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Abstract

Malaria programs rely upon a variety of diagnostic assays, including rapid diagnostic tests

(RDTs), microscopy, polymerase chain reaction (PCR), and bead-based immunoassays

(BBA), to monitor malaria prevalence and support control and elimination efforts. Data compar-

ing these assays are limited, especially from high-burden countries like the Democratic Repub-

lic of the Congo (DRC). Using cross-sectional and routine data, we compared diagnostic

performance and Plasmodium falciparum prevalence estimates across health areas of varying

transmission intensity to illustrate the relevance of assay performance to malaria control pro-

grams. Data and samples were collected between March–June 2018 during a cross-sectional

household survey across three health areas with low, moderate, and high transmission intensi-

ties within Kinshasa Province, DRC. Samples from 1,431 participants were evaluated using

RDT, microscopy, PCR, and BBA. P. falciparum parasite prevalence varied between diagnos-

tic methods across all health areas, with the highest prevalence estimates observed in Bu

(57.4–72.4% across assays), followed by Kimpoko (32.6–53.2%), and Voix du Peuple (3.1–

8.4%). Using latent class analysis to compare these diagnostic methods against an “alloyed

gold standard,” the most sensitive diagnostic method was BBA in Bu (high prevalence) and

Voix du Peuple (low prevalence), while PCR diagnosis was most sensitive in Kimpoko
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(moderate prevalence). RDTs were consistently the most specific diagnostic method in all

health areas. Among 9.0 million people residing in Kinshasa Province in 2018, the estimated

P. falciparum prevalence by microscopy, PCR, and BBA were nearly double that of RDT.

Comparison of malaria RDT, microscopy, PCR, and BBA results confirmed differences in sen-

sitivity and specificity that varied by endemicity, with PCR and BBA performing best for detect-

ing any P. falciparum infection. Prevalence estimates varied widely depending on assay type

for parasite detection. Inherent differences in assay performance should be carefully consid-

ered when using community survey and surveillance data to guide policy decisions.

Introduction

Malaria programs rely upon various diagnostic assays to monitor malaria prevalence and to

support control and elimination efforts. Though malaria rapid diagnostic tests (RDTs) and

microscopy historically account for nearly all point-of-care clinical Plasmodium falciparum
diagnoses and surveillance methods in endemic regions, high-throughput polymerase chain

reaction (PCR) assays and bead-based immunoassays (BBA) are gaining traction in large sur-

veys worldwide.

Unique features of each assay and the targets they detect are known to influence their per-

formance characteristics in different settings. For example, microscopy or PCR detection is

largely limited to the period of active infection, whereas RDT or immunoassay detection of P.

falciparum histidine-rich protein 2 (HRP2) can extend weeks after clearance of infection

because antigen often lingers in the blood [1]. These differences can be beneficial or serve as

limitations depending on the question at hand and the epidemiological setting. Prior compari-

sons of RDT, microscopy, and PCR suggest that local malaria transmission intensity is an

important determinant of their diagnostic performance [2]. However, data comparing all four

assays–RDT, microscopy, PCR, and BBA is limited, especially from high-burden countries.

The World Health Organization recently called for renewed efforts to address malaria in

high-burden countries. 70% of the world’s malaria cases are concentrated in only 11 countries,

[3] 10 of which are in sub-Saharan Africa. All of these countries reported increases in malaria

cases in 2020, continuing a trend that started well before the COVID-19 pandemic [4]. Efforts

to move away from “one size fits all” approaches and toward interventions tailored to the local

epidemiology are required to achieve sustained progress against malaria [3].

This is especially true in the Democratic Republic of the Congo (DRC), where approxi-

mately 12% of global malaria cases and 26 million annual infections occur across a diverse

landscape of malaria transmission intensities [4]. Leveraging samples collected during the

baseline survey of a longitudinal malaria transmission study in Kinshasa Province [5, 6], we

sought to compare malaria diagnostic performance for surveillance in sites with low, moder-

ate, and high P. falciparum parasite prevalence and across all ages. We observed differences in

performance by test type and modeled the impact of diagnostic assay choice on monitoring

province-level prevalence estimates, emphasizing the importance of local context when choos-

ing or interpreting results of malaria diagnostic assays.

Methods

Ethics statement

Written formal consent was obtained for all participants except for children, for whom written

assent and formal parental consent was obtained. This work was approved by the Kinshasa
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School of Public Health Ethics Committee (ESP/CE/021/2017) and the University of North

Carolina at Chapel Hill Institutional Review Board (17–1588).

