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Abstract

Exposure to traffic-related air pollutants (TRAPs) has been associated with numerous

adverse health effects. TRAP concentrations are highest meters away from major roads, and

disproportionately affect minority (i.e., non-white) populations often considered the most vul-

nerable to TRAP exposure. To demonstrate an improved assessment of on-road emissions

and to quantify exposure inequity in this population, we develop and apply a hybrid data

fusion approach that utilizes the combined strength of air quality observations and regional/

local scale models to estimate air pollution exposures at census block resolution for the entire

U.S. We use the regional photochemical grid model CMAQ (Community Multiscale Air Qual-

ity) to predict the spatiotemporal impacts at local/regional scales, and the local scale disper-

sion model, R-LINE (Research LINE source) to estimate concentrations that capture the

sharp TRAP gradients from roads. We further apply the Regionalized Air quality Model Per-

formance (RAMP) Hybrid data fusion technique to consider the model’s nonhomogeneous,

nonlinear performance to not only improve exposure estimates, but also achieve significant

model performance improvement. With a R2 of 0.51 for PM2.5 and 0.81 for NO2, the RAMP

hybrid method improved R2 by ~0.2 for both pollutants (an increase of up to ~70% for PM2.5

and ~31% NO2). Using the RAMP Hybrid method, we estimate 264,516 [95% confidence

interval [CI], 223,506–307,577] premature deaths attributable to PM2.5 from all sources, a

~1% overall decrease in CMAQ-estimated premature mortality compared to RAMP Hybrid,

despite increases and decreases in some locations. For NO2, RAMP Hybrid estimates

138,550 [69,275–207,826] premature deaths, a ~19% increase (22,576 [11,288 – 33,864])

compared to CMAQ. Finally, using our RAMP hybrid method to estimate exposure inequity

across the U.S., we estimate that Minorities within 100 m from major roads are exposed to up

to 15% more PM2.5 and up to 35% more NO2 than their White counterparts.

Introduction

Traffic related emissions are a significant source of urban air pollution [1]. Exposure to traffic

related air pollutants (TRAPs) such as PM2.5 and NO2 has been associated with a myriad of
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adverse health effects [2–8]. Additionally, concentrations from TRAPs are the highest in the

vicinity of heavily trafficked roads [9, 10]. In the U.S., around 19% of the population resides

near heavily trafficked roads and in states with higher population e.g., California, up to 40% of

the population live close to TRAPs [11]. These estimates not only reinforce how widespread

the exposure to TRAPs is in the U.S., but it also shows that the risk is highly variable and

potentially greater in areas with higher population and increased road densities. In addition,

many studies have shown that a disproportionate amount of the health risk is placed on

Minority populations [12–22], a group which is already found to be more susceptible to air

pollution exposure.

Assessing the burden of disease from TRAPs usually involves air quality and health model-

ing. Typically, these nationwide modeling efforts have been conducted with chemical transport

models (CTMs) at coarse (12 km x 12 km or even 36 km x 36 km) spatial resolutions [23–31].

Dedoussi et al. [31] estimated 30,800 annual premature deaths in 2011 across the U.S. due to

road transportation attributable to O3 and PM2.5 using 55-km x 55-km grid resolution using

the GEOS-Chem CTM but did not consider secondary organic aerosols in their estimate.

Davidson et al. [30] used a 12 km x 12 km (12-km) resolution model and estimated 9,666

annual premature deaths across the U.S. that were attributable to on-road PM2.5. This corre-

sponded to 9.6% of the total PM2.5 attributable deaths for 2011. Additionally, Davidson et al.

(2020) project that in 2025 the on-road premature deaths attributable to PM2.5 across the U.S.

will correspond to 5.6% of the total premature deaths. These estimates at coarse resolutions,

however, lack the spatial gradients necessary to assess the relationship between population

exposure to TRAPs and health impacts. A few studies have explored the effect of grid resolu-

tion on estimates of air pollution from CTMs on premature mortality [27, 32–34]. But even at

1 km x 1 km (1-km) resolution, these types of studies might not fully capture the fine-scale

TRAP concentration gradients. This can be attributed to the fact that most TRAP concentra-

tions are highest near roads and decrease to background levels within 150 m to 200 m from the

road [10, 35, 36]. Thus, capturing variability within a grid cell at fine spatial scales is critical for

risk assessment. In risk assessment, higher population density is usually positively associated

with air pollution, thus a method that does not capture within-cell variability will suffer from

exposure misclassification. Therefore, diverse methods have been developed to address the

uncertainty due to the dramatic spatial variation of TRAPs at even smaller spatial resolutions.

Some studies have developed statistical regression-based models that estimate TRAPs at a spa-

tial resolution of< 1 km [37–44]. These models, however, use surrogate indicators of emis-

sions that are specific to an area and ignore the physical and chemical processes (e.g.,

dispersion, advection/diffusion, chemical reactions in gaseous and aerosol phases, and deposi-

tion) that can better quantify road source contribution.

To overcome these challenges, hybrid approaches have been developed that take coarse

scale predictions of TRAPs from CTMs and combines them with high resolution dispersion

model estimates [45–51]. As opposed to CTMs which allocate emission to a grid, dispersion

modeling can represent emissions in a much finer spatial resolution that retains the physical

characteristics and shape of the emitted plume. Because most dispersion models lack the ability

to predict secondary pollutants such as secondary PM2.5, combining these models avoids

underestimating the total impact of a pollutant. Thus, by combining results from CTMs with

dispersion models, predictions will include regional background, detailed chemical mecha-

nisms, and emission sources that might not be included in a dispersion model. Using a hybrid

air quality model, Parvez and Wagstrom [51] studied the effect of resolution (census block

group vs 12-km grid resolution) on health impacts attributable to PM2.5 in three locations in

Connecticut. Their findings showed an underestimation of health impacts at the coarser reso-

lution. Their study, however, upscaled hybrid PM2.5 concentrations from 0.04 km x 0.04 km
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grid resolution to census block groups (losing the fine-scale variability necessary to capture ele-

vated air pollution from roads). The study by Chang et al. [47], which estimated TRAP concen-

trations using a hybrid model at census block level, concluded that their hybrid approach

estimated 24% more on-road PM2.5-related premature mortality than a CTM at a 36 km x 36

km resolution in central North Carolina. However, neither of these studies considered the

biases in either model (i.e., dispersion model or hybrid model), and results from the modeling

were localized to a small region. Recently, Shukla et al. [50] developed a hybrid modeling

approach that combines C-TOOLS [52], a local-scale dispersion model for primary PM2.5 with

the CoBenefits Risk Assessment (COBRA) Screening model [53] with secondary PM2.5 com-

ponents. This model was used to characterize ZIP-code level air pollution estimates of PM2.5

in New York City for performing rapid assessment for evaluating health benefits of emissions

reduction measures.

