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Abstract

Despite the availability and implementation of well-known efficacious interventions for tuber-

culosis treatment by the Ministry of Health, Uganda (MoH), treatment non-adherence per-

sists. Moreover, identifying a specific tuberculosis patient at risk of treatment non-

adherence is still a challenge. Thus, this retrospective study, based on a record review of

838 tuberculosis patients enrolled in six health facilities, presents, and discusses a machine

learning approach to explore the individual risk factors predictive of tuberculosis treatment

non-adherence in the Mukono district, Uganda. Five classification machine learning algo-

rithms, logistic regression (LR), artificial neural networks (ANN), support vector machines

(SVM), random forest (RF), and AdaBoost were trained, and evaluated by computing their

accuracy, F1 score, precision, recall, and the area under the receiver operating curve (AUC)

through the aid of a confusion matrix. Of the five developed and evaluated algorithms, SVM

(91.28%) had the highest accuracy (AdaBoost, 91.05% performed better than SVM when

AUC is considered as evaluation parameter). Looking at all five evaluation parameters glob-

ally, AdaBoost is quite on par with SVM. Individual risk factors predictive of non-adherence

included tuberculosis type, GeneXpert results, sub-country, antiretroviral status, contacts

below 5 years, health facility ownership, sputum test results at 2 months, treatment sup-

porter, cotrimoxazole preventive therapy (CPT) dapsone status, risk group, patient age,

gender, middle and upper arm circumference, referral, positive sputum test at 5 and 6

months. Therefore, machine learning techniques, specifically classification types, can iden-

tify patient factors predictive of treatment non-adherence and accurately differentiate

between adherent and non-adherent patients. Thus, tuberculosis program management

should consider adopting the classification machine learning techniques evaluated in this

study as a screening tool for identifying and targeting suited interventions to these patients.

Introduction

Tuberculosis (TB), a curable and preventable infectious disease, remains a public health chal-

lenge globally, leading to serious economic and social consequences [1]. Although, curable and
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preventable, with well-known treatment strategies, its treatment management is challenging.

Of these challenges, its treatment non-adherence and the consequent difficulty in identifying

these non-adherent patients has been widely reported [2–5]. Moreover, tuberculosis treatment

non-adherence is reported to reduce treatment success, increasing the risk of the patients

developing drug-resistant strains, burdening the health systems [6], increasing family financial

hardships [7], and spreading tuberculosis not only in communities within the country but also

globally due to its infectious nature. Certainly, reasons for tuberculosis treatment non-adher-

ence are complex and intertwined between the patient, health system & healthcare providers

factors [8–11]. This in turn increases tuberculosis morbidity and mortality globally [1].

In Uganda, despite the availability and implementation of well-known efficacious interven-

tions for tuberculosis prevention and treatment by the Ministry of Health, Uganda (MoH),

tuberculosis programs still report high treatment non-adherence rates, with treatment success

rate currently estimated at 72% [12]. These high treatment non-adherence rates possibly imply

an existence of factors intrinsic to the patients or the treatment strategies amongst others.

Indeed, several studies attempting to identify these patient factors aiming to avert high treat-

ment non-adherence rates have been conducted [7,13–18]. These studies employed both tradi-

tional statistics and epidemiological approaches utilizing logistic regression and other

generalized linear models. Although these studies identified some factors associated with

tuberculosis treatment non-adherence, their applicability in identifying an individual tubercu-

losis patient at risk of treatment non-adherence is limited.

This is mainly because; a) these models are best for making inferences that are aimed at

understanding the association between the predictors and the response and not for prediction

[19], and b) Sometimes, the true relationship is more complicated in which case a linear model

may not provide an accurate representation of the relationship between the input and output

variables [20,21], c) the researchers do not split their data into training and testing sets and

thus do not evaluate the resultant’ models on raw datasets [21], d) the traditional statistics are

“limited in handling highly dimensional and correlated variables (collinearity assump-

tion)”[19], thus dropping some would be important variables from the resultant models.

In contrast, machine learning (ML), the creation of computer programs that can learn and

therefore improve their performances by gathering more data and experiences [21], could

prove beneficial in exploring individual patient factors predictive of tuberculosis treatment

non-adherence. In fact, several studies have reported the effectiveness of machine learning

models in accurately illustrating the target parameters for implementing stakeholders to

ensure adherence to tuberculosis treatment and other chronic diseases [4,13,22–25]. Yet, stud-

ies conducted in the Ugandan contexts have not adequately utilized machine learning as a

method to generate patient predictors of tuberculosis treatment non-adherence [5,26,27].

Therefore, this study set out to explore machine learning algorithms to quantify patient factors

predictive of tuberculosis treatment non-adherence that could potentially identify an individ-

ual patient at risk of tuberculosis treatment non-adherence.

