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ABSTRACT

Siyeon Kim: On Development of Statistical Learning Methods
in Precision Medicine

(Under the direction of Michael R. Kosorok)

Precision medicine is an area that seeks to maximize clinical effectiveness by assigning

treatment regimes tailored to individuals. In this dissertation, we present three topics that

advance the methods and applications in the field of precision medicine.

The first topic introduces a novel methodology termed random forest informed tree-based

learning to discover underlying patient characteristics associated with differential improvement

in knee osteoarthritis (OA) symptoms and to identify the individualized treatment regime (ITR)

among three available treatments. The proposed algorithm suggests decision rules that divide

participants into subgroups based on their characteristics. In our analysis, the estimated treatment

rule yielded greater improvements in OA symptoms that could ultimately guide patients toward

suitable treatment strategies.

In the second topic, we propose a doubly robust estimator for patient-specific utilities

and ITRs based on the inverse reinforcement framework from Luckett et al. (2021). This

framework optimizes patient-utility for two outcomes by leveraging experts’ decisions on

observational data. The suggested doubly robust estimator guarantees consistency even when

incorrect outcome models or incorrect propensity score models are applied, alleviating the need

for exact formulation of the outcome model and improving the previous estimator. We also

present asymptotic distributions for the estimators of boundary and utility functions using the

newly developed indexed argmax theorem, which can be used for deriving weak convergence of

M-estimators with multiple layers.
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Lastly, we suggest an estimator for utilities when there are more than two treatments.

Specifically, we utilize stabilized direct learning to estimate ITRs. Subsequently, we apply the

inverse reinforcement framework once again to obtain an estimator for a composite outcome

and the balance of the two outcomes. Also, the proposed estimator for utilities considers the

heterogeneity in the variance of patients, leveraging the benefits of stabilized direct learning.
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INTRODUCTION

Precision medicine aims to assign the optimal treatment customized for each patient,

leveraging the heterogeneity in each patient’s characteristics. Due to its effectiveness, precision

medicine research has undergone substantial development, incorporating various machine

learning methodologies since its advent. Additionally, the announcement of the Precision

Medicine Initiative by President Obama in 2015 played a significant role in advancing precision

medicine research, elevating it to an important national agenda and accelerating its progress. In

this paper, we introduce methods for estimating optimal treatment regimes suited for different

settings, which may also potentially contribute to the advance of precision medicine research.

In the first topic, we explore characteristics underlying differential improvement among

participants in the Physical Therapy vs Internet-Based Exercise Training for Knee osteoarthritis

(PATH-IN) trial, which compared standard physical therapy (PT) with internet-based exercise

training (IBET), both relative to a usual care/ waitlist control group (WT). While current machine

learning methods do allow for individual features to be taken into account when determining

a therapy, the treatment assignment rules are not always immediately interpretable in terms

of demonstrating which characteristics lead to specific treatments. To resolve this issue, we

develop a unique machine learning approach to obtain the optimal treatment rule in the context

of the PATH-IN study. The new algorithm, Random Forest (RF) informed Tree-based Learning,

which obtains split points by random forests, improves the interpretability by revealing inherent

mechanisms of treatment and patients’ characteristics, enabling clinicians to understand the

mechanisms easily.

In the second topic, we explore the approach that could represent a patient-specific compos-

ite outcome for identifying individualized treatment regimes (ITRs) when multiple outcomes
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are present. We implement an inverse reinforcement learning framework introduced in Luckett

et al. (2021). However, the outcome model, which contains the utility, includes a complex

formulation, hampering the accuracy of the estimator. To address this problem, we employ a

doubly robust estimator from efficient augmentation and relaxation learning (Zhao et al., 2019)

for the estimation of ITRs in order to protect the consistency of the utility estimator from the

misspecification. We also prove the doubly robust consistency and limiting distribution of the

estimator. We present simulation studies that support these theories.

In the third topic, we extend the estimation of composite outcomes to the multi-armed

setting. We implement stabilized direct learning to estimate the boundary function when there

are more than two outcomes. We provide a detailed formulation of the estimator for the boundary

when composite outcomes are used.

The remaining chapters of the dissertation are structured as follows. We first provide a

literature review of the methods used in Chapters 1-3. Topics 1 (Random forest informed tree-

based learning), 2 (Doubly robust estimation and inference of patient-specific utility functions),

and 3 (Estimation of composite outcomes in multi-treatment setting) are discussed in detail in

Chapters 1–3. We conclude this paper with the technical details of each chapter.
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LITERATURE REVIEW

This chapter provides an overview of the background and development of statistical methods

and machine learning techniques that are pertinent to the methods described in Chapters , 1.4,

and 2.6. In addition, the definitions and concepts that are necessary to comprehend the proposed

methods described in the following chapters are presented here. Random-forest informed tree-

based learning, Doubly-robust estimation and inference of utility functions in a two-outcome

setting, and estimation of composite outcome in the multi-treatment setting are the three

subsections of this review that correspond to each of the three precision medicine, deep learning,

and survival modeling, respectively. In addition, we provided a more in-depth description of the

pseudo-likelihood framework, as well as efficient augmentation and relaxation learning, which

are two of the most important themes covered in Chapter 2.

Random Forest Informed Tree-based Learning

Ever since their introduction, tree-based approaches have found widespread use in the fields

of classifications and regressions due to the ease of interpretation they offer, despite the presence

of nonlinearity in the data they analyze. Classification and Regression Trees, also known as

CART, are one of the earliest and most well-known algorithms. This algorithm iteratively divides

the data into binary regions that are disjoint from one another. CART has attracted attention

due to its straightforward and understandable structure. (Breiman et al., 1984). Along with its

functionality, the CART has expanded its range of coverage to include a variety of data types.

Some examples include survival data (Davis and Anderson, 1989; Gordon and Olshen, 1985;

LeBlanc and Crowley, 1992; Therneau et al., 1990), longitudinal data (Abdolell et al., 2002;

Segal, 1992), data for generalized linear model (Ciampi, 1991), and multiresponse outcomes
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(Zhang, 1998). In addition to CART, there are a variety of algorithms that can be used to

construct a tree. Some examples of these algorithms include CHi-squared Automatic Interaction

Detector (Kass, 1980), C4.5 (Quinlan, 1993), Fast and Accurate Classification Tree Loh and

Vanichsetakul (1988), Classification Rule with Unbiased Interaction Selection and Estimation

(Kim and Loh, 2001), Qualitative INteraction Trees (QUINT, Dusseldorp and Van Mechelen

(2014)) and Generalized, Unbiased, Interaction Detection and Estimation (Loh, 2009).

However, due to the fact that splits in a single decision tree might be affected by a peripheral

disturbance in the data, a single tree could cause overfitting, which would result in the model

being unstable and producing mediocre predictions. As a result, there have been efforts made to

gather multiple trees and grow a forest in the hopes that this may solve these issues. Bagging

is a technique that aggregates many classifiers that have been constructed using bootstrapped

data and combines them into one in order to decrease the variance, resulting in an enhanced

prediction compared to using a single tree (Breiman, 1996). Boosting is a concept that trains

weak learners sequentially in the direction of lowering bias by assigning weights adaptively to

each of the trained trees (Schapire, 1990). AdaBoost (Freund and Schapire, 1997), gradient

boosting (Friedman, 2001), XGBoost (Chen and Guestrin, 2016), and LightGBM (Ke et al.,

2017) are all variations of boosting. Super learners are an ensemble that uses cross-validation to

determine the optimal weights for each individual learner (Van der Laan et al., 2007).

Random forests may be the most popular ensemble of trees among the ensemble algorithms

because they prevent overfitting by growing multiple trees randomly based on CART (Breiman,

2001). A random forest is composed of trees that have been constructed from bootstrapped

pseudo data (bagging) that is recursively split with randomly chosen variables to minimize the

impurity in each node. Predictions are made with a new data point for every tree in the forest,

and the forest determines the final prediction by majority voting (classification) or averaging

(regression), which results in robustness to noise. Random forests have been actively employed

in the field of survival analysis and precision medicine (Zhu and Kosorok, 2012; Cui et al., 2017;

Cho et al., 2020, 2021).
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However, along with other ensemble methods, one major drawback of random forests is its

lack of interpretability which makes it clinicians difficult to reveal the exact effects of certain

variables in outcomes, impeding applications in biomedical data. Nevertheless, there have been

attempts to develop methods that could identify crucial factors that influence the outcomes

and predictions in random forest literature. Meinshausen (2010) introduces Node harvest that

aggregates nodes from a random forest and determines the right node with weights calculated

by quadratic programming. Bénard et al. (2021) builds a rule by frequency of appearance of

variables in the process of random forest modeling. In respect of causal inference, heterogeneous

treatment effects (HTE) have been estimated using random forest. Wager and Athey (2018)

developed a causal forest, built by causal trees (Athey and Imbens, 2016). It estimates HTE by

allowing the data to adaptively determine the nearest neighbor and provide asymptotic normality

of the estimator of (HTE). In the line of the causal forest, Athey et al. (2019) suggested a

generalized random forest to estimate HTE with instrumental variables. Also, Oprescu et al.

(2019) proposed the orthogonal random forest, which leverages Neyman-orthogonality to reduce

estimation error in generalized random forests. Cui et al. (2020) designs a causal survival forest

for estimating HTE in right-censored data and longitudinal data.

In precision medicine, interpretability could be more crucial for understanding the underly-

ing mechanism of treatment interacting with certain characteristics of patients and subgrouping

patients with certain treatments. Hence, there have been efforts to develop a model that is under-

standable in assigning optimal personalized treatments to individuals. Kallus (2017) recursively

partition the observational data by introducing a new impurity measure for personalization and

building a personalization tree. There have also been approaches that provide interpretable treat-

ment rules or by leveraging nonparametric algorithms, which yield good predictions. A decision

list of “if-then” statements of treatment rules is another formulation of interpretable ITRs (Zhang

et al., 2015, 2018). Building these list-based rules includes maximizing Q-functions which

have freedom in modeling, allowing nonparametric models such as kernel ridge regression or

random forests to be helpful in accuracy. Yadlowsky et al. (2021) suggested an estimator for the
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conditional average treatment effect as the ratio of expected potential outcomes. The estimator

borrows the advantage of nonparametric methods to obtain the correct conditional expectation

by the doubly robust property and then obtain the coefficients by refitting the regression.

In this sense of leveraging nonparametric models to identify factors that affect outcomes,

we developed a methodology that builds a tree by utilizing random forests for splitting rules

in the first part of this dissertation. Also, we applied it to the patients with knee osteoarthritis

(OA) who have differential effects in treatments and obtained treatment rules that maximize the

outcomes of patients.

Doubly-robust estimation and inference of utility functions in the two-outcome setting

In the field of precision medicine, there are generally two distinctive approaches to methods

for estimating ITRs. (Kosorok and Laber, 2019). One approach is the model-based approach

which estimates ITRs in a two-step process that first estimates an outcome model of treatments

and covariates and then infers a personalized treatment that delivers the best outcome for

each patient. Examples of in this approach include g-estimation (Robins, 1989, 1997), Q-

learning (Murphy, 2005; Qian and Murphy, 2011; Zhao et al., 2011; Goldberg and Kosorok,

2012; Laber et al., 2014; Schulte et al., 2014), and A-learning (Murphy, 2003; Blatt et al.,

2004; Robins, 2004; Moodie et al., 2007; Fan et al., 2016; Shi et al., 2018). Nonetheless,

one weakness of this approach is that the performance of estimators highly depends on the

accuracy of the postulated outcome model. This significant dependency typically results in

significant discrepancies between estimated ITRs and optimal ITRs, particularly when the true

outcome models are complicated. An alternative approach is the classification-based approach

or the direct-search approach, which focuses on obtaining ITRs that maximize the expectation

of potential outcomes themselves, reducing the need to accurately specify outcome models.

Examples of this approach include outcome weighted learning, which formulates estimating

ITR as a weighted classification problem and employs a convex loss as a surrogate to an 0-1
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loss (Zhao et al., 2012, 2015; Zhou et al., 2017; Liu et al., 2018), V-learning for infinite horizon

(Luckett et al., 2019), and robust value-search estimator (Zhang et al. (2012, 2013)).

However, the aforementioned methods mostly focus on the single-outcome scenario, and in

a multiple-outcome setting, a utility is needed that summarizes multiple outcomes to a scalar

outcome. There have been efforts to build patient utilities in various ways. Murray et al. (2016)

devised a randomized trial design that is based on a physician-derived utility.

We examine inverse reinforcement learning employed in further detail. The goal of inverse

reinforcement learning is to derive reward functions by applying observed optimal policy (Ng

et al., 2000). In Luckett et al. (2021), the decisions of clinicians are assumed to be optimal, and

the personalized utility function of two outcomes and the accompanying ITRs are then estimated.

In the suggested method, Efficient Augmentation and Relaxation Learning (EARL, Zhao et al.

(2019)) is employed to estimate ITRs instead of the Q-function in Luckett et al. (2021). EARL

searches for the boundary function of ITRs on an augmented inverse probability weighted

estimator (AIPWE) by replacing 0-1 loss to convex surrogates to reduce the computational

burden (Freund and Schapire, 1998; Bartlett et al., 2006). Additionally, EARL benefits from

having the doubly-robustness.

An estimator is doubly robust if it is guaranteed to be consistent when at least one of

a propensity score model or an outcome model is correctly specified. Robins et al. (1994)

introduced an augmented inverse probability weighted estimator useful in missing data. It was

shown by Scharfstein et al. (1999) that this estimator is doubly robust. Further extension and

investigation of doubly robust estimator were given by Robins and Rotnitzky (2001); Lunceford

and Davidian (2004); Bang and Robins (2005); Neugebauer and van der Laan (2005); Kang and

Schafer (2007). In the suggested method, the estimators for the utility and the probability of

the correct treatment assignment achieve the doubly robust property, which is transferred from

EARL.

From a theoretical point of view, the second topic proposes a new advancement in M-

estimation theory. M-estimators are defined as data-dependent functions that nearly maximize
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objective functions which are calculated from data. The argmax theorem, which is the center

of the M-estimation theory, states that limits of M-estimators converge weakly to the argmax

of the limiting process (Kosorok, 2008). There has been extensive literature on M-estimation

theory and its expansions. Kim and Pollard (1990) provides cube-root asymptotic results for

statistics with certain sufficient conditions. Ma and Kosorok (2005) and Kosorok and Song

(2007) present weak convergence results in infinite dimensional settings. Seijo and Sen (2011)

introduces an argmax theorem when objective functions converge to a limiting process that

maximizes at multiple locations with some assumptions.

Next, we provide detailed reviews of the pseudo-likelihood framework in Luckett et al.

(2021) and EARL in Zhao et al. (2019).
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The pseudo-likelihood estimation for the utility and the probability of correct treatment
assignment

In order to estimate the utility function of two outcomes, the pseudo-likelihood approach

was introduced in Luckett et al. (2021). Let (X i, Ai, Yi, Zi), i = 1, · · · , n be the independent

and identically distributed realizations of (X, A, Y, Z), where X ∈ X ⊆ Rp are patient

covariates, A ∈ A = {−1, 1} is the assigned intervention, and Y, Z ∈ Y × Z ⊆ R2 are scalar

outcomes, each coded so that higher values are better. For a treatment assignment function, let

d : X 7→ {1,−1}, d ∈ D, which allocates d(x) to patients who have X = x as covariates.