Continuing these efforts, our work describes and applies a novel hybrid data fusion method

that combines model predictions from a dispersion model specially designed to predict on-

road emission and a CTM at 12-km resolution with observations to produce fine-scale air

quality characterization of PM2.5 and NO2 at census block levels across the continental U.S. In

this approach, we also consider the nonhomogeneous, nonlinear behavior of model perfor-

mance and thus have the ability to correct biases at fine-scale. Additionally, by estimating air

pollution at high resolution our model will be able to assess whether our method can capture

the variability necessary to better characterize the spatial gradient from TRAPs to provide

more accurate assessments of the health risk overall. This approach will aid in further identify-

ing vulnerable populations, quantify their exposure inequity near and away from roads, and

prevent potential exposure misclassification.

Methods

Hybrid data fusion overview for 2016

The hybrid data fusion approach used in this study combines the gaussian Research LINE

source dispersion model (R-LINE) [54] developed for near-roadway assessments, with the

Community Multiscale Air Quality Model (CMAQ) CTM [55] version 5.2.1 [56] with Carbon

Bond 6 version r3 at 12-km horizontal grid resolution with aero6 treatment of secondary

organic aerosols (SOA) set up for standard cloud chemistry for the year 2016. The data fusion

approach then applies the Regionalized Air quality Model Performance (RAMP) method that

uses observations from the Air Quality System (AQS) network to correct biases in the model

[57]. This hybrid data fusion approach models total hourly average PM2.5 and NO2 concentra-

tion that consider the fine-scale resolution of on-road emissions for 2016 for each of the

11,063,509 Census blocks for a full year from January 2016 to December 2016 across the conti-

nental U.S.

Measurement data processing

Hourly, daily, and annually observed NO2 and PM2.5 from EPA’s AQS database [58] for each

space/time location during 2016 were collected from monitoring stations.

Emissions and meteorological data processing

Emissions for CMAQ and R-LINE are based on the 2016v7.2 (beta) platform [59]. This plat-

form was produced by the National Emissions Inventory Collaborative and contains the emis-

sion inventories for 2016. For R-LINE, specifically, this platform provided emissions factors,

fleet mix, and temporal allocation tables. These datasets were combined with road network
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data like geometry and annual average daily traffic (AADT) for major (or primary) road types,

including interstates, principal arteries, minor arteries, and major collectors from the United

States Federal Highway Administration (FHWA)’s Highway performance monitoring system

(HPMS). The data set consists of ~7.5 million major road segments also from 2016 and was

used to calculate hourly emissions using an approach similar to previous studies [60–62]

The gridded meteorological data for 2016 were obtained from version 3.8 of the Weather

Research and Forecasting Model (WRF) [63]. For CMAQ, WRF meteorological outputs were

processed using the Meteorology-Chemistry Interface Processor (MCIP) package [64], version

4.3 for the continental U.S. at a 12-km resolution. The meteorological inputs for R-LINE were

also based on the same 12-km resolution WRF data used for CMAQ. Given that our hybrid

data fusion approach will rely on R-LINE estimates for all major roadway sources within every

CMAQ grid cell, R-LINE ready meteorological files were created using the Mesoscale Model

Interface Program (MMIF) [65] for every grid cell. MMIF outputs have been shown to com-

pare well against observed meteorological data and have been applied to dispersion models to

address sparse observations networks [49, 66, 67].

Hybrid model

To combine CMAQ and R-LINE predictions we follow approaches similar to previous studies

[45, 48, 49, 68] as discussed below. Thus, to create PM2.5 estimates, we first remove primary

roadway contributions from CMAQ to avoid double counting (This is also done for NO2 esti-

mates). It is of note, that R-LINE can only estimate primary PM2.5 and thus we rely on CMAQ

to provide secondary PM2.5. Additionally, the effect of resolution shows greater biases for pri-

mary PM2.5 species than secondary species [27]. To begin, we run R-LINE for all primary

roads (i.e., Interstates, principal/minor arteries, and major collectors) in each CMAQ 12-km

grid cell to estimate concentrations at a spatially distributed 1-km grid of 144 receptors. Then,

we average this R-LINE grid of 1-km grid resolution within every CMAQ 12-km grid cell to

obtain the R-LINEGAVG. We then subtract this R-LINEGAVG from the total CMAQ estimate

(CMAQTOT) that includes impacts from all sources in each grid cell to remove on-road contri-

butions. Note that CMAQTOT represents an average value for the entire grid cell. This com-

puted difference then corresponds to an estimate of CMAQ without primary roadway

attributable PM2.5 at a 12-km resolution. The next step is to linearly interpolate this difference

to Census Block Centroids (CBCs). These interpolated values are then added to the primary

PM2.5 estimates from R-LINE at a CBC resolution (R-LINECBC). Because we are combining

models with different biases, there is the potential of negative estimates of CMAQ without pri-

mary roadways. If this is the case, we rely only on R-LINECBC for the hybrid estimate (i.e., we

zero-out CMAQ without primary roads). The resulting concentration represents the hybrid

PM2.5 at the CBCs as shown in Eq 1.

HYBðPM2:5 ;NO2Þ
¼ ½ðCMAQTOT � R� LINEGAVGÞinterpolate� þ R� LINECBC ð1Þ

The hybrid estimate refines the variability of the coarse CMAQ estimate to capture variabil-

ity within each CMAQ grid described by R-LINE (i.e., hyperlocal variability of primary PM2.5

from mobile emissions occurring within each CMAQ grid). However, note that the hybrid

estimate does not refine the variability of the coarse CMAQ estimate arising from the variabil-

ity of non-mobile emissions within each CMAQ grid. A similar hybrid approach is used for

NO2, a pollutant that has been linked to increased mortality in several epidemiological studies

[69]. However, in this approach we model NOx using R-LINE and then use the polynomial

method described by Valencia et al. [62] that transforms NOx to NO2. This is an empirical

approach based upon fitting a 4th order polynomial to existing near-road observations across
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the continental U.S. Using this polynomial, we can calculate a yield of NO2 to NOx with which

we are able to obtain NO2 estimates.

Regionalize Air quality Model Performance (RAMP) bias correction

Once we have combined CMAQ with R-LINE to create the “Hybrid” estimate, we apply the

RAMP method [57]. This method tries to account for the space/time variability in model per-

formance which has been shown to fluctuate significantly across the national domain in other

studies [57, 70, 71]. In this study, the main goal of RAMP is to correct the hybrid model biases

using measurements. These biases have been shown to be nonhomogeneous and nonlinear

[57, 70, 71], and which RAMP can account for.

To achieve this, the first step in the RAMP method consists of selecting the most relevant obser-

vation and prediction pairs ðzk; ~zkÞ in time and space at each CMAQ 12-km grid cell G(p) with the

space/time coordinate p. In this study, we chose to pair daily averaged model/observed values for

the entire year. For PM2.5, we obtained the 50 closest monitoring sites while for NO2, we obtained

the closest 10 sites. The number of stations was chosen to be as spatially specific to correlate with

spatial trend while still ensuring a consistent pattern not highly influenced by outliers. Additionally,

more sites were necessary for PM2.5 given that most of the daily measurements are reported every 3

days as opposed to NO2 sites where most sites provide daily measurements throughout the year.