Previous machine learning related works in tuberculosis

Tuberculosis, due to its infectious nature, increasing antimicrobial resistance and prevalence in

low-and-middle-income (LMIC) countries, for example, India [28], Pakistan [29] Afghanistan

[30], Morocco [13,31], Kenya [32,33], and Uganda [3,34–37] has been widely studied. Charac-

teristically, these previous studies gathered demographic and medical histories of a cohort and

observed their adherence and outcomes. The researchers then retrospectively applied machine

learning algorithms e.g., logistic regression [13,29,30], support vector machine [29], and ran-

dom forest [29], to determine variables predictive of treatment failure or non-adherence.
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For instance, a study carried out in Iran [38] seeking to evaluate and compare different

machine learning methods to predict the outcome of the tuberculosis treatment course, used a

training dataset (N = 4515) and testing dataset (N = 1935) to explore six machine learning

algorithms, namely: decision trees (DT), artificial neural network (ANN), logistic regression

(LR), radial basis function (RBF), Bayesian networks (BN), and support vector machine

(SVM).

To evaluate the algorithms, the Iranian investigators computed the prediction accuracy, F-

measure, and recall metrics. They found out that decision trees (C4.5) performed the best with

model fitness and prediction accuracy of 84.45% and 74.21% respectively. These study findings

were like studies conducted in Kenya [39] and China [40] that equally reported the decision

trees prediction to perform better with an accuracy of 90% and 70.9% respectively. Notewor-

thy, the study from Kenya concluded that machine learning techniques have the potential to

identify patients at risk for viral failure before their scheduled measurements.

In another study [41] carried out in the USA to detect whether a patient will experience an

adverse event due to coronary artery disease (CAD) within a 10-year time frame. Here, the

researchers collected 21,460 patients’ records. Of these, 75% were used for training and 25%

for validation. They trained Logistic Regression, Random Forest, Boosted Trees, CART, and

Optimal Classification Trees (OCT) classifiers. After evaluation, they found out that random

forest was able to identify specific patients with an accuracy of 84.29% closely followed by

OCT at 81.54%.

Newer work has explored the utility of advanced machine learning techniques such as sup-

port vector machines (SVM), Artificial Neural Networks (ANN), and more for improved clas-

sification accuracy. A study by Mian et al., [29] applied SVM in a dataset containing 275

pulmonary tuberculosis symptomatic and confirmed multidrug-resistant (MDR) cases age>

= 15 with no gender discrimination for feature selection (FS) algorithms to identify and diag-

nose MDR tuberculosis in Pakistan. The researchers built and evaluated seven classifiers: ran-

dom forest, k-nearest neighbors, support vector machine, logistic regression, least absolute

shrinkage, selection operator (LASSO), artificial neural networks (ANNs), and decision trees.

They found out that the two best-performing algorithms were SVM and RF with an accuracy

of 78% and 74% respectively for patients’ classification.

Further, previous work in this domain has shown that classification machine learning algo-

rithms such as: decision trees (DT), random forests (RF), and support vector machines (SVM)

perform better in other countries. Unfortunately, based on our literature search, we did not

identify a study utilizing them for tuberculosis treatment non-adherence prediction in the

Ugandan context. Thus, our study explored DT, RF, and SVM techniques amongst others.

Lastly, this study notes the increasing use of machine learning for specific customer loan

default predictions in the banking sector [42], multilingual tweets classification for disease sur-

veillance [43], and predicting an individual HIV/AIDs patient likely not to adhere to treatment

[44]. Similarly, this study set out to replicate this in tuberculosis management and research.

Materials and methods

Study design and setting

Our retrospective study aimed at developing, evaluating, and recommending probable classifi-

cation machine learning methods for the identification of important variables predictive of

tuberculosis treatment non-adherence in the Mukono district. Our study defined tuberculosis

treatment non-adherence as a surrogate measure as follows; “any patient who did not visit the

health facility for a treatment drug refill in 28 days as was instructed by the health worker”.

This was abstracted as recorded in the health facility registers.
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The study site, Mukono district, is in the central region of Uganda, with a population of

720,100 per the 2021 country statistical abstract [45]. The district is divided into four counties

with 590 villages composed of three categories of populations: urban, peri-urban, and rural.

However, the main economic activities within the district are farming, fishing and small-scale

businesses. Within the district, six high-volume (treating > 100 patients) health facilities

owned either by the government or private-not-for-profit (PFNP), serving urban, peri-urban,

and rural populations were selected. These were 1) Kyetume Health Centre III (PNFP), 2)

Mukono General Hospital (Government), 3) Naggalama Hospital (PNFP), 4) Mukono COU

Hospital (PNFP), 5) Kojja Health Centre IV(Government), 6) Nakifuma Health Centre III

(Government). We chose these health facilities as our study sites for several reasons. First, they

treated>10 tuberculosis patients/per month. Second, they had a tuberculosis treatment suc-

cess rate of< 75% from 1st January 2019—to 31st December 2021. Third, they had both outpa-

tient (OPD) and inpatient (IPD) clinics. Finally, they are all located within the Mukono

district.

Data description

Our goal was to use a machine learning technique to identify important variables from a data-

set comprising of 42 patient demographics and clinical characteristics that may predict treat-

ment outcomes. The data was obtained from the routinely, longitudinal health facility

registers, standardized by the ministry of health for the period starting 1st January 2019 to 31st

December 2021. This data was abstracted using an electronic data capture screen developed

using the Kobo Collect (v2021.3.4) platform. Kobo Collect is open-source software with both

online and offline electronic data capture capabilities [46]. The tool was pre-tested before roll-

ing out to the study.