Data source and study population

We performed all four malaria diagnostic assays–RDT, microscopy, PCR, and BBA–on blood

samples and data collected in March-June 2018 (rainy season) as part of a prospective, longitu-

dinal study of malaria conducted in urban and rural communities in Kinshasa Province. The

first phase of the cohort was conducted from 2015–2017 [5, 6] followed by a second phase con-

ducted from 2018–2022. This cross-sectional sub-study was conducted among samples from

individuals during the second phase baseline household visit.

Detailed participant sampling and enrollment methods have been described previously

[5, 6]. Briefly, two health zones within Kinshasa Province were selected based on historic

malaria prevalence, ecological diversity to cover the urban/rural gradient, and accessibility

year-round by the research team. Bu and Kimpoko health areas, nested within Maluku 1 health

zone (rural), were selected to represent high and moderate malaria endemicity settings, respec-

tively (Fig 1). The Voix du Peuple health area, within Lingwala health zone (urban), serves as a

low malaria endemicity setting and is located within the Kinshasa metropolitan region, the

DRC’s capital and one of the world’s largest and fastest-growing cities [7].

Fig 1. Location of study sites by health area. Three rural villages in Bu health area, three peri-urban villages in

Kimpoko health area, and one urban neighborhood in Voix du Peuple health area were included, all located within

Kinshasa Province. The base map shapefiles for Africa and the DRC were publicly sourced from OpenStreetMap,

accessed via the Humanitarian Data Exchange (data.humdata.org): Africa—https://data.humdata.org/dataset/global-

lsib-polygons-detailed; DRC rivers (hotosm_cod_waterways_polygons.shp)—https://data.humdata.org/dataset/

hotosm_cod_waterways; DRC Health Zones (file: OSM_RDC_sante_zones_211212.shp)—https://data.humdata.org/

dataset/zones-de-sante-rdc.

https://doi.org/10.1371/journal.pgph.0001375.g001
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All persons aged six months or older that normally lived in the household were eligible for

inclusion. Eligible individuals provided informed consent or minor assent (individuals aged

7–17 years) administered in Lingala or French before enrollment in the second phase. We

restricted this analysis to participants with results from all four malaria diagnostic assays–

RDT, microscopy, PCR, and BBA. Every participant provided informed consent for study par-

ticipation and for collection, storage, and use of biological specimens. In addition to parental

consent, all children 7–17 years old provided written assent to participate. The study was

approved by the Ethical Committee of the Kinshasa School of Public Health (# ESP/CE/021/

2017) and the University of North Carolina (UNC) Institutional Review Board (# 17–1588)

and determined to be an activity not involving human subject research by the Human Subjects

office of the Centers for Disease Control and Prevention (project 0900f3eb81bec92c).

Data collection

At the baseline visit of the second phase study, trained staff administered a questionnaire

derived from the Demographic and Health Surveys (MEASURE-DHS, Rockville, MD). House-

hold heads were asked questions on household characteristics to assess household wealth (i.e.,

housing materials, asset ownership, electrification, and water source). In addition, respondents

were asked to provide individual demographic information, bednet ownership, age, and usage,

and basic health information related to malaria, such as having a prior malaria diagnosis, med-

ications received, and presence of a fever.

Rapid diagnostic test (RDT) and microscopy diagnosis

Following completion of the questionnaire, a laboratory technician collected whole blood by

finger- or heel-prick from household participants for RDT, slide preparation, and dried blood

spot (DBS) collection. During the household visit, whole blood was applied to an SD Bioline

Malaria Ag P.f./Pan-pLDH RDT (05FK60, Alere, Gyeonggi-do, Republic of Korea), and results

were interpreted on-site according to the manufacturer’s protocol. This RDT detects P. falcipa-
rum histidine-rich protein 2 (HRP2) and pan-Plasmodium lactate dehydrogenase (pLDH)

antigens. If positive by either RDT band, the participants were referred to their local health

center and treated according to national guidelines. Next, a laboratory technician prepared a

thick smear slide labeled with participant codes and the date and time of collection. In brief, a

small drop of finger- or heel-prick blood was spread on glass slide and allowed to air dry and

stained with 3% Giemsa (Merck, Rahway, NJ, USA; or VWR, Radnor, PA, USA) for 30 min-

utes. Slides were transported to the study laboratory in Kinshasa, read once by expert micros-

copists, with review by a second microscopist any time the initial microscopist observed a

form of parasite not clear or familiar to them. All slides were read until at least 200 white blood

cells (WBCs) were counted. For slides with <100 asexual parasites observed after counting 200

WBCs, review continued until 500 total WBCs had counted. Microscopy parasite densities

were estimated using the equation: (number of counted parasites x 8,000)/(number of counted

WBCs).

