fig).

For each assay, we removed the sex chromosome related proteins and CpG sites. We further

removed features that are highly correlated [54], at a squared Pearson correlation 0.8 thresh-

old. We adopted a greedy algorithm (Algorithm 1 below) to achieve the dual goal of no highly

correlated pairs among a maximal number of features retained. For methylomics, we calcu-

lated Pearson correlation using the Python package Deep Graph [54] and after removing

highly correlated, further kept 10k CpG sites with the highest variance for the computational

efficiency. Our CCA-based methods are computationally intensive. For example, even with

these 10k CpG sites (~1.3% of all available CpG sites), on a single core of E5-2680 v3 @

2.50GHz, the wall time of calculating 50 CVs with our SMCCA-GS on proteomics and methy-

lomics is about 8 ~ 14 hours for MESA (774 samples) and about 8 ~ 20 hours for JHS (877

samples); with 20k CpG, the wall time is about 14 ~ 36 hours for MESA and 16 ~ 47 hours for

JHS. For validating our variance-based feature selection strategy, we also performed the same

analysis as Figs 3 and 4 on proteomics and all ~700k CpG sites. The results (S4 and S5 Figs)

show similar patterns as those from top 10k CpG sites (Figs 3 and 4).
Algorithm 1. Remove Highly Correlated Features within Each Assay.
Input: Any assay X =(x1, x2,� � �,xp) ⊳ Assay X with p features
Initiation: S ¼ fðxi; xjÞj1 � i; j � p; i 6¼ j; corr2ðxi; xjÞ � 0:8g

⊳ Each element of S is a pair of features from X whose correlation
square is no less than 0.8

Definition: Features in each pair (xi, xj) in S are viewed as
“neighbors”.
while S 6¼ ; do

dict {} ⊳ Initiate an empty dictionary storing number of neigh-
bors of each feature xi

for xi (x1,� � �,xp) do ⊳ Loop each feature xi of assay X
Count neighbors of xi
dict {xi: number of neighbors}

end for
Identify xj 2 dict with minimal number of neighbors.
Remove any (xj,�) from S.
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Remove xj from X.
end while
Output: X ⊳ After removing features above, features remaining in X
are in low correlations while maximizing the feature size.

Association analysis between outcomes and CVs/PCs

To quantify the relationship between outcomes and CVs or PCs, we used regression models.

Specifically, for continuous outcomes (including age, BMI, WBC, RBC, PLT), we estimated

the proportion of variation in outcome that can be explained by CVs or PCs using linear

regression models, implemented with the R function "lm", with covariate adjustments outlined

in S2 Table. For the binary outcome sex, we employed logistic regression using the "glm" R

function and calculated McFadden’s pseudo-R-squared using the "PseudoR2" function from

the DescTools [55] R package.

Modified gram-schmidt strategy

With PMA implementation, we observed that with our real data where features have complex

correlation structure, the weight vectors are sometimes correlated. To mitigate this non-

orthogonality issue, we adopt a strategy inspired by Woojoo et al., (2011) [14]. In our imple-

mentation, we infer CVs sequentially and remove the effects of the former CVs from the input

matrix before calculating weights for the next CVs. In particular, we first follow the PMA

approach to generate weights for CV1’s of all assays, update input matrices following Eq (1) as

the new inputs for calculating weights for CV2’s, and sequentially update until we obtain pre-

specified numbers of CVs. Eq (1) and Eq (2) show the procedures for inferring the (j+1)‘s CVs

with input matrices {Xij}i = 1,� � �,S.

fCVijg; fWijg � SMCCAðfXijgi¼1;...;S
Þ ð1Þ

Xi;jþ1 ¼ Xi1 � CVij � ðWijÞ
T

ð2Þ

Specifically, {Xij}i = 1,� � �,S are original input matrices for assay i = 1,� � �,S where S is the total

number of assays, from which Wi1‘s and CVi1‘s, the first weights and CV1’s, are inferred by

SMCCA implemented in the PMA R package.

eQTM analysis

We used expression quantitative trait methylation (eQTM) results to alternatively map CpG

sites to genes (instead of simply mapping to nearest genes). We used transcriptomic and

methylomic measurements for 650 and 496 samples from MESA and JHS, respectively, to per-

form eQTM analysis for the 316 CpG sites contributing to CVs significantly associated with

outcomes. We employed the MatrixEQTL R [56] package to assess the association of each

CpG site with its nearby genes in the +/- 1Mb neighborhood, while adjusting for age, and sex

separately in MESA and JHS. For the multi-ethnic MESA samples, we additionally adjusted

for self-reported race/ethnicity and recruitment site. We then conducted meta-analysis using