A common practice in machine learning experimentations is to collect and utilize large vol-

umes/quantities of data [47]. However, the number of data records required for a machine

learning algorithm depends on the complexity of the model, the diversity of the data, and the

performance goals of the model [21].

In general, the more data you have, the better the model will be able to learn and make

accurate predictions. When developing prediction models for binary or time-to-event out-

comes, a well-known rule of thumb for the required sample size is to ensure at least 10 events

for each predictor parameter [47]. Thus, we estimated our sample size as follows. Total vari-

ables captured in the tuberculosis register = 42. But one of the variables is the outcome vari-

able, thus; (42–1) * 10 = 410 records. However, cognizant of the limitations in existing health

facility data–incomplete records, missing registers–in our study sites, we anticipated that to

meet the minimum sample size computed above, abstracting records> 1000 would help us

remain with a substantially high number of records enough for both training and testing our

models even after data cleaning and removal of possible duplicate records. Therefore, we

abstracted >1000 records from the drug susceptible pulmonary tuberculosis treatment units at

the study sites.

Further, the data for each variable was extracted as it was presented in the registers. How-

ever, we anticipated the possibility of duplicates because of several reasons. This includes lack

of generally agreed patient unique identifier, recording errors, and seeking treatment from sev-

eral sources within the Mukono district.

Patient eligibility

Through the tool, we abstracted patient records from the drug-susceptible pulmonary tubercu-

losis treatment units at the study sites. These were the patients who visited the study site with a
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primary diagnosis of tuberculosis. They comprised both male and female patients, aged 18

years and above, who received and completed drug-susceptible pulmonary tuberculosis treat-

ment at the study sites for the period starting 1st January 2019 to 31st December 2021 as cap-

tured in the 2019 health facility tuberculosis register. The 2019 health facility register is a

newer, updated registers since the previous registers (2018 and below) did not capture some

patient and clinical characteristics hence their use was discontinued countrywide. To meet the

study objectives, the scope and ensure data of good quality, we identified the tuberculosis

patients using the inclusion criteria; 1) All patients initiated on treatment for drug-susceptible

pulmonary tuberculosis, who are male or female aged> 18 years. We considered patients aged

18 years and above because younger patients (< 18 years) do not make decisions on where and

when to seek health care. 2) All patients’ records with complete drug-susceptible pulmonary

tuberculosis treatment outcomes are correctly filled in and meet the criteria 1. 3) All patients

who received the drug-susceptible pulmonary tuberculosis treatment at the study site in the

period of 1st January 2019 to 31st December 2021. We excluded all patients with incomplete

drug-susceptible pulmonary tuberculosis treatment outcomes filled in and all patients who ini-

tiated treatment at the study sites but were later transferred out. The data for each variable was

extracted as it was presented in the standardized health facility registers. The dependent vari-

able was the tuberculosis treatment outcome. The independent variables included the patient’s

age, sex, category, disease classification, treatment drugs, and risk group among others.

Data analysis

The data cleaning and basic descriptive statistics were done in STATA v15. During data clean-

ing, we transformed the categorical data into numerical data using numerical value labels

aided by an already-defined codebook. This process was repeated for all other categorical vari-

ables within the dataset. For instance, the outcome variable was abstracted as either; cured,

treatment completed, treatment failure, lost to follow-up, not evaluated, or died. However,

using the codebook and the study definition of treatment non-adherence, we transformed this

into two categories with labels “1” for adherent and “2” for non-adherent patients respectively.

Prediction tools and software

R studio version 2022.02.3 Build 492 and, R version 4.2.1 were utilized for modeling and build-

ing the machine learning classification algorithms. Both are freely available data analytics soft-

ware. Whereas R is an open-source, statistical, and data-centric programming language, R

studio is an open-source integrated development environment (IDE), with a simple graphical

user interface (UI). Furthermore, R studio provides a user-friendly point-and-click graphical

user interface for the R programming language.

R provides many different algorithms for data mining and machine learning with flexible

facilities for scripting experiments. We utilized the commonly used data processing libraries

for data visualization, formatting, slicing, and conversion such as “gtsummary”, “tidyverse”,
and “dplyr”. Thereafter, we converted all the character variables into factor formats in prepara-

tion for statistical modeling. Finally, we formulated and added labels to the variables, gener-

ated a basic descriptive summary table using the “gtsummary” library, and saved the prepared

data ready for applying machine learning algorithms.

We visualized the data using basic descriptive statistics to check for incompleteness, incon-

sistency, and inaccuracy (errors or outliers). The analysis and modeling results were presented

using tables and graphs. Lastly, the resultant clean dataset obtained after analysis was con-

verted, exported, and stored in password-protected comma-separated values (CSV) file, before

its utilization for machine learning modeling purposes.