Sample processing and P. falciparum polymerase chain reaction (PCR)

Dried blood spot samples (DBS) were collected onto Whatman filter paper (GE Healthcare,

Chicago, IL, USA), dried at ambient temperature, and stored with desiccant at -20˚C in Kin-

shasa until shipment to UNC for processing and PCR testing [8]. DNA used for PCR was

extracted from three 6mm punches per subject using Chelex 100 resin and Tween, as previ-

ously described [9]. The real-time PCR assay targets the P. falciparum-specific lactate dehydro-

genase (pfldh) gene with a lower limit of detection of 5–10 parasites/μl [10, 11]. The
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quantitative PCR assay was performed using reaction conditions, primers, and quality control

measures for high-throughput PCR as previously described, with the exception that assays

were performed in singleton and amplification by 40 cycles was considered positive [5]. Primer

sequences and reaction conditions are provided in S1 Table.

Multiplex bead-based immunoassay

A single 6mm DBS punch was subjected to a multiplex BBA for detecting Plasmodium antigens

at the US Centers for Disease Control and Prevention (CDC) as described previously [12] and

rehydrated in a buffer with PBS (pH 7.2), 0.3% Tween-20, 0.5% casein, 0.5% BSA, 0.5% polyvi-

nyl alcohol, 0.8% polyvinlypyrrolidine, 0.02% sodium azide, and 3 μg/mL of E. coli lysate (to

prevent nonspecific binding). Though only HRP2 antigen positivity is utilized for analysis here,

the standard BBA multiplex panel was utilized and performed in singleton for this sample set as

described below. Magnetic microbeads (Luminex Corp., Austin, TX, USA) were conjugated to

antigen capture antibodies by an antibody coupling kit (Luminex Corp.) according to manufac-

turer’s instructions. For one milliliter of microbeads (12.5 × 106 beads) antibody coupling con-

centrations were: anti-pan-Plasmodium aldolase antibody (pAldolase, 12.5 μg, Abcam); anti-

pan-Plasmodium lactate dehydrogenase antibody (pLDH, 12.5 μg of clone M1209063, Fitzger-

ald); anti-P. vivax LDH antibody (PvLDH, 12.5 μg of clone M1709Pv2); anti-P. falciparum histi-

dine-rich protein 2 (HRP2, 20 μg, clone MPFG-55A, ICL Inc, Portland, OR, USA). Detection

antibodies were also prepared in advance by biotinylating (EZ-link Micro Sulfo-NHS-Biotinyla-

tion Kit, Thermo Fisher Scientific, Waltham, MA) according to manufacturer’s instructions.

Final prepared dilution of detection antibodies was 1.0 mg/mL and for anti-malarial antigen

specific antibodies as follows: pAldolase (Abcam, Cambridge, UK), pLDH and PvLDH (1:1

antibody mixture of clones M1709Pv1 and M86550, Fitzgerald Industries, Acton, MA, USA),

HRP2 (1:1 antibody mixture of MPFG-55A and MPFM-55A, ICL Inc). Upon conjugation or

biotinylation, reagents were stored at 4˚C until use in the immunoassay.

BBA reagents were diluted in buffer: containing 0.1 M phosphate buffered saline (PBS) pH

7.2, 0.05% Tween-20, 0.5% bovine serum albumin (BSA), and 0.02% sodium azide. For all wash

steps, assay plate was affixed to a handheld magnet (Luminex Corp), and gently tapped for 2 min

to allow bead magnetization before evacuation of liquid and washing with 150 μL PBS, 0.05%

Tween-20. The four bead regions were combined in dilution buffer (in a reagent trough) and

pipetted onto a 96-well assay plate (BioPlex Pro, Bio-Rad, Hercules, CA, USA) at a quantity of

approximately 800 beads/region. Plates were washed twice, and 50 μL of controls or samples

pipetted into appropriate wells. Following 90-min gentle shaking at room temperature protected

from light, plates were washed three times. A mixture of detection antibodies was prepared in

dilution buffer (pAldolase at 1:2000, all others at 1:500), and 50 μL added to each well for a

45-min incubation. After three washes, 50 μL of streptavidin–phycoerythrin (at 1:200, Invitrogen)

was added for a 30-min incubation. Plates washed three times, and 50 μL dilution buffer added to

each well for 30-min incubation. Plates washed once and beads resuspended in 100 mL PBS.

After brief shaking, plates were read on MAGPIX machine (R&D Systems, Minneapolis, MN,

USA) with target of 50 beads per region. The median fluorescence intensity (MFI) value was gen-

erated for all beads collected for each region by assay well and subtracting the assay signal from

wells with dilution buffer blank provides an MFI-background (MFI-bg) value used for analyses.

Positive and negative controls were included on each plate to ensure assay performance.

