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ABSTRACT 

 

Gabriella M. Alvarez: From inequality to inflammation: Exploring internal and external 

contributions to affective processing 

(Under the direction of Keely Muscatell) 

 

From influencing our social interactions to molding our physical and mental health, how 

our brain processes affective stimuli plays a crucial role in healthy human functioning. Utilizing 

results from 3 unique studies, the current dissertation aims to contribute empirical support for 

newer theoretical assertions that affective processing is significantly influenced by prior as well 

as internal physiological information to support allostasis. In Chapter 2, I explore how one’s 

contextual history may differentially shape how the brain processes affective information by 

examining the link between socioeconomic position and efficiency within the allostatic 

interoceptive network. In Chapter 3, I explore inflammation as one source of physiological 

information that can influence affective processing.  In Chapter 4, I examine how shifting 

inflammation may alter affective processing via changes in motivated behavior. This dissertation 

closes with a synthesis of the studies discussed and a discussion of 3 future studies that aim to 

respond to the remaining outstanding questions. 

  



 iv 

 

TABLE OF CONTENTS 

LIST OF FIGURES ..................................................................................................................... viii 

LIST OF TABLES ......................................................................................................................... ix 

CHAPTER 1: OVERALL INTRODUCTION ............................................................................... 1 

Allostasis: A neurobiological framework for understanding affective 

processing ................................................................................................................................... 2 

The necessity of prior experiences for the predictive brain ........................................................ 3 

The necessity of internal physiological signals for the predictive brain ..................................... 6 

Consequences of affective processing for behavior ................................................................... 8 

The current studies .................................................................................................................... 11 

REFERENCES ......................................................................................................................... 13 

CHAPTER 2: LOWER SOCIOECONOMIC POSITION IS 

ASSOCIATED WITH GREATER ACTIVITY IN AND 

INTEGRATION WITHIN AN ALLOSTATIC-INTEROCEPTIVE 

BRAIN NETWORK IN RESPONSE TO AFFECTIVE STIMULI ......................................... 17 

Introduction ............................................................................................................................... 17 

Methods .................................................................................................................................... 23 

Participants ............................................................................................................................ 23 

Procedures ............................................................................................................................. 25 

Socioeconomic Position Measure ......................................................................................... 25 

Affective Reactivity Task ..................................................................................................... 26 

MRI acquisition..................................................................................................................... 27 

fMRI preprocessing............................................................................................................... 27 

Analysis Overview ................................................................................................................ 28 



 v 

Whole-brain regression analyses .......................................................................................... 29 

Betaseries Regressions for Connectivity Analyses & Graph Construction .......................... 29 

Network Topology Metrics to Assess Network Configuration ............................................ 32 

Quality Control ..................................................................................................................... 34 

Results ....................................................................................................................................... 35 

Association Between SEP and Neural Activity to Negative Images .................................... 35 

Association Between SEP and Neural Activity to Positive Images ..................................... 37 

Association between SEP and Global Efficiency of the AIN, ECN, and 

AIN+ECN ............................................................................................................................. 39 

Association between SEP and Participation Coefficient of the AIN+ECN .......................... 41 

Association between SEP and Betweenness Centrality of the Amygdala, 

mPFC, and Insula .................................................................................................................. 41 

Association between SEP and Network Integration across the Whole Brain ....................... 43 

Discussion ................................................................................................................................. 45 

REFERENCES ......................................................................................................................... 52 

CHAPTER 3: SYSTEMIC INFLAMMATION IS ASSOCIATED WITH 

DIFFERENTIAL NEURAL REACTIVITY AND CONNECTIVITY 

TO AFFECTIVE IMAGES ...................................................................................................... 64 

Introduction ............................................................................................................................... 64 

Methods .................................................................................................................................... 69 

Participants ............................................................................................................................ 69 

Procedures and Materials ...................................................................................................... 71 

Data Analysis ........................................................................................................................ 72 

Results ....................................................................................................................................... 76 

Negative vs. Neutral Images ................................................................................................. 76 

Positive vs. Neutral Images ................................................................................................... 76 

Discussion ................................................................................................................................. 80 



 vi 

REFERENCES ......................................................................................................................... 86 

CHAPTER 4: INCREASES IN IL-6 IN RESPONSE TO THE 

INFLUENZA VACCINE PREDICTS DECREMENTS IN RESPONSE 

INHIBITION ............................................................................................................................ 93 

Introduction ............................................................................................................................... 93 

Methods .................................................................................................................................... 97 

Participants ............................................................................................................................ 97 

Experimental Design ............................................................................................................. 98 

Measures ............................................................................................................................... 98 

Data Analysis ...................................................................................................................... 101 

Results ..................................................................................................................................... 103 

Effects of Reward Type and Magnitude on Overall Go/No-Go Task 

Performance ........................................................................................................................ 103 

Effects of Inflammatory Reactivity on Go/No-Go Accuracy ............................................. 105 

Discussion ............................................................................................................................... 112 

REFERENCES ....................................................................................................................... 117 

CHAPTER 5: GENERAL DISCUSSION .................................................................................. 131 

Shared Themes Across Studies ............................................................................................... 132 

Theme # 1: Context shapes reactivity to positive affective stimuli .................................... 132 

Theme # 2: Inflammation influences affective processing at low-grade levels .................. 134 

Theme # 3: Context may shape cognition via changes in affective processing .................. 135 

Limitations & Discrepancies .................................................................................................. 136 

Implications for health ............................................................................................................ 139 

Pathway #1: neurobiological pathway suggesting heightened and sustained 

AIN efficiency as a driver of poor health ........................................................................... 139 

Pathway #2: behavioral health pathway suggesting that enhanced 

inflammation reduces response inhibition .......................................................................... 140 



 vii 

Remaining Questions and Future Directions .......................................................................... 142 

Unanswered question #1: What is the relationship between SEP, 

inflammation, and positive affect? ...................................................................................... 142 

Unanswered question #2: Does inflammation alter cognition via changes in 

motivation?.......................................................................................................................... 144 

Unanswered question #3: Is AIN global efficiency related to poorer 

physiological health?........................................................................................................... 144 

REFERENCES ....................................................................................................................... 146 

 

 

 

 

 

  



 viii 

LIST OF FIGURES 

Figure 2.1. Visualization of regions of interest, or nodes, that make up the 

allostatic-interoceptive network .................................................................................................... 32 

Figure 2.2. Depiction of voxels showing a significant negative association 

between SEP and neural activity during negative (versus neutral) image 

viewing .......................................................................................................................................... 36 

Figure 2.3. Depiction of voxels showing a significant negative association 

between socioeconomic position (SEP) and neural activity during positive 

(versus neutral) image viewing ..................................................................................................... 38 

Figure 3.1. The rendered image on the left depicts the cluster of voxels 

that showed a significant negative association between inflammation and 

neural activation to positive (versus neutral) images .................................................................... 78 

Figure 3.2. The scatterplot illustrates the positive association between 

inflammation and hippocampus-mPFC connectivity while viewing 

positive (versus neutral) images.................................................................................................... 79 

Figure 4.1. Plot of interaction between IL-6 reactivity and trial type 

accuracy ...................................................................................................................................... 107 

Figure 4.2. Plot of interaction between IL-6 reactivity and sociality on 

reaction time variability .............................................................................................................. 109 

Figure 4.3. Plot of interaction between IL-6 reactivity and magnitude on 

reaction time variability. ............................................................................................................. 110 

Figure 4.4. Interaction between IL-6 reactivity, sociality, and magnitude 

on reaction time variability ......................................................................................................... 111 

 

 

  



 ix 

LIST OF TABLES 

Table 2.1: Demographic summary of the study sample (N=122) ................................................. 24 

Table 2.2: Clusters significantly negatively associated with socioeconomic 

position during negative (versus neutral) image viewing ............................................................. 36 

Table 2.3: Clusters significantly negatively associated with socioeconomic 

position during positive (versus neutral) image viewing .............................................................. 38 

Table 2.4: ANCOVA table reporting differences in global efficiency and 

participation coefficient by SEP and valence ............................................................................... 39 

Table 2.5. ANCOVA table reporting associations between SEP and 

amygdala, medial prefrontal cortex (MPFC), and insula .............................................................. 42 

Table 2.6. ANCOVA table reporting differences in global efficiency and 

participation coefficient by SEP and valence for the whole brain graph ...................................... 44 

Table 3.1 Demographic and biomarker summary of the study sample ......................................... 70 

Table 3.2. Local Maxima within Significant Cluster Negatively Associated 

with Inflammation during Positive > Neutral Images................................................................... 78 

Table 4.1. Overall Performance Outcomes for GNG Task ......................................................... 103 

Table 4.2. Task Effects of Reward Type and Magnitude on GNG 

Accuracy ..................................................................................................................................... 104 

Table 4.3. IL-6 Reactivity and Accuracy on Rewarded GNG .................................................... 106 

Table 4.4. IL-6 Reactivity and Reaction Time Variability ......................................................... 108 

 

 

 

 



 1 

 

CHAPTER 1: OVERALL INTRODUCTION 

Affective processing plays a crucial role in shaping diverse aspects of the human 

experience.  From influencing our social interactions to molding our physical and mental health, 

how our brain processes affective stimuli plays a crucial role in healthy human functioning. 

Understanding how the brain attends to affective, or negative, positive, and/or arousing, stimuli 

provides insight into the neural mechanisms that govern our emotional experiences and how they 

relate to various aspects of our lives, such as decision-making, cognitive function, and social 

behavior.  

Given affective processing’s broad relevance, neuroscientists have been pursuing 

empirical and theoretical questions regarding the neurobiological underpinnings of affective 

processing. Recently, a consistent idea recapitulated by numerous researchers is that the brain 

functions in a predictive manner (Rao & Ballard, 1999; Friston et al., 2006; Bar, 2009; Friston, 

2010; Barrett & Simmons, 2015). Rather than viewing the brain as reactive to stimuli, these 

newer frameworks propose that the brain is predictive in nature, updating based not only on new 

inputs but also prior information and internal physiological signals. This paradigm shift is 

especially influential for understanding affective processing, as it further clarifies how the brain 

processes affective stimuli (Barrett, 2017). This provides a useful framework for examining how 

the brain anticipates and generates affective responses, how prior experiences shape affective 

processing, and how internal physiological signals influence the interpretation and valuation of 

affective stimuli. Building upon this perspective of the brain as predictive, the current 
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dissertation aims to contribute empirical support for newer theoretical assertions that affective 

processing is significantly influenced by prior as well as internal physiological information.  

Allostasis: A neurobiological framework for understanding affective processing 

As the central organ enervated by all other body systems, the brain is thought to manage 

the metabolic needs of the organism in a process called allostasis (Sterling & Eyer, 1988). 

Allostasis is defined as the dynamic process through which the brain predicts and coordinates 

physiological changes (such as metabolic, autonomic, neuroendocrine, and immune responses) to 

adapt to current and future environmental challenges, ultimately supporting the organism's 

survival, growth, reproduction, and movement (Sterling, 2004; McEwen & Stellar, 1993; Picard 

et al., 2018). Through the process of allostasis, the brain is continuously monitoring and 

integrating information from the external environment and the internal body, as well as adjusting 

its responses to maintain stability. While several theories about the role of the brain in allostasis 

have emerged, specifics regarding the regions and set of networks that may underlie this 

fundamental process remain underspecified. Recent work by Kleckner et al., (2017) has 

proposed the existence of a large-scale brain system, or the allostatic interoceptive network 

(AIN), that primarily predicts and regulates physiological systems in the body. The AIN is 

composed of the salience and default mode intrinsic networks and a set of subcortical regions 

(i.e., central nucleus of the amygdala and regions within the ventral and dorsal striatum) and has 

been shown to subserve visceromotor regulation and interoceptive ability (Kleckner et al. 2017). 

Future work is needed to further examine the function of AIN to shed light on how the brain may 

guide representations of affective cues and regulate the physiological states of the body. 

Affective processing has a significant role in allostasis, as affect is considered to originate 

from and contribute to the brain's predictions regarding physiological regulation (Barrett, 2017). 
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This is partly because all behaviors, including affective and cognitive functions, require 

metabolic energy in addition to our baseline energy expenditure (Magistretti & Allaman, 2015). 

Moreover, certain behaviors and affective situations entail higher metabolic costs compared to 

others, such as a tense social confrontation versus a relaxed moment on the couch. Perceiving a 

threatening affective situation can therefore trigger physiological responses that increase the 

mobilization of metabolic resources to support the cognitive resources to cope (Picard et al., 

2018). Meanwhile, positive affective experiences like relaxing on the couch with a close other 

can serve to enhance immune function (Muscatell & Inakagi, 2021) further supporting allostatic 

processes. In sum, affective processing emerges as a crucial component of allostasis, 

contributing to the brain's predictions and regulation of physiological responses.  

The necessity of prior experiences for the predictive brain 

One of the primary ingredients used for predictive processes in the brain includes an 

individual’s experiential history. In the service of maintaining allostasis, the brain heavily relies 

on prior experiences to make predictions that help to minimize the potential cost of surprise 

(Friston et al., 2006; Friston et al., 2010). Much of the early work providing convincing evidence 

of this idea centers around the study of vision (e.g., Summerfield et al., 2009; Alink et al., 2010; 

Enns & Lleras, 2008), where the brain has been found to capture and store statistical regularities 

in sensory-motor patterns to form stored representations (Bar, 2003). As Bar (2009) originally 

argued, the brain uses these stored representations to identify analogies or associations with the 

incoming stimuli to answer the question “what is this like?” These stored representations are then 

instantaneously used by the brain to predict the incoming visual inputs within the context of the 

environment.  
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Similar predictive processes have been extended beyond vision to affective processing 

(Barrett & Bar, 2009; MacCormack & Lindquist, 2019; Fugate, MacDonald, & O’Hare, 2019; 

Siegel, Wormwood, Quigley, & Barrett, 2018). These studies suggest that affective processing is 

uniquely integral to the predictive function of the brain as it helps to guide perception and 

behavior by reducing ambiguity to make good sense of the current environment (Siegel et al., 

2018; Wormwood, 2018; Barrett & Bar, 2009). This argument is supported by several studies 

demonstrating the “affective misattribution effect” whereby participants tend to differentially 

identify the same neutral face as more happy or angry depending on the (positive or negative) 

affective information presented before the face (Weisner & Brosch, 2012). Overall, the 

integration of prior knowledge is a critical process that underlies the brain's predictive function, 

enabling individuals to navigate a constantly changing environment.  

Notably, the prior information that the brain references in the process of prediction may 

extend much further than those that can be probed in an experimental session. For example, 

several studies have explored the role of early adversity on the neurobiological mechanisms 

underlying affective processing. Across human and rodent models, exposure to threatening 

physical abuse profoundly influences the ways individuals perceive and interpret affective 

stimuli and has been found to produce hypersensitivity to negative and threatening stimuli 

(Petchel & Pizzagalli, 2010). However, childhood adversity is not the only type of life 

experience that may significantly alter affective processing and influence the nature of the 

information that individual brains receive.  

Socioeconomic position is another life experience that can also potentially influence 

affective processing (Muscatell, 2018). Indeed, exposure to resource scare environments (Oshri 

et al., 2019) and differences in social norms and expectations (Kraus et al., 2012) can all 
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influence the type of experiences an individual has and the resulting predictions that that brain 

may make. This is especially true for individuals in a lower socioeconomic position who 

comparatively lack access to resources (e.g., quality health care and education, food, financial 

opportunities). Prior work has found that this environmental context produces greater exposure 

to unpredictable and negative affective experiences (Grzywacz et al., 2004; Steptoe et al., 2003) 

resulting in a state of chronic stress (Baum et al., 2003). These chronic negative affective 

experiences, arising from the individual’s lower socioeconomic context, may indeed alter how 

the brain makes predictions in its environment and regulate metabolic resources to optimize 

stability in this context (McEwen & Gianaros, 2011). In this example, the brain may begin to 

favor predictions that increase sensitivity to ambiguous and threatening information to best meet 

the demands of the environment. Despite the profound relevance socioeconomic position might 

have on shaping one’s psychosocial experiences, there are very few studies examining the role 

that socioeconomic position may have on general affective processing. Thus, to fill this gap, the 

first study in the dissertation attempts to address this by exploring how one’s socioeconomic 

position may influence the function of the allostatic interoceptive network (AIN) when 

processing affective information. 

To explore the association between one’s experiential history and affective processing, I 

examined the link between socioeconomic position and neural responses to positive and negative 

affective stimuli in study 1. Although associations between socioeconomic position and affective 

processing have been examined before, prior studies in this area have focused on reporting 

associations for negative social stimuli and has relied on region-of-interest (ROI) analyses 

focused on the amygdala and mPFC (Gianaros et al., 2008; Muscatell et al., 2012; Kim et al., 

2017; Swartz et al., 2017; Gonzalez et al., 2015; Javanbakht et al., 2015; Muscatell et al., 2016). 
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Moving beyond ROI analyses is important given increasing acknowledgement that brain regions 

do not act in isolation. Rather, brain regions function together as coordinated components of 

broadly distributed networks that underlie complex psychological functions (McMenamin et al., 

2014; Pessoa & McMenamin, 2017; Bassett & Sporns, 2017). In this study, we aimed to expand 

work in this area to include positive affective stimuli and conducted a network-based analysis.  

The necessity of internal physiological signals for the predictive brain 

The second ingredient useful for predictive processes in the brain includes the integration 

of internal physiological information from the body (Barrett, 2017). Afferent signals from the 

body to the brain help to provide information about the metabolic state of different physiological 

systems in the body (Critchley, 2004). These physiological signals from the body are used by the 

brain to generate predictions and update the brain’s internal model of its metabolic needs 

(Barrett, 2017; Craig, 2015) because they provide valuable information about an individual's 

available metabolic resources. Importantly, afferent signaling from the body serves as a 

mechanism by which physiological changes can influence psychological states, ultimately 

guiding behavior (e.g., conserve energy, seek out new resources; MacCormack & Muscatell, 

2019). For example, recent work found that the physiological state of hunger was associated with 

intensified affective processing. Specifically, those who reported greater levels of hunger were 

more likely to perceive and experience ambiguous situations as negative (MacCormack & 

Lindquist, 2019). These findings suggest that metabolic signals from the body can influence the 

nature and intensity of affective experiences. 

The immune system is one such physiological system that influences affect. The immune 

system has humoral, cellular, and neural pathways to directly innervate the central nervous 

system (reviewed in Capuron & Miller, 2011). As an adaptive defense mechanism, the 
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inflammatory response is activated when harmful pathogens are present, helping the body heal 

(Furman et al., 2019; Franceschi & Campisi, 2014). This process is driven by proteins called pro-

inflammatory cytokines that send signals to the brain to trigger an inflammatory response. While 

it is commonly known that local inflammatory responses occur when the body is injured or 

infected, inflammation can also exist in a more systemic way that often goes unnoticed (Danzter 

et al., 2008). Even in the absence of physical injury or infection, inflammation can still occur in 

response to psychological experiences and psychosocial stressors (Dickerson et al., 2009; Irwin 

& Cole, 2011).  

Although shifts in the activation of the immune system are not always perceptible, there 

is some evidence that inflammation plays a vital role in altering affective processing. One of the 

most well-studied examples of this involves the psychosocial changes that occur in response to 

inflammation called “sickness behaviors” (Hart, 1988). Sickness behaviors, such as fatigue, 

anhedonia, and social withdrawal, are important for shifting an organisms’ priorities to facilitate 

recovery and restoration (Aubert, 1999). These sickness behaviors are not simply a consequence 

of a degraded state but also serve to encourage the individual to prioritize metabolic resources 

for supporting the immune system rather than other physiological processes (Hennessy et al., 

2014).  

In light of these known effects, there remain outstanding questions regarding the link 

between inflammation and more general affective processing. For instance, prior studies in this 

area have primarily utilized acute inflammatory manipulations (Eisenberger et al., 2010; 

Eisenberger et al., 2009; Harrison et al., 2009); as such, we have limited knowledge about the 

association between chronic, low-grade inflammation and affective processing. While acute 

manipulation produces a robust pro-inflammatory response comparable to levels during illness, 
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lower-level fluctuations in pro-inflammatory signaling is more common and perhaps more 

influential in shaping day-to-day changes in affective processing. Additionally, prior studies in 

this area have focused on examining responses to negative affective stimuli (e.g., Inagaki et al., 

2012; Kullmann et al., 2013; Muscatell et al., 2016) and monetary reward tasks (e.g., Capuron et 

al., 2012; Eisenberger, Berkman, et al., 2010), which has left gaps in knowledge regarding the 

association between inflammation and neural responses to positive, non-monetary affective 

stimuli. Therefore, in study 2 of this dissertation, I examined the association between low-grade 

inflammation and neural activity to a variety of positive and negative scenes.  

In study 2 of this dissertation, I explored links between levels of systemic inflammation 

and neural activity to both negative and positive stimuli among a community sample of older 

adults. Although associations between inflammation and affective processing have been 

examined before, prior studies in this area focused on one valence category (i.e., negative or 

positive; Inagaki et al., 2012) and following acute changes in inflammation at much higher levels 

(Capuron et al., 2012). Here, I aimed to examine whether prior associations between 

inflammation and neural activity to affective stimuli persisted at lower, every-day levels of 

inflammation and in response to a larger variety of stimuli (i.e., beyond negative faces and 

monetary gains). Overall, analyses from this study suggested that systemic levels of 

inflammation may be most relevant for understanding affective reactivity to positive affective 

stimuli. 