The second step is to stratify the pairs in 10 equal percentile bins of increasing predicted

values ~zk, and for each bin ~zl we calculate the mean l1ð~zl;GðpÞÞ of the observed values (see

detailed equations in Reyes et al. [57] and Xu et al. [71]). The third step is to create interpola-

tion/extrapolation lines that connect the mean of each bin l1ð~zl;GðpÞÞ. This piecewise linear

function is then used to obtain bias corrected Hybrid (RAMP Hybrid) value l1ð~zk;GðpÞÞ for

the pertinent Hybrid value. Fig 1C shows this RAMP function and how the mean at each bin

changes as a function of the average modeled value bin as well as how the method accounts for

the nonlinear performance of the Hybrid model.

In addition to the steps laid out by Reyes et al. [57], we improve on the RAMP method by

safeguarding that the slope between each l1ð~zl;GðpÞÞ is never negative. In other words, we

make sure that the slope is always monotonically increasing [72]. To do so, we first calculate

the mean of all observed values zK pertinent to the specific G(p) as λ1,M. We then compare λ1,M

with l1ð~z5;GðpÞÞ the λ1 in the 5th decile bin. If λ1,M < l1ð~z5;GðpÞÞ, l1ð~z5;GðpÞÞ is set to λ1,M.

In a similar manner, we compare the 5th and the 4th bin making sure that l1ð~zk;GðpÞÞ<
l1ð~zk� 1;GðpÞÞ and set them equal if necessary. The same algorithm is applied to the other half

of the RAMP curve (k = 6 to k = 10). In this case, we compare λ1,M to 6th bin and set

l1ð~z6;GðpÞÞ to λ1,M if λ1,M > l1ð~z6;GðpÞÞ. This improvement safeguards the ordinality of esti-

mates of the original model with the same G(p).

Health impact evaluation

To evaluate the health impact of air pollution from the model, we combine population data,

background health data, and concentration response functions (CRFs) from epidemiological

literature that provide the relationship between PM2.5 and NO2 to health impacts. For estimat-

ing premature mortalities attributable to PM2.5, we apply a CRF from a published meta-analy-

sis by Vodonos et al. [73]. In this study, findings show that there was a 1.29% (95% CI 1.09–

1.5) increase in all-cause mortality for every 10 μg/m3 increase of PM2.5. For NO2-attributable

premature mortalities, we use a CRF associating all-cause mortality to long-term effect of NO2

exposure with a hazard ratio of 1.04 (95%CI 1.02–1.06) per 10 μg/m3 increase in NO2 [74].

This approach is similar to what was used in a recent study that focused on NO2-related pre-

mature mortalities from commercial aviation [75].
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Population data at census block level were obtained from the U.S. Census Bureau for 2010

and projected to 2016. The data set also included population by race/ethnicity at census block

level [76]. The data was split by age with data from the U.S. Census American Community Sur-

vey for the year 2016. Given that this dataset was at census tract resolution, we estimated the

percentage of the population over 25 years old for each census tract and applied that fraction

to each census block inside the census tract. Average county level baseline mortalities from

1999 to 2016 (the most recent available years) were obtained from the U.S. Centers for Disease

Control Wide-ranging Online Database for Epidemiologic Research (CDC-WONDER) [77].

Results

Hybrid data fusion

Fig 1 shows the progression of the hybrid data fusion model for 2016 annual PM2.5 in the cen-

tral North Carolina region as an illustration. Fig 1A shows PM2.5 concentrations at 460 12-km

Fig 1. Spatial map of 2016 annual PM2.5 model concentrations for (a) CMAQ 12 km x 12 km grid resolution for a subdomain in central North Carolina (b)

CMAQ + R-LINE Hybrid, and (d) RAMP Hybrid at census block centroids. Each map includes measurements represented as circles. The gray lines represent

the major roads. The gradient bar in figures a, b, and d represents concentration levels in μg/m3. Also shown is one of the RAMP curves (c) used to correct

biases from the Hybrid model. The grey dots represent paired observed and modeled daily PM2.5 concentrations for all of 2016 consisting of the 50 closest AQS

measurement stations to the centroid of the CMAQ grid cell G(p). The dashed vertical lines represent the 10 equally divided bins used to stratify all the paired

data where each bin includes one decile of all the paired points. The solid black line is the one-to-one line between model and observed. The red dots in each

bin identify λlð
~x~
l;GðpÞÞ the average of paired observed values within each decile bin. The red dots are linearly interpolated to obtain λ1(p) corresponding to the

hybrid modeled data ~x~ðpÞ with G(p).

https://doi.org/10.1371/journal.pone.0286406.g001
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grid cells. Fig 1B shows the hybrid combination of CMAQ and R-LINE at 144,276 census

block centroids. Results show how the hybrid method captures fine-scale gradients near major

roads that CMAQ averages out as shown in Fig 1A. Specifically, hybrid captures elevated con-

centrations surrounding I-40 from Winston-Salem to Statesville in the northwest and it also

captures hotspots from I-95 near Fayetteville in the southeast of the domain. Please refer to

Supporting Information (S1 File) for a map of central North Carolina city locations. Fig 1C

shows the shape of the RAMP curve used to correct biases from the Hybrid model. From this

RAMP curve, we can see that the hybrid model is underpredicting up until ~10 μg/m3 after

which it begins to overpredict concentrations. Thus, the RAMP adjustment will increase low

hybrid concentrations and decrease high hybrid concentrations. This is an example of how the

RAMP methods consider the nonlinear model performance at varying concentrations of the

model. Fig 1D shows the final RAMP hybrid product where hybrid concentrations have been

adjusted. The bias correction that stands out the most occurs away from the big metropolitan

areas where concentrations were increased by ~1.5 to ~2 μg/m3 to better represent measure-

ment surrounding the area. A harder to detect correction (that happens on the other side of

the RAMP) occurs on the I-285 from Winston-Salem to Lexington where concentrations also

increased by ~2 μg/m3.

The spatial maps from Fig 2 show annual PM2.5 for CMAQ, Hybrid, and RAMP Hybrid at

census block level focusing on smaller domains in Boston, MA and Chicago, IL. These are also

considered the most congested cities in the U.S. according to the Global Traffic Scorecard

released by INRIX, a data analytics company that studies traffic globally [78]. These maps rein-

force that by combining R-LINE and CMAQ the hybrid results can capture sub-grid scale

(within each 12-km grid) variability, which most traditional grid-scale models cannot. For

Boston, because we are attempting to capture concentrations for all models, the color scale

does not highlight the near-road gradients in the domain. Thus, while concentrations of the

10th and 90th percentile for CMAQ and Hybrid range from 6.9 to 8.9 μg/m3, the RAMP hybrid

concentrations range from 6.1 to 7.2 μg/m3. This difference in concentration range is due to

the RAMP regional correction, where this area was found to be biased high across the board.