Statistical analyses

We estimated P. falciparum malaria prevalence and 95% confidence intervals (CIs) across health

areas, age categories, sex, self-reported history of fever in the last seven days, and household
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membership size from RDT, microscopy, PCR, and BBA results based on predicted values using

univariate Generalized Estimating Equations (GEE) logistic regression. The GEE yields popula-

tion-average estimates while accounting for the potential influence of sharing a household with a

malaria-infected person on other members’ infection status [13]. To model the correlation

between household members, we assumed an exchangeable working correlation structure [14].

We estimated sensitivity and specificity using the classical contingency table approach and

latent class analysis (LCA) to evaluate the performance of the four diagnostic methods (i.e.,

RDT, microscopy, PCR, and BBA) to detect P. falciparum malaria infection. In the contin-

gency table approach, we used PCR or BBA as the reference (“gold standard”) because they are

highly sensitive assays that detect different targets (nucleic acid and antigen) and outperform

the traditional microscopy gold standard in most settings. Given that there is not a clear gold

standard, we also used LCA to estimate sensitivity and specificity by combining results from

the four diagnostic methods via a probabilistic model to define an internal reference standard,

or “alloyed gold standard” [12, 15–17].

To inform the potential impact of malaria diagnostic method choice on malaria control

programs–for example, during decision-making about RDT or antimalarial medication pro-

curement–we estimated the number of individuals with P. falciparum malaria infection in Kin-

shasa Province during the phase two baseline data collection period (March-June 2018) using

each diagnostic method: RDT, microscopy, pfldh real-time PCR, and BBA. First, we stratified

health areas in Kinshasa Province into three malaria prevalence categories: prevalence of 15–

24% (low), 25–34% (moderate), or�35% (high) using PCR-based prevalence estimates from

the 2013–2014 Demographic and Health Survey (DHS) [18]. We modelled Kinshasa Province

malaria prevalence by calculating the cluster-level malaria prevalence based on all samples for

each DHS cluster. Then, we fit a thin plate spline model to the cluster-level prevalence values

to spatially interpolate the malaria prevalence across Kinshasa Province in areas without DHS

clusters [19]. Finally, we used zonal statistics to estimate the mean malaria prevalence in each

health area within Kinshasa Province. While there are 416 health areas in Kinshasa Province,

we could only estimate the mean malaria prevalence for 402 (96.6%) health areas, where health

area population estimates from the Ministry of Health were able to be linked by name to corre-

sponding health area boundaries from a publicly available geospatial dataset [20].

Second, each health area in Kinshasa Province was matched with the study health area with

the most similar P. falciparum prevalence. Third, we estimated age-specific malaria prevalence

estimates by RDT, microscopy, PCR, and BBA from the study health areas. For this analysis,

we stratified age into two categories, <5 and�5 years old, using age data provided by the DRC

Ministry of Health. Fourth, we generated age-specific weights by multiplying the study age-

specific prevalence estimates and age distribution (<5 years: 18.9%;�5 years: 81.1%) used by

the DRC Ministry of Health. Fifth, we multiplied the age-specific weights by the age-stratified

population estimates provided by the DRC Ministry of Health for 2018 and obtained from the

DRC District Health Information System 2 (DHIS2) to calculate the age-specific number of

individuals with malaria by diagnostic method for 402 health areas in Kinshasa Province [21].

Finally, we summed the estimated number of cases by diagnostic method to obtain estimates

for the entire province. See S1 Text for a detailed description of these methods. We conducted

analyses in R Statistical Software (v4.1.2; [22]).

Results

Study participant description

Among the 1,450 individuals across 226 households with samples collected in March-June

2018 who underwent malaria laboratory testing, we excluded 19 (1.3%) individuals for missing
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or failed results for at least one of the diagnostic assays—RDT, microscopy, PCR, and BBA.

The 1,431 individuals included in this analysis were distributed across the study health areas as

follows: 491 (34.3%) in Bu (three rural villages), 521 (36.4%) in Kimpoko (three peri-urban vil-

lages), and 419 (29.3%) in Voix du Peuple (one urban neighborhood) (Table 1). The median

age of subjects was 20.0 years old (interquartile range: 11.0, 39.5), most were female (55.3%),

and they shared a household with 6–10 other study participants (59.0%).

Table 1. Malaria prevalence by diagnostic method (RDT, microscopy, PCR, and BBA) for the detection of Plasmodium falciparum (N = 1,431).