Consequences of affective processing for behavior 

The process of allostasis does not solely serve to influence perception and physiological 

processes at a subconscious level. Critically, action serves an important role. Satisfying hunger 

or thirst, for instance, necessitates the individual’s active engagement with the external world 
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(Pezzulo et al., 2015). While at a basic level, human actions support allostasis by obtaining 

resources to meet metabolic needs, humans are capable of performing a wide array of more 

complex behaviors. These complex behaviors, or motivated behavior, are often in the pursuit of 

goals to not only support primary survival goals but also secondary goals like social connection 

and personal aspirations. Affective processing plays an important role in guiding motivated 

behavior by influencing the salience and motivational value assigned to different stimuli 

(Berridge, 2004). Therefore, affective processing can drive the selection of behaviors to meet 

physiological and psychological needs. Motivated behavior and allostasis are intricately linked 

via affective processing (Touroutoglou et al., 2019) as the brain continuously monitors and 

adjusts allostatic responses while simultaneously facilitating metabolic and cognitive resources 

to achieve goal-directed behavior.  

The relationship between motivated behavior and allostasis is evident in the context of 

the immune system, particularly in response to inflammation-induced metabolic changes. 

Inflammatory signaling molecules play a crucial role in conveying information related to 

changes in immunometabolism (Treadway et al., 2019), which have a direct impact on available 

energy resources in the body. This occurs because inflammation requires a significant amount of 

metabolic resources. In cases of infections or injuries accompanied by inflammation, the immune 

system's energy expenditure can surge up to 60%, making it the primary consumer of energy 

(Straub, 2017). This metabolic shift is aimed at mobilizing glucose urgently, fueling a robust 

protective response against perceived threats, which results in a redirection of resources from 

growth, reproduction, and related behaviors (Wang et al., 2019). Similarly, chronic low-grade 

inflammation observed in conditions such as stress or metabolic disorders can further elevate 

daily energy expenditure by approximately 30% (Straub, 2017). Given the metabolic expense 
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supporting inflammation, afferent signals notifying the brain of these shifts can serve to alter 

affective processes and alter the salience and motivational value of different stimuli to support 

allostasis. Indeed, studies have found that inflammation may alter the brain’s estimation of 

reward value and guide the allocation of effort and energy expenditure via changes in the 

mesolimbic dopaminergic system (Lasselin et al., 2017; Treadway et al., 2019). 

Although recent years have seen a rise in the number of studies exploring the link 

between inflammation and motivated behavior, there exist three significant gaps in the literature. 

First, much of the research exploring the relationship between inflammation and motivated 

behavior has been conducted in preclinical rodent studies (for review see Vichaya & Dantzer, 

2018). While preclinical studies provide more causal insights than are ethically possible to assess 

in humans (Heim & Nemeroff, 2001), there are limitations in generalizability and validity with 

such models. Thus, translating these findings to human samples is crucial to fully understand the 

impact of inflammation on motivated behavior in humans. Second, the limited work exploring 

links between inflammation and motivated behavior in humans, have largely focused on clinical 

samples of individuals experiencing depression (for review see Stanton, 2019). However, the 

association between inflammation and motivated behavior is not limited to individuals with 

depression (Boyle et al., 2019; Kuhlman et al., 2018) and is more generally associated with shifts 

in basic cognitive and neurobiological processes regardless of diagnoses. Finally, the 

experimental work that has been conducted in non-clinical samples have primarily relied on 

monetary-based reward tasks (Capuron et al., 2012; Eisenberger et al., 2010). Monetary rewards 

do not represent the full breadth of positive motivational stimuli and work examining links to 

other rewarding stimuli (e.g., primary rewards, social rewards) is needed to further explore the 

internal and external validity of the association. Therefore, an important expansion to this area is 
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to explore links between inflammation and behavioral changes in response to other types of non-

monetary rewards. In study 3 of the dissertation, I set out to fill some of these gaps by 

experimentally probing the relationship between motivated behavior and inflammation. 

In the final study of the dissertation, I shifted metabolic states in the body by inducing 

low-grade levels of inflammation by administering the influenza vaccine to participants to see 

how this affected their behavior on a reward task. Notably, the study was conducted with a non-

clinical sample of humans who also engaged with positive, non-monetary stimuli to explored 

effects beyond monetary rewards. Additionally, this study allowed me to explore whether the 

association between inflammation and neural function was specific to affective processing or 

also implicated in other neurocognitive processes like response inhibition, one facet of cognitive 

function. Fifty-five young adult participants were administered the influenza vaccine to elicit a 

low-grade inflammatory response. The morning before and approximately 24 h after the vaccine, 

participants provided a blood sample to measure interleukin-6 (IL-6) and completed a rewarded 

go/no-go task to measure response inhibition. The results obtained here may have implications 

for understanding the mechanisms linking inflammation to affective and cognitive behaviors.  

The current studies 

The current dissertation aims to contribute empirical support for newer theoretical 

assertions that affective processing is significantly influenced by prior as well as internal 

physiological information to support allostasis. The first study (chapter 2) explores how one’s 

contextual history may differentially shape how the brain processes affective information by 

examining the link between socioeconomic position and the efficiency within the allostatic 

interoceptive network. In study 2 (chapter 3), I explore inflammation as one source of 

physiological information that can influence affective processing. Then, in study 3 (chapter 4), I 
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examine how shifting inflammation may alter affective processing via changes in motivated 

behavior. By investigating how affective processing integrates prior external information (study 

1) and internal physiological information (studies 2 & 3), the current set of studies seeks to 

enhance our understanding of the constituent elements the brain may utilize to generate affective 

experiences and guide behavior.  
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CHAPTER 2: LOWER SOCIOECONOMIC POSITION IS ASSOCIATED WITH 

GREATER ACTIVITY IN AND INTEGRATION WITHIN AN ALLOSTATIC-

INTEROCEPTIVE BRAIN NETWORK IN RESPONSE TO AFFECTIVE STIMULI1 

Introduction 

One’s socioeconomic position (SEP) (i.e., income, educational achievement) can 

profoundly shape an individual’s life (Krieger et al., 1997; Krieger et al., 2005). Specifically, 

SEP has been consistently tied to physical and mental health such that individuals with lower 

SEP have higher rates of cardiovascular disease (Kaplan & Keil, 1993; Galobardes et al., 2006) 

and depression (Lund et al., 2010), worse cancer prognosis (Zheng et al., 2021), and have shorter 

lifespans (Seeman et al., 2004). Given these well-established links between SEP and important 

life outcomes, recent work has begun to investigate the association between SEP and neural 

functioning to understand how SEP “gets under the skull” to influence health and well-being 

(Farah, 2017; Hackman et al., 2010; McEwen & Gianaros, 2010; Muscatell, 2018; Yaple & Yu, 

2020). To date, most of this work has been conducted in children and young adults, and has 

primarily focused on examining associations between SEP and activity in a limited set of regions 

(i.e., amygdala, medial prefrontal cortex). As such, important questions remain about the 

association between SEP and neural functioning during later periods of development, such as 

midlife when diverging health trajectories due to SEP begin to emerge. Further, our 

understanding of how SEP is related to activity and connectivity within larger neural systems 

 
1 This chapter previously appeared as an article in the Journal of Cognitive Neurocience. The original citation is as 

follows: Alvarez, G. M., Rudolph, M. D., Cohen, J. R., & Muscatell, K. A. (2022). Lower Socioeconomic Position 

Is Associated with Greater Activity in and Integration within an Allostatic-Interoceptive Brain Network in Response 

to Affective Stimuli. Journal of Cognitive Neuroscience, 34(10), 1906–1927. https://doi.org/10.1162/jocn_a_01830 
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(i.e., beyond individual regions) engaged during affective processing is limited. The present 

study addresses these critical gaps in our current knowledge by examining associations between 

SEP and network-wide activity and connectivity while processing affective information among a 

sample of mid- to late-life adults. 

There are good theoretical reasons to expect that SEP might shape neural responses to 

affective information. Namely, individuals with lower SEP report greater exposure to daily 

stressors (Almeida et al., 2005; Grzywacz & Almeida, 2008; Grzywacz et al., 2004; Surachman 

et al., 2019) and unpredictable threats (Cundiff et al., 2020). This is often accompanied by a lack 

of resources to cope with the greater stress/threat that they experience (Gallo et al., 2005; Gallo 

et al., 2009; Taylor & Seeman, 1999). These negative affective experiences are theorized to 

generate a perception of generalized unsafety for those with lower SEP, ultimately promoting a 

chronically hyperactive stress response (Brosschot et al., 2016, 2018). Thus, heightened exposure 

to negative affective experiences among individuals with lower SEP likely alters how the brain 

responds to affective information. 

Indeed, prior literature provides some evidence that SEP is related to neural responses to 

affective cues. Specifically, several studies have reported an inverse relationship between SEP 

and neural responses to negative social cues, such that children and young adults with lower SEP 

demonstrate heightened activity in regions associated with affective processing, including the 

amygdala (Gianaros et al., 2008; Muscatell et al., 2012; Javanbakht et al., 2015; Kim et al., 2017; 

Swartz et al., 2017) and medial prefrontal cortex (mPFC; Muscatell et al., 2012, Gonzalez et al., 

2015; Javanbakht et al., 2015; Muscatell et al., 2016), compared to those with higher SEP. While 

this literature provides foundational evidence relating SEP to neural responses to affective 

information, it is not without limitations. Most of this work has examined neural responses to 
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facial expressions of negative emotion (e.g., fear, anger), which, while important, do not 

represent the full breadth of stimuli and experiences that can elicit affective responses. Further, 

many studies in this area have relied on region-of-interest (ROI) analyses primarily focused on 

the amygdala and mPFC, thus limiting our understanding of associations between SEP and 

neural functioning beyond these two regions. Thirdly, this prior work has almost exclusively 

focused on children and young adults, leaving important questions about the association between 

SEP and neural functioning during later periods of development unanswered. Given these 

methodological limitations within the prior literature, the present study focused on exploring 

associations between SEP and network-wide neural responses to negative and positive affective 

scenes in midlife and older adults. 

In addition to the literature on SEP and neural responses to negative affective stimuli, 

there is some limited evidence regarding the association between SEP and neural responses to 

positive affective stimuli. Reactivity to positive stimuli is important to study, as evidence 

suggests that positive affect is associated with lower morbidity and increased longevity among 

elderly adults (Cohen & Pressman, 2006) and lower mortality risk among individuals reporting 

higher levels of stress (Okely et al., 2017). However, few studies have explored associations 

between SEP and neural activity to positive affective stimuli despite the relevance of positive 

affect for health. Among the prior studies that have investigated this, two found a positive 

association between SEP and neural responses to positive stimuli, such individuals with lower 

SEP showed blunted activity in the amygdala and insula to happy infant faces (Kim et al., 2017) 

and blunted activity in several subcortical regions (e.g., caudate, hippocampus) to positive scenes 

(Silverman et al., 2009). Thus, some initial work suggests that individuals with lower SEP may 
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show diminished activity in regions that encode the salience and value of stimuli in response to 

positive affective cues like happy babies and pleasant scenes.  

Other work on the association between SEP and neural responses to positive affective 

stimuli has utilized reward processing paradigms, such as the Monetary Incentive Delay (MID) 

task, wherein participants can earn a monetary reward for responding quickly to stimuli. 

Research in this area has produced mixed results, such that both positive and negative 

associations between SEP and neural responses to rewarding stimuli have been reported. For 

example, one study found that lower SEP is associated with blunted activity in a variety of 

regions, including the mPFC, during monetary reward processing (Gianaros et al., 2011), while 

two other studies found that lower SEP is associated with heightened mPFC activity during 

monetary reward processing (Gonzalez et al., 2016; Romens et al., 2015). Thus, while the 

evidence is equivocal regarding the directionality of the relationship between mPFC activity and 

SEP during the processing of monetary rewards, findings generally suggest that SEP does indeed 

modulate neural activity to positive and rewarding stimuli. Additional research is needed, 

however, to help clarify the discrepancies in directionality that have been observed in this area. 

 Finally, there is currently a paucity of knowledge regarding associations between SEP 

and neural network configuration during affective processing. This work is needed given 

growing consensus that brain regions do not act independently and instead communicate via 

large-scale networks to produce cognitive and affective states (McMenamin et al., 2014; Pessoa 

& McMenamin, 2017; Bassett & Sporns, 2017). As such, it is critical to examine if there are 

SEP-related differences in task-based network configuration during affective processing. Thus, 

another aim of the current study was to provide initial evidence linking SEP to network 

connectivity while processing positive and negative stimuli.  
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Two brain networks whose properties may be particularly likely to be modulated by SEP 

are the “allostatic-interoceptive network” [AIN; (Kleckner et al., 2017; Wei et al., 2020; Kraft & 

Kraft, 2021; MacCormack & Muscatell, 2019)] and the “executive control network” [ECN; 

(Rosen et al., 2018; Yaple & Yu, 2020; Rakesh et al., 2021)]. The AIN is composed of the 

salience and default mode intrinsic networks and a set of subcortical regions (i.e., central nucleus 

of the amygdala and regions within the ventral and dorsal striatum, such as the periaqueductal 

gray, parabrachial nucleus, and nucleus of the solitary tract) and has been shown to subserve 

energy metabolism and visceromotor regulation (Kleckner et al., 2017). The AIN is theorized to 

jointly observe and anticipate sensations from within the body (i.e., interoception) and the 

external environment, and manage energy balance across peripheral systems in the body (i.e., 

allostasis) to prepare to mount the resources needed for a given situation. Connectivity within 

this network guides perception and action by forming representations of affective cues and 

regulating physiological states of the body (Craig, 2009; Khalsa et al., 2009; Kleckner et al., 

2017). Specifically, the AIN has been linked to responding to threats, HPA axis activity, and 

sympathetic nervous system mobilization (Gianaros et al., 2008; Xia et al., 2017; Kleckner et al., 

2017). Thus, differences in AIN configuration may be a mechanism linking SEP to enhanced 

reactivity across physiological systems, ultimately leading to poorer health outcomes. 

Additionally, connectivity of the executive control network (ECN), which interfaces with the 

AIN (Kleckner et al., 2017) and has been linked to SEP in prior work using resting-state fMRI 

(Nusslock et al., 2019; Miller et al., 2018), may also be modulated by SEP in response to 

affective stimuli. Given the potential relevance of these networks to affective processing, the 

current analyses examined whether SEP was associated with topological properties of the AIN 
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and AIN+ECN in response to affective stimuli, to establish links between SEP and differences in 

network configuration. 

To address the association between SEP and network configuration of the AIN and ECN, 

we used graph theory. This technique is a powerful tool for identifying how network 

organization changes across conditions or individuals (e.g., Park & Friston, 2013; Cohen & 

D’Esposito, 2016; Shine & Poldrack, 2018). The ability to derive metrics of integration (i.e., the 

tendency for regions to become highly interconnected) and hubness (i.e., the tendency for a 

region to be central to information processing) within a network are major advantages to this 

computational approach, given that integration and hubness have been shown to predict 

important outcomes (e.g., Sanz-Arigita et al., 2010; Krukow et al., 2019). In the current study, 

we selected three well-validated metrics commonly used to assess different aspects of network 

integration. Specifically, we calculated global efficiency to assess network integration in the 

form of efficient information transfer across the entire graph, participation coefficient to assess 

across-network connectivity, and betweenness centrality to assess the importance of specific 

nodes in driving efficient communication within a network. Given past research showing that the 

amygdala and mPFC are particularly relevant regions for processing affective stimuli and are 

likely modulated by SEP, we also assessed whether SEP modulated the centrality of these 

regions while an individual was viewing affective images. Additionally, we explored the 

betweenness centrality of the insula given its role in dynamically switching between different 

networks (Sridharan, Levitin, & Menon, 2008). 

 In sum, while some research suggests that SEP is associated with differential neural 

activity and connectivity in response to affective stimuli, numerous gaps in our knowledge 

remain. The current study sought to provide additional insight into the relationship between SEP 
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and neural functioning by: 1) examining neural responses to both negative and positive affective 

images, extending prior work that has largely focused on negative facial expressions and 

monetary reward; 2) exploring associations between SEP and neural activity across the entire 

brain, thus moving beyond ROI approaches; 3) determining if associations between SEP and the 

topology of the AIN and ECN brain networks exist, to establish relationships between SEP and 

neural network configuration in response to affective stimuli; and 4) including a sample of mid- 

and late-life adults, given that most work in this area to-date has been conducted in youth. To 

accomplish these objectives, we analyzed differences in neural activity and connectivity to 

affective images as a function of SEP in a sample of 122 mid- to late-life adults. 

Methods 

Participants 

Data for this paper were drawn from the Midlife in the United States (MIDUS) study, a 

national study examining the biopsychosocial factors influencing health across the lifespan. For 

the current study, participants were enrolled in the overall MIDUS Refresher Neuroscience 

Project that began in 2013. Most participants were recruited via random digit dialing throughout 

the United States, and, to oversample Black Americans, a subset of participants were recruited 

via door-to-door solicitation in Milwaukee, WI. Participants were eligible if they lived in the 

Midwest and able to travel to complete an MRI scan, met MRI inclusion criteria (e.g., no metal 

implants, no claustrophobia), were right-handed, and had no prior history of a neurological 

disorder. While 127 individuals enrolled in the fMRI data collection portion of the study, four 

were excluded for missing fMRI data and one for excessive motion (see fMRI preprocessing for 

more details). Thus, the final sample included in the current analyses were 122 participants who 
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were on average 47 years old (SD= 11.82; range = 26 – 72), female (N=67; 55%), and White 

(N=78, 64%); see Table 1 for complete demographic information. 

 

Table 2.1: Demographic summary of the study sample (N=122) 

 

Variable Count (N) Percentage (%) 

Female (N, %) 67 54.92 

Ethnicity: Latin American origin/descent 1 0.82 

Race: Asian/Asian American (n, %) 1 0.82 

Race: Black (n, %) 36 29.51 

Race: Native American or Aleutian Islander (n, %) 1 0.82 

Race: White (n, %) 78 63.93 

Highest education: No school/some grade school (n, %) 0 0.00 

Highest education: Middle school (n, %) 0 0.00 

Highest education: Some high school (n, %) 8 6.56 

Highest education: GED (n, %) 2 1.64 

Highest education: High school (n, %) 17 13.93 

Highest education: Some college, no degree (n, %) 19 15.57 

Highest education: 3 or more yrs. of college, no degree (n, %) 5 4.10 

Highest education: Associates Degree (n, %) 17 13.93 

Highest education: Bachelor's degree (n, %) 29 23.77 

Highest education: Some Graduate school, no degree (n, %) 3 2.46 

Highest education: Master's Degree (n, %) 15 12.30 

Highest education: PhD or Professional Degree (n, %) 7 5.74 
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Procedures 

All participants in the study completed an initial interview, a battery of self-report 

questionnaires, and then a cognitive interview via phone. Once those interviews were completed, 

participants were eligible to participate in other projects—including the Neuroscience substudy. 

Participants reported on their education, household income, and other demographic information 

during the initial eligibility interviews. After meeting eligibility for the Neuroscience substudy, 

participants were scheduled for an MRI Project visit.  

Socioeconomic Position Measure 

During the telephone interviews, participants reported their highest level of educational 

attainment to date. Participants selected from twelve response categories ranging from “no 

school/some grade school” (category 1) to “PhD, MD, JD, or other professional degree” 

(category 12). Household income was computed using participant responses to several financial 

questions. Participants reported on the 12-month income earned by themselves, their 

spouse/partners, and other adults in their household. Participants also reported income from 

household social security, government assistance, and any other sources of income. Responses 

on these items were summed to create a household income variable that represented an estimate 

of total dollars earned within the participant’s household in the past year. For the current 

analysis, the measures of educational attainment and household income were standardized and 

combined to form a composite index of SEP (Kraus et al., 2009; Muscatell et al., 2012). Overall, 

the median education level was category 8, or graduation from a 2-year college, vocational 

school, or associate degree, and the median household income was $71,500 per year 

(M=$81,171, SD=$59,266). There was substantial variability across the sample for both 
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education (range = some high school – the attainment of a PhD or other professional degree) and 

income (range = $0-287,000). Given established associations between neural function and age 

(MacCormack et al., 2020), as well as statistically significant differences in SEP among males 

and females [t(120)= -2.259, p=0.026] and racial groups in our sample [F(4,117)=6.747, 

p<0.001], we included age, sex, and race/ethnicity as covariates in all models. This allowed us to 

improve our ability to assess unique associations between SEP and neural activity and 

connectivity. 

Affective Reactivity Task 

During MRI scanning, participants completed a task that involved viewing 30 positive, 

30 negative, and 30 neutral images selected from the International Affective Picture System 

(IAPS; Lang et al., 2008) over the course of three runs (data from which are also published in 

Grupe et al., 2018). The IAPS images used in the task were matched across valence for 

luminosity, complexity, and degree of social content. On average, the arousal ratings for the 

negative (M= 5.46, SD=0.66) and positive images (M=5.47, SD=0.53) were greater than those for 

the neutral images (M=3.16, SD=0.42).  

