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Abstract

The following protocol describes our workflow for isolation and quantification of plasma

extracellular vesicles (EVs). It requires limited sample volume so that the scientific value of

specimens is maximized. These steps include isolation of vesicles by automated size exclu-

sion chromatography and quantification by tunable resistive pulse sensing. This workflow

optimizes reproducibility by minimizing variations in processing, handling, and storage of

EVs. EVs have significant diagnostic and therapeutic potential, but clinical application is lim-

ited by disparate methods of data collection. This standardized protocol is scalable and

ensures efficient recovery of physiologically intact EVs that may be used in a variety of

downstream biochemical and functional analyses. Simultaneous measurement quantifies

EV concentration and size distribution absolutely. Absolute quantification corrects for varia-

tions in EV number and size, offering a novel method of standardization in downstream

applications.

Introduction

Extracellular vesicles (EVs) are a heterogeneous class of lipid bound particles released by most

cell types. EVs are involved with a wide range of biological processes, including cell-to-cell

communication, immune system modulation, and extracellular matrix remodeling [1]. EVs

carry a variety of cargo and alterations in their number and composition likely indicate pathol-

ogy [2–6]. Because of these clear roles in homeostasis and pathology, EVs have recently been

evaluated for their diagnostic potential.

While EVs alone may possess significant diagnostic potential, current research methodolo-

gies face various technical challenges, these include: standardization of isolation methods; opti-

mization of EV cargo analysis; accurate size-based quantification [7–9]. Although EVs can be

isolated from all bodily fluids and from tissues, blood provides the richest source [10]. Separa-

tion of EV-containing plasma from whole blood allows for effective long-term storage. Plasma
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samples offer, in the form of liquid biopsy, a relatively non-invasive means to detect disease-

related biomarkers in EVs, making them an optimal target for investigations using large study

cohorts and biobanks [11]. To avoid confounders resulting from blood collection, processing,

and storage, the International Society of Extracellular Vesicles (ISEV) taskforce has taken steps

toward standardization [12]. Thus, this protocol has selected to use blood plasma collected in

the presence of ethylenediaminetetraacetic acid (EDTA) and stored at -80˚C. EDTA has less

effects on downstream biochemical applications in comparison to other anti-coagulants, such

as heparin or sodium citrate [13–17].

Unlike other biofluids, plasma EV yield (concentration and cargo) is not adversely affected

by freeze-thaw and long-term storage of plasma at -80˚C [18–20]; however, long term storage

leads to decreases in EV-associated acetylcholine-esterase (AChE) activity [21]. AChE is a

plasma membrane protein incorporated into EVs during biogenesis [22]. In the past, AChE

enzymatic activity was used as a surrogate measure of EV concentration [23]. However,

recently AChE activity was demonstrated to not be a universal marker of EVs and cannot be

used to quantitate EVs reliably, except in specific cell systems [24].

Quantification of EVs from plasma is affected by the presence of similarly-sized contami-

nants [25]. Differential centrifugation protocols have been used many times, but this practice

is not viable for several reasons having to do with the stress applied to vesicles by centrifugal

forces [26]. These problems extend to size determination and characterization as well. Accu-

rate determination of size distribution of EVs is paramount when choosing the best method of

precise measurement. Size characterization is fraught with challenges because EVs are very

small and heterogenous. A “Traceable size determination” is necessary, wherein the requisite

measurement is based off the SI unit “metre” [27]. Once established, EVs usefulness can be

fully realized: development of reference materials, calibration of other detection methods, and

the facilitation of true standardization.

Varying nomenclature signifying many different EV sub-populations can be found in the

literature [25]. These can be attributed to cellular origin, biogenesis, size, function, cargo, or

membrane markers. EVs are divided into two groups: exosomes and microvesicles. Exosomes

are commonly reported to be 30–120 nm in size and are released from multivesicular endo-

somes following fusion with the plasma membrane [28]. In both function and size, microvesi-

cles are extremely heterogeneous: their size ranges between 50 nm and 1 μm, and they shed

into the extracellular milieu by the budding of the cell membrane [28]. Of diverse density and

morphology, with new subpopulations (e.g. exomeres, <35 nm) still being (and to be) discov-

ered, EVs are more complex than we know today and further investigations are sure to find yet

more characteristics and subgroups [29].