PLOS GLOBAL PUBLIC HEALTH Machine learning approach predictive of tuberculosis treatment non-adherence risk factors

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0001466 July 3, 2023 5 / 20

https://doi.org/10.1371/journal.pgph.0001466


Missing data handling

Various approaches to manage missing data exist. In this study, after the data cleaning process,

we loaded the cleaned dataset in STATA to check and identify the patient demographics and

clinical features columns that had any missing data values. From our dataset exploration, we

identified that the laboratory tests had the most missing variables. Further investigation

revealed that the identified missing laboratory tests were not carried out and thus were not

recorded. Because we could not use the commonly used statistical computing techniques to

estimate their respective values, we therefore, generated a new variable called “None” and

replaced all the missing laboratory test values.

Feature selection

Feature selection (FS) involves searching through all the attributes in the data to remove non-

informative or redundant attributes whilst finding the subset of attributes that maximizes per-

formance. Also, FS reduces overfitting (less opportunity to decide based on noise), improves

accuracy (removing misleading variables), and reduces the training time. Due to the clinical

nature of our dataset, and the research objectives, a two-stage feature selection procedure was

followed. First, in building the algorithm and second, in the selection of feature importance

based on the best-performing model.

In algorithm building, we applied the attribute evaluator and the filter ranker search

method. In the filter ranker method, an attribute evaluator assigned a relevance score to each

feature in the dataset. Thereafter, the attributes were ranked according to their relevance score

in descending order. The features with a high score were selected and low-scoring features

were eliminated during modeling.

Building the machine learning algorithms

This was done in R-Studio, using the library “caret”, a widely used R machine learning package. We

began by splitting our dataset into two using a ratio of 80:20, 80% for training, and 20% for testing

the model respectively. Next, using the training dataset (80%), we built the five algorithms support

vector machines, AdaBoost, artificial neural networks [48], decision trees [21], and Logistic regres-

sion [49]. Similarly, testing for each developed algorithm was done using the testing dataset.

For every algorithm developed, a 10-fold cross-validation was applied for model building

with the training dataset. Internally, the training dataset was split into two with 90% of the

data used for training and 10% used for testing. This was repeated 10 times before the final

model was built from the training dataset.

The final model was tested using the 20% of the original dataset that was split during the

80:20 ratio and reserved for model testing. Using this testing dataset, we computed a confusion

matrix to measure the accuracy (based on a 95% level of confidence), positive predictive value,

negative predictive value, sensitivity, specificity for every machine learning model.

Evaluation of the developed models

For the model performance evaluation, k-fold cross-validation was used. Cross-validation is a

set of methods for measuring the performance of a given predictive model on new test data

sets [48]. The rationale in cross-validation techniques is to divide the data into two sets, train-

ing sets–used to train (build) the model and the testing set (validation set)–used to test the

model by computing the prediction error.

We implemented the repeated k-fold cross-validation method, whereby we randomly split

our dataset into k sets. In this method, we split our data into 10-fold equal datasets. We used
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9-fold (90%) datasets for training the model and the rest 1-fold (10%) of the dataset to evaluate

the model performance. Thereafter, we evaluated the developed model with the test dataset

(20%) to check its validity and accuracy using the unseen observations. From the results, we

quantified the prediction error as the mean squared difference between the observed and the

predicted outcome values.

Performance measure of the developed model

Several methods to quantify the performances of the machine learning models exist. These

include accuracy, F1 score, precision, recall, and Receiver Operating Curve (ROC). Accuracy

measures how many observations, both positive and negative, were correctly classified by the

algorithm. Accuracy is commonly used in a balanced classification problem in which every

class is equally important to the researcher. Further, precision aims to quantify the proportion

of positive identifications that were correct while recall tries to what proportion of actual posi-

tives was identified correctly. On the other hand, the F1 score combines precision and recall

into one metric by calculating the harmonic mean between those two. However, the F1 score

is mostly used in finding out about the positive class.

Furthermore, the receiver operating curve (ROC) is a chart that visualizes the tradeoff

between the true positive rate (TPR) and false positive rate (FPR). Resultantly, classifiers with

curves that are more top-left-side are better. i.e., the higher TPR and the lower FPR for each

threshold the better. Yet, accuracy aids in quantifying the fraction of predictions our model

got right incorporating both precision and recall. Therefore, we choose to utilize a confusion

matrix to compute the model accuracy and use it as our best performance measure. The confu-

sion matrix was computed the using the formula below.

accuracy ¼
TPþ TN

TP þ TN þ FP þ FN

Where, true positives (TP) are the predicted values correctly predicted as actual positives. false

positives (FP) are the predicted values incorrectly predicted as actual positives. i.e., negative values

predicted as positive. Similarly, false negatives (FN) are the positive values predicted as negative.

Whereas true negatives (TN) are the predicted values correctly predicted as actual negatives.

Thus, we selected the best-performing model by using a criterion of the higher the computed

accuracy, the better the performance of the developed model. The results are tabulated in Table 2.

SHapley Additive exPlanations (SHAP)

SHapley Additive exPlanations (SHAP) is a “unified framework for interpreting machine

learning models that assign each feature an importance value for a particular prediction” [50].

The rationale behind the SHAP is that for complex models e.g., ensemble methods or deep net-

works, a simpler explanation model defined as an interpretable approximation of the original

model exists. To identify the critical variables, we first selected the best-performing model.

Thereafter, we applied the SHapley Additive exPlanations (SHAP) to it.