At the start of each trial in the task, participants saw a fixation cross appear for 1 second, 

following which an IAPS image was presented for 4 seconds in a pseudorandomized order. No 

more than two images from the same valence category were presented sequentially. Following 

each picture was a 2-second inter-stimulus interval in which participants viewed a black screen, 

and then a neutral face appeared for 0.5 seconds. Using a button box, participants were tasked 

with indicating whether the person depicted identified as male or female. Following the face 

presentation, each trial ended with a jittered inter-trial interval between 3.5 and 27.5 seconds 

(M=7.5 seconds) in which participants viewed a black screen. Because the current project 
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focused on examining neural responses to affective images, the face stimuli were coded as 

regressors of non-interest. Analyses focus on the 4-second period during which an IAPS image 

was presented. 

MRI acquisition 

Neuroimaging data for the current study was acquired using a 3 Tesla scanner (MR750 

GE Healthcare, Waukesha, WI) and an 8-channel head coil. First, a T1-weighted anatomical 

image was collected using a three-dimensional magnetization-prepared rapid gradient-echo 

sequence (TR=8.2 ms, TE=3.2 ms, flip angle=12 º, field of view=256 mm, acquisition 

matrix=256 x 256, 160 axial slices, inversion time=450 ms). Next, the blood oxygen level-

dependent (BOLD) signal was measured using echo planar imaging (EPI) during the fMRI task. 

The task consisted of three runs lasting 7 minutes, 42 seconds each for a total of 23.1 minutes of 

BOLD data. Each EPI scan acquired 40 interleaved sagittal slices that used the following 

parameters: TR=2,000 ms, TE=20 ms, flip angle=60º, field of view=220 mm, acquisition 

matrix=96x64, 3 mm slice thickness with 1 mm gap, 231 volumes, and ASSET (Array coil 

Spatial Sensitivity Encoding) parallel imaging with an acceleration factor of 2.  

fMRI preprocessing 

Whole-brain neuroimaging data were preprocessed and analyzed utilizing FSL version 

6.0.0 (Jenkinson et al., 2012). The analysis pipeline first utilized the fsl_motion_outliers program 

to identify excessive motion. Task runs with framewise displacement exceeding 0.9 mm for 

greater than 25% of the volumes were excluded from analysis (N=2; Siegel et al., 2014). For all 

other runs, single-point outliers were included in each person-level general linear model (GLM). 

Following outlier detection, preprocessing included motion correction with MCFLIRT, removal 
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of non-brain voxels with BET, normalization with FLIRT, removal of low-frequency drifts by 

applying a high-pass filter (100Hz), and spatial smoothing with a Gaussian kernel of 5-mm full 

width at half maximum.  

Analysis Overview 

 We implemented several computational techniques to examine the association between 

SEP and neural activity and network configuration while processing affective images. First, we 

conducted whole-brain regression analyses to explore associations between SEP and neural 

responses while viewing affective images. Following preregistration for our graph theoretic 

network analyses (see details here: https://osf.io/5zkxp/), we assessed whether SEP was related 

to differences in global efficiency (i.e., network integration) within the allostatic-interoceptive 

network (AIN), as well as a network that combined regions of the AIN and the executive control 

network (ECN) together into one graph, during affective processing. Next, we examined whether 

SEP was related to differences in participation coefficient (i.e., between-network integration) 

between the AIN and ECN during affective processing. Then, we assessed whether SEP was 

associated with differences in amygdala, mPFC, and insula centrality within the AIN, 

AIN+ECN, and within the entire brain. Finally, we conducted exploratory (i.e., non-

preregistered) analyses to examine whether SEP was related to differences in (1) global 

efficiency within the ECN, (2) global efficiency across the whole-brain, and (3) participation 

coefficient across the whole-brain. More details about each specific analysis approach are 

provided below. 
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Whole-brain regression analyses 

 Following preprocessing, a GLM was conducted for each participant and for each run. 

The individual-level GLMs included regressors that modelled each of the three trial types of 

interest (i.e., positive, negative, neutral images), and the stimuli of non-interest (i.e., face 

presentation). The GLMs also modelled motion artifacts (i.e., outliers), as well as each 

individual’s six motion parameters and their derivatives. Higher-level analyses were conducted 

using FSL FLAME to combine BOLD activation across runs. Then, individual estimates of 

BOLD activity were included in the group-level random effects models.  

 Two whole brain regression analyses examined associations between the SEP composite 

score and neural activity to negative (versus neutral) images, as well as positive (versus neutral) 

images, while controlling for age, sex, and race/ethnicity. Cluster-level correction (z>2.3, p<0.001) 

was applied to identify regions that differentially activated to affective stimuli as a function of 

SEP. In conjunction with FSL FLAME 1 (Woolrich et al., 2004), the correction parameters used 

in this study have been found to effectively decrease type II errors (Eklund, Nichols, & Knutsson, 

2016).  

Betaseries Regressions for Connectivity Analyses & Graph Construction 

Similar post-processing steps outlined above for the whole-brain activity analyses were 

implemented for the betaseries regressions to measure connectivity. Additionally, aCompCor 

(Muschelli et al., 2014) was utilized to derive time series data from white matter and 

cerebrospinal fluid (CSF). The individual-level GLMs for betaseries regressions included 

regressors that modeled each of the three trial types of interest (i.e., positive, negative, and 

neutral images) and one trial type of non-interest (i.e., face presentation). The GLMs also 
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modeled each individual’s six motion parameters and their temporal derivatives, outlier scans 

(i.e., framewise displacement above 0.9mm or global BOLD signal changes above 5 SD), and 

time series from white matter and CSF components (i.e., five potential noise components for 

white matter and CSF; Chai et al., 2012) as additional regressors of non-interest. To examine 

network topology during negative, positive, and neutral image viewing, betaseries connectivity 

matrices were extracted from the CONN functional connectivity toolbox (Whitfield-Gabrieli & 

Nieto-Castanon, 2012). Connectivity matrices were weighted, undirected, and unthresholded. 

The matrices were then r-to-z transformed and utilized to generate network metrics via the Brain 

Connectivity Toolbox (www.brain-connectivity-toolbox.net; Rubinov & Sporns, 2010). All 

network metrics were computed using positive and negative connections. Our analyses focused 

on four distinct matrices, including an AIN-only graph, an ECN-only graph, an AIN+ECN 

graph, and a whole-brain graph to derive unique values of integration (i.e., global efficiency) 

among each set of ROIs. First, an AIN-only graph was constructed by combining 55 cortical, 

subcortical, and brainstem ROIs as in Kleckner et al., (2017; see Allostatic-Interoceptive 

Network Connectivity Matrix for greater detail regarding construction of the AIN). Second, an 

ECN-only graph included the 12 cortical ROIs from the executive control network in the 

Yeo/Schaefer 7 networks 100 parcellation (Schaefer et al., 2018). Third, the AIN+ECN network 

graph combined the 55 ROIs of the AIN and the 12 ROIs of ECN. In total, the AIN+ECN graph 

included 67 ROIs (see Figure 1 for visualization of the network graph). Fourth, a whole-brain 

graph was constructed by adding all additional cortical ROIs from the Yeo & Schaefer 7 

networks 100 parcellation (Schaefer et al., 2018) to the AIN+ECN graph for a total of 119 ROIs. 

Allostatic-Interoceptive Network Connectivity Matrix. Regions of interest comprising 

the AIN were selected a-priori based on past theoretical work outlining the regions that make up 
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this network (Kleckner et al., 2017, Barett & Simmons, 2015). Because most common 

parcellations do not encompass subcortical and brainstem regions that are critical to the AIN, we 

supplemented the existing parcellations by importing masks for the missing ROIs. See Appendix 

A for the full list and source of regions in the AIN. We combined ROIs from several sources to 

create the entire hypothesized AIN, which includes the default mode and salience networks, 

subcortical regions, and several “connector” regions (i.e., regions that are functionally connected 

to both the default mode and salience networks). Specifically, the ROI masks used to construct 

the AIN were drawn from all 12 ROIs in the salience/ventral attention network and 24 ROIs in 

the default mode network from the Yeo/Schaefer 7 networks 100 parcellation (Schaefer et al., 

2018); the thalamus, amygdala, and hippocampus from the Melbourne Subcortex atlas (Tian et 

al., 2020); the periaqueductal gray (PAG) and parabrachial nucleus (PBN) from the Harvard 

Ascending Arousal Network atlas (Edlow et al., 2012); one ROI of the entire cerebellum from 

the MNI structural atlas (Collins et al., 1995); the ventral striatum from the Oxford-Imanova 

Striatal atlas (Tziortzi et al., 2011, 2014); the hypothalamus from the California Institute of 

Technology subcortical atlas (Pauli, Nili, & Tyszka, 2018); and the nucleus of the solitary tract 

(NTS) from a 7T in vivo parcellation mask (Priovoulos et al., 2019). Together, the AIN graph 

included 55 ROIs, or nodes.  
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Figure 2.1. Visualization of regions of interest, or nodes, that make up the allostatic-

interoceptive network (AIN; pictured in red) and executive control network (ECN; pictured in 

below). Spheres depict the general location of each ROI mask used in analyses. 

 

 

Network Topology Metrics to Assess Network Configuration 

To assess associations between SEP and network topology during affective image 

processing, we computed three primary graph metrics of interest: global efficiency, participation 

coefficient, and betweenness centrality. Global efficiency is a summary measure of integration 

amongst all nodes within a network. It is a measure of the average inverse distance (e.g., shortest 

paths) between all nodes in a given graph (Latora & Marchiori, 2001). A graph with high global 

efficiency is characterized by short path lengths between nodes that support parallel or 

distributed processing within a system. Participation coefficient and betweenness centrality are 

node-level metrics that quantify how individual regions are interconnected and influence 

information transfer across networks of interest. Participation coefficient measures the diversity 

of between-network connections and quantifies the level of cross-network communication 

(Guimerà & Nunes Amaral, 2005). A high participation coefficient suggests that a node 

facilitates inter-network communication. When averaged across nodes within a network, a higher 
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network participation coefficient signifies greater integration between networks defined in a 

graph. Betweenness centrality calculates the shortest paths between all pairs of regions in a graph 

(Brandes, 2001). High betweenness centrality indicates nodes that participate in the largest 

number of shortest paths. Thus, nodes with high betweenness centrality are characterized as 

central hubs that influence the flow of information within and between networks. The process for 

deriving each metric with the current data are discussed below. 

Network Integration.  Network integration was measured by computing global 

efficiency separately for the AIN, ECN, AIN+ECN, and whole brain graphs. Participation 

coefficient was computed between the AIN and ECN to assess how widespread and varied the 

connections were across our primary networks of interest. Each node was assigned to one of two 

networks, the AIN (55 ROIs) or the ECN (12 ROIs). Because the participation coefficient 

measures the strength of a node’s connections across networks, each node had a single value 

denoting integration with the network it was not assigned to. Thus, as a measure of cross-

network integration between the AIN and ECN, participation coefficient values for each node 

were averaged together to provide a measure of average network participation coefficient for the 

combined AIN+ECN graph.  An exploratory analysis also computed participation coefficient for 

the whole-brain graph across 6 distinct modules (i.e., AIN, ECN, Dorsal Attention, Visual, 

Somatosensory Motor, and Limbic networks). Measures of global efficiency and participation 

coefficient were computed on graphs for each of the three affective conditions separately (i.e., 

positive, negative, neutral). 

Nodal Centrality. We calculated betweenness centrality on graphs for each affective 

condition for the amygdala, mPFC, and insula a) within the AIN graph, b) within the AIN+ECN 

graph, and c) across the entire brain. When there was more than one ROI for a specific structure 
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(e.g., bilateral amygdala, multiple sub-ROIs for mPFC), the values for each ROI were averaged 

together to form a single metric for that region. 

Quality Control  

Once network metrics were derived for a condition (i.e., positive, negative, and neutral) 

for each participant, the values were averaged across conditions in order to assess the correlation 

between connectivity values and mean motion. Importantly, there were no differences in 

framewise displacement across conditions (Mneu= 0.217, Mneg=0.221, Mpos=0.215; F(2, 121) = 

1.066, p=0.346). Condition-specific values were entered into repeated measures ANCOVA 

models (rm-ANCOVA) to assess the effect of SEP (between-subjects) and condition (within 

subjects) on each network property, while controlling for age, sex, racial/ethnic identity. 

Additionally, mean head motion across conditions (framewise displacement; M=0.218) was 

added into rm-ANCOVAs for the metrics that were significantly associated with motion (i.e., 

participation coefficient: r(122) = 0.528, p<.001; betweenness centrality: r(122) = -0.353, 

p<.001). To control for the false discovery rate (FDR) due to multiple comparisons testing, the 

Benjamini-Hochberg procedure was applied (Benjamini & Hochberg, 1995) when comparing 

results with the same graph metric of interest. Finally, although we outlined a data-driven 

approach to identify top nodes for exploratory centrality analyses in our preregistration, further 

reading revealed that this approach was not warranted. To avoid the possibility of spurious 

results and issues related to circularity (Kriegeskorte et al., 2009), we omit those analyses here. 
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Results 

Association Between SEP and Neural Activity to Negative Images  

To examine the relationship between SEP and neural activity to negative images, we ran 

regression analyses to identify clusters of activity that were significantly associated with the 

composite measure of SEP while participants viewed negative (vs. neutral) images, controlling 

for age, sex, and race/ethnicity. This analysis showed a negative association between SEP and 

activation in three clusters (see Table 2 for full details). Specifically, lower levels of SEP were 

associated with greater activity in clusters encompassing voxels in the lateral occipital cortex, as 

well as clusters within midline cortical structures of the AIN (e.g., anterior-, dorsal- and ventral-

mPFC, posterior parietal cortex), subcortical structures within the AIN (e.g., thalamus, anterior 

insula, hippocampus, amygdala, anterior midcingulate cortex) and lateral PFC regions within the 

ECN (e.g., inferior frontal gyrus [IFG], parietal cortex, middle temporal gyrus); see Figure 2 for 

visualization. There were no significant clusters of activity positively associated with SEP. 
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Figure 2.2. Depiction of voxels showing a significant negative association between SEP and 

neural activity during negative (versus neutral) image viewing, while controlling for age, sex, 

and racial/ethnic identity (z>2.3, p<0.001). 

 

 

 

Table 2.2: Clusters significantly negatively associated with socioeconomic position during 

negative (versus neutral) image viewing 

 

 
 

 

Note. STS = superior temporal sulcus; AMPFC= anterior medial prefrontal cortex; DMPFC= 

dorsomedial prefrontal cortex; VMPFC=ventromedial prefrontal cortex; SMA=supplementary 

motor area; IFG=inferior frontal gyrus. Analyses controlled for age, sex, and racial/ethnic 

identity. 

  

x y z

1 lateral occipital cortex, angular gyrus R 40 -66 56 4.14 1221

2
lateral occipital cortex, angular gyrus; mid-posterior insula; 

STS; middle temporal gyrus; angular gyrus
L -38 -64 38 5.76 3845

3

MPFC (AMPFC, DMPFC, VMPFC); posterior parietal 

cortex; IFG; thalamus; anterior insula; cerebellum; 

hippocampus; amygdala;  caudate;  anterior midcingulate; 

nucleus accumbens; SMA

L/R -14 26 54 5.53 29076

Z-Max size (k)

Negative vs Neutral (z>2.3, p<0.001)

Z-max MNI Coordinates
Cluster Index Regions Hemisphere
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Association Between SEP and Neural Activity to Positive Images  

To examine the relationship between SEP and neural activity to positive images, we ran 

regression analyses to identify clusters that were significantly associated with the composite 

measure of SEP while participants viewed positive (vs. neutral) images, controlling for age, sex, 

and race/ethnicity. This analysis showed a negative association between SEP and activation in 

three clusters (see Table 3 for full details). Lower levels of SEP were associated with greater 

activity in clusters encompassing voxels in posterior regions of the AIN (e.g., precuneus, angular 

gyrus, posterior cingulate cortex), lateral regions within the ECN (e.g., midfrontal gyrus, IFG), 

and corticostriatal reward-related regions (e.g., caudate, nucleus accumbens, ventral-mPFC); see 

Figure 3 for visualization. There were no significant clusters of activity positively associated 

with SEP. 
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Figure 2.3. Depiction of voxels showing a significant negative association between 

socioeconomic position (SEP) and neural activity during positive (versus neutral) image viewing, 

while controlling for age, sex, and racial/ethnic identity (z>2.3, p<0.001). 

 

 

 

 

Table 2.3: Clusters significantly negatively associated with socioeconomic position during 

positive (versus neutral) image viewing 

 

 

 

Note. VMPFC=ventromedial prefrontal cortex; SMA=supplementary motor area; IFG=inferior 

frontal gyrus. Analyses controlled for age, sex, and racial/ethnic identity. 

 

  

x y z

1 thalamus, caudate, nucleus accumbens, VMPFC L -12 12 -10 4.08 1192

2 middle frontal gyrus, SMA, IFG L -26 26 52 4.27 1255

3
precuneus, posterior cingulate gyrus, lateral occipital ortex, 

angular gyrus, middle temporal gyrus
L/R -36 -64 38 4.34 7942

Cluster Index Regions Hemisphere Z-Max size (k)

Positive vs Neutral (z>2.3, p<0.001)

Z-max MNI Coordinates
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Association between SEP and Global Efficiency of the AIN, ECN, and AIN+ECN 

Next, we assessed whether SEP was related to global efficiency of the AIN, a measure of 

network integration, during affective processing. A rm-ANCOVA found a main effect of SEP on 

AIN global efficiency during the task, F(1, 117) = 7.387, p=0.008. Specifically, as SEP 

decreased, integration of the AIN increased; see Figure 4A for a scatterplot of the association. 

There was no significant main effect of image valence on AIN global efficiency (i.e., no 

significant differences in AIN global efficiency across affective image types), nor was there a 

significant interaction between SEP and image valence in predicting AIN global efficiency (see 

Table 4 for full reporting of results). 

We also assessed if SEP was related to global efficiency of the combined AIN and ECN 

graph during affective processing. A rm-ANCOVA found a main effect of SEP for AIN+ECN 

global efficiency during the task, F(1, 117) = 6.332, p=0.013. Specifically, as SEP decreased, 

integration across the entire graph consisting of both the AIN and ECN networks increased (i.e., 

similar to the result above showing greater integration of the AIN with lower SEP; see Figure 4B 

for scatterplot of the association). There was no significant main effect of image valence on 

AIN+ECN global efficiency, nor was there a significant interaction between SEP and valence in 

predicting AIN+ECN global efficiency (see Table 4 for full reporting of values). 

Exploratory analyses also assessed whether SEP was related to global efficiency of the 

ECN alone during affective processing. A rm-ANCOVA found that there was no significant 

main effect of SEP or valence on ECN global efficiency, nor was there a significant interaction 

between SEP and valence in predicting ECN global efficiency (see Table 4 for full reporting of 

values). 

Table 2.4: ANCOVA table reporting differences in global efficiency and participation coefficient 

by SEP and valence. 
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Predictors 
Sum of 

Squares 
df 

Mean 

Square 
F p Partial      

AIN Global Efficiency 

Valence 0 2 0 0.137 0.872 0.001 

Valence x SEP 0.002 2 0.001 0.752 0.418 0.006 

SEP* 0.047 1 0.047 7.387 0.008 0.059 

Age 0.002 1 0.002 0.256 0.614 0.002 

Sex 0.021 1 0.021 3.257 0.074 0.027 

Race 0.00003 1 0.00003 0.004 0.947 0 

ECN Global Efficiency 

Valence 233.691 2 116.845 0.43 0.651 0.004 

Valence x SEP 375.376 2 187.688 0.691 0.492 0.006 

SEP 218.102 1 218.102 0.86 0.356 0.007 

Age 57.85 1 57.85 0.228 0.634 0.002 

Sex 264.667 1 264.667 1.044 0.309 0.009 

Race 1.521 1 1.521 0.006 0.938 0 

AIN+ECN Global Efficiency 

Valence 0.00004 2 0.00002 0.031 0.969 0 

Valence x SEP 0.002 2 0.001 1.775 0.172 0.015 

SEP* 0.022 1 0.022 6.332 0.013 0.051 

Age 0.008 1 0.008 2.192 0.141 0.018 

Sex 0.012 1 0.012 3.557 0.062 0.03 

Race 0 1 0 0.102 0.75 0.001 

AIN+ECN Participation Coefficient  

Valence 0.00005 2 0.00005 0.181 0.834 0.002 

Valence x SEP 0 2 0.00007 0.481 0.619 0.004 

SEP 0.003 1 0.003 2.591 0.11 0.022 

Age* 0.007 1 0.007 6.378 0.013 0.052 

Sex* 0.008 1 0.008 6.378 0.008 0.59 

Race 0.00007 1 0.00007 0.063 0.803 0.001 

Motion* 0.033 1 0.033 31.442 0 0.213 

 

Note. Bolded predictors denote that the effect is significant at puncorrected<0.05. Asterisk* denotes 

that the effect is significant at pFDR<0.05. 