Characteristics Study population N (%)a P. falciparum prevalence (95% CI)b

RDTc Microscopyd PCRe BBAf

Overall 1,431 33.7 (29.9–37.8) 43.3 (39.3–47.5) 46.1 (41.8–50.6) 48.4 (44.0–52.8)

Health area

Bu

All age groups 491 (34.3) 57.4 (51.7–62.9) 59.7 (54.0–65.1) 66.2 (60.2–71.8) 72.4 (66.9–77.2)

<5 99 (20.2) 60.6 (50.3–70.0) 53.4 (43.2–63.4) 50.3 (39.9–60.6) 72.6 (62.4–80.9)

5–14 196 (39.9) 77.2 (69.9–83.1) 71.4 (63.0–78.6) 77.6 (69.5–84.0) 85.8 (78.1–91.1)

15–24 47 (9.6) 43.6 (29.9–58.3) 68.3 (54.3–79.6) 76.7 (64.2–85.7) 69.2 (54.0–81.1)

� 25 149 (30.3) 34.9 (27.3–43.4) 46.0 (37.9–54.4) 59.0 (50.3–67.2) 56.3 (47.7–64.4)

Kimpoko

All age groups 521 (36.4) 32.6 (28.2–37.4) 50.7 (45.5–55.9) 53.2 (47.8–58.5) 51.2 (45.8–56.6)

<5 61 (11.8) 16.3 (8.8–28.2) 38.5 (27.7–50.5) 29.6 (19.8–41.8) 32.3 (22.2–44.4)

5–14 190 (36.6) 52.5 (43.9–60.9) 60.6 (52.3–68.4) 66.4 (57.9–73.9) 61.4 (52.7–69.5)

15–24 98 (18.9) 38.6 (29.7–48.3) 59.7 (49.5–69.1) 68.1 (58.6–76.3) 59.4 (49.6–68.4)

� 25 170 (32.8) 14.0 (9.6–20.0) 39.8 (32.4–47.7) 39.2 (31.6–47.3) 42.0 (34.7–49.7)

Voix du Peuple

All age groups 419 (29.3) 3.1 (1.7–5.5) 7.6 (5.1–11.2) 5.6 (3.5–8.8) 8.4 (6.0–11.6)

<5 36 (8.6) 0.0 (0.0–0.0) 16.3 (6.3–36.0) 2.1 (0.3–14.5) 0.0 (0.0–0.0)

5–14 101 (24.1) 5.9 (2.5–13.5) 7.6 (3.4–16.1) 8.7 (4.2–17.2) 9.8 (5.3–17.5)

15–24 119 (28.4) 3.4 (1.3–8.1) 9.1 (5.1–15.7) 8.1 (4.6–14.1) 10.9 (6.7–17.3)

� 25 163 (38.9) 2.5 (1.1–5.2) 5.5 (3.2–9.3) 3.0 (1.3–6.9) 7.4 (4.2–12.9)

Sexg

Male 648 (45.3) 34.7 (30.4–39.4) 44.7 (40.0–49.5) 48.4 (43.2–53.7) 48.3 (43.1–53.6)

Female 783 (54.7) 32.9 (28.6–37.4) 42.2 (37.5–47.0) 44.2 (39.6–48.9) 48.5 (43.7–53.3)

Self–reported fever in last seven days

No 1,137 (83.7) 31.2 (27.3–35.4) 41.8 (37.5–46.2) 45.6 (41.0–50.2) 47.0 (42.3–51.7)

Yes 222 (16.3) 44.6 (37.3–52.1) 50.2 (42.2–58.2) 49.2 (41.4–57.0) 55.0 (47.4–62.4)

Household members enrolled

1–5 320 (22.4) 35.8 (29.4–42.8) 49.5 (42.5–56.6) 51.4 (44.3–58.6) 55.0 (47.5–62.2)

6–10 844 (59.0) 35.0 (29.9–40.5) 41.8 (36.5–47.3) 46.1 (40.2–52.1) 47.1 (41.3–53.0)

11–15 178 (12.4) 25.3 (14.8–39.7) 37.5 (24.7–52.4) 33.3 (20.1–49.7) 40.1 (26.1–56.0)

16–20 89 (6.2) 9.1 (2.5–28.5) 16.8 (6.6–36.8) 15.7 (5.0–39.6) 13.5 (3.7–39.0)

Abbreviations: 95% CI, 95% confidence interval; BBA, bead-based immunoassay; PCR, polymerase chain reaction; RDT, rapid diagnostic test.
a Missing: age—Kimpoko (n = 2); self-reported fever in last seven days (n = 72)
b Used generalized estimating equation logistic regression to estimate prevalence and 95% CI
c HRP2-band positive
d Any Plasmodium species visualized
e P. falciparum lactate dehydrogenase PCR-positive
f P. falciparum HRP2 antigen positive
g Self-reported at enrollment

https://doi.org/10.1371/journal.pgph.0001375.t001
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P. falciparum infection prevalence

P. falciparum parasite prevalence varied between diagnostic methods across all health areas,

with the highest prevalence estimates observed in Bu (57.4–72.4% across assays), followed by

Kimpoko (32.6–53.2%), and Voix du Peuple (3.1–8.4%), which we defined as “high,” “moder-

ate,” and “low” prevalence areas, respectively (Table 1, Fig 2A). P. falciparum prevalence was

consistently lowest by RDT (HRP2 band) and highest by BBA (HRP2 detection) and PCR

(pfldh amplification). Across age categories, malaria prevalence was highest among school-

aged children (5–14 years) and young adults (15–24 years), participants who self-reported

experiencing a fever in the last seven days, and those who lived in households with 1–5 mem-

bers enrolled.