Mathematically, SHAP applies sampling approximations to model training by assigning an

importance value to each feature that represents the effect on the model prediction of includ-

ing that feature. Finally, it computes the approximations of the effect of removing a given vari-

able from the model by summing up the preceding differences for all possible subsets of all

features. This is illustrated in the formula below.

;i ¼
X

S�Ffig

jSj!ðjFj � jSj � 1Þ!

jFj!
f s[fig xs[fig

� �
� fsð Þxs

h i
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Where, F is the set of all features, S�F is the subset of all features, fs[{i} is the model trained

with a given feature (i) present, while fs is another model trained with the feature withheld. xs
represents the values of the input features in the set S.

Further, the SHAP values attribute to each feature the change in the expected model predic-

tion when conditioning on that feature. From these attributions, SHAP thus explains how to

get from the base value E[f(z)] that would be predicted if we did not know any features of the

current f(x). This uses classic equations from cooperative game theory to aid in interpreting

the black-box machine-learning models by computing the explanations of the model

predictions.

Therefore, by applying SHAP, we were able to rank our predictive features according to

their sign and magnitude in response to their contribution to the outcome. Based on the fea-

ture’s contribution sign (whether positive or negative), and the magnitude, the critical predic-

tors for either adherence or non-adherence were identified. The results were presented

graphically.

Ethical clearance

Ethical approval was sought and granted (approval protocol number 047) by the institutional

review board (IRB) at Makerere University School of Public Health to conduct the research. In

addition to the approval, we were granted permission by the Mukono district health officer

(DHO) to carry out the study in the six (6) study sites. Further administrative clearance from

the health facilities in-charges and the director at Mukono General Hospital and Mukono

COU hospital was sought and granted.

Results

In total, 1,004 tuberculosis patient records were abstracted. After data cleaning, 166 records

were eliminated because they did not meet the inclusion criteria (age => 18 years). Therefore,

838 records were considered for analysis and modeling. The records belonged to three (50%)

government hospitals; Mukono general hospital (252), Kojja health center IV (116) and Naki-

fuma health center III (79) and, three (50%) private not-for-profit (PFNP) hospitals namely,

Mukono COU hospital (132), Naggalama hospital (156) and Kyetume health center III (103)

as shown in Fig 1 below.

The patient sex (either “male” or “female”) was balanced (57% male) as shown in Fig 2. The

patient’s mean age was 38.3 years with a standard deviation (SD) of 13.7 years. Similarly, the

patient’s mean weight and standard deviation were 42.0 and 20.1 respectively. Out of all

patients, 568 had contacts> 5 years (mean of 1.6 and a standard deviation of 2.2), while 340

patients had contacts < = 5 years, with a mean and standard deviation of 0.7 and 1.6

respectively.

However, the categorical treatment outcome was unbalanced with 681 (81.2%) and 157

(18.8%) belonging to adherent and non-adherent classes respectively. Of all the tuberculosis

tests done, most of the patients had GeneXpert tests (618), closely followed by smear micros-

copy (502) and tuberculosis LAM (39). 112 patients had no laboratory test done. Detailed

background of the study participants is presented in Table 1 below.

From the above findings, SVM had the highest accuracy, 91.28%, (AdaBoost performed bet-

ter than SVM when ROC is considered as evaluation parameter). Looking at all five evaluation

parameters globally, AdaBoost is quite on par with SVM. Both Artificial neural networks

(ANN) and Logistic regression had equal accuracy of 88.30%. However, Random Forest had

the lowest F1 score of 0.665 compared to other algorithms that scored greater than 0.800.
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Fig 2. Frequency of patient sex in the tuberculosis data.

https://doi.org/10.1371/journal.pgph.0001466.g002

Fig 1. The frequency distribution of tuberculosis patients per health facility in the tuberculosis data.

https://doi.org/10.1371/journal.pgph.0001466.g001
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Table 1. Summary statistics for key predictor and outcome variables.

Characteristic Overall, N = 8381 adherent, N = 6811 non-adherent, N = 1571

Health Facility Ownership

Government 447 (53%) 373 (55%) 74 (47%)

Private not-for-profit (PFNP) 391 (47%) 308 (45%) 83 (53%)

Sex

Female 360 (43%) 306 (45%) 54 (34%)

Male 478 (57%) 375 (55%) 103 (66%)

Patient Category

Foreigner 3 (0.4%) 3 (0.4%) 0 (0%)

National 834 (100%) 677 (99%) 157 (100%)

Refugee 1 (0.1%) 1 (0.1%) 0 (0%)

Disease Classification

Extrapulmonary (EPTUBERCULOSIS) 28 (3.3%) 23 (3.4%) 5 (3.2%)

Pulmonary Bacteriologically confirmed (PBC) 507 (61%) 410 (60%) 97 (62%)

Pulmonary Clinically Diagnosed (PCD) 303 (36%) 248 (36%) 55 (35%)

TUBERCULOSIS Type

New Case (N) 768 (92%) 626 (92%) 142 (90%)

Relapse (R) 39 (4.7%) 32 (4.7%) 7 (4.5%)

Treatment after failure (TF) 20 (2.4%) 12 (1.8%) 8 (5.1%)