Please refer to the S1 File for spatial maps of Boston that have a color scale that highlight the

near-road gradients for the RAMP method. In Chicago, the spatial maps highlight the near-

road concentration gradients where both Hybrid and RAMP Hybrid show better distribution

of high and lows. Once again, CMAQ and Hybrid both show significantly higher concentra-

tions than RAMP Hybrid. Concentrations of the 10th and 90th percentile for CMAQ and

Hybrid range from 10.5 to 13.9 μg/m3, while the RAMP hybrid concentrations range from 8.4

to 9.6 μg/m3.

For annual NO2 shown in Fig 2, Hybrid and RAMP are capturing higher concentrations

near roads in Boston. One can see the impact from the Concord Turnpike (US-2) and US-3

coming from the north into downtown Boston from both Hybrid and RAMP hybrid. Addi-

tionally, these models show peaks>14 ppb near downtown Boston not captured by CMAQ.

In Chicago, the evolution from CMAQ to Hybrid to RAMP Hybrid is drastic. Both CMAQ

and Hybrid have higher overall concentrations surrounding downtown. Hybrid estimates sig-

nificantly high values that we truncated in this area where the 90th percentile concentrations

for Hybrid were ~26 ppb. Thus, the range of the color scale only shows the 10th and 90th per-

centile of CMAQ and RAMP Hybrid. These high values only seen in Hybrid emphasize the

need for the RAMP bias correction. The concentration adjustments due to the RAMP method

in both these areas also showcase the ability of this method to correct regional and nonlinear

biases, a capability that is lacking from other linear regression methods. Additionally, this

method keeps the steep near-road gradients (as seen the most in the Chicago area) and cap-

tures the within-cell spatial variability of NO2. Please refer to the S1 File for spatial maps of
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nine additional U.S. metropolitan areas (e.g., Atlanta, Houston, Los Angeles, New York, Phila-

delphia, Portland, San Francisco, Seattle, and Washington DC).

Overall, the RAMP Hybrid and Hybrid methods capture variability at significantly finer

scales (*0.01 km2) than CMAQ (12-km). To our knowledge, only a few studies have esti-

mated PM2.5 and NO2 at census block scale across the U.S [39, 79]. These studies used

Fig 2. Spatial map of 2016 annual PM2.5 and NO2 model concentrations for CMAQ, CMAQ R-LINE Hybrid, and RAMP Hybrid at census block

centroids at Boston, Massachusetts and Chicago, Illinois. The gradient bar represents concentration levels in μg/m3 that range from the smallest 10th

percentile of the 3 three models to the highest 90th percentile of the three models for the corresponding domain.

https://doi.org/10.1371/journal.pone.0286406.g002
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statistical models and did not perform a health impact assessment. Please refer to S1 File,

where we have quantified and compared to what resolution these methods capture within-cell

variability.

As shown in Table 1, model performance between CMAQ and Hybrid is comparable. For

PM2.5, the Pearson R2 is slightly higher for the Hybrid (0.32) method than CMAQ (0.30),

while for NO2 CMAQ (0.63) is slightly higher than Hybrid (0.62). The mean error (ME) is

higher for Hybrid for both pollutants, but Hybrid also shows that it captures higher variability

having a higher standard deviation of the model values (SDZ). RAMP Hybrid shows better

model performance for nearly every metric for both pollutants. Through bias correction

RAMP Hybrid increases Pearson R2 by up to ~0.2 for both pollutants. One of the biggest suc-

cesses from the RAMP Hybrid method is correcting the root squared mean error (RMSE)

where CMAQ shows an RMSE of 2.29 and hybrid shows RMSE of 2.32 while RAMP Hybrid

shows RMSE of 1.45 for PM2.5 and for NO2, CMAQ shows an RMSE of 3.66 and hybrid shows

RMSE of 6.31 while RAMP Hybrid shows RMSE of 2.51.

Health risk assessment

To estimate the difference between RAMP hybrid and CMAQ in premature mortality attribut-

able to PM2.5 and NO2, we aggregated all-cause premature mortality for each county in Fig 3

in space. Results from this figure show that for PM2.5 the difference in premature mortality

varies regionally. For PM2.5, several regions in the east of the U.S. estimate overall lower pre-

mature mortality for RAMP Hybrid than CMAQ while regions in the west show higher pre-

mature mortalities for RAMP Hybrid when compared to CMAQ. These differences between

east and west are mainly due to biases in the CMAQ model (see S4 Fig in Model Performance

section of S1 File for spatial maps of error). The hybrid method alone usually increases concen-

trations in urban areas near roads. So, the bulk of the regional differences are due to the

RAMP correction rather than the hybrid method. For NO2, RAMP Hybrid estimates show

lower premature mortalities than CMAQ mostly in counties from significantly large metropol-

itan areas (e.g., Boston, Chicago, Dallas, Houston, Miami, New York, Orlando, Pittsburg, Seat-

tle, Tampa, and Portland).

The bar plots in Fig 3 shows the 40 counties that had the most difference in premature mor-

talities between RAMP Hybrid and CMAQ. In this figure, the red bars show the counties

where RAMP hybrid estimated more premature mortalities when compared to CMAQ, and

the blue bars represent the counties where RAMP Hybrid showed less premature mortalities

when compared to CMAQ. For PM2.5, 15 out of the 20 counties that showed more premature

Table 1. Model performance statistics for annual PM2.5 and NO2 for 2016 of CMAQ, Hybrid, and RAMP hybrid evaluated at AQS Sites across the continental

United States. [PM2.5 (μg/m3): MO = 7.64, SDO = 2.06; NO2 (ppb): MO = 8.38, SDO = 5.73]. The best performing model metric has been highlighted when possible.

Model # Of Sites FAC2 (%) ME SDE RMSE MZ SDZ Pearson R2 Spearman ρ2

PM2.5

(μg/m3
)

CMAQ 928 95 0.02 2.29 2.29 7.67 2.64 0.30 0.35

Hybrid 95 0.29 2.30 2.32 7.93 2.71 0.32 0.36

RAMP Hybrid 99 0.08 1.44 1.45 7.72 1.64 0.51 0.48

NO2

(ppb)

CMAQ 444 85 -1.18 3.47 3.66 7.20 4.82 0.63 0.72

Hybrid 85 2.61 5.36 6.31 10.99 9.04 0.62 0.76

RAMP Hybrid 95 0.05 2.51 2.51 8.43 4.89 0.81 0.84

Note: FAC2 is percentage of modeled values between a factor of 2 of the observations; ME is the Mean of the Error; SDE is the Standard Deviation of the Error; RMSE is

the Root Mean Squared Error; SDZ is the standard deviation of the modeled value; SDO is the standard deviation of the observed value; MZ is the mean of the modeled

value; MO is the mean of the observed value

https://doi.org/10.1371/journal.pone.0286406.t001
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mortalities in RAMP Hybrid when compared to CMAQ were in CA. Los Angeles County, CA

was at the top where RAMP Hybrid showed 736 [622 856] more premature mortalities than