 

η2 
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Association between SEP and Participation Coefficient of the AIN+ECN  

Next, a rm-ANCOVA was performed to assess the association between SEP and 

between-network connectivity, or the participation coefficient, of the AIN and ECN. This 

analysis showed there was no main effect of SEP for the participation coefficient of the AIN and 

ECN during the task. There was no significant main effect of image valence on participation 

coefficient, nor was there a significant interaction between SEP and valence in predicting 

AIN+ECN participation coefficient (see Table 4 for full reporting of values). 

Association between SEP and Betweenness Centrality of the Amygdala, mPFC, and Insula 

Next, to assess if SEP was related to differences in nodal centrality during affective 

processing, we calculated betweenness centrality for several regions defined a priori. Measures 

of betweenness centrality for the amygdala, mPFC, and insula within the AIN, AIN+ECN, and 

whole brain connectivity matrices during each condition were extracted. A rm-ANCOVA 

analyses showed no statistically significant associations between SEP and centrality of these 

regions within any of the three graphs (see Table 5 for full reporting of values).  

  



  

Table 2.5. ANCOVA table reporting associations between SEP and amygdala, medial prefrontal cortex (MPFC), and insula 

betweenness centrality within AIN, AIN+ECN, and whole brain graphs. Note. Bolded predictors denote that the effect is significant at 

puncorrected<0.05. Asterisk* denotes that the effect is significant at pFDR<0.05. 

η2 η2 η2 

4
2
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Association between SEP and Network Integration across the Whole Brain 

Finally, we conducted exploratory rm-ANCOVA analyses to examine whether there were 

associations between SEP and network integration across the whole brain during affective 

processing. This analysis showed a significant SEP by valence interaction, F(2, 117) = 3.429, 

p=0.034, such that as SEP decreased, global efficiency across the whole-brain graph increased in 

response to the positive, but not negative or neutral, image conditions. There were no significant 

main effects of SEP or valence on whole brain global efficiency (see Table 6 for full reporting of 

values). 

To assess whether SEP was related to participation coefficient (i.e., between-network 

integration) across the whole-brain during affective processing, a rm-ANCOVA was conducted. 

There was a significant SEP by valence interaction, F(2, 117) = 3.142, p=0.045, such that as SEP 

decreased, the participation coefficient across the whole-brain graph increased in response to the 

neutral, but not positive or negative, images. There were no significant main effects of SEP or 

valence on whole brain participation coefficient (see Table 6 for full reporting of values).” 
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Table 2.6 

 

ANCOVA table reporting differences in global efficiency and participation coefficient by SEP 

and valence for the whole brain graph 

Predictors 
Sum of 

Squares 
df 

Mean 

Square 
F p partial      

Whole Brain Global Efficiency 

Valence 3.13E-05 2 1.56E-05 0.205 0.814 0.002 

Valence x SEP* 0.001 2 0 3.745 0.025 0.031 

SEP 0.002 1 0.002 3.036 0.084 0.026 

Age 0.001 1 0.001 1.544 0.217 0.013 

Sex 0.002 1 0.002 2.966 0.088 0.025 

Race 0 1 0 0.4 0.528 0.003 

Whole Brain Participation Coefficient  

Valence* 0.001 1 0.001 4.424 0.038 0.037 

Valence x SEP* 0.001 1 0.001 4.869 0.029 0.04 

SEP 0.001 1 0.001 1.082 0.3 0.009 

Age 0.001 1 0.001 1.217 0.272 0.01 

Sex 0.001 1 0.001 2.157 0.145 0.018 

Race* 0.003 1 0.003 4.577 0.035 0.038 

Motion* 0.002 1 0.002 35.626 0 0.235 

 

Note. Bolded predictors denote that the effect is significant at puncorrected<0.05. Asterisk* denotes 

that the effect is significant at pFDR<0.05. 
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Discussion 

The current study examined whether SEP was related to differences in neural activity and 

brain network connectivity during affective processing in a sample of mid- to late-life adults. 

There are three key findings from the present research. First, we found that lower SEP was 

related to greater neural activity to negative (vs. neutral) images in regions within the allostatic-

interoceptive network (AIN; e.g., mPFC, precuneus, posterior cingulate cortex, anterior insula, 

anterior cingulate cortex, amygdala, hippocampus), as well as regions within the executive 

control network (ECN; e.g., IFG), among other regions. Second, we found that lower SEP was 

related to greater neural activity to positive (vs. neutral) images in corticostriatal regions such as 

the caudate, nucleus accumbens and ventral-mPFC, as well as posterior regions in the AIN (e.g., 

precuneus, posterior cingulate) and regions within the ECN (e.g., IFG, middle frontal gyrus). 

Finally, we showed that SEP is related to neural network topology during affective processing; 

specifically, that individuals with lower SEP showed greater global efficiency (i.e., stronger 

network integration) of the AIN and AIN+ECN across all affective conditions. The results of the 

present study add to the growing literature showing that SEP modulates neural responses to 

affective information in regions implicated in integrating information from the external and 

internal environment to regulate the energy and resources needed to respond appropriately. 

These findings also shed light on a possible neural pathway by which SEP may influence mental 

and physical health. 

 First, we found that lower SEP was associated with greater activity in medial and lateral 

PFC, parietal lobe, and limbic regions in response to viewing negative (vs. neutral) images. 

These findings are consistent with past research showing that lower SEP is associated with 

greater amygdala and mPFC activity during the processing of negative facial expressions and 
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other types of negative social feedback (Gianaros et al., 2008; Muscatell et al., 2012; Javanbakht 

et al., 2015; Gonzalez et al., 2015; Muscatell et al., 2016; Kim et al., 2017; Swartz et al., 2017), 

and extend this prior literature to show that SEP is additionally related to activity in other regions 

that have been linked to social-affective processing (e.g., anterior insula, posterior and anterior 

cingulate, IFG). The combination of cortical and subcortical regions seen here and in prior work 

converge to suggest that SEP is related to neural activity in regions within the AIN, a network 

thought to integrate information from the environment together with physiological signals within 

an individual to prepare and mount resources to respond to a situation (Craig, 2009; Khalsa et al., 

2009; Kleckner et al., 2017). The increased activity within the AIN in response to negative 

affective stimuli may reflect an increased tendency for individuals with lower SES to make 

predictions that negative information is highly salient, and that there is greater need to mount 

physiological responses to meet the demands of the salient negative situation. Over time, this 

enhanced activation can disrupt physiological systems (i.e., allostatic load) and lead to poorer 

health (McEwen & Gianaros, 2010). 

Second, we found that lower SEP was associated with greater activity in regions within 

the middle frontal gyrus, cingulate cortex, and caudate in response to positive (vs. neutral) 

images. These findings are consistent with a recent meta-analysis which found that across a 

variety of tasks (e.g., executive function, reward, social, affective), lower SEP was associated 

with increased activity in reward-related regions (e.g. caudate; Yaple & Yu, 2020). Given that 

regions within the caudate nucleus are linked to associative learning (Delgado et al., 2004) and 

shifts in behavior to maximize potential gains (Haruno et al., 2004), this enhanced activity to 

positive stimuli among individuals with lower-SES may suggest greater attention and preparation 

for gain. Life history theory contends that individuals may become more vigilant and prepared to 
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secure potential gains in environments with fewer resources and greater uncertainty (Gonzalez et 

al., 2016; Ellis et al., 2009). Together, these results suggest that individuals with lower SES are 

sensitive to positive stimuli and the enhanced activity in the AIN may reflect an increased 

tendency to prepare to mount the resources needed to secure a potential gain. Generally, the 

association between SEP and representations of positive stimuli observed in the current study, 

coupled with the findings for the negative images, converge to suggest that individuals with 

lower SEP may be more “neurally sensitive” to affective cues specifically in regions that support 

shifting behavior to manage metabolic resources.  

Third, we found that lower SEP was related to higher global efficiency of the AIN, and 

the AIN together with the ECN. These results are the first demonstration that SEP is associated 

with network configuration while processing affective images and suggest that individuals with 

lower SEP show stronger integration among networks associated with affective responding and 

cognitive control. In other words, among individuals with lower SEP, affective information is 

more efficiently transferred among regions within the AIN and between the AIN and ECN 

(Achard & Bullmore, 2007; Berroir et al., 2016; Laughlin & Sejnowski, 2003). This is 

interesting given that greater global efficiency may confer some potential advantages in 

cognitive function (Li et al., 2009; Kesler et al., 2018), suggesting that lower SEP may shape the 

efficiency of brain networks that specifically help identify salient information in the environemt 

and respond accordingly. However, enhanced efficiency among AIN and ECN nodes may be 

useful for individuals lower in SEP, who may experience greater chronic unpredictable threats 

(Baum et al., 1999; Crielaard et al., 2021). Greater efficiency between these two networks may 

be adaptive in helping individuals lower in SEP to quickly detect salient information in the 

environment and make decisions about how to regulate responses to such information. In the 
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longer term, however, this enhanced efficiency between AIN and ECN may come with costs. 

Global workspace theory argues that the neural architecture underlying effortful processing 

engaged during complex cognitive tasks is characterized by more integrated processing (i.e., 

increased global efficiency) over longer connections, which takes energy to maintain (Dehaene, 

Kerszberg, & Changeux, 1998; Kitzbichler et al., 2011). As such, it is possible that the global 

workspace is activated or enhanced when individuals attend and respond to salient (i.e., novel, 

unpredicted, emotional) stimuli. Therefore, prolonged increases in global network efficiency 

may be associated with higher metabolic cost (Bullmore & Sporns, 2012), which is detrimental 

in the long term and could be deleterious to overall health and mental functioning (Colich et al., 

2020). Future longitudinal work is needed to examine if SEP-related modulation of global 

efficiency is related to the emergence of SEP-based health inequities over time. 

These findings of greater global efficiency of the AIN and the AIN together with ECN 

parallel a recent theory of generalized unsafety that is posited as one pathway by which lower-

SEP may be linked to poorer health outcomes (Brosschot et al., 2016; Brosschot, Verkuil, & 

Thayer, 2017; Brosschot et al., 2018). The generalized unsafety theory argues that constant 

activation due to a sense of uncertainty and preparation for threat among those lower in SEP may 

be physiologically costly. Indeed, prior work shows that individuals demonstrate greater global 

efficiency in highly attentive and vigilant states (Yang et al., 2019). Thus, increased integration 

within the AIN, which also underlies physiological activation, may be a pivotal process for 

maintaining and regulating the consequences of generalized unsafety. This interpretation is 

speculative at this stage and future research is needed to examine if greater integration of the 

AIN is a mechanism linking lower SEP to greater physiological activation, and perhaps poorer 

health. 
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Finally, exploratory analyses across the whole brain revealed intriguing associations 

between SEP and network topology during affective processing. We found that there was a 

negative association between SEP and global efficiency across the whole-brain graph 

specifically during the positive condition, perhaps suggesting that positive affective states 

depend on increases in global efficiency of the entire brain among individuals with lower SEP. A 

similar SEP by valence interaction was found for whole-brain participation coefficient. 

Specifically, individuals with lower SEP demonstrated an increased participation coefficient 

while viewing neutral images. These analyses were exploratory and will need to be replicated.  

There were also several null findings in the present study worth noting, particularly with 

regard to the network metrics. First, we did not find an interaction of SEP and image valence for 

measures of network integration or hub centrality. In other words, while SEP was related to AIN 

and AIN+ECN integration broadly across all trial types in the task, the association between SEP 

and network integration did not vary as a function of affective image condition. A possible 

reason for this lack of SEP by image valence interaction might be because static measures of 

network organization such as those studied here are more strongly linked to individual traits, 

such as SEP, than dynamic changes across task conditions, such as differences in valence 

(Eichenbaum et al., 2021; Liégeois et al., 2019). Second, we found that there were no differences 

in global efficiency within the ECN-only graph as a function of SEP. Because regions within the 

ECN are hypothesized to underlie cognitive regulation processes and the task used here did not 

explicitly instruct individuals to regulate their emotions, this null result is not entirely surprising.  

Third, there was also no main effect of valence on metrics of participation coefficient and 

betweenness centrality. These results are consistent with recent work showing that networks 

critical for processing emotional content are not differentially responsive to valence (Lindquist et 
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al., 2016; Lindquist et al., 2012). That is, networks such as the AIN are valence-general (Barrett 

& Simmons, 2015; Satpute & Lindquist, 2019). More research is needed to fully understand the 

extent to which neural systems such as the AIN dynamically configure in response to different 

stimuli and task demands. 

Several limitations need to be considered. First, we measured SEP by creating a 

composite score of education and income, and there are several other ways to conceptualize SEP 

given that it is a multifaceted construct (Braveman et al., 2005). Results may be different if other 

measures of SEP are examined (e.g., occupational prestige, change in socioeconomic mobility 

from childhood). Second, the cross-sectional design precludes drawing any causal conclusions 

regarding neural alterations due to SEP. Future longitudinal work that examines the influence of 

SEP on brain activation and network dynamics in response to affective stimuli over time is 

needed to gain clarity on the directionality of effects. Additionally, although we controlled for 

effects of age, sex, and racial/ethnic identity, these covariates are factors that are importantly 

associated with SEP (e.g., Backholer et al., 2017; Poulton et al., 2002; Williams et al., 2010). 

While limitations in sample size precluded our ability to meaningfully examine intersections 

between SEP and these other demographic factors, future work with larger sample sizes and 

greater variability in demographic characteristics ought to explore the effects of intersectionality 

of SEP and age, sex, and racial/ethnic identity on neural functioning. Third, although the network 

metrics we selected are commonly used to measure integration and centrality in the literature, 

future work can explore links between SEP and network configuration utilizing other metrics to 

assess reproducibility and compare results across metric selection. Finally, it is important to note 

that node selection is an ongoing limitation in network neuroscience such that network metrics 
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may vary depending on the parcellation or specific nodes selected (see Stanley et al., 2013 or 

Hallquist & Hillary, 2019 for discussion). 

Overall, our data suggests that SEP is associated with hyperactivity in and integration 

among regions comprising an allostatic-interoceptive brain system while processing affective 

information. This study establishes for the very first time that broader features of an individual’s 

context, like SEP, may influence the activity and topology of an allostatic-interoceptive system. 

These findings suggest that lower SEP is associated enhanced neural sensitivity to affective cues, 

and that this heightened activity and connectivity in response to such cues may be metabolically 

costly to maintain. This generalized hypervigilance and metabolically expensive integration of 

the AIN and ECN during responses to affective information may be one pathway linking SEP, 

affective processing, and detrimental health outcomes.  
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CHAPTER 3: SYSTEMIC INFLAMMATION IS ASSOCIATED WITH DIFFERENTIAL 

NEURAL REACTIVITY AND CONNECTIVITY TO AFFECTIVE IMAGES2 

Introduction 

Systemic inflammation, a component of the innate immune system, is increasingly 

appreciated for its role in the pathophysiology of chronic disease and psychopathology (Bennett, 

Reeves, Billman, & Sturmberg, 2018; Dantzer, O'Connor, Freund, Johnson, & Kelley, 2008; Liu, 

Wang, & Jiang, 2017). The inflammatory response is primarily an adaptive defense mechanism 

that activates to harmful pathogens and promotes healing; however, chronic and uncontrolled 

inflammation can have negative consequences for physical and mental health (Franceschi & 

Campisi, 2014; Furman et al., 2019; Gabay, 2006). Interestingly, a growing literature in 

psychoneuroimmunology shows that, in addition to its role in both acute infection and chronic 

disease, systemic inflammation both affects and is affected by psychological experiences 

(Dickerson, Gable, Irwin, Aziz, & Kemeny, 2009; Irwin & Cole, 2011). The purpose of the 

present study was to investigate the association between systemic, low-grade inflammation, and 

one such psychological experience, affective reactivity. Specifically, we examined the 

relationship between markers of inflammation and neural responses to positive and negative 

images, compared to neutral images, to further our nascent understanding of the bi-directional 

links between the innate immune system and brain function.  

 
2 This chapter previously appeared as an article in the Journal of Cognitive Neurocience. The original citation is as 

follows: Alvarez, G. M., Hackman, D. A., Miller, A. B., & Muscatell, K. A. (2020). Systemic inflammation is 

associated with differential neural reactivity and connectivity to affective images. Social Cognitive and Affective 

Neuroscience, 15(10), 1024–1033. https://doi.org/10.1093/scan/nsaa065 
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What do we currently know about links between affective reactivity and inflammation? 

Most prior work in this area has focused on the links between negative affect, both chronic (e.g., 

depression) and acute (e.g., in response to a psychological stressor), and inflammation. Meta-

analytic evidence suggests that elevated depressive symptoms are associated with higher levels 

of systemic inflammation (Howren, Lamkin, & Suls, 2009) and that acute stressors elicit 

increases in markers of systemic inflammation (Marsland, Walsh, Lockwood, & John-

Henderson, 2017). A handful of functional MRI (fMRI) studies have investigated the neural 

correlates of negative affect-inducing experiences and inflammation, showing that both social 

evaluation (Muscatell et al., 2016) and grief elicitation among recently-bereaved individuals 

(O'Connor, Irwin, & Wellisch, 2009) are associated with greater activation in the medial 

prefrontal cortex, amygdala, and anterior cingulate cortex, and with greater levels of 

inflammation. 

Some work has also investigated the "bottom-up," afferent influence of inflammation on 

negative affective processes. This area of work demonstrates that experimentally-induced 

increases in markers of inflammation (via inflammatory challenge studies utilizing 

lipopolysaccharide or typhoid vaccination) are associated with higher depressive symptoms and 

greater feelings of social disconnection (Eisenberger, Inagaki, Mashal, & Irwin, 2010; 

Eisenberger, Inagaki, Rameson, Mashal, & Irwin, 2009; Harrison et al., 2009). Complementary 

neuroimaging work has investigated the influence of peripheral inflammation on neural 

reactivity to negative affect-related stimuli, such as threatening faces (Inagaki, Muscatell, Irwin, 

Cole, & Eisenberger, 2012), negative social feedback (Muscatell et al., 2016), social exclusion 

(Eisenberger, Inagaki, Rameson, Mashal, & Irwin, 2009), and threatening images (Kullmann et 

al., 2013). Together, these studies show that higher levels of inflammation are associated with 
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increased activity in limbic (e.g., amygdala, hippocampus) and cortical (e.g., medial prefrontal 

cortex, cingulate cortex) regions in response to negative stimuli. Thus, a growing literature 

shows that systemic inflammation both affects and is affected by negative emotional experiences 

and stimuli, via alterations in subcortical (i.e., amygdala) and cortical (i.e., ACC, insula, dmPFC) 

neural activity. 

Fewer studies have explored the bidirectional links between positive affect and levels of 

inflammation, especially as they relate to neural functioning. This paucity of work is surprising 

considering that several studies have found that both dispositional positive affect (Hartanto, Lee, 

& Yong, 2019; Marsland, Cohen, Rabin, & Manuck, 2006; Stellar et al., 2015) and momentary 

positive affective states (Steptoe, Wardle, & Marmot, 2005) are associated with lower levels of 

inflammation. To date, no known neuroimaging studies have examined the efferent pathway, or 

how the induction of a positive affective experience influences levels of inflammation. 

Correlational studies show that activity in the medial prefrontal cortex in response to positive 

stimuli (e.g., favorite actor; positive autobiographical memories) is related to better innate 

immune system functioning (i.e., natural killer cell count; Matsunaga et al., 2008) and lower 

inflammation (i.e., interferon-γ; Matsunaga et al., 2013), respectively, suggesting that greater 

neural responses to positive stimuli might be related to lower levels of systemic inflammation. A 

more substantial literature has examined how manipulating inflammation results in changes in 

neural responses to positive affective stimuli. Most of the work examining this afferent pathway 

has focused on documenting inflammation-related changes in neural reactivity to monetary 

reward tasks. These studies generally find that inflammation causes a decrease in neural activity 

in reward-related regions (i.e., ventral striatum) in response to monetary gain (Capuron et al., 

2012; Eisenberger, Berkman, et al., 2010; Moieni et al., 2019, c.f. Inagaki et al., 2015; Muscatell 
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et al., 2016). Together, these studies suggest that higher levels of inflammation might be 

associated with decreased activity in regions within the basal ganglia in response to positive 

stimuli. Generally, a growing literature demonstrates that systemic inflammation can both affect 

and be affected by positive experiences and stimuli, via alterations in subcortical (i.e., ventral 

striatum) and cortical (i.e., medial prefrontal cortex) neural activity, although less work has been 

conducted in this area. 

Interestingly, there is substantial overlap in the brain regions that are implicated in 

inflammatory processes reviewed above and in regions that show significant activation to 

positive and negative stimuli. For example, recent meta-analytic work has revealed that activity 

in several corticolimbic regions [e.g., dorsal medial prefrontal cortex (dmPFC), amygdala, 

hippocampus, striatum, insula] is consistently associated with levels of peripheral inflammation 

(Kraynak, Marsland, Wager, & Gianaros, 2018). In another meta-analysis that examined the 

brain basis of affective processing (Lindquist, Satpute, Wager, Weber, & Barrett, 2016), similar 

limbic (e.g., amygdala, insula, striatum) and cortical regions (e.g., dmPFC and dACC) were also 

implicated in the processing of positive and negative information. Findings from these two meta-

analyses converge to suggest that corticolimbic regions are involved in both affective and 

inflammatory processes. Thus, these corticolimbic regions may be important in facilitating cross-

talk between the brain and the innate immune system in response to affective information. 