Diagnostic performance for the detection of P. falciparum
Overall, 888 (62%) samples had perfect concordance (23.3% positive and 38.7% negative)

across the four diagnostic assays, with the highest proportion of positive and concordance

found Bu (high prevalence) and Voix du Peuple (low prevalence), respectively (Fig 3). Diag-

nostic assay performance for the detection of P. falciparum varied by endemicity and gold

standard choice (Table 2 and S2 Table). In general, assay sensitivity decreased, and specificity

increased for the detection of P. falciparum when moving from higher to lower prevalence

health areas. Among the three diagnostic methods compared to PCR, BBA (sensitivity 79.5%

[95% CI: 76.1–82.6]; specificity 80.2% [95% CI: 77.3–82.9]) had the highest sensitivity but

lower specificity than RDT and microscopy across all health areas with the exception of Voix

du Peuple (low prevalence). Compared to the BBA, PCR (sensitivity 75.8% [95% CI: 73.2–

79.6]; specificity 83.0% [95% CI: 80.2–85.5]) had the highest sensitivity but a lower specificity

than RDT.

Using LCA to compare all four diagnostic methods against an “alloyed gold standard,” the

best diagnostic performance varied by health area (Fig 2B). The most sensitive diagnostic

method was BBA in Bu (high prevalence) and Voix du Peuple (low prevalence), while PCR

was the most sensitive diagnostic method in Kimpoko (moderate prevalence). RDT was con-

sistently the most specific diagnostic method in all health areas, regardless of the gold standard

(PCR, BBA, or LCA). We did not observe a single, best-performing assay.

Estimated P. falciparum infection in Kinshasa Province by diagnostic

method

P. falciparum infections were estimated to be 1,169,745 by BBA, 1,060,485 by PCR, and

1,089,525 by microscopy–all nearly double the 672,431 estimated cases by RDT (Table 3).

Though imprecise, these numbers approximate how diagnostic choice would influence preva-

lence estimates across 402 health areas within 35 health zones in Kinshasa Province (Fig 4),

with an assumed population of 9.0 million in 2018 based on DHIS2 data.

Discussion

The performance of commonly used malaria diagnostic assays varied based on the epidemio-

logical context in this cross-sectional household study comprising rural, peri-urban, and

urban sites with a range of parasite prevalence in a high-burden setting. Compared to an

alloyed gold standard, PCR and BBA had higher sensitivity for P. falciparum than RDT and

microscopy. However, neither assay outperformed the other in all contexts. BBA had the best

sensitivity low- and high-prevalence sites, while PCR had the best sensitivity in moderate-
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prevalence sites. Across all prevalence strata, RDT had the highest specificity but lowest sensi-

tivity of all four assays.

Differences in prevalence estimates were evident across study sites and age strata. Among

children younger than 15 years old in Bu health area’s high prevalence sites, prevalence

Fig 2. P. falciparum prevalence and diagnostic assay performance. (A) P. falciparum prevalence and 95% confidence intervals

across diagnostic assays by health area. (B) Diagnostic assay performance compared to an alloyed gold standard by health area. A

diagnostic assay with perfect sensitivity and specificity would fall in the top left corner of panel B. Abbreviations: RDT, rapid

diagnostic test HRP2-band; Microscopy, thick-smear light microscopy; PCR, real-time polymerase chain reaction detecting the pfldh
gene; BBA, bead-based immunoassay detecting HRP2 protein. aError bars are 95% confidence intervals. Abbreviations: RDT, rapid

diagnostic test HRP2-band; Microscopy, thick-smear light microscopy; PCR, real-time polymerase chain reaction detecting the pfldh
gene; BBA, bead-based immunoassay detecting HRP2 protein. aError bars are 95% confidence intervals.

https://doi.org/10.1371/journal.pgph.0001375.g002
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estimates were notably higher by BBA than by PCR. People living in these villages had more

frequent infections than in other health areas and, as a result, were expected to be more likely

to have lingering HRP2 antigenemia outside the window of acute infection. The highest pro-

portion of recently cleared P. falciparum infections (assessed by BBA-positive, pfldh PCR-neg-

ative) was found in the high-prevalence villages of Bu health area. We also observed a high

prevalence of P. falciparum infection in 5- to 14-year-olds, consistent with past findings from

the DRC [23]. These findings support the argument that older children and adolescents should

be routinely included in malaria surveillance activities.