CMAQ. 10 out of 20 counties where CMAQ showed the most premature mortalities when

compared to RAMP Hybrid were in the Northeast. Cook County, IL (not in the northeast) was

at the top where CMAQ estimated 1,574 [1,330 1,830] more premature mortalities than

RAMP Hybrid. For NO2, regional patterns in difference in premature mortalities are not as

evident. The counties where RAMP Hybrid showed the most premature mortalities when

compared to CMAQ are almost evenly split between the east coast and the west coast. Los

Angeles county still showed the most difference with 1,212 [95% CI, 605–1,827]. On the oppo-

site side of the graph, CMAQ estimated that Cook County showed 354 [95% CI, 177–532]

more premature mortalities than RAMP Hybrid. Additionally, most of the counties in the top

Fig 3. Premature mortality difference between RAMP Hybrid and CMAQ attributable to PM2.5 (left) and NO2 (right)

aggregated by county. The Top Panel Show spatial differences across the continental United States. In the Bottom Panel, the

blue bars represent the top 20 counties where RAMP Hybrid shows less premature mortality than CMAQ. The red bars

represent the top 20 counties where RAMP Hybrid shows more premature mortality than CMAQ. The lines in each bar

correspond to the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0286406.g003
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20 where CMAQ showed more premature mortalities were major metropolitan areas with

dense populations (> 800 people/km2) and high road density.

The sum of differences in premature mortalities attributable to PM2.5 and NO2 between

RAMP Hybrid and CMAQ show different findings depending on the pollutant and the dis-

tance from road. For PM2.5, CMAQ estimated 18,079 [95% CI, 15,276–21,023] more prema-

ture deaths than RAMP Hybrid (or 7% more premature mortalities than RAMP Hybrid) in

some regions, and RAMP Hybrid estimated 15,310 [95% CI, 12,936–17,802] more premature

mortalities than CMAQ (or 6% more premature mortalities than CMAQ) in other parts of the

U.S. If we aggregate these values, we can estimate that overall CMAQ estimated 2,769 [95% CI,

2,340–3,221] more premature mortalities than RAMP hybrid. This corresponds to an overall

~1% decrease of estimated premature mortalities when estimating premature mortality with

RAMP Hybrid when compared to CMAQ. This would seem counterintuitive, but at the core

of the Hybrid method, we essentially displace concentrations in the grid away from roads to

near the roads. This causes an increase in concentrations near roads while causing a decrease

in concentrations away from roads. In the case of PM2.5, these competing effects result in a

modest net difference. For NO2, CMAQ estimated 6,301 [95% CI, 3,150–9,451] more prema-

ture deaths than RAMP Hybrid in some regions, while RAMP Hybrid estimated 28,876 [95%

CI, 14,438–43,315] more premature deaths than CMAQ in other regions. The net difference

between these estimates correspond to RAMP Hybrid estimating 22,576 [95% CI, 11,288–

33,864] more premature mortalities attributable to NO2 than CMAQ. This corresponds to an

overall ~19% increase in estimated premature mortalities due to NO2 using RAMP Hybrid

when compared to CMAQ.

To assess the effect of only fine-scale variability on risk assessment, we re-gridded our

RAMP Hybrid estimates to match CMAQ’s 12-km resolution. This type of analysis comparing

RAMP Hybrid vs RAMP Hybrid at 12-km resolution (RAMP Hybrid 12-km) shows a different

distribution of premature mortalities. Across the U.S. for PM2.5, RAMP Hybrid 12-km esti-

mated 3,203 [95% CI, 2,706–3,725] more premature deaths than RAMP Hybrid, while RAMP

Hybrid estimated 1,975 [95% CI, 1,669–2,297] more premature deaths than RAMP Hybrid

12-km (or ~1% more premature mortality than the coarser model). Again, this might seem

counterintuitive, but because on-road primary PM2.5 corresponds to a small fraction of all the

ambient PM2.5, the difference between coarse scale and fine-scale RAMP Hybrid is modest. If

we aggregate these values, we can estimate that the coarser RAMP Hybrid estimated 1,228

[95% CI, 1,037–1,428] more premature mortalities than the finer scale RAMP hybrid, but

these changes represent less than 1% of the total premature mortality calculated. This implies

that the difference between fine-scale and coarse scale RAMP Hybrid are minor. For NO2,

RAMP Hybrid 12-km estimated 10,065 [95% CI, 5,033–15,098] more premature mortalities

than the fine-scale RAMP Hybrid. This is equivalent to 7% more premature mortalities esti-

mated by the coarser resolution RAMP Hybrid. Alternatively, the fine-scale RAMP Hybrid

estimated 4,854 [95% CI, 2,427–7,281] more premature deaths than RAMP Hybrid 12-km.

Overall, the coarser scale model estimated 5,211 [95% CI, 2,606–7,817] more premature deaths

attributable to NO2 than fine-scale RAMP Hybrid. Furthermore, focusing on the premature

deaths near major roads, we find that most of the excess premature deaths shown by the

RAMP Hybrid model are within 500 m from the road (92% for PM2.5 and 98% for NO2). At

distances of less than 125 m, the net premature differences between coarse and fine-scale

RAMP hybrid flip, where the fine-scale RAMP hybrid estimates more premature mortality

than the coarse RAMP hybrid for both PM2.5 and NO2. This is the outcome that is expected

near roads. Please refer to S1 File for detailed tables of differences in premature mortality

between the methods at varying distances from the road.
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Fig 4 compares the difference of premature mortality attributable to PM2.5 and NO2

between our models (e.g., Hybrid, CMAQ, and RAMP Hybrid) across the U.S. as a function of

distance from road. The dashed-dot curves show net premature mortality difference between

Hybrid-only minus CMAQ. The dashed curves show net premature mortality difference

between RAMP Hybrid minus CMAQ. We have also added a blue line that represents the pop-

ulation aggregated at every 25 m from the road and a red line corresponds to the cumulative

Fig 4. Net difference in premature mortality for PM2.5 and NO2 between models with varying resolution vs distance from primary

road. Net premature mortality was aggregated at every 25 m from a primary road. The blue line represents the population aggregated at

every 25 m from a primary road and the red line corresponds to the cumulative sum of the population.

https://doi.org/10.1371/journal.pone.0286406.g004
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sum of the population. Most of the differences in premature mortality occur at census blocks

that are less than 500 m from the road, as mentioned previously. Additionally, we can see that

RAMP correction from Hybrid vs CMAQ (dashed-dot) to RAMP Hybrid vs CMAQ (dashed)

causes a downward shift of the premature mortality difference for both pollutants. PM2.5

shows negative net premature mortality at census blocks less than 500 m from a major road

which corresponds to more premature deaths estimated with CMAQ compared to RAMP

Hybrid. For NO2, there is also less premature deaths difference between Hybrid and RAMP

Hybrid, but the net difference is still positive. For both pollutants, these changes are mostly

driven by RAMP rather than the effect of finer resolution due to hybrid as can be seen from

the solid curve (RAMP Hybrid vs coarse RAMP Hybrid) comparison which shows smaller net

differences and shows only the effect of resolution. Additionally, the solid curve shows positive

net differences at census blocks closer to the road between the fine-scale and the coarse-scale

RAMP hybrid which correspond to more premature mortality estimated by the fine-scale

RAMP-hybrid near the road. This positive net difference occurs for ~80 million people for

both PM2.5 and NO2, as seen from the cumulative population curve. Additionally, the positive

net difference flips (to negative) at ~125 m from major roads. Thus, at census blocks at a

distance> 125 m from major roads (where most of the population resides), we estimate higher

premature mortality with coarse-scale RAMP Hybrid. For concentration differences between

models instead of premature mortality differences, please refer to S1 File.