Although prior research has identified associations between peripheral inflammation and 

corticolimbic activity in response to affective experiences, numerous gaps in our knowledge still 

exist. For example, most prior studies have utilized acute inflammatory challenge manipulations 

to study links between inflammation and neural activity; as such, we have limited knowledge 

about the association between chronic, low-grade inflammation and corticolimbic activity to 
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affective stimuli. Further, most prior studies focus on monetary rewards as a proxy for positive 

experiences and angry/fearful faces for negative stimuli, leaving gaps in our knowledge of the 

associations between inflammation and neural responses to other types of affective stimuli (e.g., 

positive and negative scenes). Finally, although several psychoneuroimmunological studies have 

examined the associations between inflammation and functional connectivity while individuals 

are at rest (J C Felger et al., 2016; Kraynak, Marsland, Hanson, & Gianaros, 2019; Lekander et 

al., 2016; Marsland, Kuan, et al., 2017; Mehta et al., 2018; Nusslock et al., 2019), few known 

studies have examined how markers of systemic inflammation might relate to functional 

connectivity while participants are engaged in a dynamic affective reactivity task. In several 

studies, task-based connectivity has been shown to outperform resting-state models for detecting 

relationships between neural activity and individuals differences in behavior (Greene et al. 2018; 

Jiang et al. 2020), suggesting that investigations of associations between inflammation and task-

based connectivity are warranted. Thus, the present study was designed to fill these gaps in our 

knowledge by exploring associations between low-grade peripheral inflammation and neural 

reactivity and connectivity in response to viewing affective images.  

To accomplish this, we examined associations between markers of systemic 

inflammation and neural reactivity/connectivity to affective images in a sample of 66 adults from 

the Midlife in the United States (MIDUS) study. Specifically, we examined the relationship 

between levels of interleukin-6 (IL-6) and C-reactive protein (CRP) and corticolimbic 

responsivity and connectivity to positive and negative images. IL-6 and CRP are two commonly-

measured markers of inflammation in psychoneuroimmunology research. IL-6 is an 

inflammatory cytokine that is released into circulation in response to both physical and 

psychological threats to help facilitate communication among immune cells, among other 
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functions. IL-6 also stimulates the production of CRP, an acute-phase protein produced by the 

liver that plays several roles during an inflammatory response. Elevated levels of IL-6 and CRP 

in the absence of acute infection are often conceptualized as representing chronic, low-grade 

inflammation (O'Connor et al., 2009). 

Methods 

Participants  

Data for this project were drawn from the Midlife in the United States (MIDUS) study, a 

national longitudinal study that examines biopsychosocial factors influencing health across later 

life. A subset of individuals from the MIDUS cohort completed the Neuroscience Project, 

beginning in 2007. Participants were eligible for this sub-study if they completed the Biomarker 

Project 4 visit, met MRI inclusion criteria (e.g., no metal implants, no claustrophobia, not 

currently pregnant), and had no prior history of a neurological disorder. Of the 72 total 

individuals enrolled in the Neuroscience Project, for the present paper, we excluded six: two for 

excessive head motion, one due to incomplete fMRI data, and four due to levels of CRP greater 

than 10 mg/L which likely indicates a current or recent infection (Jaye & Waites, 1997). The 66 

participants included in analyses had a mean age of 54.98 years (SD= 10.76; range=35-76) and 

consisted of 44 women (66.67%). See Table 3.1 for additional demographic information. 

Participants in the fMRI subsample were of similar age and exhibited comparable values of CRP 

and IL-6 to those in the larger MIDUS study, such that there were no significant differences 

between the samples for these characteristics (p's> 0.42). 
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Table 3.1 Demographic and biomarker summary of the study sample 

 

 

 

 

 

Variable Count (N) Percentage (%) 

Sex (female, %) 44 66.7 

Race/Ethnicity   

Black  19 28.8 

Native American or Aleutian Islander  1 3 

White  45 68.2 

Other  1 3 

Educational Attainment   

Less than high school  27 40.9 

High school  21 31.8 

Bachelor's degree  8 12.1 

Master's degree  10 15.2 

   

Variable Mean (SD) Range 

Age 54.98 (10.76) 35 - 76 

BMI 29.52 (5.67) 19.51 - 46.78 

IL-6 (pg/mL) 2.21 0.16 - 18.40 

IL-6 (natural log) 0.74 -1.83 - 2.91 

CRP (ug/mL) 2.88 0.16 - 7.62 

CRP (natural log) 0.38 -1.83 - 2.03 
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Procedures and Materials 

Overview. Participants in this study first completed the Biomarker Project 4 visit. The 

visit was an overnight session in which participants completed questionnaires and provided 

urine, blood, and saliva samples to assess biological indicators of physiological functioning and 

health status, including markers of inflammation. Following the biomarker collection, 

participants then completed an fMRI scan.  

IL-6 and CRP. After overnight fasting, participants provided blood samples later assayed 

for levels of IL-6 and CRP. Assays were conducted using commercially-available kits according 

to manufacturer instructions. Both CRP and IL-6 assays showed acceptable inter-assay CVs (2.1-

12.3%). More details are provided in Supplemental Materials. Both IL-6 and CRP values were 

natural log-transformed to adjust for the positive skew in the data. Finally, given the significant 

correlation between IL-6 and CRP in the present sample (r=0.63, p<0.001) and the known 

physiological association (i.e., IL-6 can stimulate the production of CRP), the natural log values 

of IL-6 and CRP were standardized and averaged to create a composite inflammation score to 

assess the combined associations between these inflammatory markers and neural activity. See 

Supplementary Materials for exploratory analyses separated by inflammatory markers. 

fMRI task. For the fMRI task (data from which are also published in Heller et al., 2013; 

van Reekum et al., 2018), participants viewed 60 positive, 60 negative, and 60 neutral pseudo-

randomized images selected from the International Affective Picture System (IAPS; Lang et al., 

2008) for five runs (see Supplementary Materials for list of IAPS images used). The stimuli were 

matched across valence categories for complexity, social content, arousal, and luminosity. Each 

trial progressed as follows: a fixation crosshair was displayed for 1 second, followed by an IAPS 

image presented for 4 seconds, and then a blank screen intertrial interval (ITI) was displayed (M 



 

 

 

72 

length = 8.89 sec, range = 5.5-17.6 sec). Participants were instructed to indicate on a button box 

the valence (i.e., positive, negative, or neutral) of the image presented. After 40 out of 60 trials in 

each valence category, a neutral male face was presented for 0.5 seconds after the IAPS image 

was displayed. Because the current project focused on examining neural responses to the 

affective images, the face stimuli were coded as regressors of no-interest in analyses. Across 

runs, the order the valence of the images presented was consistent across participants, though the 

specific stimuli presented within each valence category were randomized across participants. 

fMRI data collection. Neuroimaging data for the current study were collected on a GE SIGNA 

3.0 Tesla high-speed MRI scanner with a standard clinical whole-head transmit-receive 

quadrature head coil. The blood oxygen level-dependent (BOLD) signal was acquired using a 

T2*-weighted gradient-echo echo-planar imaging (EPI) pulse sequence across five runs of 

approximately 8 minutes each. Each EPI acquired 30 sagittal slices that used the following 

parameters: TR=2,000 ms, TE=30 ms, flip angle=60º, field of view=240 mm, acquisition 

matrix=64x64, 4 mm slice thickness with 1 mm gap. A T1-weighted anatomical image was also 

collected using a T1-weighted inversion recovery fast gradient echo with the following 

parameters: acquisition matrix= 256 x 256, a field of view= 240 mm, with 124 x 1.1 mm axial 

slices. 

Data Analysis 

fMRI preprocessing and analysis. Neuroimaging data were preprocessed utilizing an in-

house pipeline. The fsl_motion_outliers program (Jenkinson, Beckmann, Behrens, Woolrich, & 

Smith, 2012) was used to identify artifacts and excessive motion. Motion spikes were included in 

each person-level general linear model (GLM) to control for motion exceeding 2mm. Further, 

runs with 2mm of framewise displacement for greater than 20% of volumes acquired were 
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excluded (N= 10; 0.03% of total runs). Next, a four-dimensional registration algorithm utilizing 

NiPy to conduct spatio-temporal transformations that simultaneously motion and slice-time 

corrected (Roche, 2011) was implemented. In two steps, this algorithm aligned all five functional 

images to a mean image computed after initial realignment. FSL's FLIRT algorithm coregistered 

T2*-weighted images to the T1-weighted images, which were then anatomically coregistered to 

each individual's high-resolution structural image. Images were nonlinearly registered to the 

Montreal Neurologic Institute's (MNI) standard space utilizing the Advanced Normalization 

Tools (ANTs) software (Avants et al., 2011). Finally, spatial smoothing was applied with a 

Gaussian kernel of 5-mm full width at half maximum. 

fMRI data were analyzed using FSL's FEAT (FMRI Expert Analysis Tool) Version 6.00. 

A general linear model (GLM) was constructed for each run per individual. The GLMs included 

regressors modeling the positive, negative, and neutral events, as well as the nuisance regressors 

of motion (i.e., each individual's six motion parameters and their first derivatives, and single-

point motion outliers) and the face events. For each run, a high-pass filter (100Hz) was applied to 

remove low-frequency drifts. Higher-level analyses were conducted utilizing FLAME stage 1 

(Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004), a fixed-effects GLM approach, to 

combine BOLD activation and differences in variance across runs. The two contrasts of interests 

were negative images versus neutral images and positive images versus neutral images. The 

whole-brain main effects for both contrasts (cluster-based threshold at z > 2.3, p < .05) are 

reported in the Results section. 

Regions-of-Interest Construction. A mask was constructed by combining meta-analytic 

maps of neural activation related to affective processing (Lindquist et al. 2016) and peripheral 

inflammation (Kraynak et al., 2018). The binary maps derived from the meta-analyses were 
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multiplied using fslmaths to create a mask that encompassed overlapping voxels from both of the 

meta-analyses. The regression analyses conducted in this study were restricted to the a-priori 

limited search space represented by the combined meta-analytic mask by specifying this as the 

pre-threshold mask in FEAT. Thus, regression analyses searched for significant clusters of 

activity within the search space that were associated with systemic inflammation, while 

controlling for covariates (see below for additional details).  

Next, this combined meta-analytic mask was used to guide the selection of ROIs for the 

functional connectivity analysis. Corticolimbic regions present in the mask included the 

amygdala, insula, hippocampus, thalamus, striatum, pallidum, and mPFC. The amygdala, insula, 

hippocampus, pallidum, and thalamus ROIs for connectivity analyses were derived from the 

Harvard-Oxford Subcortical Structural atlas (Desikan et al., 2006). The striatum mask was 

generated using the Oxford-Imanova Striatal Structural atlas (Tziortzi et al., 2014). The mPFC 

mask was generated using the Sallet Dorsal Frontal connectivity-parcellation atlas (Sallet et al., 

2013). ROI clusters 3 and 4, which consisted of Brodmann Areas 9 and 10 (Lieberman, Straccia, 

Meyer, Du, & Tan, 2019), were combined to create an mPFC mask.  

Regression Analyses Associating Levels of Inflammation with Neural Activity. Two 

general linear models were employed to assess the relationship between inflammation 

(composite of CRP and IL-6) and activity in clusters encompassed within the combined meta-

analytic mask when participants viewed positive (versus neutral) and negative (versus neutral) 

images. Consistent with prior work in this area (O'Connor et al., 2009), group-level regression 

models controlled for age and gender. Considering adipose tissue's role in systemic inflammation 

(Mohamed-Ali et al., 1997), body mass index (computed via measures of height and weight) was 

also included as a covariate. The higher-level models conducted for these analyses utilized 
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cluster-based thresholding at z > 2.3, p < .05. In conjunction with FSL FLAME 1, the correction 

parameters used in this study have been found to effectively decrease type II errors (Eklund, 

Nichols, & Knutsson, 2016).  

Functional Connectivity Analyses. Finally, functional connectivity analyses were 

conducted utilizing the Functional Connectivity Toolbox (CONN-Toolbox v.18.b; Whitfield-

Gabrieli and Nieto-Castanon, 2012). The CONN toolbox was used to perform ROI-to-ROI 

regression analyses to examine associations between inflammation and corticolimbic ROI 

connectivity during the two contrasts of interest. Trial onsets and durations were imported into 

the toolbox to implement the generalized Psychophysiological Interaction procedure (gPPI; 

McLaren, Ries, Xu, & Johnson, 2012). Following the standard CONN denoising pipeline, a 

simultaneous linear regression and temporal band-pass filtering procedure was conducted to 

remove the influence of non-neural variability in the data (Hallquist, Hwang, & Luna, 2013). The 

pipeline implemented an anatomical component-based noise correction process (aCompCor) to 

remove the first five principal noise components from white matter and cerebrospinal fluid. 

Twelve motion parameters, outlier scans, constant linear session effects, and constant task-

related effects were also included as regressors. Finally, temporal frequencies above 0.09 Hz and 

below 0.008 Hz were removed to minimize further the influence of physiological and motion 

sources of noise.  

While controlling for age, gender, and BMI, two separate models examined the 

association between inflammation and functional connectivity between all possible combinations 

of the seven ROIs while participants viewed negative (versus neutral images) and positive 

(versus neutral images). An analysis-wise false discovery rate (FDR) at p < 0.05 was 

implemented to correct for multiple comparisons.  
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Results 

Negative vs. Neutral Images 

Overall Neural Reactivity. Results from the whole-brain analysis for the negative versus 

neutral contrast identified three significant clusters (z > 2.3, p < .05). Two clusters extended from 

the lateral occipital cortex, through the middle temporal gyrus to the inferior temporal gyrus 

within both hemispheres (z = 5.98, k = 2794, p = 0.0001; z = 6.65, k = 2615, p = 0.0002). The 

final cluster extended from the left and right amygdala through to the right thalamus (z = 4.87, k 

= 2728, p = 0.0001). See Supplemental Table S1 for full details. 

Inflammation and Neural Reactivity. To examine the relationship between inflammation 

and neural reactivity to negative images, we ran regression analyses looking for clusters of 

activity within our search space mask to negative (vs. neutral) images that were significantly 

associated with the composite measure of inflammation, controlling for age, gender, and BMI. 

Contrary to hypotheses, we found no significant associations between levels of inflammation and 

activity in any clusters within the mask when participants viewed negative (vs. neutral) images. 

Inflammation and Functional Connectivity. Next, we conducted an ROI-to-ROI 

regression analysis to examine the relationship between inflammation and connectivity between 

the corticolimbic regions of interest in response to negative images. While controlling for age, 

gender, and BMI, inflammation was not significantly associated with connectivity between any 

of the ROIs (p-FDR>0.05).  

Positive vs. Neutral Images 

Overall Neural Reactivity. Results from the whole-brain analysis for the positive versus 

neutral contrast identified three significant clusters. One large cluster encompassed regions in the 

occipital cortex extending into the putamen, hippocampus, and amygdala (z = 7.49, k = 13,949, p 
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< 0.001). Another cluster was found in the vmPFC (z = 5.37, k = 1726, p = 0.0019). A final 

cluster extended from the cingulate gyrus through to the precuneus (z = 4.13, k = 1180, p = 

0.016). See Supplemental Table S2 for full details. 

Inflammation and Neural Reactivity. Next, we ran regression analyses looking for 

clusters of activity within our search space mask to positive (vs. neutral) images that were 

significantly associated with the composite measure of inflammation, controlling for age, gender, 

and BMI. There was a negative association between inflammation and activation in one cluster, 

such that higher levels of inflammation were associated with lower levels of activity in a cluster 

encompassing voxels in the anterior insula, amygdala, hippocampus, and temporal pole (peak 

coordinate: x= 30, y= -10, z=; z = 3.74, k = 515, p = 0.0134; see Figure 3.1). See Table 3.2 for 

more information regarding the regions encompassing the cluster. 
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Figure 3.1. The rendered image on the left depicts the cluster of voxels that showed a significant 

negative association between inflammation and neural activation to positive (versus neutral) 

images while controlling for age, gender, and BMI. The image on the right illustrates a 

scatterplot of the negative association between composite inflammation and activation in that 

cluster to the positive (versus neutral) images. 

 

Table 3.2 

 

Local Maxima within Significant Cluster Negatively Associated with Inflammation during 

Positive > Neutral Images 

  

Region x (mm) y (mm) z (mm) Z statistic 

Parahippocampal gyrus 30 -10 -32 3.74 

Insular cortex 44 14 0 3.6 

Inferior temporal gyrus 44 2 -32 3.51 

Temporal pole 34 12 -32 3.29 

Right amygdala 26 -3 -23 2.83 

 

Inflammation and Functional Connectivity. Next, we conducted an ROI-to-ROI 

regression analysis to examine the relationship between inflammation and connectivity between 
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the corticolimbic regions of interest in response to positive images. While controlling for age, 

gender, and BMI, the composite inflammation score was positively associated with bilateral 

hippocampus-mPFC connectivity (t(61)=3.68, p-FDR=0.028; see Figure 3.2).  

 

 

 

Figure 3.2. The scatterplot illustrates the positive association between inflammation and 

hippocampus-mPFC connectivity while viewing positive (versus neutral) images. 
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Discussion 

Results from the present study suggest that levels of peripheral inflammation are 

associated with differences in neural reactivity and connectivity while processing positive 

affective information among mid- to late-life adults. First, higher levels of peripheral 

inflammation were associated with lower activation in the amygdala, hippocampus, anterior 

insula, and temporal pole in response to positive images (vs. neutral). There were no associations 

between markers of inflammation and neural reactivity to negative images (vs. neutral). Second, 

the present study also found that greater inflammation was associated with stronger connectivity 

between the hippocampus and medial prefrontal cortex in response to positive images (vs. 

neutral). Together, these results add to a growing literature in health neuroscience documenting 

associations between peripheral inflammation and neural responses to social and affective 

information. The present results extend past findings by looking at an older sample of individuals 

and novel affective reactivity paradigm while also exploring the associations between 

inflammation and task-based functional connectivity. 

Our first set of findings showing that greater inflammation is associated with lower 

neural activity in the amygdala, hippocampus, insula, and temporal pole activity in response to 

positive stimuli is consistent with a growing literature documenting associations between 

inflammation and blunted neural reactivity to positive stimuli (Capuron et al., 2012; Eisenberger, 

Berkman, et al., 2010; Moieni et al., 2019). Lower reactivity to positive images in canonical 

regions implicated in the detection of and attention to salient stimuli suggests that less sensitivity 

to positive stimuli may be linked to higher low-grade inflammation. One possible psychological 

interpretation of these findings is that inflammation may blunt neural sensitivity to positive 

experiences, which may generally reduce one's interest in positive information and motivation to 
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engage with positive stimuli (Eisenberger et al., 2017), perhaps in an effort to conserve 

metabolic resources. Although we do not see inflammation-related differences in activity in the 

regions implicated in processing reward (e.g., basal ganglia) that other studies have found 

(Capuron et al., 2012; Eisenberger et al., 2010; Felger & Miller, 2012), our findings are 

consistent with the general idea that inflammation is related to lower levels of neural activation 

to positive stimuli. Further, the present findings extend previous literature in this area, which has 

focused almost exclusively on neural responses to monetary reward tasks (c.f., Inagaki et al., 

2015; Muscatell et al., 2016), to document that inflammation is also associated with lower levels 

of activity in temporal-lobe regions in response to a wider variety of positive stimuli (i.e., 

pictures of positive scenes). Thus, the present results are consistent with prior research showing 

that inflammation is associated with reduced neural responsivity to positive stimuli.  

Surprisingly, we did not find an association between levels of peripheral inflammation 

and corticolimbic activation to negative images. This lack of association is inconsistent with 

prior research indicating that reactivity to negative stimuli is positively associated with 

inflammation (e.g., Gianaros et al., 2014; Inagaki, Muscatell, Irwin, Cole, & Eisenberger, 2012; 

Muscatell, Eisenberger, Dutcher, Cole, & Bower, 2016). Though null findings should be 

interpreted with caution, differences between the current study and past work in this area provide 

potential explanations for this lack of association. For example, others have found that neural 

activity to negative stimuli varies as a function of participant age (Mather, 2012), and the present 

study utilized a mid- to later-later life sample, whereas most other work on associations between 

inflammation and neural responses to negative stimuli have utilized younger samples (Gianaros 

et al., 2014; Swartz, Prather, & Hariri, 2017). Thus, age differences in participants may partially 

explain the divergence between the present findings and past work in this area. Additionally, 
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others have found that inflammation differentially influences neural activation to social versus 

non-social stimuli (Inagaki, Muscatell, Irwin, Cole, & Eisenberger, 2012) and most of the work 

in this area examines neural responses to negative social stimuli (e.g., threatening faces, negative 

social feedback; Inagaki, Muscatell, Irwin, Cole, & Eisenberger, 2012; Muscatell et al., 2016; c.f. 