Let a function f be a measurable function where f : X 7→ R and sgn(f(X)) = d(X), where

sgn(t) = 1 when t ≥ 0 and sgn(t) = −1 when t < 0.

u(y, z;x, w, θ) = ωθ(x)y + {1− ωθ(x)}z is defined as a utility function where ωθ : X 7→

[0, 1] for each utility parameter θ ∈ Θ. ωθ(x) = expit(xT θ) is assumed, where expit(t) =

et/(1 + et). Also, d∗θ(X) is defined as the optimal treatment for each θ ∈ Θ. Let the probability

of assigning d∗θ(X) to each patient be Pr
{
A = d∗θ(X)|X

}
= expit(XTβ). It is assumed that

there exist the densities f(Y, Z|X, A) and f(X) so that we can factor the likelihood for (θ, β)

into

f(X, A, Y, Z) = f(Y, Z|X, A)f(X)
exp

[
XTβ1

{
A = d∗θ(X)

}]
1 + exp(XTβ)

.

This leads to the pseudo logistic regression likelihood

L̂n(θ, β) ∝
n∏

i=1

exp
[
XT

i β1
{
Ai = d̂n,θ(X i)

}]
1 + exp(XT

i β)
,

where d̂n,θ is an estimator for the optimal treatment regime d∗θ.

The pseudo-likelihood incorporates the parameters for the utility and the parameters for

the probability of assigning optimal treatment into one likelihood for the inverse reinforcement

learning framework. For fixed θ, β̂ is estimated using the logistic regression after obtaining d̂n,θ

for each individual.
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Efficient augmentation and relaxation learning

Let QY (X, a) = E[Y |X, A = a]. The paper assumes the causal assumptions (Hernán and

Robins, 2010). Then, the optimal treatment regime is defined as d∗Y (X) = maxa∈AQY (X, a).

In this approach, the objective is to estimate d∗Y by searching d ∈ D that maximizes V (d).

This could be achieved by expressing using inverse probability,

V (d) ≡ E
[Y I(A = a)

π(a;X)

]
,

where π(a;X) ≡ P (A = a|X) is the propensity score. However, since the estimation of V (d)

only includes a subset of the data, the estimator of V (d) results in a potentially large variance.

Therefore, an alternative approach to estimate an optimal treatment using AIPWE was used in

Zhao et al. (2019). Specifically, if there exists a function f in a Hilbert space F that satisfies

d(X) = sgn(f(X)), the value, which is expected outcome when assumed that individuals

assumed treatments by the regime d, is

V AIPWE(d) = E
[Y I{A = d(X)}

π(d(X);X)
− I{A = d(X)} − π(d(X);X)

π(d(X);X)
Q{X, d(X)}

]
.

Denote Eng = n−1
∑n

i=1 g(Xi). Then, the estimator of V AIPWE(d) is V̂ AIPWE(d) = En

[Y I{A=d(X)}
π̂(d(X);X)

−
I{A=d(X)}−π̂(d(X);X)

π̂(d(X);X)
Q̂{X, d(X)}

]
, where π̂(a;X) and Q̂(X, a) are estimators of π(a;X) and

Q(X, a), respectively.

EARL optimizes the boundary function f ∗(X) ∈ F such that d∗(X) = sgn(f ∗(X)) by

maximizing the V AIPWE. Since maximizing the value is equivalent to minimizing the risk, EARL

minimizes a sum of weighted misspecification rates. However, in order to avoid the discontinuity

of 0-1 loss, EARL replaces an indicator function with one of the following convex surrogates;

ϕ(t) = max(1 − t) for hinge loss; ϕ(t) = e−t for exponential loss; ϕ(t) = log(1 + e−t) for

logistic loss; or ϕ(t) = max(1− t, 0)2 for squared hinge loss.
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Therefore, when replaced by one of the suggested surrogates, it is proposed that

f̃λn
n,ϕ = arg inf

f∈F
En

[
|Ŵ1|ϕ

{
sgn(Ŵ1)f(X)

}
+ |Ŵ−1|ϕ

{
− sgn(Ŵ−1)f(X)

}
+ λn∥f∥2

]
,

where Ŵa,θ is the estimator of

Wa(Y ) =
Y I(A = a)

π(a;X)
− I(A = a)− π(a;X)

π(a;X)
Q(X, a)

for a ∈ {−1, 1} which substitutes π̂(a;X) for π(a;X) and Q̂(X, a) for Q(X, a), and λn → 0

as n→ ∞.

In Zhao et al. (2019), the sample splitting technique is applied, which ensures that samples

used for π̂(X) and Q̂(X) are not reused to optimize f ∗(X) at the same time. Let n be the

number of samples, and assume that the samples are partitioned evenly at random into J

disjoint groups. Let I1, · · · , IJ be the sets of indices of the samples in each of J groups, and

let {nj : j = 1, · · · , J} be the set of the numbers of the samples in each group Ij . If there

are remaining observations, we randomly distribute them to some of the J groups so that nj

n

converges to a fixed constant n∗, as n increases. For each group Ij , we estimate π̂j(a;X) for

π(a;X), and Q̂j(X, a) for Q(X, a) using the samples {(X i, Ai, Yi) : i ∈ Ij}, and calculate

f̂
λn,(j)
n,ϕ use the samples in I(−j), where I(−j) = {1, · · ·n} \ Ij . When this sample splitting

technique is used the estimator for f ∗(X) is

f̂λn
n,ϕ =

1

J

J∑
j=1

f̂λn,(j)
n , and

f̂
λn,(j)
n,ϕ = arg inf

f∈F
E(−j)

n

[
|Ŵ1j|ϕ

{
sgn(Ŵ1j)f(X)

}
+ |Ŵ−1j|ϕ

{
− sgn(Ŵ−1j)f(X)

}
+ λnj∥f∥2

]
,

where Ŵaj =
Y I(A=a)
π̂j(a;X)

− I(A=a)−π̂j(a;X)

π̂j(a;X)
Q̂j(X, a) for a ∈ {1,−1}, and E(−j)

n g = 1
n−nj

∑
i∈I−(j)

g(Xi).

λnj∥f∥2 provides L2 penalization.
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Estimation of composite outcome in multi-treatment setting

In addition to the model-based approach and policy-search approach, Tian et al. (2014)

proposed a novel approach for estimating ITRs by employing a modified covariate method

that employs regression to directly estimate an interaction of treatment and covariate. In other

words, it directly estimates the boundary function and causal treatment effect by regressing the

outcome on modified covariates multiplied by one-half of the treatment assignment. Qi and Liu

(2018) named this approach D-learning and expanded to estimating ITRs with K categories

(K > 2) by pairwise decision functions. Qi et al. (2020) suggested angle-based direct learning

(AD-learning) borrowing the angle-based approach from Zhang and Liu (2014) to construct

the boundary function of optimal treatments in K-treatment setting, which could be utilized

to the variety of outcomes including survival, or binary outcome with theoretic guarantees.

Meng and Qiao (2020) proposed robust direct learning (RD-Learning), which satisfies doubly

robust consistency by using residuals instead of the outcomes in D-Learning. Lastly, Shah et al.

(2022) introduced stabilized direct learning (SD-Learning) that leverages the heteroscedasticity

possibly residing in the error of treatment and covariates. It improves the efficiency of the

estimator by obtaining the estimator for the residual variance with nonparametric machine

learning algorithms and re-estimate the boundary function after adjusting for the weights with

the estimated residual variances. Also, in the K treatment setting, it improved AD-learning

by suggesting analogous residual reweighting and proposed the estimator for the boundary of

multi-category ITRs.

We provide some more context about the classification technique for multiple categories

used for the multi-armed optimal ITRs in Qi et al. (2020) and Shah et al. (2022). For a binary

classification problem, there has been a vast volume of literature using large-margin classifiers.

Support vector machines (Vapnik, 1999), AdaBoost (Freund and Schapire, 1997), LogitBoost

(Friedman et al., 2000), and import vector machines (Zhu and Hastie, 2001) are examples of the

margin-based binary classifiers. Zhang and Liu (2014) introduced a large-margin approach in

solving multi-category problems, in contrast to literature that has added a constraint that states
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that elements of K dimensional maps f(x) ∈ RK sum to zero (Wang and Shen, 2007; Liu and

Yuan, 2011; Zhang and Liu, 2013). The method by Zhang and Liu (2014) implicitly satisfied

this inefficient constraint by employing a K simplex vertices in RK−1, investigated in Lange

and Tong Wu (2008). Then, it predicts the label that minimizes the angle of a function and the

vector of K vertices, which is equivalent to maximizing the margin.

In the third topic of the dissertation, we apply the SD-Learning from Shah et al. (2022) to

the inverse reinforcement learning framework in Luckett et al. (2021) to obtain the boundary for

ITRs with multiple treatments and optimal utilities with two outcomes.
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CHAPTER 1: RANDOM FOREST INFORMED TREE-BASED LEARNING

1.1 Introduction

Knee osteoarthritis (OA) is one of the most common causes of pain and disability (United

States Bone and Joint Initiative, 2020). Exercise-based therapies, including physical therapy

(PT), are considered core treatments for patients with knee OA (Kolasinski et al., 2020; Bannuru

et al., 2019). However, patients vary considerably in their level of improvement following

exercise-based interventions, and very little is known about drivers of this variability. This limits

our ability to make patient-centered recommendations about specific exercise interventions.

To date there has been little application of precision medicine-based machine learning in

the context of OA management. One recent study found that in the context of a clinical trial

comparing exercise, dietary weight loss and their combination, the combination intervention was

optimal for most participants, but further improvement could be obtained through assignment

to diet only for a subgroup of participants characterized by high baseline weight or low waist

circumference, without a history of myocardial infarction Jiang et al. (2020). In this research,

we add to this literature by exploring characteristics underlying differential improvement among

participants in the Physical Therapy vs Internet-Based Exercise Training for Knee osteoarthritis

(PATH-IN) trial, which compared standard physical therapy (PT) with internet-based exercise

training (IBET), both relative to a usual care/ wait list control group (WT). Previously, there

have been applications with QUINT, a sequential partitioning method, and GUIDE, a regression

tree approach to evaluate heterogeneity of treatment effects in at the short-term follow-up time

point (4-months) in PATH-IN (Coffman et al., 2021). We now extend this work by focusing

on longer-term (12-month) outcomes, which is important for understanding maintenance of

treatment effects.
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Another way in which we extend prior work in this area is through development of a novel

machine learning approach to obtain the optimal treatment rule in the context of the PATH-IN

study. Although existing machine learning approaches enable individual characteristics to be

reflected in the assignment of a treatment, they often lack interpretability as mentioned in the

literature review. Specifically, many precision medicine approaches do not reveal the mechanism

underlying differential improvement, since they focus on prediction and often result in decision

rules generated by complicated interactions between factors.

To address these limitations, we developed a new machine learning algorithm that produces

mechanistic decision rules that distinguish between subgroups of patients. This new algorithm,

Random Forest (RF) informed Tree-based Learning, enables the final decision rule (regard-

ing optimal treatment assignment) to determine the patient characteristics that most strongly

influence the outcome and identify the thresholds of those characteristics to split the patients

for assignment. In an iterative fashion, the algorithm identifies a subgroup of patients that

could most benefit from a specific treatment and searches for more detailed rules consisting of

successively finer subgroups of patients, in pursuit of the largest average benefit for the target

population. We applied this methodology to data from the PATH-IN trial and obtained decision

rules regarding the treatment from which each patient may expect the greatest improvement in

OA symptoms and function at 12-month follow-up. We also compare the performance of the

suggested method with LIST-based approach, another interpretable precision medicine tool.

1.2 Methods

1.2.1 PATH-IN Trial

The PATH-IN trial (Trial Registration: NCT02312713) included 350 participants with

symptomatic knee OA; details of the participant eligibility criteria and other trial methods,

as well as main trial outcomes, have been published previously (Williams et al., 2015; Allen

et al., 2018). Briefly, participants were randomized to standard PT, IBET, or WT, in a 2:2:1

ratio, respectively. Participants in the PT group received up to 8 individual in-person treatment
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sessions within 4 months. Participants in the IBET arm received access to the online program for

the full 12-month intervention period. Participants in the WT group did not receive PT or IBET

during the study but were offered two PT visits and access to IBET following the 12-month

assessments. For the fully study sample at 12-month follow-up (the time point of interest for

this study), IBET was non-inferior to PT but neither PT nor IBET were superior to WT for

the primary outcome, the Western Ontario and McMaster Universities Osteoarthritis Index

(WOMAC) (Allen et al., 2018). This study was approved by the Institutional Review Boards of

the University of North Carolina at Chapel Hill (UNC; #14-1331) and Duke University Medical

Center (#00055318). Recruitment for the trial occurred from November 2014 to February 2016,

and follow-up assessments were completed in February 2017.

1.2.2 Overview of Machine Learning Approach Used for the Estimation of Treatment
Regimes

These exploratory analyses aimed to discover the features of patients that resulted in

differential improvement within the PT, IBET, and WT study arms, particularly at 12 months. We

first considered other established machine learning methods to address this question, including

RF (Breiman, 2001) and LIST-based methods embedded with both kernel ridge regression and

RF (Zhang et al., 2018), which are complementary approaches with different advantages. We

obtained the average outcomes that would have been produced if all patients had assigned to

treatments by each of the machine learning methods, respectively. Then, the average outcomes

were compared using Z-tests to the average outcomes that would have been achieved if all

patients had received a single treatment. However, we were not able to identify a decision

rule among these methods that yielded significantly greater improvement for patients than

simply assigning all patients to one overall best treatment. Hence, we developed and applied a

new tree-based approach, which judiciously splits the data set into multiple disjoint subgroups

sequentially in order to maximize a leave-one-out cross-validated estimate of the average

outcome resulting from each split. This new method is distinct from the aforementioned
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Table 1.1: Patient characteristics included in analyses

Characteristic N (%) or
Mean (SD)

Demographic
characteristics

Age at baseline 65.1(10.8)

Education status

Grade school/ junior high 2 (0.7%)
Some high school 9 (3.0%)
High school or equivalent 28 (9.2%)
Trade/technical/vocational
school 19 (6.3%)

Some college credit 31 (10.2%)
Associate’s degree 31 (10.2%)
Bachelor’s degree 61 (20.1%)
Post graduate work or
graduate degree 122 (40.3%)

Clinical and OA-related
characteristics

Body mass index (kg/m2) 31.2 (7.9)
Baseline WOMAC pain score (Range: 0-20) 5.9 (3.7)
Baseline WOMAC stiffness score (Range: 0-8) 3.4 (2.1)
Baseline WOMAC function score (Range: 0-68) 21.9 (12.8)
Baseline WOMAC total score (Range: 0-96) 31.2 (17.6)

Other Symptoms and
Psychosocial Variables

Brief fear of movement score (Range: 6-24) 14.1 (3.4)
Self-efficacy for exercise scale (Range: 0-90) 56.4 (20.3)
Family support for exercise (Range: 10-50) 28.4 (11.4)
Satisfaction with physical function (Range: -3-3) 0.1 (1.7)
PROMIS fatigue score (Range: 33.1-77.8) 51.2 (9.0)
Depressive symptoms (PHQ-8) (Range: 0-24) 3.8 (4.2)

machine learning methods in that it determines each mechanistic subgroup by the average

outcome (value function), incorporating the advantages of RF. The algorithm is detailed in the

Technical Details for Chapter 1.