Exposure inequity

Using the RAMP hybrid method, we calculated population weighted exposure for the entire

population in the continental US, and we also stratified population-weighted exposure by race.

With these, we calculated an exposure inequity ratio (EIR) which corresponds to the popula-

tion weighted exposure of the Minority group (corresponds to all the non-White population)

over the population weighted exposure of the White group for the continental US. The EIR

ratio allows us to quantify to what degree Minorities are affected by PM2.5 and NO2 pollution

when compared to their White counterparts. The EIR shows Minorities are exposed to 11%

more PM2.5 and 39% more NO2 than the White population. See S1 File for details. To our

knowledge this is the first time that this ratio has been applied using census block level resolu-

tion from a hybrid model that incorporates a CTM, dispersion model, and bias correction

through RAMP.

Exposure to PM2.5 and NO2 varies spatially. Thus, we aggregated population weighted

exposure by county across the U.S (see S1 File for map). For PM2.5, the highest concentrations

are clustered in California with levels of ~12 μg/m3 or higher. These concentrations are much

higher than in the rest of the country where concentrations gradually change across space with

a maximum of about ~9 μg/m3 in the Midwest. Similarly, for NO2, the highest concentrations

are predicted in southern California, Colorado (specifically the Denver area), and New York/

New Jersey with concentrations that are at least 15 ppb, while in the rest of the country concen-

trations max out at ~10 ppb in other big cities or across sizeable highways. To evaluate expo-

sure inequity, we must determine if the population is distributed across the country in a

stratified way across racial groups, since that could lead to inequity when large proportions of

Minorities reside in areas with high air pollution. Analyzing the proportion of Minority groups

in space, it becomes apparent that the Asian population and the Hispanic population are clus-

tered in California where we saw higher concentrations of PM2.5 and NO2. This disproportion-

ate distribution of Minorities residing in areas with high air pollution also extends to the Black

population near the New York City area when considering NO2. The combination of localized

minorities and localized high air pollution begins to show an expected geographical inequity
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nationwide because of the distribution of these populations across the nation. Please refer to

S1 File for a spatial map of the proportion of minorities by county.

Using the hybrid RAMP model, we can explore EIRs at scales even finer than the county

level. Table 2 shows the distribution of EIRs for PM2.5 and NO2 at County, Census Tract, and

Census Block Group levels. As expected, when looking at the mean of EIRs overall, the finer

the geographic unit, the smaller the exposure inequity ratio is for both PM2.5 and NO2. This is

expected given that as we consider smaller geographic groupings, we expect less changes in

population proportions or in air concentrations. Nonetheless, there is still exposure inequity

in some counties, census tracts and census block groups as shown in the higher percentiles of

Table 2. EIRs can be as high as 1.05 for PM2.5 and 1.4 for NO2 at some census tracts and 1.04

for PM2.5 and 1.36 for NO2 in some census block groups.

Zooming into the effect of exposure inequity in a particular county, one can focus on coun-

ties with highest EIR like Madera, CA. This county has the highest EIR for both PM2.5 and

NO2 among counties with a population greater than 100,000 (see S1 File for the Table listing

the top 10 counties by EIR). As shown in the top panel of Fig 5, Madera County has strong

exposure inequity patterns that explain within county EIR. Madera County has a high EIR of

1.2 for PM2.5 and 1.44 for NO2, at the county aggregation level, but also has high EIR within

the county at the census tract and census block group aggregation levels. Focusing on PM2.5,

the two census block groups that show the highest EIR and the lowest EIR in the middle of

Madera County can help explain the effect of air pollution and distribution of the Minority

population on EIR. The bottom panel of Fig 5 shows that for PM2.5, there are higher concen-

trations near the city of Madera. Furthermore, even though there is a significant amount of the

population residing away from the city, the percent of Minority map shows that this popula-

tion is predominantly White. Thus, when looking at the two census block groups mentioned

previously, the census block group in the north with Minorities closer to Madera city has an

EIR greater than 1 while the census block group in the south with a higher proportion of the

White population away from Madera city has an EIR less than 1. For NO2, there is a similar

pattern for these two census block groups. The magnitude of the EIR is larger and the effect of

NO2 is more localized and closer to the roads as is shown in the bottom panel of Fig 5, where

the highest concentrations follow Highway 99.

Table 2. Distribution of exposure inequity ratio estimated at county level, census tract level, and census block group level for PM2.5 and NO2.

Pollutant Metric County Census Tract Census Block Group

PM2.5 Count 3,107 71,916 215,071

Mean 1.0074 1.0010 1.0006

STD 0.0146 0.0059 0.0049

50% 1.0044 1.0005 1.0002

95% 1.0324 1.0088 1.0067

99% 1.0562 1.0200 1.0162

99.9% 1.1109 1.0493 1.0400

NO2 Count 3,107 71,916 215,071

Mean 1.0669 1.0104 1.0060

STD 0.0923 0.0494 0.0410

50% 1.0502 1.0038 1.0015

95% 1.2358 1.0712 1.0582

99% 1.3544 1.1659 1.1398

99.9% 1.6124 1.4048 1.3566

https://doi.org/10.1371/journal.pone.0286406.t002

PLOS ONE A hyperlocal hybrid data fusion near-road PM2.5 and NO2 annual risk and ej assessment across the us

PLOS ONE | https://doi.org/10.1371/journal.pone.0286406 June 1, 2023 14 / 25

https://doi.org/10.1371/journal.pone.0286406.t002
https://doi.org/10.1371/journal.pone.0286406


To follow the near-road effect nationwide, we have created Fig 6 which shows the popula-

tion-weighted exposure using RAMP aggregated for every census block at every 10m from pri-

mary roads across the continental U.S. As mentioned previously, we can see how the air

pollution gradients differ between PM2.5 and NO2 near road, where NO2 has a steeper decline

of concentration when moving away from the road. This figure also shows that not only are