Treatment after loss to follow-up (TL) 11 (1.3%) 11 (1.6%) 0 (0%)

Regimen

2RHZE/10RH 8 (1.0%) 4 (0.6%) 4 (2.5%)

2RHZE/4RH 825 (98%) 673 (99%) 152 (97%)

Others 5 (0.6%) 4 (0.6%) 1 (0.6%)

Transfer In 57 (6.8%) 48 (7.0%) 9 (5.7%)

Referral

Community 193 (36%) 167 (39%) 26 (25%)

Facility 344 (64%) 264 (61%) 80 (75%)

Unknown 301 250 51

HIV status

Known HIV positive at TUBERCULOSIS diagnosis 231 (28%) 190 (28%) 41 (26%)

Negative 422 (50%) 347 (51%) 75 (48%)

Newly tested HIV positive at TUBERCULOSIS diagnosis 179 (21%) 140 (21%) 39 (25%)

Unknown HIV status 6 (0.7%) 4 (0.6%) 2 (1.3%)

DOT Model

Digital Community DOT 234 (28%) 202 (30%) 32 (20%)

Facility DOT 126 (15%) 98 (14%) 28 (18%)

Non-Digital Community DOT 443 (53%) 358 (53%) 85 (54%)

None 35 (4.2%) 23 (3.4%) 12 (7.6%)

Treatment Supporter

Community Volunteer 14 (1.7%) 12 (1.8%) 2 (1.3%)

Family Member 414 (49%) 336 (49%) 78 (50%)

Health Worker 5 (0.6%) 4 (0.6%) 1 (0.6%)

None 405 (48%) 329 (48%) 76 (48%)

We built and evaluated 5 (five) different machine-learning models based on the resultant dataset. Thereafter, we computed the metrics (precision, recall, accuracy,

receiver operating curve (ROC), and F1 score) of these developed models as shown in the table below.

https://doi.org/10.1371/journal.pgph.0001466.t001

PLOS GLOBAL PUBLIC HEALTH Machine learning approach predictive of tuberculosis treatment non-adherence risk factors

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0001466 July 3, 2023 10 / 20

https://doi.org/10.1371/journal.pgph.0001466.t001
https://doi.org/10.1371/journal.pgph.0001466


Notably, we tuned the SVM classifier to get better performance with different values of C

(cost) per kernel function. With the linear kernel function, we obtained the best model accu-

racy of 91.28% with a cost parameter of c = 0.1, as shown in Fig 3 below. Further exploration

revealed that the model accuracy decreased with increased cost.

Out of the five, the support vector machine (SVM) model had the highest accuracy of

91.28%. Thus, we applied the Shapley Additive exPlanations (SHAP) to this model. This was to

identify the important variables that could estimate the tuberculosis treatment non-adherence.

The SHAP ranked all the variables used for modeling based on their contribution toward the

tuberculosis treatment outcome. These are shown in Fig 4 below.

On further exploration, the SHAP identified predictors’ importance based on their magni-

tude and sign (positive and negative) in relation to their contribution. The positive predictors

were associated with adhering, while negative predictors are associated with non-adherence

(Fig 5).

From the graphical representation above, disease classification, drug regimen, patient cate-

gory, DOT model, transfer-in, HIV status, contacts over 5 years, weight, and smear micros-

copy results were identified to contribute positively towards treatment adherence.

In contrast, tuberculosis type, GeneXpert results, sub-country, anti-retroviral status, con-

tacts below 5 years, health facility ownership, sputum test results at 2 months, treatment sup-

porter, CPT Dapsone status, risk group, patient age, gender, middle and upper arm

circumference (MUAC), referral, positive sputum test at 5 months and 6 months were indica-

tive of treatment non-adherence.

Discussion

Our support vector machine (SVM) model yielded a high accuracy (91.28%) and high recall

(0.9130) compared to other ML algorithms (Table 2 in the results section) in classifying treat-

ment non-adherence. However, the high recall attained by the SVM model was expected. This

is due to the internal workings of the SVM algorithm that aims to identify a hyperplane that

separates the training data, by maximizing the gap between these hyperplanes so that in case of

any new data, it’s mapped with a maximum gap separating the classes.

Fig 3. Accuracy versus the cost of the support vector machine model.

https://doi.org/10.1371/journal.pgph.0001466.g003
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Fig 4. Visualization of the independent variables’ importance using the SHAP.

https://doi.org/10.1371/journal.pgph.0001466.g004

Fig 5. Visual representation of the positive and negative predictors.

https://doi.org/10.1371/journal.pgph.0001466.g005
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Indeed, these characteristics exhibited by SVM have led to its wide adoption and utilization

in several studies [22,29] that aimed to predict treatment failure and risk factors in tuberculosis

and other illnesses. In all these studies, SVM algorithms were reported to have attained high

accuracy and recall like ours. Thus, our findings of SVM as the best performer further confirm

its robustness as a classification algorithm.

Noteworthy, all the five machine learning algorithms investigated were able to discriminate

between the outcome class with high precision (> 0.87) considering all the 41 study features.