1.2.3 PATH-IN Data

PATH-IN participants completed outcome assessments at baseline, 4-month follow-up and

12-month follow-up; these analyses focus on 12-month follow-up. The primary outcome was

the WOMAC, which is a well-established self-reported measure of pain (5 items), stiffness (2

items) and function (17 items) (Bellamy, 2002). All items are measured on a 5-point Likert

scale, with a total scale range of 0-96; higher scores indicate worse symptoms and function. For

this analysis, we included participants in all 3 study arms. There were 47 covariates measured
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at baseline, including demographic, clinical, OA-related and physical activity related variables

(Table 1.1). Out of 350 participants, 47 had missing values in their WOMAC total score at 12-

month follow-up. We removed these participants, resulting in 303 participants for our analysis.

Since the proportion of missingness was uniformly less than 15% for missing values in baseline

covariates, we imputed these values using MissForest, implemented in the missForest R package

(Stekhoven and Bühlmann, 2012). The advantage of MissForest is that it can simultaneously

handle categorical variables and continuous variables of unequal scales, which aligns with the

PATH-IN data, and it is suited for data sets with high dimensional and potentially non-linear

interactions.

1.2.4 Application of the Value Function

In this study, we used the value function (VF), V, as a measure of treatment effectiveness

based on assignments generated from the RF informed Tree-based Learning algorithm, and

we denote V̂ as an estimate of V. The VF is the expectation of an outcome if future patients

followed the estimated decision rule derived from the data; see Supplement for details. Higher

value functions indicate greater quality of the decision rule and greater effectiveness of the

regime. We chose a jackknife estimator for estimating the value function, as recommended

in Jiang et al. (2020). This approach is equivalent to leave-one-out cross-validation, and it is

approximately unbiased (i.e., consistent). Using this estimator, we can compare how well each

machine learning method performs and determine statistical significance for the differences

between treatment regimes. As in Jiang et al. (2020), the value function of a Zero-Order Model

(ZOM), i.e., the regime where the estimated best single treatment is given to everyone, was

used as a tool for comparing how well estimated regimes performed. That is, the VFs for three

ZOMs (IBET, PT, and WT) were estimated, and the IBET ZOM, which produced the largest VF

estimate out of three VF estimates was compared with a candidate treatment regime. Z-tests

were applied to evaluate whether the method returned statistically significantly better treatment
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Method used for estimating a treatment regime Value function
Random Forest Informed Tree-Based Learning 75.5

Random Forest 71.3
LIST embedded with Random Forest 69.9

LIST embedded with Kernel Ridge Regression 71.1
PT ZOM 69.8

IBET ZOM 71.1
WT ZOM 67.1

Table 1.2: Value function estimates for outcome at 12-month visit

regimes than simply assigning the estimated single best treatment to all patients. The value

function estimates for each method are displayed in Table 1.2.

1.2.5 Random Forest Informed Tree-based Learning

For computational feasibility, we chose the 13 candidates of the patient characteristics

for the analysis, based on Variable Importance from RF prior to running the algorithm, since

these 13 covariates were selected at least once by the cross-validation to be the most important

covariates. In Section 2 of Supplement, the detailed strategy for the selected 13 covariates is

described. The algorithm then begins dividing the data set into two subgroups, followed by

iteratively splitting these subgroups into finer subgroups. In each iteration, the VF is calculated,

and the algorithm determines whether the partition at that iteration is beneficial. The iterations

continue until the splitting does not statistically significantly improve the VF. More detailed

explanations for the variable selection and the algorithm are included in the Supplement.

1.3 Results

According to Table 1.2, RF informed Tree-based learning and RF were the two methods

that yielded higher VF than the VF of ZOMs. The p-value for RF informed Tree-based learning

was 0.0125 and the p-value for RF was 0.9. The significantly greater VF for RF informed

Tree-based learning indicates that subgroups of patients would achieve greater improvement

from the assigned treatments estimated by the new method than from receiving IBET (the best
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Figure 1.1: Final Rule for the data set with the outcome at month 12

overall treatment based on 12-month WOMAC change) uniformly. Figure 1.1 displays the final

rule determined for the total WOMAC outcome at 12-month follow-up. Although the rule has

five split points, the fourth and fifth split points have been combined for improve interpretability

since thresholds for both nodes are defined using BMI. Notable features of this decision rule

include: 1) IBET was the optimal treatment for more than half of patients overall (n=174); 2)

For a subgroup of younger individuals (age ≤ 49.3 years), IBET was the optimal treatment; 3)

The subgroup for whom PT was the optimal treatment was characterized by age > 49.3 years,

high BF (> 9), and BMI between 26.3 and 37.2 kg/m2. 4) For 17 patients, WT was the optimal

treatment.

1.4 Discussion

In this study, we applied a new machine learning algorithm, Random Forest informed

Tree-based Learning, to discover optimal treatment regimes for subgroups of patients in a trial of

two exercise-based interventions for knee OA. The method addresses limitations of established
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machine learning methods (RF and LIST-based methods with kernel ridge regression and RF),

which did not produce regimes that were significantly better than the ZOM in this study. The

new algorithm successfully identified distinct subgroups for whom PT, IBET, or WT was the

best treatment at the 12-month visit. Specifically, assignment of the optimal treatment regime

resulted in a significant improvement over the ZOM; this is strong evidence that the proposed

treatment regimes would deliver more beneficial results to patients than assigning a single best

treatment to all individuals. Hence, tailoring referrals to specific exercise-based interventions,

based on patient characteristics, could result in greater impacts on OA symptoms. These findings

are particularly interesting in the context of the overall findings of the trial, which showed that

mean improvements in WOMAC were similar across the 3 study arms, including the wait list, at

12-months. This further suggests that exercise-based interventions may be most effective when

they are selected based on patient characteristics.

Subgroups identified by the algorithm were characterized by differences in age, BMI and

fear of movement, which are all feasible to evaluate in clinical settings. IBET was the optimal

treatment for 57% of patients in these analyses. This is of interest, as it suggests that this lower

resource intervention (relative to PT) may be more favorable for about half of patients with

OA, when considering 12-month outcomes. Participants younger than 49.3 years old and those

at least 49.3 years old with low fear of movement were subgroups for whom IBET was the

optimal treatment regime; clinically, this suggests that patients with these characteristics may

be better able to sustain behaviors and impacts of a self-guided exercise program. There was

one relatively large subgroup (n = 112) for whom PT was the optimal treatment; this group

was characterized by age > 49.3 years, high fear of movement and BMI ranging between 26.3

and 37.2 kg/m2. The next largest group (n = 77) assigns IBET to patients with age ≤ 49.3,

high fear of movement, and BMI less than 26.4. However, for other subgroups, results are

more challenging to interpret clinically due to their involvement of combinations of variables

and their identified thresholds. For a fairly small number of participants (n=17), the wait list
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condition was the optimal treatment regime. This indicates that for the majority of individuals

in the trial, one of the two active treatments (IBET or PT) was superior to no treatment.

Although this algorithm addresses some shortcomings of other machine learning methods,

it also has some limitations. Since the algorithm exhaustively searches for one split point out of

all the distinct points from every important variable in the list until the third variable is chosen,

it can be computationally burdensome. Moreover, it is not guaranteed that the VF estimate from

the final rule is the maximum of all possible VF estimates. The reason is that once a subgroup

in a particular iteration has been decided, the algorithm in the next iteration searches for the

subsequent finer subgroup only in the subgroup identified in the previous iteration. Although

this process does not necessarily lead to the maximum VF estimate, it is designed to obtain

a decision rule that produces a VF estimate as statistically significant as possible while also

providing mechanistic parsimonious rules. For future studies, we suggest developing a tool for

discovering the maximum VF estimate with its corresponding decision rule with factors that

identify distinct subgroups.

In summary, these secondary analyses from the PATH-IN trial successfully identified

meaningful subgroups of patients for whom PT, IBET and WT was the optimal treatment.

Because these results are exploratory, further analyses are needed to evaluate whether these

patterns are also observed in other cohorts and contexts. However, we believe these results offer

some practical guidance for patients with knee OA, as well as clinicians who refer these patients

to exercise-based interventions. First, results suggest that younger patients (leq49 years) and

those who are older but have low fear of movement may be able to sustain benefits (over a

12-month period) from a supported home-based exercise intervention. Second, patients > 49

years of age who have greater fear of movement may be good candidates for a referral to PT

and may particularly benefit from this higher level of support and guidance, with respect to

sustaining improvements after 1 year.
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CHAPTER 2: DOUBLY ROBUST ESTIMATION AND INFERENCE OF UTILITY
FUNCTIONS

2.1 Introduction

In this chapter, we study a method for estimating the utility that is customized to each patient.

By introducing the utility to combine multiple outcomes and estimate ITRs, it is possible to use

the numerous estimators previously developed for ITRs for a single scalar outcome. However,

since the outcome model now incorporates the utility whose true model is complicated, the

concern of misspecification of the outcome model still remains. Hence, an alternative estimator

that is robust to misspecification of the outcome model is required.

Therefore, we propose doubly robust estimators for the utility of two outcomes and the

probability of assigning the correct treatments in observational data. In addition, we suggest

the estimator for ITRs that corresponds to the optimal utility that would yield the best improve-

ments in the outcomes of patients. According to the literature review, we employ the inverse

reinforcement learning framework suggested in Luckett et al. (2021). During the estimation

process, we use EARL (Zhao et al., 2019) for estimating ITRs, transferring the doubly robust

property to the suggested estimators.

We introduce our method in Section 2.2. In Section 2.3, we present the theoretical properties

of the utility estimator and the boundary function of the estimated ITRs. In section 2.4, we

study the performance of our method by simulations. In section 2.5, we present an illustrative

application based on data for a bipolar disorder study. Lastly in section 2.6, we summarize our

method with possible future topics.
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2.2 Methods

2.2.1 Setting

Let Ui = (X i, Ai, Yi, Zi), i = 1, · · · , n be independent and identically distributed real-

izations of U = (X, A, Y, Z). We assume that we have two available treatments, A ∈ A =

{1,−1}, and we have covariates X ∈ X ⊂ Rp. We have two scalar outcomes, Y , and Z, where

higher values are most desirable. In order to express the two outcomes Y and Z into one scalar

to formally quantify the two outcomes simultaneously for coherent treatment regime estimation,

we introduce a utility function Uθ = u(Y, Z; θ) where u : R2 → R, and θ is in the parameter

space Θ. The utility functions are dependent on covariates X , and in this paper, we define the

utility as a convex combination of Y and Z, Uθ = u(Y, Z;X, θ) = ωθ(X)Y + {1− ωθ(X)}Z,

where ωθ(X) : X → R is a smooth function. For a treatment assignment function, let

d : X 7→ {1,−1} be the decision which allocates d(x) to patients who have X = x as co-

variates, and when d is assumed to be in a known class of decision D. We assume there is a

measurable function f : X 7→ R for which d(X) = sgn(f(X)).

In this paper, we take the potential outcome framework (Rubin, 1974; Splawa-Neyman et al.,

1990). Let’s denote Y ∗(a) the potential outcome of Y which would have been produced if the

treatment a ∈ A had been assigned. In the same context, Y ∗(d) =
∑

a∈A Y
∗(a)I{d(X) = a}

indicates the outcome that would have been produced under a treatment regime d, and the

utility of counterfactual outcomes is defined as U∗
θ (d) = u{Y ∗(d), Z∗(d); θ}. The expectation

of the potential outcome under a regime d, which is called the value, is defined as VY (d) =

E[Y ∗(d)], and similarly, Vθ(d) = E[U∗
θ (d)] = E

[
u{Y ∗(d), Z∗(d); θ}

]
. The values are used to

evaluate performance of a treatment regime d, since it is the expectation of the outcome that the

population would have produced if the treatment regime d had been assigned. The treatment

regime that results in the largest value with respect to Y is denoted as an optimal treatment

regime d∗Y , i.e. VY (d∗Y ) = maxd∈D VY (d). The optimal treatment regime for Uθ is d∗θ where

Vθ(d
∗
θ) = E

[
u{Y ∗(d∗θ), Z

∗(d∗θ)}
]
≥ E

[
u{Y ∗(d), Z∗(d)}

]
for all d ∈ D. However, in order
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to identify values and optimal treatment regimes using observed data, we need to make the

following assumptions.

Assumption 2.1. We assume the following causal assumptions:

1. Consistency, Y = Y ∗(A) and Z = Z∗(A).

2. Positivity, ∀(x, a) ∈ X ×A, Pr(A = a|X = x) ≥ c > 0.

3. No unmeasured confounders, {Y ∗(−1), Y ∗(1)} ⊥ A|X and {Z∗(−1), Z∗(1)} ⊥ A|X .

We also assume the stable unit treatment value assumption: there is no interference between

subjects, and there is only one treatment set (Rubin, 1980).

Additionally, we make an assumption that experts are making optimal decisions with nonzero

probability. We model the probability that the experts based observed decisions are actually

matching the true optimal decision, we reversely make inference on the optimal utility function

for each patient, adopting an inverse reinforcement learning approach. We will introduce the

detail in the next section.

2.2.2 The pseudo-likelihood estimation

For the doubly robust estimator of the utility, we employ the pseudo likelihood suggested in

Luckett et al. (2021), which we recall,

L̂n(θ, β) ∝
n∏

i=1

exp
[
XT

i β1
{
Ai = d̂n,θ(X i)

}]
1 + exp(XT

i β)
, (2.1)

where d̂n,θ is an estimator for the optimal treatment regime d∗θ, and θ is unknown. In addition,

we assume the following Assumption 2.2. Then, according to Theorem 5 in Luckett et al. (2021),

identifiability of the model holds.

Assumption 2.2 (Identifiability). The following conditions hold.

1. β ∈ B ⊂ Rp and θ ∈ Θ ⊂ Rq, where B and Θ are compact.
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2. β0 ̸= 0.

3. X is bounded (X ∈ X ⊂ Rp a.s.).

4. Let XS be the collection of subsets of X consisting of sets of the form {x ∈ X : dθ(x) ̸=

dθ0(x)} for θ ∈ Θ \ {θ0}, together with the complements of these sets. Then:

(a) For all XS ∈ XS , 0 < Pr (X ∈ XS) < 1, and

(b) E
(
XXT |X ∈ XS

)
is full rank ∀XS ∈ XS .

In the next sections, we describe the doubly robust approach for estimating d̂n,θ and the

detailed algorithm for (θ̂n, β̂n) to optimize the true parameters (θ0, β0).