Minorities exposed to higher air pollution than their White counterparts in the corridor very

near (i.e., within 10 m of) roads, but this exposure inequity persists even at distance of 100m to

1km of roads, where Minorities can be exposed to up to 15% more PM2.5 than the White popu-

lation and up to 35% more NO2 than the White population (bottom panel of Fig 6). This

shows that even when controlling for distance to road, the EIR is greater than 1 for hundreds

Fig 5. Exposure inequity ratio (EIR) at Madera County, CA. Top panel shows Exposure Inequity Ratio (EIR) at Madera County, CA (highlighted) and

surrounding counties for PM2.5 and NO2 at County (left), Census Tract (middle), and Census Block Group level (right). Bottom panel shows RAMP Hybrid

concentration as circles for PM2.5 (left) and NO2 (right) at census block centroids where the size of the census block centroid is proportional to population, as

well as the percent of Minority population (middle) at census block centroids where size of census block is proportional to percent Minority at Madera County,

CA.

https://doi.org/10.1371/journal.pone.0286406.g005

PLOS ONE A hyperlocal hybrid data fusion near-road PM2.5 and NO2 annual risk and ej assessment across the us

PLOS ONE | https://doi.org/10.1371/journal.pone.0286406 June 1, 2023 15 / 25

https://doi.org/10.1371/journal.pone.0286406.g005
https://doi.org/10.1371/journal.pone.0286406


of meters away from roads, which indicates that exposure inequity is pervasive and entrenched

across the nation.

Discussion and conclusions

Health assessment comparison with previous studies

Across the continental U.S., we estimate the total burden of premature mortalities attributable

to all sources of ambient PM2.5 (anthropogenic and nonanthropogenic) ranges between

223,506 and 307,577 using the RAMP Hybrid approach (225,846 and 310,797 for CMAQ).

These premature mortality estimates fall within those of other studies. For example, Davidson

Fig 6. Population-Weighted Exposure using RAMP (top) for PM2.5 (left) and NO2 (right) and Exposure Inequity ratio (bottom) aggregated at 10m

from major roads across the continental U.S. In the bottom two frames, EIRs has been blurred at distances greater than 2 km from the road to convey

that there is high noise in the EIR results.

https://doi.org/10.1371/journal.pone.0286406.g006

PLOS ONE A hyperlocal hybrid data fusion near-road PM2.5 and NO2 annual risk and ej assessment across the us

PLOS ONE | https://doi.org/10.1371/journal.pone.0286406 June 1, 2023 16 / 25

https://doi.org/10.1371/journal.pone.0286406.g006
https://doi.org/10.1371/journal.pone.0286406


et al. [30] estimate between 100,000 and 220,000 premature mortalities were associated with

mobile and non-mobile sources of PM2.5 in 2011. Tessum et al. [80] estimated that 102,000

premature mortalities were associated with anthropogenic PM2.5 in 2015. Dedoussi et al. [31]

estimated that the U.S. combustion emissions of PM2.5 caused premature mortalities between

62,400 and 104,200 in 2011, and 49,300 and 82,900 in 2018. There are several differences

between our study and the previously mentioned studies. These differences include the air

quality model used, model resolution, source types considered, health incidence data resolu-

tion, causes of mortality (all cause vs specific causes), and, more importantly, varying CRFs.

In our study, the health impact estimates were based on premature mortality estimates

from the most updated PM2.5 mortality CRF from a recent meta-analysis [73]. This CRF was

based on newer PM2.5 studies conducted at lower and at higher concentrations of PM2.5 than

previous studies. This CRF reported higher slopes at low concentrations which estimated

higher mortality. Furthermore, a study by Burnett et al. [81], compared their earlier integrated

exposure–response (IER) function [82] to a newer IER including newer studies. Their findings

suggest that the newer IER produces similar results to ours (~210,000 all-cause premature

mortalities attributable to PM2.5 across the U.S.). Burnett et al. compared the updated estimates

with those of their older IER [82] and found that the updated CRF estimates were 2.22 times

larger than with the older IER. They also compared the updated IER that considered all-cause

mortality to the updated IER that considered only five separate causes. The IER that consid-

ered all-causes estimated 1.75 times more premature mortality than the one with five separate

causes. This study [81] emphasizes a potential underestimation of premature mortality when

using older CRFs or not considering all-cause mortality.

Providing a more even comparison, the Vodonos et al. [34] study which applies a similar

CRF as our study estimated that premature mortalities would fall by 104,786 [57,16 135,726]

attributable to a reduction of 40% of PM2.5. If we estimate the proportion of total deaths with-

out reduction for the Vodonos et al. study, this is equivalent to 261,965 [142,540 339,315] pre-

mature mortalities for 2015 which compares well to our estimate of 264,516 [223,506 307,577]

for RAMP Hybrid in 2016. This last estimate provides us with the most confidence in the mag-

nitude of the effects estimated from our study for PM2.5.

For NO2, most studies have only estimated the total burden of diseases in smaller domains

(e.g., Hong Kong [83], San Francisco Bay Area [21]) and to our knowledge no studies have

performed a health risk assessment based upon premature mortality due to NO2 across the U.

S. This might be in part due to the active discussion on the independent causal relationship

between long-term NO2 and mortality. Nonetheless, meta-analysis has determined that there

are likely causal relationships for long-term exposure to NO2 and premature mortality [74, 84–

86]. Overall, in our current study, we estimate 138,550 [69,275 207,826] premature mortalities

attributable to NO2 using RAMP Hybrid compared to 115,975 [57,987 173,961] using CMAQ.

RAMP hybrid data fusion findings

We correct biases in the model through the RAMP approach and overall, our findings show

that the difference in premature mortality between CMAQ at 12-km resolution and RAMP

Hybrid at census blocks are mostly due to bias correction. When we compare RAMP Hybrid

at fine-scale resolution vs RAMP hybrid 12-km, we find that the difference in premature mor-

tality is <1%, suggesting that at a 12-km resolution annual PM2.5 can be captured adequately.

Nonetheless, we do see a noticeable increase of exposure near the road. For NO2, given that

on-road emission contributions are much higher than PM2.5 to the total anthropogenic emis-

sions, the comparison between RAMP at fine-scale resolution and coarse-scale resolution

shows bigger differences. The RAMP Hybrid shows around ~4% more premature mortality
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attributable to NO2 across the U.S. than RAMP Hybrid 12-km. RAMP Hybrid 12-km esti-

mates ~7% more premature deaths than the fine-scale RAMP Hybrid at all distances from

road. So, the overall net differences in premature mortality for NO2 is higher for the coarse

RAMP Hybrid (~4%) than at with the fine-scale RAMP Hybrid. This finding is supported by

Batterman et al.’ s (2014) Detroit, MI fine-scale study. In this local scale study, they conclude

that near-road dispersion modeling at coarser resolution than census block (e.g., census tract

and ZIP code levels) have the tendency to overestimate average exposures because at this scale

the range of concentrations would be compressed, a smaller amount of individuals reside

“very near major roads”, most exposures would be misclassified, and higher concentrations

near roads would be excluded. It is of note that the Batterman et al. (2014) study compares

R-LINE exposure (population-weighted) concentrations of NOx at census blocks to R-LINE at

census tracts. Our analysis compares RAMP Hybrid premature mortality attributable to PM2.5

and NO2 at 12-km resolution to RAMP Hybrid at census block. However, our overall findings

would not change significantly when comparing RAMP Hybrid premature mortality at census

block to RAMP Hybrid at census tract. The magnitude of overestimation from the coarser

scale averaged grid results would decrease by 5% for NO2 and 10% for PM2.5 (see S1 File for

details). Another significant difference highlighted here is that the Batterman et al.’s study

focuses only on NOx concentrations/exposures from on-road emissions and does not perform

a health risk assessment. Thus, their conclusions are based on population-weighted

concentrations.