National malaria control programs and their partners rely upon routine data, as well as

community-based and health facility surveys, to guide purchasing and forecasting decisions.

Parasite prevalence and malaria incidence are usually estimated using the results of RDTs, the

primary malaria diagnostic method used for case management in the DRC and across sub-

Saharan Africa. However, high-throughput molecular and serological assays are becoming

more readily available throughout the region for surveillance [24]. In addition, new “ultrasen-

sitive” rapid diagnostic tests have been developed but are not currently used routinely in

Fig 3. Patterns of diagnostic assay results and distribution of health area (endemicity) for each pattern. The top (stacked) bar graph shows the distribution

of health area for each pattern intersection or pattern (connecting dots- in bottom figure) across results from the four diagnostic assays. The bottom vertical bar

chart displays the count of samples for each pattern and percent of samples with each pattern among the 1,431 samples (vertical bars); the horizontal bars

represent the count of positive results by diagnostic assay. Abbreviations: RDT, rapid diagnostic test HRP2-band; Microscopy, thick-smear light microscopy;

PCR, real-time polymerase chain reaction detecting the pfldh gene; BBA, bead-based immunoassay detecting HRP2 protein.

https://doi.org/10.1371/journal.pgph.0001375.g003
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Africa. Malaria programs will increasingly have access to results from advanced laboratory

approaches and need empirical data to guide their decision-making.

To explore how diagnostic assay choice might impact real programmatic decisions, we

modeled health area P. falciparum PCR prevalence using results from the national 2013–14

Demographic and Health Survey and extrapolated results from our study sites to estimate

prevalence across all of Kinshasa Province. Kinshasa Province is the DRC’s most populous

administrative region and includes rural, peri-urban, and urban zones, including the capital

city Kinshasa. Its diverse health zones thus provide an opportunity to examine how differences

in diagnostic assay performance across a variety of epidemiological contexts might impact

malaria programs. Among nearly 9.0 million children and adults living across 402 health areas

in Kinshasa Province in 2018, based on DHIS2 data, the parasite prevalence estimates ranged

from 672,431 (7.5%) to 1,169,745 (13.0%), depending on the diagnostic method.

In practical terms, the numbers used to guide RDT or artemisinin-combination therapy

procurement choices could vary by nearly two-fold depending on whether they were derived

Table 2. Sensitivity and specificity of malaria diagnostic methods versus PCR, BBA, and LCA for the detection of Plasmodium falciparum, stratified by health area

and malaria prevalence.

Health area

prevalence
Diagnostic test Versus PCR Versus BBA LCA

Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Bu

high
RDT 73.2 (68.0–77.9) 74.2 (66.9–80.7) 76.0 (71.2–80.3) 92.0 (86.1–95.9) 84.7 (80.3–89.8) 86.7 (79.8–93.1)

Micro 78.1 (73.2–82.5) 75.4 (68.2–81.8) 73.4 (68.5–78.0) 75.2 (67.1–82.2) 84.4 (79.5–89.4) 78.8 (71.7–84.7)

PCR N/A N/A 79.9 (75.4–84.0) 70.1 (61.7–77.6) 91.0 (87.4–95.1) 73.5 (65.6–80.9)

BBA 87.3 (83.2–90.8) 57.5 (49.6–65.1) N/A N/A 98.4 (95.9–100.0) 69.4 (62.1–76.8)

Kimpoko

moderate
RDT 57.7 (51.7–63.6) 95.4 (92.0–97.7) 55.0 (48.9–61.1) 90.5 (86.2–93.8) 79.2 (71.5–86.0) 97.8 (95.2–100.0)

Micro 72.4 (66.8–77.6) 74.8 (68.8–80.1) 65.8 (59.8–71.4) 65.9 (59.7–71.7) 89.0 (83.2–93.9) 75.3 (70.0–79.9)

PCR N/A N/A 65.8 (59.8–71.4) 65.9 (59.7–71.7) 96.7 (92.9–99.5) 75.3 (69.4–80.2)

BBA 72.8 (67.1–77.9) 72.7 (66.7–78.2) N/A N/A 86.6 (81.1–90.9) 71.7 (65.5–76.5)

Voix du

Peuple

low

RDT 32.0 (14.9–53.5) 98.5 (96.7–99.4) 34.3 (19.1–52.2) 99.5 (98.1–99.9) 69.5 (38.2–99.9) 99.4 (98.7–100.0)

Micro 44.0 (24.4–65.1) 94.2 (91.4–96.3) 37.1 (21.5–55.1) 94.5 (91.8–96.6) 74.3 (46.8–100.0) 94.7 (91.9–97.0)