2.2.3 Estimation of individualized treatment regimes (ITR)

Prior to applying logistic regression, an estimated individualized treatment regime (ITR)

is required. In Luckett et al. (2021), this is achieved by Q-learning. Let QY (X, a) =

E[Y |X, A = a] and QZ(X, a) = E[Z|X, A = a]. Then, due to Assumption 2.1, the op-

timal treatment regime for outcome Y is d∗Y (X) = maxa∈AQY (X, a), and for outcome Z

is d∗Z(X) = maxa∈AQZ(X, a) (Qian and Murphy, 2011). For the composite utility, let

Qθ(X, a) = E[Uθ|X, A = a] = ωθ(X)QY (X, a) + (1 − ωθ(X))QZ(X, a), and then the

optimal treatment regime is d∗θ(X) = maxa∈AQθ(X, a). Then, for fixed θ, an estimated ITR

is d̂n,θ by Q-learning. However, the performance of Q-learning depends heavily on the correct

specification of Q-functions, especially when the true relationships of outcomes with covariates

and treatments are complicated. For these reasons, we utilize a direct approach for estimating

an optimal treatment regime for two outcomes.

In this doubly robust approach, the objective is to estimate d∗θ by searching d ∈ D that

maximizes Vθ(d). Specifically, we use AIPWE for estimating d∗θ in a manner analogous to the
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single outcome scenario of EARL described in the literature review. Let

V AIPWE
θ (d) = E

[UθI{A = d(X)}
π(d(X);X)

− I{A = d(X)} − π(d(X);X)

π(d(X);X)
Q{X, d(X)}

]
. (2.2)

The estimator of V AIPWE
θ (d) is V̂ AIPWE

θ (d) = En

[UθI{A=d(X)}
π̂(d(X);X)

− I{A=d(X)}−π̂(d(X);X)
π̂(d(X);X)

Q̂{X, d(X)}
]
,

where Q̂θ(X, a) are estimators of Qθ(X, a). Next, for the doubly robust property, we assume

consistent estimators for the propensity score model π(a;X) and the outcome model Qθ(X, a)

in the following assumption allowing that the limiting quantities may not be correct. The

theorem verifying doubly robustness is presented in Section 2.3.

Assumption 2.3. For each θ ∈ Θ, there exist πm(a;X) and Qm
θ (X, a) such that π̂(a;X)

P−→

πm(X; a) and Q̂θ(X, a)
P−→ Qm

θ (X, a).

For each θ ∈ Θ, we optimize f ∗
θ (X) ∈ F such that d∗θ(X) = sgn(f ∗

θ (X)) for a functional

space F , and hence D = {sgn(f(X)) : f ∈ F}. Let

Wa,θ(U) =
UθI(A = a)

π(a;X)
− I(A = a)− π(a;X)

π(a;X)
Qθ(X, a), and

Ŵa,θ(U) =
UθI(A = a)

π̂(a;X)
− I(A = a)− π̂(a;X)

π̂(a;X)
Q̂θ(X, a),

Analogous to EARL in a single outcome setting, for each θ ∈ Θ,

f̃λn
n,ϕ,θ = arg inf

f∈F
En

[
|Ŵ1,θ|ϕ

{
sgn(Ŵ1,θ)f(X)

}
+ |Ŵ−1,θ|ϕ

{
− sgn(Ŵ−1,θ)f(X)

}
+ λn∥f∥2

]
,

(2.3)

where nλn → 0 as n→ ∞. We also apply the sample splitting technique used to estimate EARL.

Additionally, assume T1,n ≡
√
nmax1≤j≤J

∣∣∣ (J−1)n
J(n−nj)

−1
∣∣∣→ 0, and T2,n ≡

√
nmax1≤j≤J

∣∣∣ n
Jnj

−
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1
∣∣∣→ 0 as n→ ∞. We suggest the estimator for the boundary function f ∗

θ (X) as

f̂λn
n,ϕ,θ =

1

J

J∑
j=1

f̂
λn,(j)
n,θ , and (2.4)

f̂
λn,(j)
n,ϕ,θ = arg inf

f∈F
E(−j)

n

[
|Ŵ1j,θ|ϕ

{
sgn(Ŵ1j,θ)f(X)

}
+ |Ŵ−1j,θ|ϕ

{
− sgn(Ŵ−1j,θ)f(X)

}
+ λnj∥f∥2

]
, (2.5)

for each θ ∈ Θ where Ŵaj,θ =
UθI(A=a)
π̂j(a;X)

− I(A=a)−π̂j(a;X)

π̂j(X;a)
Q̂θ,j(X, a) for a ∈ {1,−1}, nλnj → 0.

2.2.4 Overview of the algorithm

An estimated ITR d̂n,θ = sgn(f̂λn
n,ϕ,θ) is plugged in to the pseudo-likelihood (2.1) to estimate

the parameters for the utility function and the probabilities of correct treatment recommendation.

However, as mentioned in Luckett et al. (2021), an optimizing method that uses gradients is

not applicable since (2.1) is not smooth in θ. Therefore, we employ a profile pseudo-likelihood

L̃n(θ; d̂n,θ) = maxβ∈Rp L̂n

{
θ, β; d̂n,θ

}
as in Luckett et al. (2021). In order to optimize a multi-

dimensional parameter θ, we take advantage of the Metropolis algorithm. We generate a chain

from a random walk, (θ1, · · · , θB), and obtain θ̂n that yields the largest profile pseudo-likelihood

L̃n(θ; d̂n,θ). The high-level description of the algorithm is below.

Another advantage of the suggested method is that asymptotic consistency is guaranteed

when at least one of the Q-function or the propensity score function is correctly specified by

utilizing EARL, which achieves a doubly robust property. By plugging in the EARL estimator

to the pseudo-likelihood, we can enjoy the flexible characteristic of EARL, which provides

us protection if the true Q-function or propensity score function is hard to be formulated. In

addition to the doubly robustness of the estimated ITR, we expect the robustness of estimators

for utilities and the probability of the correct assignment of optimal treatments.
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Algorithm 1: Pseudo-likelihood estimation of utility function
1 Set a chain length, B, fix Σ ≽ 0, and initialize θ1 to a starting value in Rp;
2 for b = 2, . . . , B do
3 Generate e ∼ N(0,Σ);
4 Set θ̃b+1 = θb + e;
5 Obtain f̂n,θ̃b+1 = f̂λn

n,θ̃b+1
by (2.4) and (2.5);

6 Estimate d̂n,θ̃b+1 = sgn(f̂n,θ̃b+1);

7 Compute p = min
{
L̃n

(
θ̃b+1; d̂n,θ̃b+1

)
/L̃n

(
θ̃b; d̂n,θ̃b

)
, 1
}

;

8 Generate U ∼ U(0, 1); if U ≤ p, set θb+1 = θ̃b+1; otherwise, set θb+1 = θb;
9 end

10 Select θ̂n = argmaxθ∈{θ1,··· ,θB} L̃n

(
θ; d̂n,θ

)
;

11 Estimate β̂n = argmaxβ∈RP L̂n

(
θ̂n, β; d̂n,θ̂n

)
;

2.3 Theoretic Results

In this section, we state the theorems regarding the consistency and the asymptotic distribu-

tion of the proposed estimators. All proofs in this section are deferred to the Technical Details

for Chapter 2.

We assume that f ∈ F ⊂ M, where M is a space of measurable functions. For each

θ ∈ Θ, let the risk of a function f be

Rθ(f) = E
[{ωθ(X)Y + (1− ωθ(X))Z}I(A ̸= sgn(f(X)))

π(a;X)

]
.

Note that f ∗
θ (X) = arg inff∈F Rθ(f) such that d∗θ(X) = sgn(f ∗

θ (X)) for each θ ∈ Θ. Accord-

ingly, we consider the ϕ-risk as

Rθ,ϕ(f) = E
[
|W1,θ(U)|ϕ

{
sgn(W1,θ(U))f

}
+ |W−1,θ(U)|ϕ

{
− sgn(W−1,θ(U))f

}]
,

where ϕ(·) is a convex surrogate similar to Zhao et al. (2019). Denote f ∗
θ,ϕ(X) = arg inff∈F

Rθ,ϕ(f). The following lemma states the Fisher consistency for each θ ∈ Θ, where the θ-optimal

rule d∗θ(X) is equivalent to the sign of f ∗
θ,ϕ(X), which is obtained from minimizing ϕ-risk. For
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Fisher consistency of the optimal ITR and consistency of estimators in the following theorem,

assume πm(a;x) = π(a;x) or Qm
θ (x, a) = Qθ(x, a), i.e., either the propensity score model or

the Q-function is correct.

Lemma 2.1 (Fisher Consistency). For each θ ∈ Θ, let d∗θ(x) be the optimal ITR that satisfies

d∗θ(x) = argmaxa∈{−1,1}Qθ(x, a). Then, d∗θ(x) = sgn{f ∗
θ,ϕ(x)}.

Let θ0 be the true parameter for the utility function. Also, let β0 be the true parameter for

the probability of correct recommendation of treatments, i.e., P
{
A = d∗θ0(X)|X = x

}
=

expit(xTβ0). Then, Lemma 2.1 leads to the conclusion that the optimal treatment d∗θ0(x), which

is the true optimal decision and is equivalent to the sign of f ∗
θ0,ϕ

(x). Also, Lemma 2.1 enables

us to estimate the optimal treatment d∗θ(x) by sgn(f̂λn
n,ϕ,θ(X))) for each θ, and further estimate

(θ̂n, β̂n). Therefore, for the remainder of this section, we replace f ∗
θ,ϕ with f ∗

θ . We denote

f ∗
θ ≡ f ∗

ϕ,θ and f̂n,θ ≡ f̂λn
n,ϕ,θ for simplicity. Next, we state the doubly robust consistency of the

estimators, and present the additional needed assumptions in advance:

Assumption 2.4. The following hold.

1. For θ0, θ ∈ Θ such that d∗θ0(X) = d∗θ(X), θ0 = θ almost surely.

2. β, β0 are in the interior of a compact set B.

3. Assume ∥EX∥ <∞ where ∥ · ∥ is a euclidean norm.

Assumption 2.5. We assume the following conditions on functions.

1. The collection F = {γT ξ(x) : γ ∈ Rq}, where ξ(·) = {ξ1(·), . . . , ξq(·)}T is a q-

dimensional vector basis, where ξj : X 7→ R, for j = 1, . . . , q and where P (ξ(X)ξ(X)T ) >

0.

2. For each θ ∈ Θ, the set of utility functions ωθ(X) : X → R is contained in a VC class,

where ωθ(X) has a first order derivative ω̇θ(X) : X → R.
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Assumption 2.6. The convex surrogate ϕ(·) is differentiable except for a finite set C, where for

any c ∈ C, Pr(γT ξ(X) = c) + Pr(−γT ξ(X) = c) = 0. Denote ϕ̇(·) and ϕ̈(·) as the first and

second derivative of ϕ(·), respectively.

The choice of the convex surrogates in this paper, which include hinge loss, exponential

loss, logistic loss, and squared hinge loss, satisfies Assumption 2.6. Assumption 2.5 puts a

restriction to the functional forms for the boundary function and the utility function, and we let

ωθ(X) = expit(XT θ) for the utility function in this paper.

Theorem 2.1 (Doubly robust consistency). Assume πm(a;X) = π(a;X), or Qm
θ (X, a) =

Qθ(X, a) uniformly for θ ∈ Θ. Then the following results are achieved.

(a) Let the pseudo likelihood estimators be (θ̂n, β̂n) = argmaxθ∈Θ,β∈B L̂n(θ, β). Then,

∥θ̂n − θ0∥
P−→ 0 and ∥β̂n − β0∥

P−→ 0.

(b) sup
θ∈Θ

E[∥f̂n,θ(X)−f ∗
θ (X)∥] P−→ 0 and sup

θ∈Θ
E[∥d̂n,θ(X)−d∗θ(X)∥] P−→ 0, where d̂n,θ(X) =

sgn{f̂n,θ(X)}.

(c) Denote V̂θ(d) ≡ V̂ AIPWE
θ (d). Then,

∣∣∣V̂θ̂n(d̂n,θ̂n)− Vθ0
(
d∗θ0
)∣∣∣ P−→ 0.

For the asymptotic distribution of (θ̂n, β̂n), we first need to show the asymptotic distribution

of f̂n,θ̂n which is the estimator for the boundary function f ∗
θ0,ϕ

, since the behavior of the utilities

is considerably affected by the boundary. However, obtaining f ∗
θ0,ϕ

consists of minimizing Rθ0,ϕ,

where θ0 is the argmax of the likelihood L. In order to disentangle this two-staged maximization

problem, we firstly present the following new argmax and rate of convergence theorems where

a maximizing function converges weakly to another maximizing function uniformly in the

indexing parameters.

Theorem 2.2 (Indexed Argmax Theorem). Let (T, d1) and (H, d2) be metric spaces, with T

compact and H complete. Let (t, h) 7→ Mn,t(h) and (t, h) 7→ Mt(h) be stochastic processes

in l∞(T × H). For any A ⊂ H, let Ã be the space of maps from T to A. Then, H̃ is a

complete metric space with metric d(h1, h2) = supt∈T d2(h1,t, h2,t). Assume that in each
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t ∈ T , h 7→ Mn,t(h) has a unique maximum at ĥn,t ∈ H and h 7→ Mt(h) has a unique

maximum at ĥt ∈ H, where ĥn ∈ H̃ and ĥ ∈ H̃ almost surely. Assume that ∀ϵ > 0, there

exists compact K ⊂ H such that lim infn→∞ P (ĥn ∈ K̃) ≥ 1 − ϵ and P (ĥ ∈ K̃) ≥ 1 − ϵ.

Also, assume that for every compact set K ⊂ H, Mn ⇝ M in l∞(T ×K) and that ∀t1 ∈ T ,

limδ↓0 supt∈T,d(t,t1)<δ suph∈K |Mt1(h)−Mt(h)| = 0. Then, ĥn ⇝ ĥ in H̃, t 7→ ĥt is uniformly

equicontinuous over T , and ĥ is separable.

Theorem 2.3 (Indexed Rate of Convergence). Let Mn,t be a sequence of stochastic processes

indexed by a semimetric space (H, d), and Mt : H −→ R a deterministic function such that for

every h ∈ Nt where Nt = {h ∈ H : d(h, h∗t ) ≤ δ} for some δ > 0, there exists a c1 > 0 such

that

sup
t∈T

[
Mt(h)−Mt(h

∗
t )] ≤ − sup

t∈T
c1d

2(h, h∗t ) (2.6)

Suppose that for all n large enough and sufficiently small δ, the centered process Mn,t −Mt

satisfies

E∗ sup
t∈T,d(h,h∗

t )<δ

√
n
∣∣Mn,t(h)−Mt(h)−Mn,t(h

∗
t ) +Mt(h

∗
t )
∣∣ ≤ c2ϕn(δ), (2.7)

for c2 < ∞ and functions ϕn such that δ 7→ ϕn(δ)/δ
α is decreasing for some α < 2 not

depending on n, where E∗ is an outer expectation. Let

r2nϕn(r
−1
n ) ≤ c3

√
n, for every n and some c3 <∞. (2.8)

If the sequence ĥn,t satisfies inft∈T
(
Mn,t(ĥn,t)− suph∈Nt

Mn,t(h)
)
≥ −OP (r

−2
n ), then

rn sup
t∈T

d(ĥn,t, h
∗
t ) = OP (1).