In general, our findings show that the RAMP Hybrid method can provide reliable estimates

for both PM2.5 and NO2 that capture the near-road gradient in urban environments. These

estimates produce reliable exposure estimates that can reduce exposure misclassification and

can ultimately provide reliable inputs to individual-level exposure models which will improve

risk assessment for epidemiological studies.

Exposure inequity comparison with previous studies

We have shown how a coarse model (12-km resolution) can overestimate NO2 and PM2.5 con-

centration and mortality associated with these pollutants away from the road while underesti-

mating these near major roads when compared to the fine-scale RAMP hybrid method. This

phenomenon affects a significant amount of the population that are exposed to these pollut-

ants and can only be captured with the fine-scale RAMP model. This has implications regard-

ing exposure inequity given that, as mentioned previously, a significant amount of the

Minority population resides near major roads. In fact, the proportion of Minorities that live

near (~200 m) major roads is higher than the proportion of the White population (See S1

File). Other studies have shown that the Minorities are exposed to more PM2.5 and NO2 than

their White counterparts [13–17, 20, 22, 87]. For example, a study by Clark et al. (2014) sug-

gested that Minorities were exposed to 38% more NO2 than their White counterparts using

estimates at census tract for 2006. A more recent study that estimates several pollutants at cen-

sus blocks from 1990 to 2010 showed that nationwide in 2010, the Minority populations were

exposed to 13% more PM2.5 and 54% more NO2 than the White population [13]. A similar

study that looked at the effect of data aggregation at different spatial resolutions on exposure

inequity reinforced that exposure inequity estimated at state and county scales underestimates

disparity when compared to census tract or finer scales [79]. A nationwide study at ZIP code

level estimated that in 2016, Minority populations had ~12% higher exposure of PM2.5 when

compared to the White population [14]. Most of these studies implement national empirical

statistical models which do not consider all local sources of air pollution to obtain air pollution

exposure. Thus, they overlook the physical/chemical processes and the fine-scale effect of road
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sources that can better quantify emission contribution at hyperlocal scales. Using our RAMP

hybrid method which considers these processes, we have estimated that Minorities are exposed

to 11% more PM2.5 and 39% more NO2 than the White population across the US. The hyper

local resolution of our model on a nation-wide basis allows us to examine and, for the first

time, visualize these inequities meters away from the road. Our method reveals that within 100

meters from major roads, Minority populations can be exposed to up to 15% more PM2.5 and

up to 35% more NO2 than their White counterparts.

Furthermore, recent studies have shown that fine-scale air pollution estimates of NO2 and

PM2.5 can be used to identify discriminatory policies that impacted environmental exposure

inequity [17]. This study leverages land use regression models to show how redlining in the U.

S. disproportionately impacts Minority populations. Likewise, we saw from our results, that

the fine-scale RAMP hybrid which leverages the chemical/transport process in the atmosphere

showed exposure inequity that persists at the census block level. Moreover, not only are we

aware that there is an increased proportion of Minorities near the road, but our results also

show exposure inequity continues to persist within close vicinity of the road (~10 m) and up

to 100 m from the road. Thus, other factors such as traffic magnitude, weather patterns, and

certain policies can contribute to this exposure inequity. Using our novel method will allow us

to better estimate, identify, and address the exposure inequity near roads that occurs at the fin-

est scales.

Limitations and future work

The present work is subject to several uncertainties and limitations. Both the dispersion model

and the CTMs involve several assumptions/parameters and input data (e.g., emissions inven-

tory, meteorological modeling) that have considerable uncertainties especially at fine-scale res-

olution. For example, we are using CMAQ v5.2.1 (latest available at the time of this study)

which does not include additional aerosol updates with updated secondary aerosol chemistry.

As mentioned before, R-LINE tends to overestimate under low dispersion conditions. Thus,

both models have different biases that the Hybrid approach does not consider individually.

Other studies have tried to treat the biases before combining these models [45]. However, for

correcting R-LINE biases, this required detailed collocated near-road monitoring data for

NO2, NOx, CO, and SO2 that is not readily available across the continental U.S. [88]. By cor-

recting model biases before combining CMAQ and R-LINE, another study developed a multi-

plicative hybrid method [45]. In this study, this method was recommended for gaseous

pollutants to avoid negative estimates of CMAQ without major roads. We attempted to imple-

ment this method for NO2. But since we could not correct biases before applying the hybrid

method, this resulted in unrealistic hybrid estimates. Thus, we relied on RAMP to correct

biases after combining the models with our additive method as other studies have also done

[68]. Our RAMP method is an effective (shows good model performance) and computation-

ally efficient method to account for the biases after the Hybrid method has been applied. Fur-

thermore, for our analysis we are predicting concentrations at census block levels which also

has uncertainties. This is the smallest geographic unit where population data is available. How-

ever, even at this scale, Batterman et al. (2014) found some effects of exposure misclassification

(but less than at census tract and ZIP code level).

For our health impact assessment, we assume that an individual’s exposure is mainly repre-

sentative of census block where they reside and only represents exposure when they are in

their census block. A significant amount of the population travels outside of their census block

(e.g., commuting for work or school) and this can change their level of exposure. Additionally,

when applying our CRF, we use county-based health incidence data. But other studies have
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found that using county level health incidence data underestimates the risk when compared to

ZIP code level [34]. Future work might explore health outcomes using higher resolution health

incidence data. Additionally, given that our modeling approach can estimate short-term expo-

sure, future work might also explore daily exposure of PM2.5 and NO2 to expand our analysis

to finer temporal scales, and assess acute health impacts.

Finally, an aspect of the RAMP method not considered in this analysis is that it can consider

the non-homoscedasticity between modeled and observed data. By considering the non-

homoscedastic behavior of model performance we can assess how the error variance changes

among predicted values, and ultimately assign a variance (i.e., uncertainty) to our predictions.

Furthermore, once we apply a RAMP framework that considers the non-linear, non-homoge-

neous, and non-homoscedastic behavior of model performance, we can further improve

model performance through the full RAMP Bayesian Maximum Entropy (BME) data fusion

method [57].
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