These results indicate that classification machine learning models can be used to map the dif-

ferent predictors to their respective classes. Likewise, these capabilities have been reported in

similar rather challenging scenarios like predicting viral failure [51], tweets classification for

disease surveillance [43], identification of HIV predictors for screening [52], and cancer [53].

Therefore, this demonstrates the potential and applicability of machine learning algorithms to

provide insights in scenarios where human decision-making would be limited.

Methodologically, our work was related to other studies predicting outcomes by inferring a

model being trained by a set of historical data [15,22,25,40,54–56]. Given appropriate assump-

tions, such techniques allow for valid predictions about the counterfactual outcomes under dif-

ferent settings for determining interventions. However, the machine learning techniques

require exact knowledge of intervention outcomes which should be clearly labeled.

Our study focused on developing and evaluating different machine learning algorithms to

explore the risk factors predictive of treatment non-adherence. Thus, after training the models,

we evaluated them for performance and accuracy. The metrics applied were precision (false

positive), recall (false negative), F1 score, accuracy, and receiver operating curve (ROC). How-

ever, the application of these metrics in binary classifications is dependent on “when”. For

instance, while dealing with class-imbalanced datasets–a dataset for a classification problem in

which the total number of labels of each class differs significantly- both precision and recall are

the go-to metrics.

However, due to the clinical nature of our study, we were interested in a model with high

recall. That is, we wanted a model capable of identifying individual patients, based on the

demographics and clinical characteristics as captured in the health facility registers, who

would not adhere to treatment, even if that meant having some false positives (patients

wrongly identified as not adherent yet they are). Based on the imbalanced dataset obtained,

this could have affected the F1 score of some of our algorithms leading to RF scoring the lowest

(0.665) compared to other algorithms evaluated. This probably shows that RF is highly affected

by dataset imbalance.

In a real clinical setting, false positives may lead to additional unnecessary clinical examina-

tions, and extra laboratory tests and even frighten some patients. However, the public health

benefits outweigh this setback. This is because the additional tests could help identify and take

care of other unaware sick people thus reducing possible community spread, transmission,

and possible death.

Table 2. Evaluation results of the developed models.

Evaluation metric

No. Prediction algorithm Precision Recall F1score ROC Accuracy (%)

1. Support vector Machine (SVM) 0.916 0.913 0.914 0.870 91.28

2. AdaBoost 0.913 0.911 0.911 0.920 91.05

3. Random Forest (RF) 0.898 0.900 0.665 0.929 89.97

4. Logistic regression 0.885 0.883 0.884 0.896 88.30

5. Artificial Neural Networks (ANN) 0.879 0.883 0.881 0.902 88.30

https://doi.org/10.1371/journal.pgph.0001466.t002
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Identification of patient characteristics for tuberculosis treatment non-

adherence

A deeper exploration of the best performing SVM model identified some variables predictive

of tuberculosis treatment non-adherence. We relied on the SHAP measurement for each inde-

pendent variable contribution to the treatment outcome for the identification of these vari-

ables. From our findings, tuberculosis type, GeneXpert results, sub-country, anti-retroviral

status, contacts below 5 years, health facility ownership, sputum test results at 2 months, treat-

ment supporter, CPT dapsone status, risk group, patient age, gender, MUAC, referral, positive

sputum test at 5 months and 6 months were predictive of treatment non-adherence. These

results are like other studies conducted in lower- and middle-income countries exploring the

patient characteristics associated with treatment non-adherence.

Notably, positive sputum tests at 5 months and 6 months were identified by the model as

indicative of treatment non-adherence. However, when a patient comes into the health facility

with a diagnosis, the health worker for example would not know whether the patient would do

a sputum test at 5 or 6 months. Interestingly, the fact that we trained our model using retro-

spective data, indicates that our algorithm can fully categorize patient’s adherence only after

the sputum test at 5 or 6 months are conducted. Furthermore, this could potentially serve as

an early warning to the health worker that, if the other non-adherence factors identified by the

model are present, special guidance should be taken to also inform the patient on the impor-

tance of completing all the sputum tests and most especially during months 5 and 6.

Patient age and gender had equal importance in contributing to treatment non-adherence.

This is possible because gender-based roles and responsibilities increase with the increase in

age (16, 27). As men mature, they start engaging in income-generating activities that are not

only demanding but also time-consuming. In turn, this may hinder men from going to health

facilities to pick up their drug refills or even taking medicines as prescribed. Similarly, women

also take up responsibilities like childbearing, and household chores that equally may hinder

them from going for drug refills.

Various studies have reported on the significance of patient risk groups and residency as

key determinants in treatment adherence [5,57]. In our modeling, we equally found the two

characteristics to be predictive of whether a patient will adhere to treatment or not. Further,

we found out that some patients who were not residents of our study site catchment areas

attended the health facilities located within Mukono. This could be because of the stigma asso-

ciated with tuberculosis as was discussed by [58]. In a similar scenario for covid-19 treatment

seeking, a study by Muttamba et. al. . . [59] also cited stigma as a major hindrance. However,

we noted that the grouping of risk groups as others could have masked other types of patient

risk categories that could be on tuberculosis treatment and probably not adhering.