We make use of Theorem 2.2 for investigating the asymptotic behavior of f̂n,θ near f ∗
θ ,

∀θ ∈ Θ. Let the rate of convergence for f̂n,θ be a nondecreasing, positive sequence rn. Provided

that f̂n,θ is the argmax of Mn,θ(f), ĥn,θ = rn(f̂n,θ − f ∗
θ ) is the argmax of h 7→ M̃n,θ(h) ≡
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rn
[
Mn(f

∗
θ + h/rn) −Mn(f

∗
θ )
]

as in Chapter 14 of Kosorok (2008). Then, if M̃n,θ ⇝ Mθ,

rn(f̂n,θ − f ∗
θ ) converges weakly to the argmax of Mθ for ∀θ ∈ Θ. In Theorem 2.3, we

introduced the theorem for determining rate of convergence rn.

Before presenting the limiting distribution of f̂n,θ̂n , we recall that the consistency of f̂n,θ̂,

which is the condition for weak convergence, is satisfied by previously stated assumptions. Also,

we restrict our index set to Θϵ where Θϵ = {θ : ||θ − θ0|| < ϵ, θ ∈ Θ}. In addition, we need

stronger (but reasonable) assumptions for the weak convergence of rn(f̂n,θ̂n − f ∗
θ0
). Therefore,

we present the further regularity conditions.

Assumption 2.7. There exist constants K1, K2 > 0 such that |Y | < K1 and |Z| < K2.

Assumption 2.8. For the estimator Q̂(X, a) of the outcome model Q(X, a), and π̂(a;X) of

the propensity score function π(a;X), we assume the following.

1. Assume Q̂(X, a) and π̂(X; a) are determined by a finite number of unknown parameters.

2. Assume that LΠ < π(a;X) < UΠ for some 0 < LΠ < UΠ < 1.

3. E∥π̂(a;x) − π(a;x)∥2P,2 = O(n−1) and E supθ∈Θ ∥Q̂θ(x, a) − Qθ(x, a)∥2P,2 = O(n−1),

where ∥g∥P,r ≡ [
∫
X |g(x)|rdP (x)]1/r.

Assumption 2.9. Define V = (V1, V2, V3), where V1, V2, V3 ∈ Rdj , j = 1, 2, 3 are the unique

parameters for π(a;X), QY (X, a), QZ(X, a), respectively, and let V̂n be an estimator of V

and V0 be the true value. Assume the following conditions.

1. For Ui, independent and identical distributed random variable of U = (X, Y, Z,A),

assume that there exists an influence vector ψi,V ≡ ψV (Ui) such that

√
n(V̂n − V0) = n−1/2

n∑
i=1

ψi,V + oP (1),

where E(∥ψV (U)∥2) <∞, and ψV (u) ∈ Rp for some p ≤ d1 + d2 + d3.
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2. There exist vectors Dπ(a,X), DY (a,X), DZ(a,X) ∈ Rdj , j = 1, 2, 3, such that

sup
a,x

∥∥√n{π̂n(a;x)− π(a;x)} −
√
n(V̂n − V0)

TDπ(a,x)
∥∥ = oP (1),

sup
a,x

∥∥√n{Q̂Y (x, a)−QY (x, a)} −
√
n(V̂n − V0)

TDY (a,x)
∥∥ = oP (1), and

sup
a,x

∥∥√n{Q̂Z(x, a)−QZ(x, a)} −
√
n(V̂n − V0)

TDZ(a,x)
∥∥ = oP (1).

3. Let

D̃θ
ã,1(u) =

(
− {ωθ(x)y + (1− ωθ(x))z}1(a = ã)

π2(a;x)
+

1(a = ã)

π2(a;x)
Q2

θ(x, a)
)
Dπ(a,x),

D̃θ
ã,2(u) = −1(a = ã)− π(a;x)

π(a;x)
ωθ(x)DY (a,x),

and D̃θ
ã,3(u) = −1(a = ã)− π(a;x)

π(a;x)
(1− ωθ(x))DZ(a,x).

Also, define Dθ
ã(U) =

∑3
j=1 D̃

θ
ã,j(U) such that

sup
u,ã,θ

∣∣∣√n(Ŵã,θ(u)−Wa,θ(u)
)
−

√
n(V̂n − V0)

TDθ
ã(u)

∣∣∣ = oP (1),

where
∑

ã=−1,1E∥Dθ
ã(u)∥2 <∞.

Theorem 2.4 (Asymptotic distribution of the boundary function). DefineNθ = E[
∑

aD
θ
a(U)ϕ̇(a·

sgn(Wa,θ(U))γ
∗
θ
T ξ(X))aξ(X)T ] for f ∗

θ (X) = γ∗θ
T ξ(X). Also, defineB0 = −A−1

1,0A2,0, a q×p
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matrix, where

A1,0 = −E
[ ∑
a∈{1,−1}

|Wa,θ0(U)|ϕ̈{a · sgn(Wa,θ(U))γ
∗
θ0

T ξ(X)}ξ(X)ξ(X)T
]
, and

A2,0 = −E
[∑

a

a ·
(I(A = a)

π(a;X)
(Y − Z)− I(A = a)− π(a;X)

π(a;X)
(QY (X)−QZ(X))

)
· ωθ0(X)(1− ωθ0(X))ϕ̇{a · sgn(Wa,θ0(U))γ

∗
θ0

T ξ(X)}ξ(X)XT
]

− 2E
[∑

a

Wa,θ0(U)
(I(A = a)

π(a;X)
(Y − Z)− I(A = a)− π(a;X)

π(a;X)
(QY (X)

−QZ(X))
)
· ωθ0(X)(1− ωθ0(X))ϕ̈

{
a · sgn(Wa,θ0(U))γ

∗
θ0

T ξ(X)
}
γ∗θ0

T ξ(X)

· ξ(X)XT
∣∣∣Wa,θ0(U) = 0

]
.

For fθ(X) ∈ F = {f(X) : f(X) = γT ξ(X)}, denote mθ
γ(U) = −

∑
a |Wa,θ(U)| ·

ϕ
{

sgn
(
Wa,θ(U)

)
aγT ξ(X)

}
, and m(j),θ

γ∗
θ

(U) =
(

∂
∂γ

)j
mθ

γ(U)
∣∣∣
γ=γ∗

θ

for j = 1, 2. Let f̂n,θ̂n(X) be

the estimator from (2.4) where θ̂n = argmaxθ∈Θ L̃n(θ), and denote f̂n,θ(X) = γ̂Tn,θξ(X). Also,

let Ũ1h =
√
n(θ̂n − θ0). Then,

√
n
(
γ̂n,θ̂n − γ∗θ0

)
−B0Ũ1h ⇝ −V −1

θ0
Z̃, (2.9)

where Z̃ is mean zero Gaussian process with covariance

Aθ0 = E
[
m

(1),θ0
γθ0

∗ (U)m
(1),θ0
γ∗
θ0

(U)T
]
+NT

θ0
E
[
ψV (U)ψ

T
V (U)

]
Nθ0

+ E
[
m

(1),θ0
γ∗
θ0

(U)ψT
V (U)

]
Nθ0 +NT

θ0
E
[
ψV (U)m

(1),θ0
γ∗
θ0

(U)T
]
,

and

Vθ0 = E
[∑

a

−|Wa,θ0(U)|ϕ̈
(
a · sgn(Wa,θ0(U))γ

∗
θ0

T ξ(X)
)
ξ(X)ξ(X)T

]
.

35



With the limiting distribution for the estimator of the boundary function f̂n,θ̂n(·), we

can now derive the limiting distribution of (θ̂n, β̂n). Recall that Pβ(x) = expit(xTβ). Also,

define In(β) = En

[
Pβ(X{1 − Pβ(X)XXT

]
, and I0 = E

[
Pβ0(X{1 − Pβ0(X)XXT

]
. We

let ZA,n = n−1/2
∑n

i=1 ψA(Ui), where ψA(Ui) =
[
1{Ai = d∗θ0(X i)} − Pβ0(X i)

]
X i is an

independent and identically distributed influence vector for the unique parameters of π(a;X)

and E[ψAψ
T
A] <∞. Further, we assume the following conditions.

Assumption 2.10. For Z̃ ∈ Rq, Ũ ∈ Rp, and a q × p matrix B, define

k(Z̃, Ũ) = E
(
X{2Pβ0(X)− 1}

∣∣(−V −1
θ0
Z̃ +BŨ)T ξ(X)

∣∣∣∣f ∗
θ0
(X) = 0

)
.

Assume that M(Ũ) = βT
0 k(Z̃, Ũ) has a unique and finite minimum over Rp for all Z̃ ∈ Rq.

Assumption 2.11. We assume the following conditions.

(a) The random variable f ∗
θ (X) has a continuous density function g in a neighborhood of 0

with g0 = g(0) ∈ (0,∞).

(b) The conditional distribution of X given that |f ∗
θ0
(X)| ≤ ϵ converges to a non-degenerate

distribution as ϵ ↓ 0.

(c) There exist δ1 and δ2 such that

lim
ϵ↓0

inf
t∈Sp

Pr
[
|XTβ0| ≥ δ1, |(−V −1

θ0
Z̃ +B0t)

T ξ(X)| ≥ δ1
∣∣|f ∗

θ0
(X)| ≤ ϵ

]
≥ δ2,

where Z̃ is a tight mean zero Gaussian process with covariance Aθ0 , and Sp is the p-dimensional

unit sphere.

Theorem 2.5. Let

Σ0 =

 ΣA −E
[
ψAV

−1
θ0

{m(1),θ
γ∗
θ0

+NT
θ0
ψV }T

]
−E
[
{m(1),θ

γ∗
θ0

+NT
θ0
ψV }V −1

θ0
ψT
A

]
Aθ0

 ,
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where ΣA = E[ψAψ
T
A]. Then, under the aforementioned assumptions,

√
n

 θ̂n − θ0

β̂n − β0

⇝
 Ũ

I−1
0 {ZA − k(Z̃, Ũ)}

 , (2.10)

where Ũ = argminu∈Rp M(u), and (ZT
A , Z̃

T )T ∼ N(0,Σ0).

2.4 Simulation Studies

In this section, we examine the performance of the suggested estimator via simulation

studies. For n = 100, 200, 500, and 1000, we generated X = (X1, X2) where Xp ∼ N(0, 1)

for p = 1, 2 and Y = X2
1 +A(4X2

1 − 2X2) + ϵY , Z = −2X1 +A(2X2
1 − 4X2 − 1) + ϵZ . We

assume ωθ(X) = expit(0.5−X1) where Uθ(X, Y, Z) = ωθ(X)Y + {1−ωθ(X)}Z. Also, for

the propensity score model, we assume Pr(A = d∗θ(X)|X) = expit(1.5 −X1). We repeated

generating a data set and estimating parameters 500 times.

For EARL estimation of the optimal treatment, the logistic loss was implemented with

λnj = 2−5. Also, since the outcome model now incorporates the utility function, i.e., Uθ(X) =

ωθ(X)Y + {1− ωθ(X)}Z, the formula for the outcome model heavily depends on the utility

function. Therefore, we applied linear approximation and confirmed that the correct outcome

model is nearly approximated by X3
1 +X2

1 +X1 ∗X2 +X1 +X2. Regarding the Metropolis

algorithm, we built a Markov chain of 10, 000 length in each replication. The result for this

setting is presented in Table 2.3. As the sample size increases, root mean squared errors (RMSE)

of both θ̂n and β̂n decrease.

n RMSE of θ̂n RMSE of β̂n Error rate Median(25th, 75th)
100 0.40 (0.34) 1.01 (0.30) 0.13 (0.05) 0.12 (0.09, 0.16)
200 0.34 (0.26) 1.00 (0.22) 0.12 (0.04) 0.12 (0.10, 0.15)
500 0.26 (0.12) 0.95 (0.19) 0.13 (0.04) 0.12 (0.10, 0.15)

1000 0.24 (0.09) 0.88 (0.18) 0.14 (0.04) 0.13 (0.11, 0.18)

Table 2.3: Estimation results for simulations where both utility and probability of optimal
treatment are variable
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Table 2.4 summarizes value estimates of the optimal policies with θ0, estimated policies

with θ̂n by the suggested method, policies when only Y is considered in the outcome model

(ωθ(X) ≈ 1), and policies when only Z is considered in the outcome model (ωθ(X) ≈ 0),

respectively. It is reasonable to conclude that the estimated policy yields notable improvement

over the policy in only Y is considered, the policy that only Z is considered, or the standard of

care.

n Optimal Estimated Y only Z only Standard of care
100 2.73 (0.16) 2.56 (0.23) 2.18 (0.25) 1.41 (0.31) 1.25 (0.68)
200 2.73 (0.17) 2.62 (0.20) 2.23 (0.20) 1.45 (0.21) 1.25 (0.44)
500 2.74 (0.16) 2.64 (0.17) 2.22 (0.17) 1.46 (0.19) 1.24 (0.30)

1000 2.74 (0.18) 2.65 (0.16) 2.24 (0.17) 1.47 (0.18) 1.24 (0.21)

Table 2.4: Value results for simulations where both utility and probability of optimal treatment
are variable

Additionally, in order to check the doubly robust property of the suggested estimator, we

compare the settings that assumed the incorrect outcome model or the incorrect propensity score

model. The following are four different settings for the comparison.

• Correct specification of both the outcome model and the propensity score (CC): Uθ(X, Y,

Z) ∼ X3
1 +X

2
1 +X1∗X2+X1+X2+A(X

3
1 +X

2
1 +X1∗X2+X1+X2), π(a;X) ∼ X1.

• Incorrect specification of the outcome model and the correct model for the propensity

score (CI): Uθ(X, Y, Z) ∼ X1 +X2 + A(X1 +X2), π(a;X) ∼ X1.

• Correct specification of the outcome model and the incorrect model for the propensity

score model (IC): Uθ(X, Y, Z) ∼ X3
1 +X2

1 +X1 ∗X2 +X1 +X2 +A(X3
1 +X2

1 +X1 ∗

X2 +X1 +X2), π(a;X) ∼ 1.

• Incorrect specification of both the outcome model and the propensity score model (II):

Uθ(X, Y, Z) ∼ X1 +X2 + A(X1 +X2), π(a;X) ∼ 1.

Figure 2.2 presents four boxplots of estimated values in different settings. It appears that as

n increases, the variance of value estimates decreases in all n. Also, although the estimation
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could be worsened when the Q-function is wrongly assumed than when the propensity score

model is incorrect, it is reasonable to conclude that the impact of misspecification of the

Q-function also significantly decreases when n is greater than 500.
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Figure 2.2: Boxplots of estimated values in four settings by n = 100, 200, 500, 1000, Y-axis:
values
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2.5 The Analysis of the STEP-BD Standard Care Pathway

Bipolar disorder is known for its two oppositing symptoms, depression and mania. In order

to treat bipolar disorder, an antidepressant can be used; however, it has not been a standard

treatment since there is a possibility of worsening the mania episode or triggering side effects in

some patients. To reveal the relationship between antidepressants and these two symptoms, The

Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD), a project that

includes a randomized trial and a large observational study, was established (Sachs et al., 2007).

In this chapter, we applied the suggested method to the observational portion of the STEP-BD

and investigated if the suggested precision medicine approach resulted in improvement in the

symptoms of individuals similar to Luckett et al. (2021). For more detailed information on

the STEP-BD and antidepressants in the study, we recommend the readers to see Section 5 of

Luckett et al. (2021).