Gianaros et al., 2014). To conserve power, neural activity to social and non-social images were 

collapsed in this study, which may also explain the lack of expected associations. Additional 

work is needed to examine whether there is indeed no association between low-grade 

inflammation and neural reactivity to negative information broadly, or if specific characteristics 

of the present sample or task contribute to the lack of association observed in the current 

analysis. 

In response to the positive stimuli, inflammation was positively associated with 

connectivity between the hippocampus and the medial prefrontal cortex. These findings are 

consistent with past literature showing that inflammation is associated with differential 

corticolimbic connectivity (Felger et al., 2016; Kraynak, Marsland, Hanson, & Gianaros, 2019; 

Kraynak et al., 2018), although the specific pattern of positive associations between 

inflammation and hippocampal-cortical connectivity conflicts with findings from several resting-

state studies. Specifically, among healthy volunteers, markers of inflammation have been shown 

to be negatively associated with connectivity among corticolimbic regions (Kraynak et al., 2019) 

and regions in the emotion regulation, central executive, and default mode networks (Dev et al., 

2017; Marsland, Kuan, et al., 2017; Nusslock et al., 2019). Thus, there may be differential 

associations between inflammation and corticolimbic connectivity depending upon if the 

connectivity is measured at rest, or in response to a task.  
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Not only does the current study suggest the need for studies exploring task-based 

functional connectivity and inflammation, but it also expands our understanding of the neuro-

immune influences on affective reactivity. Results from the current study support the preclinical 

and clinical studies that implicate the hippocampus as a critical node in neuroinflammatory 

processes (Colasanti et al. 2016; Williamson and Bilbo 2013). Inflammation has been shown to 

alter hippocampal neurogenesis (Giannakopoulou et al. 2013), and synaptic plasticity (Nisticò et 

al. 2013), which may extend to the inflammation-related differences in hippocampal activity and 

connectivity observed in the current study. Additionally, prior work suggests that hippocampus-

mPFC connectivity is critical for cognitive and emotion regulation as well as spatial and 

emotional memory processes (Jin & Maren, 2015). Further, inflammation has also been 

implicated in emotion and cognition-related impairment (Appleton, Buka, Loucks, Gilman, & 

Kubzansky, 2013; Patki, Solanki, Atrooz, Allam, & Salim, 2013). Though speculative, these 

results suggest the possibility of a neuro-immune pathway whereby affective and memory-

related disruptions relate to inflammatory processes via differences in hippocampal-medial 

prefrontal connectivity. Although this study provides initial evidence regarding task-based 

corticolimbic connectivity and inflammation, future studies should explore the links between 

task-based neural connectivity, inflammation, and the behavioral sequelae to expand our 

understanding of the neuro-immune influences on social and affective processes.  

Multiple bidirectional physiological pathways provide plausible mechanisms for the 

observed links between systemic inflammation and neural activity/connectivity (Irwin & Cole, 

2011). First, neural activity can alter peripheral inflammation via "top-down," efferent pathways. 

Corticolimbic activity in response to negative stimuli can elicit the activation of the sympathetic 

nervous system and release of catecholamines, which can then lead to greater inflammation 
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(Sternberg 2006; Nusslock & Miller, 2016). Likewise, more positive affect has been linked with 

increases in cardiac vagal tone (Kok et al. 2013), and the vagus nerve can dampen pro-

inflammatory responses (Pavlov and Tracey 2012; Metz and Tracey 2005). Second, peripheral 

inflammation can alter neurotransmitter, neuron, and cerebral microvasculature functioning via a 

"bottom-up," afferent pathway. Cytokines such as IL-6 can reach the central nervous system 

through active transport, binding to receptors on peripheral nerves (e.g., the vagus nerve), and by 

crossing the blood-brain barrier in areas of increased permeability (Dantzer, Konsman, Bluthé, & 

Kelley, 2000; Dantzer, O'Connor, Freund, Johnson, & Kelley, 2008). As such, systemic 

inflammation may affect corticolimbic function by entering the central nervous system to alter 

neurotransmitter (e.g. dopamine) and neuron functioning (Capuron et al., 2012; Jennifer C Felger 

& Treadway, 2017; Menard et al., 2017). Considering the multiple differing routes by which 

inflammation and neural activity relate, the precise mechanism linking inflammation and neural 

responses in this study is unknown. Future work is needed to gain clarity on the specific 

pathways linking inflammation and neural reactivity to affective information. 

The present findings should be interpreted in the context of the study's limitations. First 

and foremost, the current study was cross-sectional, which precludes concluding the direction of 

the association between neural responses and peripheral inflammation. Second, as with many 

fMRI studies, our project has a relatively small sample size (N=66), and thus future work with 

larger samples is needed to replicate the findings observed here. Finally, only two markers of 

systemic inflammation (i.e., CRP and IL-6) were explored in this analysis. Other studies that 

explore how neural activation varies as a function of a diverse set or pattern of inflammatory 

markers would be an important contribution to future literature.  
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In sum, the present project utilized publicly-available data from the MIDUS study to 

bring together methods from psychoneuroimmunology and affective neuroscience to explore a 

question at the core of health neuroscience research (Erickson, Creswell, Verstynen, & Gianaros, 

2014): How are physiological processes implicated in disease development associated with 

neural functioning? The results are consistent with theorizing on the neuro-immune network 

(Nusslock & Miller, 2016), suggesting that inflammation in the periphery is associated with 

neural activity in and connectivity between regions that are critical for supporting successful 

social behavior and emotional functioning. More broadly, the present findings highlight the 

utility of health neuroscience approaches to map the connections between the brain and the body, 

showing that physiological processes such as inflammation are related to how our brains respond 

to affective information. As such, physiologic functioning may represent an often-overlooked 

contributor to and consequence of social and affective processes that social cognitive and 

affective neuroscience should work to incorporate into future empirical work and theoretical 

models of functioning within the social brain. 
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CHAPTER 4: INCREASES IN IL-6 IN RESPONSE TO THE INFLUENZA VACCINE 

PREDICTS DECREMENTS IN RESPONSE INHIBITION 

Introduction 

 
Both clinical and pre-clinical studies have demonstrated that sustained low-grade 

inflammation is associated with cognitive impairments (Lai et al., 2017; Su et al., 2019). Other 

studies report that chronic inflammation may even expedite age-related neurodegenerative 

diseases (Gorelick, 2010; Bettcher & Kramer, 2014; Beydoun et al., 2018) with increased levels 

of peripheral markers of inflammation accounting for a 45% increased risk for all-cause 

dementia (Koyama et al., 2012). While the association between inflammation and cognition has 

received much attention in cross-sectional studies, fewer studies have experimentally explored 

how acute increases in inflammation are related to cognitive function in humans. Of the few 

experimental studies exploring these associations, there are mixed findings regarding whether 

acute inflammation impairs (Capuron et al., 2001; Meyers & Abbruzzese, 1992) or improves 

(Cohen et al, 2003; Grigoleit et al., 2011) performance on cognitive tasks. Thus, more 

mechanistic work is needed to fully delineate the effects of acute increases in inflammation on 

cognitive function. 

One potential reason for the mixed findings in experimental studies exploring links 

between acute inflammation and cognitive function may be due to a lack of precision in the 

measures of cognitive function within this literature. Within this area, neuropsychological 

batteries are the most frequently used measures of cognitive function (Fard et al., 2022). While 

informative, these tests are designed to identify significant pathology in cognition more broadly 
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(e.g., following stroke) and are less effective at detecting more subtle or specific changes in 

cognitive functioning of the sort that are likely to accompany short-term increases in 

inflammation. The trail making test is one example of a common neuropsychological test 

administered to assess several cognitive abilities (Salthouse, 2012). In this test, individuals are 

tasked with connecting a series of numbers that are presented in a randomized order. 

Performance on the task, indicated by completion speed and accuracy, are used to assess several 

cognitive processes including an individual’s ability to sustain attention, alter psychomotor 

speed, plan and execute tasks, and demonstrate cognitive flexibility. While neuropsychological 

tests may aide in more general clinical assessment, there is a need for more granular studies that 

aim to explore links between acute inflammation and specific subcomponents of cognitive 

function.  

One of the most important facets of cognitive function is executive functioning, or the 

ability to plan, adapt, maintain, and manipulate information (Gilbert & Burgess, 2008). A core 

sub-component of executive functioning is response inhibition. Like the ability to stop at traffic 

lights, response inhibition is important for completing everyday tasks as it suppresses prepotent 

but unwanted actions that may interfere with higher-order cognitive or motor goals. Furthermore, 

response inhibition is important for attentional control, as inhibiting responses to distracting 

stimuli is also important for completing cognitive and motor goals. Given how central the ability 

to discern and inhibit unnecessary responses is to daily function, response inhibition is 

considered a fundamental component of executive function (Barkley, 1997). Moreover, deficits 

in response inhibition are implicated in several neuropsychiatric disorders (Mostofsky & 

Simmonds, 2008), such as attention-deficit hyperactivity disorder (ADHD) and dementia 

(Migliaccio et al., 2020), and importantly, effective response inhibition facilitates self-regulatory 



 

 

 

95 

health behaviors (Papies et al., 2008; Nederkoorn et al., 2010). As a core sub-component of 

executive function that has important implications for effective functioning in daily life, response 

inhibition is thus a critical cognitive process to examine when exploring the links between 

inflammation and executive function. However, to our knowledge no known studies have 

examined link between inflammation and response inhibition3.  

Another factor that influences response inhibition and is affected by inflammatory 

processes is sensitivity to rewards (Herrera et al., 2019). Prior work has demonstrated that 

reward modulates responses on inhibition tasks (Chiew et al., 2016; Geier &  Luna, 2012; Wang 

et al., 2018) and a recent meta-analysis clarified that the prospect for rewards significantly 

improve inhibition (Burton et al., 2021). Although there was an overall positive association 

between reward and response inhibition, other studies found that characteristics of the reward 

may differentially alter the link between reward and performance on response inhibition tasks. 

For example, other studies reported that the performance on response inhibition tasks are worse 

when the magnitude of the reward is greater (Freeman et al., 2014; Freeman & Aron, 2016). At 

higher magnitudes, rewards may intensify difficulty in inhibiting the prepotent response, 

suggesting a conflict between a natural tendency to approach rewards and the task demands of 

withholding such approach responses.  

Interestingly, inflammation also alters sensitivity to rewards. Inflammation is generally 

associated with reductions in the sensitivity to rewards (Frenois et al., 2007; Shen et al., 1999; 

Eisenberger et al., 2010), although recent findings suggest some nuance depending on if the 

reward is non-social (e.g., winning money) or social (e.g., receiving positive feedback). For 

 
3 While participants in Brydon et al. (2008) and Handke et al. (2021) completed response inhibition task, 

Stroop and GNG respectively, authors did not measure response inhibition as they reported associations 

with reaction time (vs performance and accuracy) speaking to psychomotor function and not executive 

functioning specifically. 
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example, inflammation may enhance reward-related neural sensitivity to positive social cues 

(Inagaki et al., 2015; Muscatell et al., 2016) even while decreasing reward-related neural 

sensitivity to monetary rewards (Eisenberger et al., 2010). Thus, the presence of rewards and the 

type of reward may interact with levels of inflammation to modulate performance on response 

inhibition tasks, though this is yet to be explored empirically. 

Not only might inflammation influence sensitivity to rewards differentially based on the 

type of reward to be earned for good task performance, but also based on the magnitude of 

reward at stake. Indeed, pre-clinical work has found that inflammation alters motivated behavior 

depending on the potential magnitude of the gain (Vichaya et al., 2014). Following an endotoxin 

challenge, rodents chose to expend effort to obtain food rewards only when it was highly 

advantageous. This was demonstrated by an overall reduction in energy expenditure among those 

exposed to an inflammatory challenge, but an increase in effort for more calorie-rich rewards. 

These findings suggest that inflammation may also alter the perceived value of an incentive to 

shift behavior. Along with the variable impact of reward magnitude on response inhibition tasks, 

these findings suggest that reward magnitude may be an especially relevant factor when 

exploring the association between inflammation and performance on response inhibition tasks. 

Given these nuances in links between cognitive function and inflammation and rewards, 

the current study aimed to explore whether inflammation alters the impact of reward on response 

inhibition as a function of reward type and magnitude. To examine this, participants were 

exposed to a mild inflammatory challenge (i.e., receipt of influenza vaccine) and completed a 

rewarded go/no-go (GNG) before and after the vaccine. Participants provided blood samples to 

measure IL6 before and after being administered the influenza vaccine. For this study, 

participants also completed a modified GNG with four reward types: high social, low social, high 
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money, and low money outcomes. Participants also provided blood samples to measure change 

in proinflammatory levels (interluekin-6; IL-6) before and after the influenza vaccine was 

administered. Overall, we assessed whether an inflammatory challenge and/or reward type 

modulated performance on a response inhibition task. Specifically, we examined whether greater 

inflammatory reactivity would be associated with impaired response inhibition and whether the 

magnitude or sociality of the reward would moderate that association. 

Methods 

Participants 

Fifty-five undergraduate students (37 biologically female; Mage=20.06 years, SDage=1.34) 

at a southeastern university participated in the study from January to April 2022. Participants 

primarily identified as biologically female (N=37) and White American (43%). Thirty percent 

identified as Asian American, 9% as Latinx or Latin American, 2% as Black American, and 16% 

identified as multiracial. Participants were recruited via postings to class listservs and on social 

media, in which they were first directed to an online eligibility questionnaire. Inclusion criteria 

were similar to prior studies using the influenza vaccine paradigm (Jolink et al., 2022; Boyle et 

al., 2019; Kuhlman et al., 2018). Participants were eligible for the study if they were between 18 

and 25 years of age and had a non-familial close other in their lives whom they saw every day. 

Participants were excluded if they (a) had already received the annual influenza vaccine or had 

had influenza that season, (b) used tobacco products, (c) used mood or immune-altering 

medications (e.g., anti-depressants, antihistamines), (d) had a current psychiatric diagnosis or 

reported history of depression or anxiety, (e) had any major medical condition (e.g., diabetes, 

asthma), (f) had had Guillain-Barre Syndrome (GBS), (g) were allergic to the influenza vaccine 

or ingredients present in the vaccine (e.g., eggs), or (h) had a current illness. Because the study 
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was conducted during the COVID-19 pandemic, participants were also screened for self-reported 

exposure to COVID-19 or any current respiratory symptoms. 

Experimental Design 

Data were collected as part of a larger study examining the relationship between 

inflammatory reactivity to the influenza vaccine and social and affective processes. Eligible 

participants consented via Zoom and were scheduled for two in-lab study sessions, one before 

and one after receiving the annual influenza vaccine. Given evidence that IL-6 levels peak 

approximately 24 hours after influenza vaccination (Radin et a., 2021), the post-vaccine session 

was scheduled to take place approximately 24 hours after the pre-vaccine session. Before the 

pre-vaccine session, participants provided photos of one close other who they identified as a 

consistent support figure for them (see photo details below). Both sessions were similar in that 

participants completed several computer tasks and surveys and provided a blood sample to be 

assayed for levels of inflammation. The distinguishing feature between sessions was that at the 

end of the pre-vaccine session, participants received the 2022 influenza vaccine. The vaccine 

was a 0.5 mL single-dose of GSK's Flulaval Quadrivalent and included the following virus 

strains: A/California/07/2009 (H1N1), A/Texas/50/2012 (H3N2), B/Massachusetts/02/2012 

(Yamagata lineage), B/Brisbane/60/2008 (Victoria lineage).  

Measures 

Close and Stranger other photos. To participate in the study, participants were asked to 

choose and provide four photos of a close other who "is not a family member and you see almost 

every day (close friend, roommate or romantic partner); this is someone in your life you can go 

to for help or for comfort." They were told that they would be asked questions about this person 

throughout the study. Because participants could select their choice of a support figure, the 
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selections spanned various relationship types, with the majority choosing a close friend or 

romantic partner. A binary relationship type variable was included as a covariate on non-interest 

in analyses to explore whether inflammation covaried with accuracy on the task regardless of 

relationship type. Prior to participant arrival, a stranger other photo was selected by the 

researcher that matched the close other’s gender and ethnicity. This photo was selected to be 

used as the low-magnitude social incentive. One of the close-other photos was used as an 

incentive in the response inhibition task. 

Inflammation. We examined inflammatory reactivity by comparing levels of interleukin-

6 (IL-6) in dried blood spots before and after the vaccine. In previous studies examining within-

subject variations in inflammation in response to the influenza vaccine, IL-6 exhibits consistent 

increases after the vaccination (Jolink et al., 2022; Christian et al., 2013; Segerstrom et al., 2012; 

Tsai et al., 2005; Boyle et al., 2019; Kuhlman et al., 2018; 2020; Radin et al., 2021). At both 

blood draws, approximately 20uL of blood was collected by finger prick using Neoteryx's Mitra 

Clamshell devices (https://www.neoteryx.com/mitra-clamshell-blood-collection-

device?hsLang=en). Samples were dried overnight and stored in a -80 freezer until study 

completion. Assays were conducted in triplicate using a high-sensitivity ELLA immunoassay 

platform to assess IL-6 levels. All samples were detectable, ranging from 0.56–2.37 pg/mL pre-

vaccine and 0.59–2.4 pg/mL post-vaccine. Inter-assay CVs were < 12%. Three IL-6 values were 

more than 3 SDs above the mean; those values were winsorized and retained in the data for 

analyses. All IL-6 values were log-transformed to adjust for the positive skew in the data. 

Go/No-Go Task. We used the Go/No-Go task (GNG) to measure response inhibition. 

This task has typically been used to measure inhibitory behavior in ADHD (Bezdjian et al., 

2009) and health behaviors like smoking, dieting (Meule et al., 2014), and substance use 
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(Kaufman et al., 2003). This task has also been modified to explore the interaction between 

incentives and inhibitory behavior (e.g., Lydon et al., 2015). In this GNG task, participants were 

instructed to press the 'J' key, using their dominant hand, as fast as possible when a blue circle 

appeared on the screen (“go” trials). However, they had to inhibit the pre-potent “go” response 

and NOT press the key when an orange circle appeared on the screen (“no-go” trials). Each 

participant completed 288 trials per session, of which 83.33% (N=240) were go trials and 

16.67% (N=48) were no-go trials for each session. To promote sustained attention throughout the 

task, trial length varied between 250-500ms by 50ms intervals.  

At the start of each block of the task (which was randomized across participants and 

sessions), participants were informed whether accurate performance on that block would earn 

them money (i.e., monetary reward condition) or time viewing an image of a person (i.e., social 

reward condition). The magnitude of reward to be earned was also varied across blocks. For the 

monetary reward blocks, participants could either win $0.08 (high-monetary block) or $0.01 

(low-monetary block) for correctly pressing for go cues or $0.25 (high-monetary block) or $0.03 

(low-monetary block) for correctly withholding a response for no-go cues. In the social reward 

blocks, participants could either win time viewing a picture of their smiling close other (high-

social block) or a smiling stranger (low-social block), depending on their accuracy. The smiling 

stranger pictures were matched on gender and ethnic presentation to the close other photos the 

participants provided. At the end of each block, participants received either a message with the 

total money they earned for that block or had the chance to view the picture of the close other or 

stranger. There were 36 trials per block, and each of the four block types (i.e., high monetary, 

low monetary, high social, low social) was administered twice.  
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Data Analysis 

All analyses were conducted using mixed effects logistic regression models using the 

glmer package in R. This approach allowed us to avoid aggregation and to model individual trial 

performance nested within the same participant. First, we evaluated task data to explore whether 

the reward manipulations were successful and differentially related to performance on the task. 

We explored whether there were significant differences in performance on the GNG task as a 

function of reward sociality (i.e., monetary or social), reward magnitude (i.e., high or low), and 

trial type (i.e., go or no-go trials). Additionally, we computed dprime (d’) based on signal 

detection theory to assess overall discriminability success between go and no-go stimulus in the 

task using the psycho package in R. Furthermore, we also explored differences in reaction time 

and reaction time variability among successful go trials. 

For the first model, accuracy on each trial from both the pre- and the post-vaccine 

sessions was treated as the criterion variable, and participant ID as the random intercept. This 

model explored whether there were significant differences in commission errors (incorrectly 

responding to the no-go cue) or omission errors (failure to respond to the go cues) by reward 

sociality, reward magnitude, as well as the 2-way (i.e., trial type by reward sociality; trial type by 

reward magnitude) and 3-way (i.e., trial type by reward sociality by reward magnitude) 

interactions between these factors. For d’, reaction time, and reaction time variability, a similar 

model was conducted; however, the trial type factor was omitted. Thus, the overall models 

included the main effects of reward sociality and reward magnitude, as well as the 2-way 

interaction (i.e., sociality by magnitude).  

Next, we examined whether IL-6 reactivity to the vaccine, which we computed as the 

difference between post-vaccine IL-6 and pre-vaccine IL-6, was significantly associated with 
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accuracy on the GNG task. Given that our primary interest was the association between IL-6 

reactivity and accuracy, we tested two- and three-way interactions between IL-6 reactivity and 

reward sociality and/or reward magnitude. Specifically, we explored the main effect of IL-6 

reactivity on accuracy, as well as the 2-way interactions between IL-6 reactivity and the main 

task factors including trial type, reward sociality, and reward magnitude. As a final contrast, we 

also explored the interaction between IL-6 reactivity, reward sociality and reward magnitude. A 

similar analysis was conducted for the d’, reaction time, and reaction time variability task 

outcomes. We again explored the main effect of IL-6 reactivity on the additional task outcomes, 

as well as the 2-way interaction between IL-6 reactivity and the main task factors including 

reward sociality and reward magnitude. The interactions between IL-6 reactivity, reward 

sociality and reward magnitude were also explored on the remaining task outcomes. Significant 

interactions were probed using the interactions package in R (Long, 2019). 