This protocol focuses on isolation and quantification of plasma EVs 30–300 nm in diame-

ter. This size range is the most reported in the literature for the exosome/microvesicle popula-

tion and can be isolated in a single preparation; it also excludes larger apoptotic bodies,

oncosomes, and smaller exomeres [30, 31]. While it may seem problematic at first glance that

both exosomes and microvesicles populate the specified size range, that fact does not impact

the purpose of this protocol, which is to assert a method of standardized, reproducible mea-

surement of particles between 30–300 nm. This is necessary for reproducible measurements

and downstream applications.

When size exclusion chromatography (SEC) is performed with automated fraction collec-

tors, it not only isolates vesicles with high levels of purity and recovery efficiency, it also scales

with each additional collector [32]. Other available methods, such as asymmetric flow field-

flow fractionation (AF4), tangential flow fractionation (TFF), differential centrifugation, and

precipitation are not scalable in this fashion. These methods are not especially precise or pro-

duce a low yield making downstream biochemical analyses problematic [25]. Polyethylene
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glycol (PEG) precipitation results in residue on EV surface which artificially increases particle

size and may interfere with the binding of ligands to EV surface receptors [31, 33]. Moreover,

the extraneous forces applied during centrifugation often damage EVs such that they are no

longer useful in this application [26]. Additionally, these methods are particularly labor inten-

sive and have been demonstrated to isolate a homogenous mixture of other vesicle types (e.g.

exomeres and apoptotic bodies), resulting in variability [34].

By contrast automated SEC isolates a specific size range of vesicles and is not dependent on

density [35]. In this protocol, molecules (<35 nm) are slowed because they enter the pores of

the stationary phase. Larger particles that cannot enter the pores flow around the resin and are

eluted from the column. Molecules and small particles that enter the pores have longer reten-

tion times and elute later. SEC and the various ways we plan to leverage this technology

address the limitations of EV isolation by microfluidics, precipitation, and centrifugation.

Several methods of EV quantification exist. These include resistive pulse sensing, micros-

copy (scanning/transmission electron microscopy, and atomic force microscopy), dynamic

light scattering (DLS), nanoparticle tracking analysis (NTA), flow cytometry, and small-angle

X-ray scattering (SAXS) [27]. Microscopy, flow cytometry, NTA and DLS, are constrained in

absolute quantitative abilities [36]. While resistive pulse sensing and SAXS quantify absolutely,

SAXS requires a specific infrastructure only available at limited synchrotron radiation labora-

tories worldwide [27].

In this protocol, quantification of EVs is performed by tunable resistive pulse sensing

(TRPS). Unlike other methods, TRPS is not dependent on the selection of measurement

parameters, i.e. camera settings and detection threshold. TRPS provides highly precise and

accurate measurements with a much higher level of resolution than NTA or dynamic light

scattering [37]. This technology, which is based on the Coulter principle, is recognized as the

most reliable and accurate method with sub nm precision [38, 39]. TRPS quantifies absolutely,

whereas other commonly used light scattering techniques provide bulk estimates. TRPS mea-

sures EVs suspended in electrolyte on a particle-by-particle basis. TRPS simultaneously mea-

sures EV size and concentration. As particles individually pass through a nanopore it creates a

blockade, the magnitude of the blockade is directly proportional to particle size while the fre-

quency of the blockades determines concentration [39]. These components are all necessary

for therapeutic and diagnostic development because quantification and dosage determinations

are based on standardized inputs. Importantly, TRPS quantifies EVs rather than providing an

estimate of concentration.

Myriad methods can analyze EVs and each may be appropriate for specialized applications

[40–42]. For our purposes, however, a combination of automated SEC and TRPS works best.