There are two outcomes that we consider in this study, the SUM-D score for depression

episodes and the SUM-M score for mania episodes. Also, there are ten antidepressants (Deseryl,

Serzone, Citalopram, Escitalopram, Oxalate, Prozac, Fluvoxamine, Paroxetine, Zoloft, Ven-

lafaxine, Bupropion) all of which are considered as treatments. We used a logistic regression of

the propensity score for the observational data to configure elements in our algorithm. Moreover,

we utilized the randomized portion of STEP-BD by fitting a linear regression to each of the

SUM-D and the SUM-M. As a result, we identified substance abuse and race at the significance

level of 0.05 as potential confounders and used these variables to construct the outcome model,

propensity score model, utility function, and the model for the probability of correct treatment

assignment. We assumed that the lower SUM-D and SUM-M scores were desirable. Also, for

the estimation of ITRs, we used the logistic loss as a surrogate for the indicator function.

Table 2.5 presents the improvement of value and estimates of the parameters. We used

five-fold cross-validation. We computed the value by IPWE in the validation portion using the

treatment regime that was estimated from the training portion, then averaged the five resulting

value estimates. The value of standard care is calculated by IPWE using the estimated weights
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(utilities) and the observed outcomes. The estimated value is 6.6% greater than the value of

standard care, implying that patients benefit 6.6% more from the estimated policy. En[ωθ̂n
(x)]

indicates the average of the estimated weights in the utility functions. En[ρ̂n(x)] refers to the

average of the estimated probabilities of the correct recommendation, i.e., ρ(x) = expit(βTx).

The resulting estimated θ̂n from the suggested method is presented in Table 2.6.

Policy SUM-D SUM-M Value (% improvement) ω̂n ρ̂n
Suggested method 2.338 0.843 6.6% 0.036 0.428
Standard of care 2.480 0.868 0.0% · ·

Table 2.5: Results of analysis of STEP-BD data for SUM-D and SUM-M

Intercept Substance Race
Estimate -1.038 -1.677 -0.212

Table 2.6: Estimates of θ̂n in the policy by the suggested method

2.6 Discussion

The philosophy of precision medicine and its usefulness has drawn attention, and methods

for estimating dynamic treatment regimes have been extensively developed in various settings.

Among the developed methods, Luckett et al. (2021) notably introduced a method for estimating

the ITR when there are two outcomes to be considered, advancing from the single outcome

case and pioneering to multiple outcome setting. However, due to the nonlinearity of the utility

function in many cases, there is a need for some guarantee of robustness when the outcome

model, which includes the utility function, is not correctly specified. Thus, it is reasonable

to seek an improved approach that does not affect the estimation much under a misspecified

outcome model. The suggested method achieves robustness of estimating the parameters for the

patient-specific composite outcomes and further optimizes the ITR considering the heterogeneity

of individuals.

One major advantage of the proposed method is that it alleviates the burden of determining

the correct model for the outcome. To magnify this benefit, we suggest employing a doubly
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robust approach when there are more than two outcomes to be considered as an extension

of this research, which opens up new possibilities for optimizing patient-specific outcomes

and their ITRs when there are multiple entangled diagnostic results. Also, developing doubly-

robust estimators for combining outcomes of various data types (e.g., survival outcomes)

would be a huge advance in the study of composite outcomes. The development of doubly

robust estimation in multiple outcome settings has considerable potential in precision medicine

research, potentially advancing the widespread use of composite outcomes in clinical research.
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CHAPTER 3: ESTIMATION OF COMPOSITE OUTCOMES IN THE MULTI-ARMED
SETTING

3.1 Introduction

The methods suggested in Luckett et al. (2021) and Chapter 3 are developed specifically

for binary treatment cases. Therefore, in this chapter, we extend the previous methods to

accommodate a multi-armed setting, i.e., A ∈ A = {1, · · · , K} where K > 2. In order to

achieve this, we employ an estimator that could identify complicated boundaries of optimal

treatments within the inverse reinforcement learning framework and subsequently obtain an

estimator for a composite outcome.

To estimate the boundary function for multiple treatments, we first utilize AD-learning (Qi

et al., 2020). AD-learning applies the angle-based approach by Zhang and Liu (2014), which

projects each treatment to K simplex vertices. Additionally, we employ SD-learning by Shah

et al. (2022), which uses a reweighing technique for a heterogeneous variance of outcomes of

patients.

In this chapter, we present preliminary work on estimating the utilities of outcomes in the

multi-armed setting. In Section 3.2, we introduce the algorithms for estimating the utilities,

which include AD-learning and SD-learning in estimating treatment rules. In Section 3.3, we

present the simulation results that validate the performance of the suggested estimators. Finally,

in Section 3.4, we conclude this topic with a summary.

3.2 Overview of the methods

We assume the same setting as 2.2.1. We recall the pseudo likelihood framework from

Luckett et al. (2021). For d̂n,θ an estimator for the optimal treatment regime d∗θ, the pseudo
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logistic regression likelihood is

L̂n(θ, β) ∝
n∏

i=1

exp
[
XT

i β1
{
Ai = d̂n,θ(X i)

}]
1 + exp(XT

i β)
.

For estimation of the boundary function f̂n,θ(X) where d̂n,θ(X) = sgn(f̂n,θ) from SD-

learning (Shah et al., 2022) and AD-learning (Qi et al., 2020), the angle-based approach of

Zhang and Liu (2014) should be preceded. Define ei a K − 1 dimensional zero vector where 1

is located at ith location. Let treatment A be expressed as the vector uA ∈ RK−1 such that

uA =


1√
K−1

1K−1, A = 1√
K

K−1
eA−1 − 1+

√
K√

(K−1)3
1K−1, 2 ≤ A ≤ K.

(3.11)

This representation allows treatment A to project into K simplex vertices in RK−1.

We use the following working model by Qi et al. (2020).

K

K − 1
Uθ = UT

Af(X) + ϵ,

where UA is a random vector such that UA|(X, A)
a.s.
= uA. In order to use AD-learning and SD-

learning in the observational data, we use the estimate π̂(a,x) for π(a,x) calculated by machine

learning techniques. Assume E[ϵ|A,X] = 0 and V ar(ϵ|A,X) = σ2
0(A,X). Also, assume

F = {f(X) = BTX : B ∈ RP×(K−1)}. For each θ ∈ Θ, the optimal ITR by AD-learning is

d∗θ(X) = arg max
k∈{1,··· ,K}

uTk f
∗
θ (X),

where f ∗
θ (X) is a function maps from Rp+1 to RK−1, and

f ∗
θ ∈ arg min

f∈RK−1
E
[ 1

π(A;X)

{ K

K − 1
Uθ − UT

Af(X)
}2]

.
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Also, for utilizing SD-learning, do the following suggested in Shah et al. (2022) for each θ ∈ Θ,

We could utilize machine learning methods such as random forests, XGBoost, or SuperLearner

Algorithm 2: SD-learning for the estimator of the boundary function f ∗
θ

1 Obtain an AD-estimator B̂AD
n,θ = argminB∈RP×(K−1) En

[
1

π̂(a,x)

(
K

K−1
Uθ − uTaB

Tx)
]

where π̂(a,x) is an estimator of π(a,x);
2 Obtain the squared residuals,

{
K

K−1
Uθ − uTA(B̂n,θ)

TX
}2;

3 Regress the squared residuals from 2 on (A,X), and obtain prediction function
σ̂2
n(A,X);

4 Estimate B̂SD
n,θ = argminB∈RP×(K−1) En

1
σ̂n(a,x)

(
K

K−1
Uθ − uTAB

Tx
)
;

suggested in Shah et al. (2022) to estimate the squared residuals for weights.

When the utilities are fixed among patients, we specify a grid from 0 to 1 for ω ≡ expit(θ),

obtain a profile estimator β̂n(ω) = argmaxβ∈Rp L̂n(ω, β) by using each value in the pre-

specified grid, and select the value in the grid that produces the largest profile pseudo-likelihood.

For patient-specific utility, by f̂n,θ(X), we use Metropolis algorithm to estimate θ̂n that provides

the largest L̃n(θ; d̂n,θ) as in Algorithm 1. We build a chain (θ1, · · · , θB) and estimate f̂n,θb , b =

1, · · · , B. Since 2.2.2 use the agreement of the observed treatment and the estimated treatment

as outcomes, not the treatment itself, the logistic likelihood is still valid in multiple treatment

settings.

3.3 Simulation studies

3.3.1 Fixed utility with homogeneous variance

In this subsection, we present the results of simulation studies with fixed utilities. Firstly,

we present the case when the variance of patients is equivalent. Let X1 ∼ N(0, 1) and
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X2 ∼ N(0, 1). Also, let Y = QY (X, A) + ϵY and Z = QZ(X, A) + ϵZ , where

QY (X,A) =


0.5 +X1 +X2 A = 1

0.5−X1 −X2 A = 2

0.5 +X1 −X2 A = 3

and

QZ(X,A) =


−0.5− 0.5X1 + 2X2 A = 1

−0.5 + 0.5X1 + 2X2 A = 2

−0.5− 0.5X1 − 2X2 A = 3,

and ϵY ∼ N(0, 0.52), and ϵZ ∼ N(0, 0.52). We assume that the utilities of outcomes are fixed,

i.e., ωθ(X) ≡ ω, where ω ∈ [0, 1]. In this context, we denote d∗ω(X) as the optimal treatment

regime that maximizes Qω(X, a) = ωQY (X, a) + (1−ω)QZ(X, a). Additionally, we assume

that the optimal treatments are assigned to patients with a probability of Pr{A = d∗ω(X)|X =

x} = ρ. We obtained d̂n,ω(X) using 2. To estimate π̂(a;x) and σ̂2
n(A,X), we applied random

forests. We performed 500 replications for each scenario.

Table 3.7 presents the estimates of ω and ρ when ω = 0.25 or 0.75, ρ = 0.7, 0.8 or 0.9,

and n = 100, 200, 500, and 1000. For each row, ω̂n and ρ̂n were calculated by averaging the

estimates from 500 replications. The error rate was also averaged over the 500 replications. The

standard errors are provided in parentheses.

Table 3.8 shows value estimates that are averaged over 500 values that would have been

produced when treatments are assumed to be assigned by optimal policies with ω0, estimated

policies with ω̂n, policies with only Y (ω0 = 1), policies with only Z (ω0 = 0), or standard of

care. Standard errors of 500 replications are provided in the parentheses in each scenario.

47



n ω ρ ω̂n ρ̂n Error rate
100 0.25 0.7 0.14 (0.12) 0.66 (0.05) 0.08 (0.03)

0.8 0.20 (0.17) 0.74 (0.04) 0.09 (0.04)
0.9 0.23 (0.17) 0.84 (0.03) 0.08 (0.02)

0.75 0.7 0.68 (0.13) 0.67 (0.06) 0.08 (0.06)
0.8 0.72 (0.10) 0.75 (0.04) 0.07 (0.03)
0.9 0.77 (0.12) 0.84 (0.04) 0.08 (0.04)

200 0.25 0.7 0.19 (0.16) 0.67 (0.03) 0.09 (0.05)
0.8 0.20 (0.15) 0.76 (0.03) 0.08 (0.02)
0.9 0.16 (0.10) 0.84 (0.03) 0.08 (0.02)

0.75 0.7 0.67 (0.12) 0.68 (0.05) 0.08 (0.08)
0.8 0.69 (0.09) 0.77 (0.03) 0.06 (0.03)
0.9 0.75 (0.11) 0.85 (0.03) 0.07 (0.02)

500 0.25 0.7 0.14 (0.11) 0.66 (0.03) 0.08 (0.05)
0.8 0.13 (0.12) 0.75 (0.02) 0.08 (0.02)
0.9 0.14 (0.10) 0.84 (0.02) 0.08 (0.02)

0.75 0.7 0.67 (0.05) 0.67 (0.02) 0.05 (0.02)
0.8 0.68 (0.08) 0.77 (0.02) 0.05 (0.02)
0.9 0.70 (0.08) 0.85 (0.02) 0.06 (0.02)

1000 0.25 0.7 0.11 (0.09) 0.67 (0.02) 0.07 (0.02)
0.8 0.13 (0.11) 0.75 (0.02) 0.08 (0.02)
0.9 0.15 (0.10) 0.83 (0.01) 0.08 (0.02)

0.75 0.7 0.64 (0.02) 0.67 (0.02) 0.06 (0.02)
0.8 0.65 (0.05) 0.77 (0.02) 0.05 (0.02)
0.9 0.67 (0.06) 0.86 (0.02) 0.05 (0.01)

Table 3.7: Estimation results for simulations where utility and probability of optimal treatment
are fixed with homogeneous variance

3.3.2 Fixed utility with heterogeneous variance

In addition to the case when Y and Z are generated with homogeneous variance, we present

the simulation results that Y and Z are generated in heterogeneous variance in this subsection.

We assume ϵY ∼ N(0, 0.σ2
0(X)) and ϵZ ∼ N(0, 0.σ2

0(X)), where σ2
0(X) = 0.25 + (X1 − 1)2.

We estimated the utility and the probability of assigning the correct treatments by utilizing both

AD-learning and SD-learning. Table 3.9 provides the mean estimates of ω and ρ calculated

by AD-learning, and Table 3.10 contains the value estimates of true policy with ω0, estimated

policy with ω̂n, policy that maximizes only Y , and policy that maximizes only Z. The results in

48



n ω ρ Optimal Estimated ω Y only Z only Standard of care
100 0.25 0.7 1.17 (0.04) 1.15 (0.04) 0.76 (0.16) 1.14 (0.05) 0.50 (0.14)

0.8 1.17 (0.03) 1.15 (0.04) 0.87 (0.14) 1.13 (0.05) 0.73 (0.15)
0.9 1.15 (0.04) 1.15 (0.04) 1.01 (0.09) 1.14 (0.04) 0.95 (0.12)

0.75 0.7 1.47 (0.02) 1.44 (0.03) 1.39 (0.06) 1.02 (0.17) 0.91 (0.14)
0.8 1.47 (0.03) 1.44 (0.04) 1.41 (0.04) 1.06 (0.13) 1.08 (0.10)
0.9 1.46 (0.03) 1.44 (0.04) 1.41 (0.08) 1.11 (0.14) 1.27 (0.10)

200 0.25 0.7 1.16 (0.04) 1.13 (0.04) 0.74 (0.18) 1.13 (0.04) 0.57 (0.12)
0.8 1.16 (0.03) 1.15 (0.03) 0.89 (0.15) 1.13 (0.04) 0.78 (0.11)
0.9 1.17 (0.04) 1.15 (0.03) 0.99 (0.12) 1.14 (0.03) 0.97 (0.10)

0.75 0.7 1.45 (0.03) 1.42 (0.03) 1.39 (0.05) 1.05 (0.16) 0.94 (0.09)
0.8 1.46 (0.03) 1.44 (0.04) 1.41 (0.05) 1.09 (0.12) 1.11 (0.08)
0.9 1.46 (0.03) 1.44 (0.03) 1.40 (0.08) 1.11 (0.12) 1.27 (0.09)

500 0.25 0.7 1.16 (0.03) 1.15 (0.05) 0.65 (0.14) 1.14 (0.04) 0.53 (0.08)
0.8 1.16 (0.04) 1.15 (0.04) 0.85 (0.13) 1.15 (0.04) 0.73 (0.06)
0.9 1.16 (0.03) 1.14 (0.03) 1.00 (0.08) 1.14 (0.04) 0.95 (0.06)

0.75 0.7 1.46 (0.03) 1.44 (0.04) 1.41 (0.04) 1.05 (0.15) 0.91 (0.06)
0.8 1.46 (0.03) 1.44 (0.03) 1.42 (0.03) 1.15 (0.09) 1.10 (0.06)
0.9 1.46 (0.03) 1.45 (0.03) 1.42 (0.04) 1.17 (0.06) 1.28 (0.04)

1000 0.25 0.7 1.14 (0.04) 1.14 (0.04) 0.67 (0.12) 1.14 (0.04) 0.53 (0.05)
0.8 1.15 (0.03) 1.15 (0.03) 0.84 (0.09) 1.15 (0.03) 0.74 (0.05)
0.9 1.16 (0.03) 1.15 (0.03) 1.00 (0.06) 1.14 (0.03) 0.95 (0.04)

0.75 0.7 1.46 (0.02) 1.42 (0.02) 1.39 (0.04) 1.06 (0.11) 0.91 (0.04)
0.8 1.46 (0.03) 1.43 (0.03) 1.41 (0.04) 1.16 (0.08) 1.10 (0.04)
0.9 1.45 (0.03) 1.44 (0.03) 1.41 (0.04) 1.18 (0.05) 1.28 (0.03)

Table 3.8: Value results for simulations where utility and probability of optimal treatment are
fixed with homogeneous variance

these tables imply that the estimation of ω and ρ, as well as value estimation, are significantly

impacted by poor estimation of optimal ITR.