Model covariates. Because pre-vaccine IL-6 levels and IL-6 reactivity were significantly 

negatively correlated (r = -0.66, p<.001) and following recommended best practices when using 

change scores in analyses (Llabre et al., 1991; O'Connell et al., 2017), we controlled for pre-

vaccine IL-6 levels in reactivity models. This control allowed us to isolate associations with 

change in IL-6 to the vaccine. To explore whether IL-6 reactivity was uniquely related to task 

performance after the vaccine, baseline accuracy during the pre-vaccine session was included as 

a predictor of non-interest in our reactivity model to account for individual level differences in 

response inhibition ability. We also accounted for close-other relationship type in our analyses 

by including relationship type (close friend N = 41 or romantic partner N = 14) as an additional 

covariate. Finally, body mass index (BMI) and assigned sex at birth (ASAB) were added to both 

models as level 2 covariates (O'Connor et al., 2009).  
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Results 

Effects of Reward Type and Magnitude on Overall Go/No-Go Task Performance 

 Accuracy. We first examined overall accuracy on the GNG task across both sessions. 

Participants accurately responded correctly on 70.95% of trials (SD=0.08) pre-vaccine and 

74.04% of trials post-vaccine (SD = .07) on the trials (see table 1 for overall task performance).  

Table 4.1. Overall Performance Outcomes for GNG Task 

Metric Overall Pre-vaccine Post-vaccine 

Accuracy 0.81 0.79 0.82 

Commission error rate 0.69 0.70 0.67 

Omission error rate 0.19 0.21 0.18 

dprime 0.39 0.30 0.48 

Go Reaction Time 256.26 262.89 249.64 

Go Reaction Time Variability 62.39 58.50 66.29 

 

Replicating the standard go/no-go effect, analyses revealed a main effect of trial type (see table 

4.1 for full details) such that participants had lower accuracy on the no-go trials versus the go 

trials. There were no significant main effects of reward type or magnitude on accuracy (i.e., see 

Table 4.2 for details). However, there was a sociality-by-trial type interaction, whereby there 

were significant differences in performance on no-go trials by the sociality of the outcome. 

Participants produced fewer errors of commission (i.e., were more likely to NOT press the button 

on no-go trials) when the reward to be earned was social versus monetary. There was also a 

marginal interaction between reward magnitude and trial type, such that participants completed 

fewer errors of commission (i.e., were more accurate on no-go trials) during low versus high gain 
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conditions. However, there was no sociality-by-magnitude effect on accuracy. Finally, there was 

not a 3-way interaction between sociality (i.e., social vs. monetary), magnitude (i.e., high vs. 

low), and trial type (i.e., go vs. no-go trials). 

 

Table 4.2. Task Effects of Reward Type and Magnitude on GNG Accuracy 

 Estimate 

Std. 

Error z value Pr(>|z|) 

(Intercept)** 1.41 0.48 2.91 0.00 

ASAB 0.17 0.12 1.40 0.16 

BMI -0.02 0.02 -1.01 0.31 

Session** 0.19 0.03 6.62 3.49E-11 

Relationship type 0.06 0.14 0.46 0.65 

Sociality 0.02 0.05 0.41 0.68 

Magnitude -0.05 0.05 -1.05 0.29 

Trial type** -2.53 0.07 -35.07 1.94E-269 

Sociality by Magnitude -0.03 0.06 -0.50 0.62 

Sociality by Trial type** 0.22 0.10 2.16 0.03 

Magnitude by Trial type  0.19 0.10 1.87 0.06 

Sociality by Magnitude by Trial type 0.07 0.14 0.49 0.62 

**Denotes significant at p<0.05; ASAB=assigned sex at birth; BMI=body mass index 

 

Dprime. We examined overall dprime on the GNG task across both sessions. Participants 

demonstrated an average dprime of 0.30 pre-vaccine and 0.48 post-vaccine on the trials (see 

table 4.1 for overall task performance). There was a significant main effects of reward type (b= 

0.15, SE=0.07, p=0.03), whereby dprime was greater during social versus non-social trials. There 

was no main effect of magnitude on dprime (p=0.75). Furthermore, the 2-way interaction 

between sociality and magnitude on dprime was also not significant (p=0.70). 

Reaction Time. We examined reaction time difference on the correct go trials across 

both sessions of the task. Participants demonstrated an average reaction time of 262.89 ms pre-

vaccine and 249.64 ms post-vaccine on the trials (see table 4.1 for overall task performance). 
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There was a significant main effects of reward type (b= -4.84, SE=1.17 , p<0.001) on reaction 

time, whereby participants were faster to respond on social versus non-social go trials across 

both sessions. There was also significant main effects of reward magnitude (b= -2.53, SE=1.18 , 

p=0.03) on reaction time, whereby participants were faster to respond on low versus high reward 

go trials across both sessions. Finally, the 2-way interaction between sociality and magnitude on 

reaction time was also not significant for go trials across both sessions (p=0.19). 

Reaction Time variability. Finally, we examined differences in reaction time variability 

on the correct go trials across both sessions of the task. Participants demonstrated an average 

reaction time variability of 58.5 ms pre-vaccine and 66.29 ms post-vaccine on the trials (see table 

1 for overall task performance). There was a significant main effects of reward type (b= 3.13, 

SE=0.23, p<0.001) on reaction time variability, whereby participants were more variable in their 

responses on social versus non-social go trials across both sessions. There was also significant 

main effects of reward magnitude (b= 2.24, SE=0.23 , p<0.001) on reaction time variability, 

whereby participants were more variable in their responses on low versus high reward go trials 

across both sessions. Finally, the 2-way interaction between sociality and magnitude on reaction 

time was also not significant for go trials across both sessions (p=0.21). 

Effects of Inflammatory Reactivity on Go/No-Go Accuracy 

Accuracy. Next, we conducted a mixed effects logistic regression model to examine 

whether IL-6 reactivity to the influenza vaccine (i.e., change in IL6 pre- to post-vaccine) 

predicted accuracy on the GNG task. There was no main effect of IL-6 reactivity on overall task 

accuracy (p>0.05; see Table 4.3). However, there was a significant trial type by IL-6 reactivity 

interaction on GNG task accuracy. Specifically, greater IL-6 reactivity to the vaccine was 

associated with poorer performance on the NG trials. In other words, participants who 
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experienced larger increases in IL-6 made more commission errors during the NG trials (i.e., 

they were less likely to inhibit the button press on NG trials see Figure 4.1). There were no other 

significant 2- or 3- way interactions between IL-6 reactivity and incentive type or magnitude (see 

Table 3 for full details).  

Table 4.3. IL-6 Reactivity and Accuracy on Rewarded GNG 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept)** -1.15 0.42 -2.72 0.01 

IL6_change 0.62 0.42 1.48 0.14 

ASAB 0.00 0.08 0.05 0.96 

BMI -0.01 0.01 -1.22 0.22 

Relationship type -0.04 0.09 -0.42 0.67 

Session 1 accuracy** 3.58 0.44 8.14 3.87E-16 

Session 1 IL6 -0.17 0.37 -0.45 0.65 

IL6_change by Sociality -0.05 0.40 -0.13 0.90 

IL6_change by Trial type** -5.16 0.66 -7.84 4.34E-15 

IL6_change by Magnitude 0.09 0.40 0.22 0.83 

IL6_change by Sociality by Magnitude -0.37 0.56 -0.66 0.51 

IL6_change by Sociality by Trial type 0.59 0.92 0.64 0.52 

IL6_change by Magnitude by Trial type -0.14 0.93 -0.15 0.88 

**Denotes significant at p<0.05; ASAB=assigned sex at birth; BMI=body mass index 
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Figure 4.1. Plot of interaction between IL-6 reactivity and trial type accuracy 

.  

 

 

 Dprime. Next, we conducted a mixed effects regression model to examine whether IL-6 

reactivity to the influenza vaccine (i.e., change in IL6 pre- to post-vaccine) predicted dprime on 

the GNG task following the vaccine. There was no main effect of IL-6 reactivity on dprime 

(p=0.39). Moreover, there were no other significant 2- or 3- way interactions between IL-6 

reactivity and incentive type or magnitude (ps>0.05) on dprime. 

Reaction time. Again, we conducted a mixed effects regression model to examine 

whether IL-6 reactivity to the influenza vaccine (i.e., change in IL6 pre- to post-vaccine) 

predicted reaction time on the GNG task following the vaccine. There was no main effect of IL-6 
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reactivity on reaction time (p=0.84). Moreover, there were no other significant 2- or 3- way 

interactions between IL-6 reactivity and incentive type or magnitude (ps>0.05) on reaction time. 

Reaction time variability. Finally, we conducted a mixed effects logistic regression 

model to examine whether IL-6 reactivity to the influenza vaccine (i.e., change in IL6 pre- to 

post-vaccine) predicted reaction time variability on the GNG task following the vaccine. There 

was no main effect of IL-6 reactivity on overall reaction time variability (p>0.05; see Table 4.4).  

Table 4.4. IL-6 Reactivity and Reaction Time Variability 

 Estimate Std. Error df t value Pr(>|t|) 

(Intercept) 9.87 17.69 44.00 0.56 0.58 

IL-6 change 20.33 15.41 44.30 1.32 0.19 

ASAB 10.05 12.33 44.00 0.82 0.42 

BMI -0.63 0.49 44.00 -1.29 0.20 

Session 1 IL-6 10.07 16.03 44.00 0.63 0.53 

Session 1 Reaction Time 

Variability** 
0.92 0.11 43.99 8.22 0.00 

IL-6 change by Sociality** 15.34 1.50 10031.05 10.21 0.00 

IL-6 change by Magnitude** 4.22 1.49 10031.02 2.83 0.00 

IL-6 change by Sociality by 

Magnitude** 
-17.51 2.12 10031.07 -8.25 0.00 

**Denotes significant at p<0.05; ASAB=assigned sex at birth; BMI=body mass index 

However, there was a significant IL-6 reactivity by sociality interaction (see Table 4.4). 

Simple slopes analyses revealed that the slope for IL-6 reactivity was significantly different for 

social trials (b=34.93, SE=15.40, p=0.03) but not monetary trials (b=24.94, SE=15.40, p=0.11). 

In other words, greater IL-6 reactivity was associated with more reaction time variability for 

social incentive trials specifically (see figure 2).  
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Figure 4.2. Plot of interaction between IL-6 reactivity and sociality on reaction time 

variability. 

 

 There was also a significant IL-6 reactivity by magnitude interaction. Simple slopes 

analyses did not specify whether the associations with IL-6 reactivity were specific to high 

versus low incentive trials (ps>0.10). Visual inspection of the interaction plots suggests that at 

higher levels of IL-6 reactivity, low and high incentive trials were both associated with greater 

reaction time variability (see figure 4.3).  
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Figure 4.3. Plot of interaction between IL-6 reactivity and magnitude on reaction time 

variability. 

 

The exploratory 3- way interaction between IL-6 reactivity, incentive type, and 

magnitude was also significant (see table 4). Simple slopes analyses revealed that the slope for 

IL-6 reactivity was significantly different for high social incentive trials (b=34.93, SE=15.40, 

p=0.03) but not for low social, high monetary, or low monetary incentives (ps>0.10). In other 

words, participants who experienced larger increases in IL-6 were more variable in their go 

responses for trials where the potential reward was time viewing a picture of a smiling close 

other (see figure 4.4).  
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Figure 4.4. Interaction between IL-6 reactivity, sociality, and magnitude on reaction time 

variability. 
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Discussion 

While the association between low-grade inflammation and cognition has received much 

attention, comparatively fewer studies have explored the effect of acute increases in 

inflammation on cognitive functioning in humans. Thus, in the current study, we examined the 

impact of an inflammatory challenge on response inhibition, a key subcomponent of executive 

function. Using a within-subjects design, we examined performance on an incentivized response 

inhibition task both before and after receiving the influenza vaccine. We found that greater 

increases in IL-6 in response to the vaccine were associated with an increase in errors of 

commission (failures to inhibit a prepotent response) on the GNG task. To our knowledge, this is 

the first experimental demonstration of inflammation-related alterations in response inhibition. 

This is important given that response inhibition is a critical skill for navigating daily life with 

implications for self-regulatory health behaviors. 

These results expand upon the cross-sectional studies of inflammation and cognitive 

function and suggest that effects may not be limited to Alzheimer's and dementia-related 

diseases. While the majority of research exploring links between inflammation and cognition has 

been limited to aging and dementia-related cognitive changes, these results suggest that acute 

increases in inflammation may be relevant to cognitive functioning across the lifespan. Another 

contribution to the literature involves the ability to disentangle the effects of inflammation from 

other age-related changes that often confound studies of inflammation and cognition. Notably, 

peripheral inflammatory markers increase with age and heightened levels can relate directly and 

indirectly to dementia risk via their role in the development and progression of other conditions 

also known to influence cognitive function. Therefore, while the association is known, 

specificity regarding the direction of effects between inflammation and cognition is still 
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questioned. We are showing that an acute increase in inflammation is related to response 

inhibition, strengthening conclusions that can be drawn about the causal nature between 

inflammation and cognition. Furthermore, given our within-subjects design, we are able to 

address some of the issues with correlational studies, such as controlling for the potential effects 

of individual differences on response inhibition and enhancing sensitivity to detect effects even 

among this young, relatively healthy sample of participants. 

How might inflammation engender deficits in response inhibition? Though the present 

study doesn’t address this question directly, prior work provides insight into plausible 

mechanisms. Indeed, preclinical evidence demonstrates that inflammation in the periphery can 

access the brain to influence neural processes associated with cognitive control and motivated 

behavior (see Haroon et al., 2012 & Dooley et al., 2018 for reviews). Pro-inflammatory 

cytokines, such as interleukin-6, can alter molecular and cellular aspects of cognition (McAfoose 

& Baune, 2009) via neuron-to-glia communication (Jurgens & Johnson, 2012; Wohleb et al., 

2013), neurogenesis (Hueston et al., 2017; McKim et al., 2016), neuroplasticity (Delpech et al., 

2015; Calabrese et al., 2014), long-term potentiation (Wohleb & Delpech, 2017), and 

neurotransmitter systems (Dantzer et al., 2008; Zhu et al., 2006). Evidence suggests that one key 

mechanism linking inflammation and neurocognitive function is via the dopaminergic 

neurotransmitter systems. Dopaminergic signaling is important for response inhibition through 

well-established effects in the striatum and cortex (Westbrook et al., 2021). The basal ganglia, a 

region within the striatum supplied with high levels of dopamine, has been found to regulate the 

cognitive proactive and reactive processes needed during the Go/No-Go task (Beste et al., 2010; 

Criaud et al., 2021). Together, these findings suggest possible neurobiological mechanisms for 

the observed link between inflammation and executive functioning; future neuroimaging 
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research is needed to examine these possibilities in humans and to establish the neurobiological 

pathways through which peripheral inflammation may influence executive functioning. 

 Contrary to expectations, we did not find a relationship between increases in IL-6 

following the vaccine and accuracy on the GNG task and as a function of incentive type. There 

are many possible reasons for this null interaction effect. First, the fact that we observe a main 

effect of inflammation on no-go trial task performance but do not find moderation by incentive 

type supports the notion that inflammation “breaks the link” between incentives and task 

performance, regardless of incentive type. Along these lines, a recent meta-analysis exploring the 

links between response inhibition and reward found that rewards are associated with 

improvements in response inhibition (Burton et al., 2021). In our data, we see that inflammation 

was related to poorer response inhibition despite the presence of rewards. This suggests that 

inflammation might have mitigated the positive effect that rewards typically have on response 

inhibition tasks. However, we did not have a no-incentive condition, so this hypothesis would 

require follow-up testing to explore whether the relationship between inflammation and accuracy 

on the current task was due to the presence of incentives for all trials.  

 Other decisions regarding task parameters may have potentially affected the patterns of 

associations observed. Indeed, a recent paper notes that there are several aspects of task design 

that may influence participants' performance on incentivized cognitive control paradigms (Chiew 

et al., 2021). Specifically, task difficulty and task length are both found to moderate the 

association between reward and response inhibition. A follow-up study should explore whether 

lengthening the task, decreasing the ratio between go- and no-go trials, enhancing the incentives, 

and/or shortening the reaction time window are associated with a different pattern of associations 

with inflammation. Relatedly, recent work suggests that both the expectations of reward (Herrera 
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et al., 2019) and the probability of acquiring the reward importantly guide an individual's 

allocation of cognitive control at the start of tasks (Fromer et al., 2021). Indeed, participants in 

Fromer et al. (2021) showed more cognitive control when the potential gain and the likelihood of 

successfully obtaining the gain were highest. Thus, a future study ought to explore whether 

changes in gain likelihood would be significantly modulate the association between by 

inflammatory reactivity and response inhibition.  

 To that point, several studies exploring the connection between inflammation and reward 

processing suggest that the link between inflammation and motivated behavior may be more 

about effort expenditure than reward sensitivity per se. For example, a prior study with rodents 

showed that higher levels of inflammation were associated with an overall decrease in task 

engagement, similar to that observed here. However, they also found that rodents with the 

highest levels of inflammation actually performed better on high effort/high reward tasks, 

suggesting that inflammation may make individuals more likely to save their energy/effort for 

tasks that are likely to generate a large reward (Vichaya et al., 2014). Similarly, increases in IL-6 

to the influenza vaccine in humans were associated with a lower likelihood of choosing to 

complete hard trials in the Effort expenditure for rewards task (Boyle et al., 2019). In the current 

study, we did not manipulate effort or task difficulty. In all, the null findings from this study 

raise several questions for a line of research exploring whether and how inflammation may 

modulate the relationship between motivation and cognitive processes. 

 The present findings should be interpreted in light of the study’s limitations. For instance, 

the lack of a placebo/sham vaccine control group limits the ability to make any causal inferences 

from our data. While we entered statistical controls in our models (i.e., controlling for baseline 

inflammation and task accuracy), future experimental work ought to unpack the causal 
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relationship between increases in inflammation and incentive response inhibition. Additionally, it 

is possible that the sample size was too small to be generalizable, particularly considering that 

our sample comprised undergraduate students under the age of 25. Although our sample is larger 

than other studies published in this area, it is possible that sample size decreased our power to 

detect smaller effects of interest, including the critical three-way (inflammation by sociality by 

magnitude) interaction. It is also important to consider that this study only focused on changes in 

one pro-inflammatory cytokine, IL-6, and there may be other cytokines that could mediate the 

relationship between inflammatory reactivity and response inhibition. As such, the results of this 

study should be interpreted with caution. 

Although large-scale epidemiological studies suggest that inflammation may be 

associated with cognitive impairments, there have been few experimental studies exploring links 

between inflammation and cognitive functioning. Given the importance of response inhibition 

for daily life functioning and self-regulatory health behaviors, the current study examined 

whether response inhibition, a component of executive function, was impaired following a mild-

inflammatory challenge. Results showed that higher increases in interleukin-6 after the influenza 

vaccine were associated with lower accuracy on no-go trials, regardless of reward sociality or 

magnitude. To our knowlede, these findings are the first to demonstrate that increased 

inflammation is associated with impaired response inhibition. These findings highlight the 

potential role of inflammation on executive function and suggest that further experimental work 

is needed to better understand the complex relationship between inflammation and cognition. 
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CHAPTER 5: GENERAL DISCUSSION 

The current dissertation aims to contribute empirical support for the assertions that 

affective processing is significantly influenced by prior experiential and internal physiological 

information. The first study found that one's contextual history may differentially shape how the 

brain processes affective information by demonstrating that the activity and connectivity of the 

allostatic interoceptive network varied by socioeconomic position. Study 2 explored 

inflammation as one source of physiological information that can influence affective processing 

finding that levels of systemic inflammation were associated with less activity to positive content 

in subcortical regions. Then, in study 3, I examined how shifting inflammation may alter 

affective processing via changes in motivated behavior. Overall, inflammation altered 

performance on an executive functioning task regardless of the potential type of gain. By 

investigating how affective processing integrates prior external information (study 1) and 

internal physiological information (studies 2 & 3), the current set of studies enhances the field’s 

understanding of the constituent elements, the brain utilizes to generate affective experiences and 

guide behavior. In what follows, the general discussion will describe themes that emerged across 

studies, discuss the implications of the studies, and conclude with a summary of research 

directions for this author. 
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Shared Themes Across Studies 

Theme # 1: Context shapes reactivity to positive affective stimuli 

Across all three studies, my findings highlight the crucial role of context in shaping 

reactivity to positive affective stimuli. These findings offer significant contributions to the field 

of affective neuroscience, which has traditionally focused on the study of individual sensitivity to 

negative affective stimuli while neglecting positive non-monetary stimuli. Moreover, 

investigations into the impact of inflammation on affective processing have primarily centered 

around sensitivity to monetary rewards, predominantly within clinical samples. However, the 

current analyses have revealed compelling evidence that both SES and inflammation profoundly 

influence responses to positive non-monetary stimuli. Notably, in study 2, reactivity to positive 

stimuli emerged as a more salient factor than reactivity to negative stimuli, challenging the 

prevailing emphasis on negative affect. These findings are consistent with prior work that 

underscores the benefits of positive affect on well-being, including enhanced resilience, 

strengthened social connections, and improved psychological well-being (Tugade et al., 2004; 

Cohen & Pressman, 2006). 