Whether a patient had a treatment supporter or not was found to be predictive of treatment

non-adherence. Previous findings identified the important role played by treatment supporters

in supporting chronic patients to adhere to treatment [60]. With the patient at liberty to

choose between either a family member, community health worker or health worker as a sup-

porter, the presence or lack of one thereof greatly impedes the treatment taking.

From our findings, both ART status and CPT Dapsone status were among the factors iden-

tified by our model. Certainly, CPT Dapsone is prescribed to HIV positive patients. However,

HIV, like tuberculosis is a chronic disease with a high drug pill count. Evidence shows [2,36]

that, the drug burden for these chronic and infectious diseases can overwhelm the patient who

either decides to take drugs for one of the diseases and not take the others based on either drug

reactions or side effects. However, newer studies should consider disaggregating the tuberculo-

sis patient according to their HIV status for further modelling.
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Middle and upper arm circumference (MUAC) measurements, an indicator of patient

nutrition status was also found to be predictive of non-adherence. This concurred with two

different studies [61,62] both conducted in Uganda, among tuberculosis patients, that found

that undernutrition leads to unfavorable treatment outcomes. This finding also resonated with

the fact that tuberculosis drugs are administered according to patient weight at diagnosis.

However, upon treatment initiation, tuberculosis drugs have been shown to affect the patient’s

appetite.

Limitations

Despite the study findings, we encountered some limitations. First, the use of health facility

tuberculosis registers as a data source may not fully describe/capture the entire non-adherence

process. This is partly because these registers leave out some social-environmental, social-

demographic factors like patient occupation, marital status, number of children, and distance

from the health facilities that have been shown by other qualitative studies to be associated

with non-adherence. Secondly, our definition of tuberculosis treatment non-adherence as a

surrogate measure does not do a good job in measuring the actual tuberculosis treatment non-

adherence. However, we successfully identified some important factors that could guide non-

adherence screening at the health facility despite the lack of environmental and social-demo-

graphic factors.

Conclusion

Our study findings indicate that supervised machine learning algorithms can discriminate

between adherent and non-adherent patients, with high accuracy and high recall. Thus, the

resultant machine learning models can potentially be used as a regular simplistic tool to

explore and identify individual risk factors for tuberculosis treatment non-adherence. This

will complement the existing treatment adherence strategies by prioritizing the limited health-

care resources to the neediest patient thereby lowering the costs implications for active super-

vision and support for all tuberculosis patients.

Furthermore, we built all five classification machine learning models using the data col-

lected routinely in a typical tuberculosis clinic in LMIC. On further experimentation with

these datasets, using SHAP, we were able to identify some predictors of tuberculosis treatment

non-adherence. Therefore, classification machine learning algorithms mainly; logistic regres-

sion, support vector machine (SVM), random forest (RF), AdaBoost, and artificial neural net-

works (ANN), can be built from the readily available health facility registers data.

Finally, whereas we front machine learning as an alternative advanced technique for finding

hidden patterns in data, it comes at a cost. This cost is incurred in skillsets requirement, com-

puting infrastructure, data collection, cleaning, labeling, wrangling, and modeling processes.

Thus, this not only calls for preparations to incur the mentioned costs but also to invest time

to experiment with different machine learning algorithms. This is to ensure that persons with

the right skill set, computing infrastructure, and data of high quality can build machine learn-

ing models that can generate insights, to guide in both decision-making and policy formula-

tions to better healthcare in our communities.

Recommendations & future work

We suggest that future work should collect more data from a bigger population, to enrich the

dataset for modeling treatment non-adherence. More data could be collected by additional of

more study sites. Further, qualitative data obtained through administering key informant

interviews to both the health workers and the patients could introduce more dimensionality to
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the dataset. These qualitative data, though needing prior data transformations will help in bet-

ter understanding the complex role of human behavior in treatment non-adherence. Also, it

will greatly inform and supplement our findings to get a complete picture of the risk factors

for tuberculosis treatment non-adherence.

Second, we recommend that tuberculosis health providers should prioritize educating the

patients on the importance of refilling their treatment packages and the swallowing the medi-

cines as advised by the health workers to minimize the risks and challenges associated with

treatment non-adherence. Further attention/supervision should be given to any tuberculosis

patients screened and identified to present with any of our identified factors during treatment.

Third, to the tuberculosis management programs, we recommend an additional field in the

tuberculosis health facility registers to capture the actual risk group of the patient instead of

employing the “others” option. Likewise, identified tuberculosis patients with several

contacts > 5 years exposed to tuberculosis through household contact should be prioritized

for screening so they can be started on treatment to prevent infection or progression of the

disease.

Fourth, to the hospital management, frequent data quality assessments should be performed

to address issues in missing data variable entries in the registers. Additionally, this will ensure

that the management can address some issues like patients missing contact numbers or modal-

ities of treatment support hence improving the quality of documentation.

Finally, researchers should not shy away from experimenting with machine learning tech-

niques in addressing tuberculosis treatment refill management even in settings with limited

data settings like Uganda and other lower-and-middle-income countries. This is because,

these experimentations could reveal further insights and information regarding tuberculosis

treatment non-adherence management to further augment what is already known.
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