Because our protocol provides simultaneous measurements of absolute quantification and size

distribution of EVs 30–300 nm, applications like flow cytometry, NTA, and DLS, are not

appropriate as detection is often limited to particles greater than 100 nm (or 60 nm for NTA/

DLS) in diameter or do not provide absolute quantification [43, 44]. The uniqueness of this

protocol lies in the way we leverage this combination of SEC and TRPS. Specifically, this proto-

col provides a method for reproducible quantification and is performed in a way that allows

vesicles to remain intact throughout the measurement process, thus providing novel methods

for normalization in any downstream application.

Limitations for the use of this protocol include access to equipment and supply. It also

requires a properly trained technician. While specialized training is required, this method has

proven to be consistent in data collection between individuals with different levels of labora-

tory experience. Nevertheless, this protocol allows for reproducible isolation and quantifica-

tion of plasma derived EVs.
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Materials and methods

The protocols described in this peer-reviewed article are published on protocols.io (dx.doi.org/

10.17504/protocols.io.3byl4jeb2lo5/v1, dx.doi.org/10.17504/protocols.io.ewov1ojnolr2/v1) and

are included as S1 and S2 Files with this article.

Immunoblotting

Following SEC isolation as described in the accompanying protocol (DOI dx.doi.org/10.

17504/protocols.io.3byl4jeb2lo5/v1), the first three EV fractions were combined (800 μl) and

concentrated to 100 μl using a centrifugal filter with a 100 kDa molecular weight cut-off

(UFC810024, Amicon). While we recognize some EVs may be lost during centrifugal concen-

tration, this step allows 10 μg of protein to be loaded to improve resolution in western blotting.

For whole cell lysate, 1 million HT1080 cells were lifted with TrypLE (12604021; Thermo

Fisher Scientific), and pelleted. Halt Protease Inhibitor Cocktail (87785; ThermoFisher Scien-

tific) was added to the pelleted HT1080 cells. As previously described by our group [45], a por-

tion of each sample was taken for protein quantification with Pierce bicinchoninic acid

protein assay kit (23225; Thermo Fisher Scientific). HT1080 cell lysate samples were diluted

1:1 in 2x Laemmli buffer, heated at 90˚C for 10 minutes, and stored at -80˚C. Concentrated

EV fractions were stored at -80˚C, and a portion of sample was diluted 1:1 in 2x Laemmli

buffer and heated at 90˚C for 10 minutes prior to loading equal amounts of total protein

(10 μg) onto 4% to 15% Mini-PROTEAN TGX Stain-Free Gels (4568084; Bio-Rad Laborato-

ries) and transferred onto nitrocellulose membranes (10600007, Cytiva). After blocking over-

night in 5% BSA (97061–422; VWR) at 4˚C, nitrocellulose membranes were incubated for 1

hour at room temperature in primary antisera for CD9 (ab92726, Abcam; 1:1000), CD68

(ab125212, Abcam; 0.5 μg/mL), CD81 (ab109201, Abcam; 1:1000), CD63 (ab134045, Abcam;

1:1000), GM130 (ab187514, Abcam; 1:1000), GAPDH (VPA00187, Bio-Rad Laboratories;

1:5000), MMP-14 (ab38971, Abcam; 1:2000), MMP-2 (ab92536, Abcam; 1:1000), TGFβ-1

(ab215715, Abcam; 1:1000), and TIMP-2 (ab180630, Abcam; 1:500). Membranes were washed

in TBST, incubated for 1 hour at room temperature in horseradish peroxidase labeled Goat-

Anti-Rabbit secondary antibody (GtxRb-003-EHRPC; Immunoreagent Inc, Raleigh, NC; EVs

and cells: 1:5000), and washed in TBST. Chemiluminescent substrate activation was performed

with Super Signal West Pico PLUS following manufacturer’s protocols (34580; Thermo Fisher

Scientific). Full blot/gel images are available in S1 Fig.