PCR N/A N/A 37.1 (21.5–55.1) 96.9 (94.6–98.4) 72.8 (44.4–100.0) 96.8 (95.3–98.7)

BBA 52.0 (31.3–72.2) 94.4 (91.7–96.5) N/A N/A 100.0 (91.2–100.0) 95.5 (93.2–98.0)

All RDT 64.7 (60.8–68.4) 92.5 (90.5–94.2) 65.2 (61.4–68.8) 95.2 (93.5–96.6) 77.8 (74.5–81.8) 99.0 (98.2–99.9)

Micro 74.2 (70.6–77.6) 84.4 (81.7–86.9) 68.4 (64.7–71.9) 81.8 (78.8–84.4) 80.5 (76.5–84.0) 86.1 (82.9–88.4)

PCR N/A N/A 75.8 (72.4–79.1) 83.3 (80.5–85.9) 88.8 (86.0–91.9) 87.5 (84.2–90.0)

BBA 79.5 (76.1–82.6) 80.2 (77.3–82.9) N/A N/A 92.1 (89.6–94.6) 86.2 (83.2–88.9)

Abbreviations: 95% CI, 95% confidence interval; BBA, bead-based immunoassay; LCA, latent class analysis; Micro, microscopy; N/A, not applicable; PCR, polymerase

chain reaction; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pgph.0001375.t002

Table 3. Estimated number of individuals infected with P. falciparum in Kinshasa Province in March-April 2018

by malaria diagnostic method, derived from Ministry of Health age distribution and population estimates

(8,993,453 people).

Diagnostic method Number of infections (95% CI) Percentage infected (95% CI)

RDT 672,431 (515,265–918,597) 7.5 (5.7–10.2)

Microscopy 1,089,525 (885,581–1,364,353) 12.1 (9.8–15.2)

PCR 1,060,485 (869,752–1,326,532) 11.8 (9.7–14.7)

BBA 1,169,745 (1,090,512–1,246,787) 13.0 (12.1–13.9)

Abbreviations: BBA, bead-based immunoassay; PCR, polymerase chain reaction; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pgph.0001375.t003
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from RDT or BBA results. While these differences may be self-evident to laboratory experts

accustomed to interpreting differences between these assays, most programmatic staff are

unaccustomed to interpreting these results. Our prevalence estimates are imprecise, but their

wide range demonstrates the importance of considering the assay used and its performance

characteristics when interpreting malaria survey results across different endemicities.

Our study has several limitations. First, our seven study sites provide valuable insights into

malaria epidemiology across different transmission intensities and geographical contexts, but

they are not representative of the whole country. The DRC is Africa’s second largest country

by land mass and the fourth largest by population; it is bordered by nine other countries. For

this reason, we restricted our modeling efforts to Kinshasa Province and did not attempt to

generalize these findings to the entire country. Second, RDTs were developed for clinical

Fig 4. Distribution of health area malaria prevalence by PCR from the 2013–2014 Demographic Health Survey

across health zones in Kinshasa Province. Representative health areas included in the Kinshasa Province study of

four diagnostic assays are indicated by text. The 25% and 35% prevalence thresholds utilized in this study to designate

low, moderate, or high prevalence are indicated by vertical hashed lines.

https://doi.org/10.1371/journal.pgph.0001375.g004
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diagnosis at the point-of-care, and their use for surveillance activities is off-label. This study’s

household survey design did not allow us to evaluate assay performance during acute malaria

infection. People sick with malaria tend to have higher parasite densities that are readily

detected by all four assays evaluated. Nonetheless, individual-level data comparing RDT,

microscopy, real-time PCR, and BBA results shed light on their relative strengths and weak-

nesses and can serve as useful data for future modeling efforts. Third, our latent class analysis

approach to generate an “alloyed gold standard” assumes conditional independence, but both

the RDTs and BBA detect HRP2. This assumption could bias LCA results in favor of both

methods [15]. Fourth, survey data utilizing advanced laboratory methodologies may become

less important as the DRC National Malaria Control Program, like other malaria programs in

Africa, makes increasing use of routine data available through the DHIS2. However, rapid

expansion of molecular and serological laboratory capacity across Africa will almost certainly

translate to increased use of PCR and BBAs for malaria surveillance during large-scale surveys

in the future.

Comparison of RDT, microscopy, real-time PCR, and BBA results confirmed differences in

sensitivity and specificity that varied by study site, with PCR and BBA performing best for

detecting P. falciparum infection. Using a model of the P. falciparum prevalence across all of

Kinshasa Province and routine data, we found that the number of infections varied nearly

two-fold depending on which assay was used for parasite detection. Malaria control programs

should carefully consider inherent differences in assay performance when using community

survey and surveillance data to guide planning and implementation strategies.
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