These findings contribute significantly to the affective processing literature, as few 

studies have explored associations between positive affect and socioeconomic position or 

inflammation. Among the only two known studies that have examined associations by SEP, both 

found a positive association between SEP and neural responses to positive stimuli, such 

individuals with lower SEP showed blunted activity in the amygdala and insula to happy infant 

faces (Kim et al., 2017) and blunted activity in several subcortical regions (e.g., caudate, 

hippocampus) to positive scenes (Silverman et al., 2009). While informative, both studies had 

limitations pertaining to sample characteristics that reduced the generalizability of the findings. 
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For example, only 15 participants were included in the Silverman et al. (2009) sample, and all 

individuals that were included were young adults (Mage=24). Moreover, the participants in Kim 

et al.'s (2017) were all first-time mothers who were within six months of giving birth. In study 1 

within the current dissertation, the sample was larger and more inclusive of age (range= 35-76) 

and socioeconomic position (less than high school through graduate degree earner) to address 

concerns of generalizability. Among this sample, lower SEP was associated with greater activity 

in several regions, including corticostriatal regions such as the caudate, nucleus accumbens, and 

ventral-mPFC. Given that regions within the caudate nucleus are linked to associative learning 

(Delgado et al., 2004) and shifts in behavior to maximize potential gains (Haruno et al., 2004), 

this enhanced activity to positive stimuli among individuals with lower SEP may suggest greater 

attention and preparation for gain. A lower-SEP context may engender enhanced vigilance and 

preparation to secure potential gains in environments with fewer resources and greater 

uncertainty (Gonzalez et al., 2016; Ellis et al., 2009).  

Similar to SEP, very few studies examine the link between inflammation and neural 

reactivity to positive stimuli. Both studies suggested that greater neural responses to positive 

stimuli might be related to lower levels of systemic inflammation. One study among 12 men 

found that greater activity in the medial prefrontal cortex (mPFC) in response to pictures of a 

favorite actor was related to better innate immune system functioning (Matsunaga et al., 2008). 

A second found that greater activity in the mPFC in response to positive autobiographical 

memories was related to lower inflammation (Matsunaga et al., 2013) in a sample of 10 

volunteers. These studies, however, were both conducted in small samples, again limiting the 

generalizability of the findings. Results from study 2 in the current dissertation extend findings 

to a larger sample and beyond the mPFC to support an inverse relationship between 
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inflammation and positive affect such that higher levels of peripheral inflammation were 

associated with lower activation in the amygdala, hippocampus, anterior insula, and temporal 

pole in response to positive images (vs. neutral). Overall, this dissertation sheds light on the 

neurocognitive mechanisms underlying positive affect and seeks to encourage further 

investigation in this domain.  

Theme # 2: Inflammation influences affective processing at low-grade levels 

In the current studies, I have demonstrated that even subtle differences in inflammation, 

below the typical thresholds associated with sickness, were associated with notable influence on 

affective experiences. This extends prior research that mainly examines associations among more 

potent acute inflammatory models of sickness. In study 2, I excluded individuals who reported 

high levels of C-reactive protein (CRP) levels, ensuring that I focused specifically on individuals 

with relatively low-grade inflammation not demonstrating current illness. Similarly, in study 3, 

the influenza vaccine elicited minor interleukin-6 (IL-6) fluctuations that remained below the 

levels typically seen during illness. While distinct from the typical models of acute inflammation 

that engender more pronounced symptoms of sickness, the current two studies allowed us to 

investigate the effects of inflammation within a range more representative of everyday 

physiological fluctuations.  

By exploring these subtle changes in affective processing linked to differences in low-

grade inflammation, my research contributes to a deeper understanding of how even minor 

increases in inflammation can impact one’s emotional life. For instance, a single unhealthy meal 

or a restless night of sleep, both of which can trigger mild inflammatory responses, can have 

influential effects on one’s affective experiences throughout the day. Relatedly, an intriguing 

aspect of my findings is that these effects on affective processing can operate below conscious 
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awareness such that inflammation can subtly shape one’s emotional experiences without 

consciously perceiving or attributing them to physiological changes. This highlights the complex 

interplay between physiological states and emotional responses, underscoring the need to 

investigate the underlying mechanisms that connect inflammation to affective processing. 

Theme # 3: Context may shape cognition via changes in affective processing 

Another theme arising from this set of studies is the idea that context may shape 

cognitive functioning, particularly through alterations in affective processing. These studies 

demonstrate the relevance of both experiential context (as captured by SEP in study 1) and 

physiological context (as measured by inflammation in study 2) in shaping cognitive 

mechanisms. In study 1, an intriguing finding emerged, revealing that SEP is associated with 

differences in the efficiency of interaction between the AIN and ECN. Specifically, individuals 

with lower SEP exhibited increased integration between these networks during affective 

processing. This observation raises important questions about how socioeconomic factors impact 

cognitive processes related to affective stimuli. Notably, the ECN underlies executive 

functioning processes during working memory, cognitive control, and attentional tasks. The 

findings suggest that individuals from lower SES backgrounds may display altered cognitive 

processes during affective tasks, potentially influencing decision-making and other affect-

cognition processes, such as emotional regulation abilities. Furthermore, study 3 provides 

additional insights by demonstrating that participants who displayed heightened responsiveness 

to the inflammatory challenge exhibited reduced response inhibition across all reward conditions. 

Together, these studies highlight the importance of context in the link between affective and 

cognitive processes.  
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 A potential system that may underlie this shared link between affect and cognition is the 

dopaminergic system. Previous research has elucidated the role of the basal ganglia, known for 

its high concentration of dopamine, in regulating proactive and reactive cognitive processes 

crucial for tasks involving executive functions (Beste et al., 2010; Criaud et al., 2021). 

Intriguingly, inflammation has been shown to directly affect basal ganglia and dopamine 

production, potentially influencing cognitive functioning. Moreover, lower SES has been 

associated with lower levels of dopamine receptors in the brain, suggesting a link between 

socioeconomic factors and dopaminergic functioning. Overall, these findings highlight the 

complex interplay between contextual factors, affective processing, and underlying neural 

systems, providing valuable insights into the mechanisms driving individual differences in 

cognitive functioning. 

Limitations & Discrepancies 

Moving beyond the examination of shared themes, the following section delves into the 

limitations and discrepancies across the studies. There are several limitations to study 3 that 

ought to be addressed in future studies to further the field’s understanding of the mechanisms 

implicating inflammation with the affect-cognition link. First, an important caveat to note was 

that response inhibition was not assessed outside of the context of reward in this study. In other 

words, there were no control trials in which participants were not receiving a reward that could 

have been compared to trials in which there was not an affective component. This limitation 

poses a substantial question for future research, as it would be important to determine whether 

the association between inflammation and response inhibition exists regardless of the potential to 

win monetary or social rewards.  
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Additionally, results from this study are unable to fully address whether associations 

between inflammation and response inhibition are unique to that subdomain of cognition or 

whether the associations reflect impairments in a third variable not explored in this study. For 

example, it is unclear whether inflammation disrupts attentional processes more generally, 

ultimately affecting performance on a response inhibition task. Perhaps, inflammation's 

disruption of attentional processes more generally may suggest that inflammation disrupts 

cognitive functioning more broadly. Future research should further probe these mechanisms to 

determine the specific role inflammation may play in altering cognitive processes. To address the 

gaps highlighted by both limitations, I propose a study that examines the relationship between 

inflammation and cognitive functioning among individuals across a variety of cognitive tasks in 

the future directions section below.  

While the findings in study 1 and study 2 shed light on the intricate neurocognitive links 

between socioeconomic position (SEP) and reactivity to positive stimuli, there are intriguing 

divergences that warrant careful consideration. Previous research consistently reports a negative 

association between SEP and inflammation (see Muscatell et al., 2020 for meta-analysis), such 

that lower SEP is associated with increases in inflammation. This link suggests a potential 

mediating role of inflammation in the SEP to positive affective processing relationship. In study 

1, I observed that lower SEP was associated with higher activity in response to positive stimuli, 

while study 2 revealed that higher inflammation levels were associated with reduced activity to 

positive stimuli. However, if I assume that low SEP is indeed linked to higher inflammation, 

study 1 of this dissertation should have shown decreased activity to positive stimuli. Instead, I 

report an increase in activity to positive stimuli in study 1, which raises important questions 

regarding the underlying mechanisms at play.  
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There are several reasons that may explain the discrepancy between the findings. One 

possibility may be due to sample differences between the two studies. It is plausible that study 2 

of this dissertation may have lacked sufficient variability in SEP, such that participants in that 

study may have been of higher SEP. In this case, the association between inflammation and 

reactivity to positive stimuli may not overlap between groups, given that socioeconomic 

variability between the samples was significantly distinct.  

Furthermore, the discrepancy may stem from differences in measuring neural activity 

versus neural connectivity between the two studies. In study 2, participants with higher 

inflammation demonstrated decreased activity to positive stimuli in a cluster primarily 

encompassing the amygdala and hippocampus. However, whole-brain activity results from study 

1 did not demonstrate a significant association between SEP and activity to positive stimuli in 

the amygdala and hippocampus. Study 2 did find, however, that connectivity among a network, 

including the amygdala and the hippocampus, did significantly differ by SEP. Perhaps, 

inflammatory processes may alter subcortical to cortical interactions, ultimately modulating the 

dynamics within and between these brain regions that ought to be further explored in future 

research. In support of this notion, study 2 demonstrated that while inflammation was associated 

with decreased activity in the hippocampus to positive stimuli, inflammation was conversely 

associated with increased connectivity between the hippocampus and medial prefrontal cortex, 

which has also been replicated in another sample (Kitzbichler et al., 2021).  

Finally, it is worth noting that inflammation may not be the sole pathway through which 

SEP influences brain responses to positive stimuli. Other physiological pathways may link SEP 

to positive affect, including direct changes to neurotransmitter, endocrine, and autonomic 

systems that also vary by SEP. Future research should delve deeper into these factors to gain a 
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comprehensive understanding of the complex interplay between SES, inflammation, and neural 

processes underlying reactivity to positive stimuli. To address this gap, I propose a study that 

examines the relationship between inflammation and positive affective processing among 

individuals across the spectrum of SEP in the future directions section below.  

Implications for health 

The current studies have implications for health and have revealed valuable information 

regarding the mechanisms by which affective processing can contribute to poorer health. These 

studies identify two distinct pathways that link affective processing to health, namely, a 

neurobiological pathway and a behavioral health pathway.  

Pathway #1: neurobiological pathway suggesting heightened and sustained AIN efficiency 

as a driver of poor health 

Study 1 revealed that individuals with lower socioeconomic positions (SEP) exhibit 

enhanced transfer of affective information within regions of the allostatic interoceptive network 

(AIN). This heightened efficiency within the AIN has valuable implications as it facilitates 

attention to salient information and mobilizes the necessary physiological resources for 

responding appropriately (Kleckner et al., 2017; Barrett, 2017). According to global workspace 

theory, the neural architecture responsible for the exertion of cognitive effort during complex 

tasks is characterized by enhanced processing through longer connections, leading to increased 

global efficiency. As such, it is possible that the global workspace is activated or enhanced when 

individuals with lower socioeconomic positions (SEP) are attending to novel, unpredicted, 

affective stimuli. Sustaining this level of integration requires energy (Dehaene et al., 1998; 

Kitzbichler et al., 2011), and it is worth noting that prolonged elevation in global network 

efficiency is associated with higher metabolic costs (Bullmore & Sporns, 2012). 
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While increased efficiency within the AIN may prove beneficial in certain circumstances, 

it is essential to consider the potential long-term consequences. Chronic activation and sustained 

preparedness for environmental threats can take a toll on the body over time, resulting in 

physiological wear and tear (McEwen & Gianaros, 2010). Perhaps, one pathway to this wear and 

tear results from the higher metabolic costs associated with the AIN's sustained and prolonged 

global efficiency. The energy allocated to prepare for threats diverts resources from other vital 

restorative processes that the body requires for optimal functioning. In essence, this energy 

allocation competes with mechanisms promoting longevity, growth, and repair (Bobba-Alves et 

al., 2022). Consequently, the heightened efficiency within the AIN, which underlies 

physiological activation, may prove detrimental in the long run, potentially adversely affecting 

overall health and mental functioning (Colich et al., 2020). 

In summary, while the enhanced transfer of affective information within the AIN among 

individuals with lower SEP holds immediate benefits, it is crucial to consider the potential costs 

in terms of long-term physiological wear and tear. Further research is needed to thoroughly 

evaluate the potential impact of prolonged AIN global efficiency on overall health and well-

being to assess further the hypothesis that increased metabolic demands may divert resources 

from restorative processes. To address this gap, I propose a study that examines the relationship 

between AIN efficiency and metabolic health among a sample of older adults in the future 

directions section below.  

Pathway #2: behavioral health pathway suggesting that enhanced inflammation reduces 

response inhibition 

The current set of studies reveals an important health implication, particularly highlighted 

in study 3. The findings demonstrate a significant association between increased inflammation 

and decreased response inhibition. This finding suggests that inflammation may make executive 
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functioning more difficult, potentially hindering individuals' ability to engage in healthy 

behaviors. Indeed, response inhibition plays a crucial role in overriding urges to engage in 

health-reducing behaviors, allowing individuals to adhere to their health behavior goals (Allan et 

al., 2016). For example, one study found that dieters with stronger response inhibition were more 

successful at losing weight than those dieters lower in response inhibition (Hoffman et al., 2014). 

Relatedly, another study found that better response inhibition on the go/no-go was associated 

with greater correspondence between the intention to exercise and actual exercise (Hall et al., 

2008).  

Aligning with these findings, other studies examining the link between inflammation and 

decision-making have found that inflammation is associated with impulsive behavior (Gassen et 

al., 2019a; Gassen et al., 2019b). Relatedly, research has also found that individuals with more 

impulsivity-related traits have a higher white blood cell count (Sutin et al., 2012). In the other 

direction, another study found that engaging in regular exercise, known to reduce inflammation, 

is associated with a notable decrease in impulsivity (Javelle et al., 2021), further supporting the 

connection between inflammation and impulsive behavior. Researchers in the field postulate that 

the presence of inflammation may prompt individuals to prioritize immediate resource 

acquisition, potentially at the expense of considering long-term consequences (Gassen et al., 

2019a). This hypothesis aligns with the notion that inflammation-induced alterations in cognitive 

processes could lead to a bias toward immediate gratification and hinder the ability to delay 

rewards for future benefits. 

Overall, these findings contribute to the field’s understanding of the complex interplay 

between inflammation and decision-making, underscoring the potential impact of inflammation 

on impulsive behavior. Unhealthy behaviors, such as maintaining a poor diet and leading a 
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sedentary lifestyle, can contribute to heightened inflammation levels, thus compounding the 

difficulties associated with response inhibition and executive functioning. Consequently, the 

interplay between inflammation and response inhibition may pose challenges in engaging with 

health behaviors and maintaining overall well-being. Moreover, the emerging evidence 

supporting the beneficial effects of reducing inflammation through exercise opens up avenues for 

developing interventions aimed at improving impulse control and decision-making processes. 

Further research is needed to elucidate the underlying mechanisms and explore the potential 

therapeutic implications of mitigating inflammation in the context of impulsive behaviors. 

Remaining Questions and Future Directions 

Unanswered question #1: What is the relationship between SEP, inflammation, and 

positive affect? 

One question that was raised by the current studies regards the link between 

socioeconomic position, inflammation, and reactivity to positive affective stimuli. As highlighted 

by the discrepant findings between study 1 and study 2 (see discussion in the above Limitations 

& Discrepancies section), it is unclear whether the association between inflammation and 

reactivity to positive affective stimuli is consistent across the socioeconomic gradient. Is lower 

socioeconomic position associated with greater inflammation that reduces reactivity to positive 

stimuli? Or is it that, regardless of inflammation, lower socioeconomic position is associated 

with greater sensitivity to positive stimuli? This is particularly important to understand as the 

pathway could further delineate the risk and possibility of protective factors underlying 

socioeconomic health inequities.  

To test these questions, the first proposed study aims to decrease inflammation within 

individuals across the SEP gradient to examine changes in neural function to positive stimuli. 
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This study would be a double-blind crossover trial of naproxen, a nonsteroidal anti-inflammatory 

medication, where participants across the socioeconomic gradient would complete a task that 

measured sensitivity to positive affect (i.e., passive viewing of positive and neutral affective 

stimuli) in the scanner. Whole brain activity and connectivity would be compared when 

participants viewed positive images versus neutral images. Additionally, I would collect self-

report data regarding secondary variables (i.e., stress exposure and coping behaviors) to explore 

potential moderating factors in the sample.  

The first analytical test will assess whether neural activity to positive stimuli differed 

when individuals were taking naproxen versus placebo. I would then assess whether that 

association was moderated by between-subject differences in socioeconomic position. The 

results from this would answer whether the association between socioeconomic position and 

sensitivity to positive stimuli was mediated by inflammatory processes. The second analytical 

test would assess whether subcortical-cortical connectivity to positive stimuli differed when 

individuals were taking naproxen versus placebo. I would then assess whether that association 

was moderated by between-subject differences in socioeconomic position. The results from this 

test further clarify whether the link between subcortical activity and subcortical-cortical 

connectivity is directionally driven by inflammation. Finally, I would test whether secondary 

variables partially explained the association between SEP and sensitivity to positive stimuli. The 

results from this test would help probe alternative mediators regarding the SEP and sensitivity to 

positive stimuli association. Overall, results from this study would further clarify the SES, 

inflammation, and sensitivity to positive stimuli association. 
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Unanswered question #2: Does inflammation alter cognition via changes in motivation? 

The second question raised by the current studies pertains to the link between 

inflammation and cognitive function. As highlighted by the limitations of study 3 (see discussion 

in the above Limitations & Discrepancies section), there are outstanding questions regarding the 

mechanisms involved in the reduction of response inhibition following the inflammatory 

challenge. Specifically, the questions include (a) the associations between inflammation and 

response inhibition due to disruptions in motivation and (b) whether inflammation impairs 

general cognitive performance or whether the link to response inhibition is unique.  

To address these gaps, I propose a between-subjects, placebo-controlled inflammatory 

challenge study where participants complete a battery of cognitive tasks following the 

administration of the flu vaccine or a placebo sham vaccine. In this study, participants will 

complete tasks to measure response inhibition (i.e., reward GNG & Stroop), working memory 

(i.e., n-back), and attention (i.e., visual search). For the rewarded go/no-go task, participants will 

complete alternating blocks of rewarded trials and non-rewarded trials. The first analytical test 

will assess whether a change in IL-6 was associated with overall differences in responses on the 

no-go trials or whether the association varied depending on the potential for reward (vs. no 

reward condition). The second analytical test would assess whether IL-6 reactivity to the vaccine 

was associated with reduced performance across all cognitive tasks. Ultimately, the results from 

this study would improve granularity regarding the acute inflammation to cognition link.   

Unanswered question #3: Is AIN global efficiency related to poorer physiological health? 

The final question raised by the current set of studies is whether the global efficiency of 

the allostatic interoceptive network (AIN) is associated with longer-term physiological health. 
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Given that the AIN function is associated with both increased vigilance and physiological 

activation, AIN efficiency may require greater metabolic resources that detract from the 

restorative functions of the body that also require a metabolic expense (see discussion in the 

above Implications for Health Pathway #1 section). With this backdrop, the resulting hypothesis 

is that perhaps sustained and prolonged global efficiency of the AIN may lead to enhanced 

biological aging. 

To address this question, I propose a longitudinal examination of AIN efficiency among a 

sample of aging adults to examine how AIN efficiency is related to changes in physical health 

status. For this study, I would aim to recruit a mid-to-late-life sample of adults, given that this is 

a time when rapid and diverging health trajectories are more likely to emerge. Participants would 

complete an affective attention task in the scanner twice, approximately a year apart. During both 

sessions, participants will also provide information regarding their overall health which would 

include measurements of metabolic health. Specifically, a physical and blood sample will be 

collected to measure waist-to-hip ratio, blood pressure, fasting glucose, triglycerides, and 

cholesterol levels. Together, the values will be used to create a composite score that assesses the 

risk for cardiovascular disease and diabetes, also known as metabolic syndrome (Alberti et al., 

2009). The study’s primary analytical test would assess whether there was a significant 

association between the change in AIN efficiency during the affective attention task between T1 

and T2 and the change in metabolic syndrome score between T1 and T2. I hypothesize that 

increases in AIN efficiency between visits will be associated with increased metabolic syndrome 

risk between visits as well. These results would support the argument that prolonged AIN 

efficiency may be harmful to health. 
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