Expected results

Here we detail a multipart protocol for the isolation and measurement of extracellular vesicles

from plasma. Our protocol describes reproducible methods for isolation and storage, extracel-

lular vesicle purification with SEC, and simultaneous quantification of EV concentration and

size distribution with TRPS. Our aim is to delineate the most effective and efficient ways to

apply SEC and TRPS techniques to EV samples i.e., what parameters to prioritize and any

potential pitfalls to be avoided. We offer detailed troubleshooting steps derived from our expe-

riences, and we show that our results are highly reproducible both temporally and between

instrument operators. While our purpose is not to demonstrate the biological significance of

our findings, we do show that our protocol has the potential to identify biomarker features in

human plasma.

This protocol was optimized and refined through learned experience during the early stages

of our work. Importantly, our protocol offers specific guidance on the peripheral blood draw

component of human plasma isolation. This step can vary widely dependent upon the
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institutional and patient context. Our specific recommendations adhere to the guidelines

established by the International Society of Extracellular Vesicles (ISEV) taskforce [12].

Before EVs can be quantified, we first determined whether the SEC method was able to

robustly isolate EVs. Following isolation of EVs from plasma, markers for EV subtypes can be

confirmed with various protein analyses, such as western blotting (Fig 1A, S1 Fig). For exo-

somes and microvesicles, markers clusters of differentiation 9 (CD9), 63 (CD63), 68 (CD68),

and 81 (CD81) are recommended [34]. Moreover, EVs must be negative for the endosomal

marker Golgin subfamily A member 2 (GM130) and glyceraldehyde-3-phosphate dehydroge-

nase (GAPDH) [46]. In adherence with the MISEV2018 guidelines, this must be performed

Fig 1. EV isolation and technical reproducibility following SEC isolation and TRPS measurement. (A) Western

blot comparing prototypical markers and investigational targets in isolated EVs and whole cell lysate from HT1080

cells. (B) Dot plot comparing mean particle size (x-axis) and EV concentration (y-axis) among technical replicates of

human plasma. Technical replicates are grouped by color and a correspondingly shaded ellipse. (C) Comparison of

sample concentration (y-axis) by technician operating the TRPS instrument. EV concentration detected by technician

1 (median 0.81 x 1011 particles/mL, interquartile range 0.59–1.19 x 1011 particles/mL) and technician 2 (median 0.60 x

1011 particles/mL, interquartile range 0.45–1.10 x 1011 particles/mL, p = 0.606) are displayed separately. A Student’s t-

test was used to test for significance.

https://doi.org/10.1371/journal.pone.0284875.g001
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prior to use of EVs in all experimentation [34]. Furthermore, EVs remain positive for extracel-

lular matrix remodeling proteins such as, matrix metalloproteinase 14 (MMP-14), matrix

metalloproteinase 2 (MMP-2), transforming growth factor beta-1 (TGFβ-1), and tissue inhibi-

tor of metalloproteinase 2 (TIMP-2). SEC allows for isolation of EVs that can be used in a vari-

ety of different downstream applications. These applications range from biochemical to

functional analyses, such as matrix degradation assays or gene transfer in vitro or in vivo.

Accordingly, the importance of accurate quantification is paramount for normalization of the

above downstream applications and diagnostic development.

During protocol development, we also addressed the question of whether this protocol can

reliably and reproducibly measure EV concentration and size distribution. We measured three

technical replicates of the same patient plasma and found that EV features were highly consis-

tent across replicates (Fig 1B, S1 Table). Some variability existed between measurements of the

same sample. Most technical replicates, however, were more similar to one another than to

Fig 2. EV concentration and size isolated from human plasma are dependent on disease state. (A) EVs isolated

from control patient plasma (n = 12) were measured for concentration (male 0.77 x 1011 particles/mL, female 0.63 x

1011 particles/mL), mean diameter of EV particle (male 73.33 nm, female 71.83), mode diameter of EV particles (male

64.58 nm, female 62.67 nm), and d90/d10 ratio (male 1.59, female 1.74). Differences between males (n = 6) and females