Table 3.11 and Table 3.12 provide estimates of ω̂n and ρ̂n, and the value estimates with

treatment rules obtained by SD-learning. The results in these two tables imply that SD-learning

enables us to obtain estimates of utilities that yield values close to the optimal values.

Figure 3.3 presents line plots of values, assuming that patients had followed the optimal

treatment rule, the rule estimated by SD-learning, and the rule estimated by AD-learning with

heterogeneous variances when n = 100, 200, 500 and 1000. Based on the figure, we can

conclude that when the variances of outcomes differ among patients, SD-learning is more

suitable for estimating the treatment rule and utilities compared to AD learning.
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n ω ρ ω̂n ρ̂n Error rate
100 0.25 0.70 0.70 (0.29) 0.35 (0.13) 0.62 (0.21)

0.80 0.67 (0.28) 0.36 (0.19) 0.63 (0.26)
0.90 0.58 (0.31) 0.45 (0.26) 0.54 (0.29)

0.75 0.70 0.52 (0.34) 0.47 (0.15) 0.41 (0.22)
0.80 0.62 (0.28) 0.53 (0.18) 0.38 (0.22)
0.90 0.68 (0.26) 0.62 (0.22) 0.34 (0.23)

200 0.25 0.70 0.78 (0.27) 0.35 (0.11) 0.62 (0.18)
0.80 0.71 (0.30) 0.35 (0.16) 0.63 (0.21)
0.90 0.63 (0.30) 0.42 (0.23) 0.57 (0.26)

0.75 0.70 0.47 (0.34) 0.50 (0.14) 0.37 (0.22)
0.80 0.61 (0.27) 0.58 (0.16) 0.32 (0.21)
0.90 0.68 (0.22) 0.65 (0.18) 0.30 (0.21)

500 0.25 0.70 0.90 (0.21) 0.34 (0.06) 0.64 (0.09)
0.80 0.84 (0.25) 0.35 (0.11) 0.64 (0.15)
0.90 0.75 (0.30) 0.39 (0.17) 0.59 (0.20)

0.75 0.70 0.39 (0.34) 0.51 (0.14) 0.35 (0.24)
0.80 0.65 (0.20) 0.65 (0.11) 0.21 (0.15)
0.90 0.70 (0.13) 0.74 (0.09) 0.19 (0.11)

1000 0.25 0.70 0.95 (0.15) 0.35 (0.05) 0.64 (0.08)
0.80 0.95 (0.14) 0.34 (0.06) 0.65 (0.09)
0.90 0.88 (0.23) 0.37 (0.13) 0.62 (0.15)

0.75 0.70 0.37 (0.35) 0.51 (0.15) 0.35 (0.26)
0.80 0.66 (0.16) 0.68 (0.08) 0.17 (0.12)
0.90 0.69 (0.08) 0.77 (0.05) 0.15 (0.06)

Table 3.9: Estimation results with AD-learning for simulations where utility and probability of
optimal treatment are fixed with heterogeneous variance

50



n ω ρ Optimal Estimated ω Y only Z only Standard of care
100 0.25 0.70 1.15 (0.03) 0.85 (0.26) -0.02 (0.27) 0.86 (0.25) 0.53 (0.16)

0.80 1.16 (0.03) 0.80 (0.34) -0.06 (0.30) 0.77 (0.36) 0.73 (0.16)
0.90 1.16 (0.04) 0.80 (0.37) 0.03 (0.44) 0.77 (0.38) 0.94 (0.14)

0.75 0.70 1.45 (0.03) 1.20 (0.31) 1.03 (0.33) 0.64 (0.21) 0.92 (0.12)
0.80 1.46 (0.03) 1.12 (0.34) 0.92 (0.38) 0.65 (0.27) 1.08 (0.12)
0.90 1.45 (0.03) 1.14 (0.37) 0.95 (0.41) 0.68 (0.30) 1.26 (0.11)

200 0.25 0.70 1.16 (0.04) 0.93 (0.13) 0.00 (0.24) 0.93 (0.14) 0.53 (0.12)
0.80 1.16 (0.04) 0.90 (0.17) -0.03 (0.25) 0.91 (0.15) 0.74 (0.11)
0.90 1.16 (0.04) 0.86 (0.26) -0.03 (0.31) 0.85 (0.26) 0.95 (0.10)

0.75 0.70 1.45 (0.03) 1.31 (0.19) 1.12 (0.24) 0.66 (0.19) 0.91 (0.09)
0.80 1.46 (0.03) 1.27 (0.19) 1.05 (0.30) 0.65 (0.20) 1.09 (0.08)
0.90 1.46 (0.03) 1.21 (0.29) 0.99 (0.35) 0.66 (0.24) 1.27 (0.07)

500 0.25 0.70 1.16 (0.03) 0.95 (0.08) 0.03 (0.14) 0.96 (0.07) 0.53 (0.07)
0.80 1.17 (0.04) 0.95 (0.08) 0.00 (0.16) 0.96 (0.07) 0.74 (0.07)
0.90 1.17 (0.04) 0.94 (0.09) 0.01 (0.20) 0.96 (0.09) 0.95 (0.06)

500 0.75 0.70 1.46 (0.03) 1.38 (0.07) 1.22 (0.14) 0.61 (0.13) 0.92 (0.06)
0.80 1.47 (0.03) 1.37 (0.08) 1.20 (0.15) 0.60 (0.12) 1.10 (0.05)
0.90 1.46 (0.03) 1.35 (0.13) 1.18 (0.19) 0.65 (0.16) 1.28 (0.05)

1000 0.25 0.70 1.16 (0.04) 0.95 (0.07) 0.05 (0.11) 0.97 (0.06) 0.52 (0.05)
0.80 1.17 (0.03) 0.95 (0.06) 0.04 (0.11) 0.97 (0.05) 0.74 (0.05)

0.25 0.90 1.16 (0.04) 0.95 (0.07) 0.02 (0.13) 0.97 (0.06) 0.95 (0.05)
0.75 0.70 1.45 (0.03) 1.40 (0.05) 1.25 (0.09) 0.57 (0.09) 0.91 (0.04)

0.80 1.46 (0.03) 1.40 (0.05) 1.25 (0.08) 0.57 (0.09) 1.09 (0.04)
0.90 1.45 (0.03) 1.38 (0.05) 1.24 (0.10) 0.61 (0.12) 1.28 (0.04)

Table 3.10: Value results with AD-learning for simulations where utility and probability of
optimal treatment are fixed with heterogeneous variance
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n ω ρ ω̂n ρ̂n Error rate
100 0.25 0.70 0.24 (0.21) 0.66 (0.06) 0.10 (0.06)

0.80 0.21 (0.18) 0.75 (0.05) 0.09 (0.02)
0.90 0.22 (0.20) 0.83 (0.04) 0.09 (0.03)

0.75 0.70 0.75 (0.16) 0.67 (0.06) 0.09 (0.07)
0.80 0.80 (0.11) 0.76 (0.04) 0.08 (0.04)
0.90 0.83 (0.11) 0.84 (0.05) 0.09 (0.04)

200 0.25 0.70 0.17 (0.16) 0.66 (0.04) 0.09 (0.05)
0.80 0.17 (0.15) 0.75 (0.03) 0.08 (0.03)
0.90 0.18 (0.16) 0.84 (0.03) 0.08 (0.02)

0.75 0.70 0.74 (0.09) 0.68 (0.04) 0.06 (0.04)
0.80 0.77 (0.09) 0.77 (0.03) 0.06 (0.03)
0.90 0.82 (0.10) 0.85 (0.03) 0.08 (0.03)

500 0.25 0.70 0.14 (0.11) 0.67 (0.02) 0.07 (0.02)
0.80 0.15 (0.12) 0.75 (0.02) 0.08 (0.02)
0.90 0.13 (0.11) 0.84 (0.02) 0.08 (0.02)

0.75 0.70 0.72 (0.06) 0.68 (0.02) 0.04 (0.02)
0.80 0.76 (0.07) 0.77 (0.02) 0.05 (0.02)
0.90 0.83 (0.09) 0.86 (0.02) 0.06 (0.02)

1000 0.25 0.70 0.13 (0.09) 0.67 (0.02) 0.07 (0.02)
0.80 0.12 (0.08) 0.75 (0.02) 0.07 (0.02)
0.90 0.12 (0.08) 0.84 (0.01) 0.07 (0.02)

0.75 0.70 0.71 (0.04) 0.69 (0.01) 0.03 (0.01)
0.80 0.75 (0.06) 0.77 (0.02) 0.04 (0.02)
0.90 0.82 (0.08) 0.86 (0.02) 0.05 (0.02)

Table 3.11: Estimation results with SD-learning for simulations where utility and probability of
optimal treatment are fixed with heterogeneous variance
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n ω ρ Optimal Estimated ω Y only Z only Standard of care
100 0.25 0.70 1.17 (0.04) 1.14 (0.05) 0.76 (0.20) 1.13 (0.05) 0.52 (0.15)

0.80 1.17 (0.04) 1.15 (0.04) 0.90 (0.17) 1.13 (0.05) 0.73 (0.16)
0.90 1.17 (0.03) 1.15 (0.04) 1.02 (0.10) 1.14 (0.05) 0.94 (0.14)

0.75 0.70 1.47 (0.03) 1.44 (0.03) 1.40 (0.06) 1.03 (0.16) 0.90 (0.13)
0.80 1.47 (0.03) 1.44 (0.03) 1.42 (0.05) 1.09 (0.12) 1.09 (0.13)
0.90 1.46 (0.03) 1.43 (0.04) 1.42 (0.05) 1.14 (0.10) 1.27 (0.11)

200 0.25 0.70 1.16 (0.04) 1.14 (0.04) 0.74 (0.17) 1.13 (0.04) 0.54 (0.11)
0.80 1.17 (0.04) 1.15 (0.04) 0.88 (0.14) 1.14 (0.04) 0.74 (0.11)
0.90 1.17 (0.04) 1.16 (0.04) 1.01 (0.09) 1.15 (0.04) 0.95 (0.10)

0.75 0.70 1.46 (0.03) 1.44 (0.04) 1.40 (0.05) 1.05 (0.13) 0.91 (0.09)
0.80 1.47 (0.03) 1.44 (0.04) 1.42 (0.05) 1.11 (0.10) 1.09 (0.08)
0.90 1.47 (0.03) 1.45 (0.04) 1.43 (0.05) 1.15 (0.08) 1.28 (0.08)

500 0.25 0.70 1.16 (0.04) 1.15 (0.04) 0.70 (0.13) 1.14 (0.04) 0.53 (0.07)
0.80 1.16 (0.04) 1.15 (0.04) 0.86 (0.11) 1.14 (0.04) 0.74 (0.07)
0.90 1.16 (0.04) 1.15 (0.04) 1.00 (0.07) 1.14 (0.04) 0.95 (0.06)

0.75 0.70 1.46 (0.03) 1.45 (0.04) 1.41 (0.05) 1.08 (0.10) 0.92 (0.06)
0.80 1.46 (0.03) 1.45 (0.04) 1.43 (0.04) 1.13 (0.07) 1.10 (0.06)
0.90 1.45 (0.03) 1.44 (0.03) 1.43 (0.04) 1.16 (0.05) 1.28 (0.05)

1000 0.25 0.70 1.16 (0.04) 1.15 (0.04) 0.68 (0.12) 1.14 (0.04) 0.53 (0.05)
0.80 1.16 (0.04) 1.15 (0.04) 0.84 (0.10) 1.14 (0.04) 0.74 (0.05)
0.90 1.16 (0.04) 1.15 (0.04) 1.00 (0.06) 1.15 (0.04) 0.95 (0.04)

0.75 0.70 1.46 (0.03) 1.45 (0.03) 1.41 (0.04) 1.09 (0.08) 0.91 (0.04)
0.80 1.46 (0.03) 1.45 (0.03) 1.42 (0.03) 1.14 (0.06) 1.09 (0.04)
0.90 1.46 (0.03) 1.45 (0.03) 1.44 (0.04) 1.18 (0.05) 1.28 (0.03)

Table 3.12: Value results with SD-learning for simulations where utility and probability of
optimal treatment are fixed with heterogeneous variance
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Figure 3.3: Values of each treatment rule; Opt: optimal treatment rule, SD: treatment rule
estimated by SD-learning, AD: treatment rule estimated by AD-learning
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3.4 Discussion

In this chapter, we suggested a methodology to obtain estimators for utilities of outcomes

in cases when more than two treatments are available and presented preliminary results on

simulations. The algorithms include AD-learning or SD-learning that enable the identification

of complex boundaries and estimate ITRs beyond binary treatment options.

Through numerical experiments, we demonstrated that Algorithm 2 is guaranteed to provide

estimators with strong performance. Moreover, the suggested algorithm provides an estimator

that works well, particularly when the variances are different in patients. Therefore, we

can conclude that Algorithm 2 is an effective approach for estimating a composite outcome,

especially when the presence of heterogeneous variance is not certain.

However, we have empirically discovered that there is a potential issue of identifiability

when ρ < 0.7. In Luckett et al. (2021), it was identified that the estimators of utilities are

identifiable in a binary treatment setting with an inverse reinforcement learning framework when

ρ > 0.5. Therefore, in a multi-treatment setting, there is still a need to determine the rigorous

conditions for the identifiability of utilities, which will also provide conditions for determining

K.
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CHAPTER 4: FUTURE RESEARCH

This chapter will discuss future research directions for methods proposed in the three

preceding chapters.

In Chapter 1, the suggested method, random forest informed tree-based learning, provides an

interpretable treatment rule built by random forests that identified heterogeneous improvements

in patients. However, there remains the possibility that the estimated final rules are suboptimal,

although the estimated final rules provide superior value estimates. Therefore, as future studies,

we suggest developing a method leveraged by random forests for deriving the maximum VF

estimate with underlying factors that divide the individuals into disjoint subgroups.