METAL [57], and used a Bonferroni threshold to define significance, identifying 515 signifi-

cant CpG-gene pairs. Our eQTM analysis successfully mapped 44–112 CpG sites, for each CV

significantly associated with outcome, to 25–257 genes (detailed in S6 Table), based on which

we further performed pathway enrichment analysis, following the same process detailed in the

section below.
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Pathway enrichment analysis

For each CCA-prioritized feature of each assay, we first mapped them to genes, and then per-

formed pathway enrichment analysis on these genes utilizing three databases–DisGeNET

[30,58] (enrichDGN function in DOSE R package, with default settings), Gene Ontology (GO)

[28,29,59,60] (enrichGO function in clusterProfiler R package, with default settings) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) [59–63] (enrichKEGG function in clus-

terProfiler R package, with default settings). For methylomics, we explored two methods for

mapping CpG sites to genes: (1) mapping them to the nearest genes using annotations pro-

vided by Illumina, and (2) mapping CpG sites to genes with significant signals identified in the

eQTM analysis presented above. For proteomics, we mapped proteins to genes using annota-

tions released by SomaScan. For background genes in the enrichment analysis, we included

genes annotated from features that are associated with outcome, identified in the feature selec-

tion step of our SSMCCA (detailed in Section “Extending Supervised Sparse CCA to Super-

vised Sparse Multiple CCA” above).

Supporting information

S1 Fig. Improved orthogonality among CVs by adopting the Gram–Schmidt (GS) strategy.

CVs are inferred from JHS proteomics and methylomics data using unsupervised SMCCA.

Each row and column represent one CV, ranging from CV1 to CV50. (A-B) Results from the

PMA package, implementation of the original SMCCA methods without the incorporation of

GS algorithm. (C-D) Results from our SMCCA-GS, with the GS strategy incorporated. Left

panel (A and C) show proteomics CVs, and right panel (B and D) from methylomics CVs.

(TIF)

S2 Fig. Sample size for each cohort. (A) JHS: 881 participants have complete proteomics,

methylation, and phenotype information; 496 participants have complete transcriptomics,

methylation, and phenotype information. (B) MESA: 777 participants have complete proteo-

mics, methylation, and phenotype information; 650 participants have complete transcrip-

tomics, methylation, and phenotype information.

(TIF)

S3 Fig. PCA-IQR plots. Each dot in the plot represents one individual. X-axis is the interquar-

tile range (IQR) while Y-axis is the top principal component (PC). (A) JHS proteomics: one

outlier was detected, marked by the wedge pointer; (B) JHS methylomics: three outliers were

detected; (C) MESA proteomics: MESA: no outliers; (D) MESA methylomic: three outliers

were detected.

(TIF)

S4 Fig. Proportion of variation in outcomes explained by CVs inferred with all CpG sites

included. (A) CVs were inferred using proteomics and all ~700k CpG sites in JHS. The top 50

CVs were used to calculate the r2 (Y-axis) for each outcome (X-axis). (B) We obtained CVs in

JHS by applying the weights inferred from MESA, and then calculated r2 in the same way as in

A. (C) CVs were inferred using proteomics and all ~700k CpG sites in MESA. (D) CVs were

obtained in MESA by applying the weights inferred from JHS.

(TIF)

S5 Fig. Comparison of r2, PCs vs CVs, inferred with all CpG sites included. Each column is

for one outcome. Top row (JHS) shows results in JHS using JHS-inferred CVs. Second row

(JHS->MESA) shows results in MESA, also using JHS-inferred CV weights. Third row

(MESA) shows results in MESA, this time using MESA-inferred CVs. Last row (MESA->JHS)
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shows results in JHS, also using MESA-inferred CV weights. (A) Proteomics. (B) Methylo-

mics. In each sub-figure, X-axis indicates the number of CVs or PCs used and Y-axis the pro-

portion of variation explained in the (i.e., r2).

(TIF)

S6 Fig. Association with proteomics-specific technical variables, CVs vs PCs. For JHS, the

proteomics technical variable is batch-plate combination status. For MESA, the proteomics

technical variable is plate.

(TIF)

S7 Fig. Association with methylation-specific technical variables, CVs vs PCs. For JHS, the

methylomics technical variable is group-plate combination status. For MESA, the methylomics

technical variables are (A) "Batch Scan", and (B) "Level1 Batch".

(TIF)

S1 Table. Demographics of (A) JHS and (B) MESA.
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S2 Table. Covariate adjustments of each omics data of each cohort.
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S3 Table. Supervised CVs inferred in MESA significantly associated with each phenotype

and validated in JHS.
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S4 Table. Supervised CVs inferred in JHS significantly associated with each phenotype and

validated in MESA.
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S5 Table. Proteins identified in CV3 with non-zero weights in MESA.
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S6 Table. Mapping CpG Sites to Genes.
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S7 Table. Pathway Enrichment Analysis Results of JHS.
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