(n = 6) were assessed with a Student’s t-test. Corresponding p-values are displayed, and median sample values are

detailed here. (B) EVs isolated from control plasma (n = 12) and Marfan patient plasma (n = 6) were measured for

concentration (control 0.60 x 1011 particles/mL, Marfan 1.47 x 1011 particles/mL), mean diameter of EV particle

(control 77.75 nm, Marfan 69.92 nm), mode diameter of EV particles (control 65.50 nm, Marfan 60.50 nm), and d90/

d10 ratio (control 1.68, Marfan 1.57). Differences between control and Marfan patients were assessed with a Student’s

t-test. Corresponding p-values are displayed, and median sample values are detailed here.

https://doi.org/10.1371/journal.pone.0284875.g002
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other plasma samples. We recommend using at least two technical replicates during measure-

ments of EVs, but in most cases one technical replicate will suffice. We also tested whether the

instrument operator would significantly influence the sample measurements. Each operator

measured six control samples and three pathological specimens (patients with Marfan syn-

drome-related thoracic aortic aneurysms); we found no significant difference in EV concentra-

tions (Fig 1C). Both operators followed the protocols described herein, which we speculate

contributed to the remarkable consistency in the sample measurements. Additionally, our pro-

tocol details a hierarchical approach to troubleshooting the TRPS instrument along with prac-

tical advice regarding time management and experimental setup. We also take users through

the data analysis and quantification process in a step-by-step manner. While our methods are

robust for the instrument set up that we describe, it would be interesting to see if these meth-

ods contribute to similar reproducibility for results collected on other TRPS instruments.

We utilized the techniques described here to address a clinically meaningful question. In

our system, we measure EV concentration and size in the plasma of healthy control patients

and in Marfan patients who possessed a known thoracic aortic aneurysm. Previously, we have

demonstrated that increased aortic wall tension, as seen in aneurysm disease, leads to elevated

aortic fibroblast secretion of EVs [47]. The primary cardiovascular complication associated

with Marfan Syndrome is thoracic aortic aneurysm. Therefore, we are interested in determin-

ing whether EV concentration and size distribution can be leveraged as a diagnostic marker

for aneurysm disease. We show that EV concentration does not vary significantly between

sexes (Fig 2A). Next, we found that Marfan patients have higher concentrations of EVs and

smaller mean diameters of EVs than the control patients (Fig 2B). The use of SEC and TRPS

for the measurement of EVs in plasma yielded significant differences between healthy and dis-

ease states. More work is needed to understand the significance of this finding in the context

of the disease pathophysiology. Additionally, development of methods for quantification and

characterization of nucleic acid, fatty acid, and protein content of EVs remains underway.

Supporting information

S1 File. Human sample processing and isolation of extracellular vesicles with size exclusion

chromatography. Step-by-step protocol, also available on protocols.io.

(PDF)

S2 File. Measurement of extracellular vesicles with tunable resistive pulse sensing. Step-by-

step protocol, also available on protocols.io.

(PDF)

S1 Fig. Full gel/blot images accompanying Fig 1A. Each column represents visualization of

total protein loaded onto the gel (Activation), transferred onto the nitrocellulose (Transfer), or

specific target detection (Immunodetection). Bio Rad TGX gels were used for protein separa-

tion by molecular weight. These gels contain a trihalo compound which modifies tryptophan

residues in protein samples by a covalent modification. When exposed to ultraviolet (UV)

excitation, a fluorescence signal is visualized representing total protein in both the gel (Activa-

tion) and on the nitrocellulose (Transfer). Chemiluminescent immunodetection is recorded

by ChemiDoc Imaging System for each antibody exposure A) CD9 B) CD68 C) CD81 D)

CD63 E) GM130 F) GAPDH G) MMP-14 H) MMP-2 I) TGFβ J) TIMP-2. Gel order: Ladder,

EVs, whole cell lysate. The yellow box indicates the cropped region included in Fig 1A.

(PDF)
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S1 Table. Formatted TRPS data output. Data table containing TRPS data with technical rep-

licates.

(CSV)
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