In Chapter 2, the proposed method provides doubly robust estimators of customized utilities

of patients. This indicates that more complicated formations are allowed for the outcome model.

Therefore, we recommend implementing a doubly robust approach in a multi-outcome setting.

Also, as future research, we recommend developing doubly robust estimators for different types

of outcomes, such as survival outcomes. The development of doubly robust estimators in various

outcome settings will bring a significant impact on precision medicine studies.

Moreover, we can generalize the current model for a composite outcome that is capable of

embracing various models for utility functions and probability of correct recommendation.

For each θ ∈ Θ, let d∗θ be the optimal ITR for preference uθ. Assume that interventions are

assigned such that

A =


d∗
θ̃
(X) with probability ζ(x; β)

−d∗
θ̃
(X) with probability 1− ζ(x; β),
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where ζ(x; β) is a parametric model indexed by β ∈ B. Also, θ̃ ∼ N(θ0, δIp), where δ ≥ 0,

and Ip is an identity matrix of size p. Then, the likelihood is

Ln(β, θ, δ) =
n∏

i=1

f(X i)f(Ai|X i)f(Yi, Zi|X i, Ai)

∝
n∏

i=1

[ζ(X i, β)λ(X i; θ, δ) + {1− ζ(X i, β)}{1− λ(X i, θ, δ)}]1{Ai=d∗θ(X i)}

× [{1− ζ(X i, β)}λ(X i, θ, δ) + λ(X i, β){1− λ(X i; θ, δ)}]1{Ai ̸=d∗θ(X i)},

where λ(x; θ, δ) =
∫
1{d∗θ(x) = d∗

θ+
√
δν
(x)}ϕ̃(ν)dν and ϕ̃ is the density for a standard normal

random vector. By introducing δ > 0, the generalized model also allows the observations of the

preference of patients to be not perfect.

In Chapter 3, we suggest a further rigorous investigation into the conditions for the identifi-

ability of utilities when ρ < 0.7. By employing SD-learning, it is demonstrated numerically that

the inverse reinforcement learning framework results in strong performance in a multi-armed

setting. Therefore, it is reasonable to suggest theoretical proof as future research. By obtaining

asymptotic consistency and weak convergence of the estimators, we can further strengthen the

reliability of the suggested methodology.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 1

This chapter contains technical details to the main text of Chapters .

A.1 Mathematical Definition

A.1.1 Value Function

V0(d) = E[
Y I(d(X) = A)

P (A|X)
] (A.12)

In (A.12), Y is outcome, d(X) is an optimal treatment for a subject who has X as covariates

andA is an observed treatment to a subject. I(·) is an indicator function. P (A|X) is a propensity

score, which is a probability of A given X .

A.1.2 Jackknife estimator for estimating value function

ˆV jk(d̂n) =

∑n
i=1 ui∑n
i=1wi

(A.13)

where ui = yi
1{ai = d̂

(−i)
n (xi)}

P (ai|xi)
and wi =

1{ai = d̂
(−i)
n }

P (ai|xi)

In (A.13), the jackknife approach is applied. It is computed by leaving one observation out,

getting a model with the rest of the observations, then obtaining d̂ using that model by plugging

in the observation which has been left out.
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A.1.3 Z-test statistic

T jk(d̂PMM ,d̂ZOM) =
V̂ jk(d̂PMM)− V̂ jk(d̂ZOM)√∑n

i=1 (R
jk
PMM−Rjk

ZOM )
2

n(n−1)

(A.14)

where Rjk
i =

1

W̄n

Ui −
Ūn

W̄ 2
n

Wi.

The p-value is defined as p = 2P (|T | ≤ z) = 2
∫∞
|T | f(z)dz where z ∼ N(0, 1).

A.2 Random Forest informed Tree-based Learning

A.2.1 Variable Selection

In order to obtain a set of candidate variables for split points in the algorithm, we utilized

variable Importance using random forests (RF), using another leave-one-out cross-validation

approach. First, we removed one patient from the data set and computed a Variable Importance

plot using the remaining (n−1) patients. We then obtained the top 7 variables from this Variable

Importance Plot. We repeated this process for every patient in the data set, resulting in n sets of

the top 7 variables. Then, we obtained the number of times each variable was selected as one

of the top 7 variables out of n times. The leave-one-out cross-validation approach is used to

obtain a more stable list of variables. We note that the 7 were chosen because from the many

variable importance plots, 7 variables consistently appeared to be sufficient to adequately capture

variable influence. Table A.13 shows a listing of the important variables for the outcomes at

12-month visit. The variables in the listing are then the candidates for which to identify cut

points for each analysis.
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Table A.13: Important variables for outcomes at 12-month visit

Variable Name Number of times
selected as 1 of Top 7 variables

WOMAC Total (WTO) 303
WOMAC Function (WF) 303
WOMAC Pain (WP) 303
WOMAC Stiffness (WS) 303
Satisfaction with physical function (Satis) 303
BMI 303
Self Efficacy Exercise (SE) 136
Age at baseline (Age) 80
Brief fear of movement (BF) 74
Education 8
Social support for exercise (family) 2
PROMIS Fatigue Score 2
phq8score 1

A.2.2 Algorithm

The algorithm starts with dividing the data set into two subgroups by utilizing all the distinct

values of the variables in the important variable list as split points while avoiding subgroups

having less than 15% of the sample size. Then, value function estimates are calculated after

assigning an optimal treatment regime estimated by RF to the first subgroup and allocating

one of PT, IBET, or WT to everyone in the other group. Out of all possible value function

estimates, we retrieve the partition that produces the largest value function estimate and obtain

another value function estimate after applying PT, IBET, or WT, whichever produces the largest

estimate. We assessed whether this value function estimate is significantly greater than that

of the ZOM and continued to the next iteration to search for a finer subgroup. In the second

iteration, we only split the subgroup that received the optimal treatment estimated by Random

Forest in the previous iteration. Then, we obtain the largest value function estimate as in the

previous iteration and check for the significance of the value function estimate of the ZOM.

We repeat this process until we have identified a set of disjoint subgroups whose Z statistic is
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statistically signicant to the Z statistic of the ZOM. After the third variable for the split point is

chosen, we continue searching for a split point within the three variables in order to maintain

feasible computations. Figure A.5 shows the flowchart for the algorithm. More detailed steps

are given in the Mathematical Expression section below.

This algorithm determines a partition as a final rule that includes a sequence of subgroups

accumulated through each step. In this approach, it is noteworthy that the method utilizes the

advantage of Random Forests, which produces a flexible low-bias estimation, but concurrently

removes its “black box” aspects.

A.2.3 Example

Figure A.5 depicts a detailed process of the algorithm when it is applied to the first data set

that includes the outcome at month 4. In the first loop, the split point Age at baseline= 49.33

yields the partition that produces the largest value function estimate, V̂ (1),jk = 74.8662, when

IBET is given to the patients whose baseline age is less or equal to 49.33. (jk) in the superscript

implies that it is calculated by the jackknife approach using the Random Forest. After assigning

one of the three treatments to all patients who were initially assigned RF, three value function

estimates can be calculated. However, since V̂ (1) = 71.1111, which corresponds to IBET since

that was the largest value function estimate among the three treatments, is the same treatment

assignment as the ZOM (V̂IBET = 71.1111), we keep the split and continue to the second loop.

In the second loop, we leave the patients who have received IBET in the first loop and divide

the group assigned to RF into two subgroups. Brief Fear of Movement Score (BF) =9 is the cut

point with largest value function estimate V̂ (2),jk = 75.2701. We assign a single treatment to

patients whose BF is greater than 9. Out of three treatments, V̂ (2) = 71.1111 with IBET is the

largest, but this is still the same assignment to the ZOM with IBET. Thus, we continue to the

third loop for the second time.

After the third loop, with the value function estimate still not being significantly large, we

continue to the fourth loop within three variables, Age at baseline, BF and BMI. In other words,
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we restrict the number of variables to three variables for searching for a split point. The fourth

split point is discovered to be BMI = 37.24, and V̂ (4) = 73.1939 is not significantly greater than

that of the ZOM (IBET), so we move to the next loop.

In the fifth loop, V̂ (5) = 75.4685, which is significantly larger than V̂IBET = 71.1111, and

the value in the sixth loop, V̂ (6) = 75.9797 is not significantly larger than the value in the fifth

loop. Therefore, we stop the loop and settle on the fifth assignment as the final decision rule.

This final decision rule is the partition that produces the best value function estimate when the

algorithm is applied.

A.2.4 Mathematical Expression

A.2.4.1 Set up

• Let the outcome yi and the covariate xi,xi ∈ Rp for the ith patient. i = 1, · · · , n.

• Let the number of the important variable in the list J . For j = 1, · · · , J , xij implies the

value of the jth important variable for ith patient.

• For each j, let xj,1, · · · , xj,K∗ the distinct values of xj . i.e. xj,1∗ < · · · < xj,k∗ < · · · <

xj,K∗ .

• Let Xj,k∗,1 = {xi : xij < xj,k∗} and Xj,k∗,2 = {xi : xij > xj,k∗}. l = 1, 2 indicates the

direction of the values of covariates. Let nl the number of patients in Xj,k∗,l

• Let yj,k∗,1 = {yi : xij < xj,k∗} and yj,k∗,2 = {yi : xij > xj,k∗}. yj,k∗,1 ∪ yj,k∗,2 = y

• Let A = {1, 2, 3} a set of possible treatments.

A.2.4.2 Algorithm

1st Loop

1. Let a unique value of a variable, xj,k∗ = xj,1, · · · , xj,K∗
j
, be a cut point. Repeat a-d for all

unique values for every variable j = 1, · · · , J .
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(a) Using x∗j,k as a cutpoint, split the data set into two subgroups, Xj,k,1 and X \Xj,k,1,

where the first subgroup includes patients whose value of the variable is less than

a cut point and the second subgroup include the patients not in the first subgroup,

whose values of the corresponding variable is greater than a cut point of that same

variable.

* Exclude any partition that generates at least one subgroup that has less than 5%

of total patients.

(b) For each patient i = 1, · · · , nj,k,1 in the first subgroup, fit a random forest by

jackknife approach, i.e. y = f̂ (−1)(x, a) where f(·, ·) is a random forest and

y ∈ yj,k,1 \ {yi}, x ∈ Xj,k,1 \ {xi}. Get d̂(xi) = argmaxa∈{1,2,3} f̂
(−i)(xi, a) for

x ∈ Xj,k,1, which is the optimal treatment for each patient i.

(c) Assign PT to all patients not in the first subgroup Xj,k,1 by letting d̂(xi) = PT for

xi /∈ Xj,k,1.

(d) Obtain the value function estimate of (c), V̂ (1),jk
j,k,1,PT (d̂n) ≡ V̂

(1),jk
j,k,1,PT (d̂(x)). For

i ∈ Ij,k,1, d̂(x) = d̂(xi) as estimated in (b), and i /∈ Ij,k,1, d̂(x) = d̂(xi) = PT as

in (c).

(e) Instead of PT in c, assign IBET (in the first subgroup by letting d̂(xi) = IBET )

and Waitlist ( d̂(xi) = WT ) to every patients not in the first subgroup, xi /∈

Xj,k,1, and get two more value function estimates, V̂ (1),jk
j,k,1,IBET (d̂n) and V̂ (1),jk

j,k,1,WT (d̂n),

respectively. (1) in superscript indicates that the value estimates are calculated in

the first iteration.

(f) This time, obtain the estimated treatments d̂(xi) = argmaxa∈{1,2,3} f̂
(−i)(xi, a) for

the patients in second subgroup x ∈ Xj,k,2. Apply PT, IBET or Waitlist to the

patients not in the second subgroup (x /∈ Xj,k,2). Get three value function estimates,

V̂
(1),jk
j,k,2,PT (d̂n), V̂

(1),jk
j,k,2,IBET (d̂n), V̂

(1),jk
j,k,2,WT (d̂n), respectively.
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2. Obtain 6 value function estimates, V̂ (1),jk
j,k,1,PT (d̂n), V̂

(1),jk
j,k,1,IBET (d̂n), V̂

(1),jk
j,k,1,WT (d̂n), V̂

(1),jk
j,k,2,PT

(d̂n), V̂
(1),jk
j,k,2,IBET (d̂n), V̂

(1),jk
j,k,2,WT (d̂n) for all j = 1, · · · , J and k = 1, · · · , Kj . Out of

all 6(K1 + · · · + Kj) value function estimates, obtain the largest estimate V̂ (1),jk =

max
j,k,l,a

V̂
(1),jk
j,k,l,a . Also, obtain (ĵ(1), k̂(1), â(1), l̂(1)) = argmax

j,k,l,a
V̂

(1),jk
j,k,l,a , the treatment and cut

point value of variables that yield the largest value function estimate, and its corresponding

partition Î(1) = Iĵ(1),k̂(1),â(1),l̂(1) , X̂
(1) = Xĵ(1),k̂(1),l̂(1) .

3. Assign a single treatment a that is not equal to â(1) to every patient who is in the subgroup

with estimated treatment, i.e., d̂(1)xi = a, a ̸= â(1) for ∀i ∈ Î(1). Let d̂(1)(x) = â(1) for

i /∈ Î(1).

4. Obtain the value function estimate V̂ (1),a(d̂(1)(x)) using d̂(1) in 3 and obtain V̂ (1) =

max
a̸=â(1)

V̂ (1),a. Test the significance of V̂ (1) compared to V̂ ZOM .

5. If significant, stop the loop and finalize the rule as d̂∗ = d̂(1)(xi). If not significant, move

on to 6.

Step 6 applies to all mth steps in the loop. (m ≥ 2)

6. As 1, repeat a,b for all unique values xj,k from all variables j = 1, · · · , J . If the number

of the variables used up to the end of the last loop reached 3(|{ĵ(1), · · · , ĵ(m−1)}| = 3),

restrict the number of candidate variables to those 3 variables from the current loop, i.e.

j ∈ {ĵ(1), · · · ĵ(m−1)} from step m.

(a) For every variable j among the candidate variables, define x∗,(m−1)
j,k , which are

distinct values of those variables remained from the last loop, cut points. Split the

subgroup which is the subgroup of patients received the estimated treatments in the

last loop into (Î(m−1))two groups by using cut points.

* Exclude any partition that generates at least one subgroup that has less than 5%

of total patients.
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(b) Each partition generated by 6-(a) comprises of (m+ 1) distinct subgroups. Assign

same treatments given in the last loop for the subgroups that are not split by 6-(a).

For example, assign d̂(1)(x) = â(1) for ∀i ∈ (Î(1))c, assign d̂(2)(x) = â(2) for

∀i ∈ Î(1) ∩ (Î(2))c,cdots, assign d̂(m−1)(x) = â(m−1) for ∀i ∈ Î(m−2) ∩ (Î(m−1))c.

(c) Compute a value function estimate according to the treatments given to all patients by

5-(a) and 5-(b).Obtain V̂ (m),jk and corresponding (ĵ(m), k̂(m), â(m), l̂(m)) and X̂(m).

(d) Obtain all value function estimates as 1-(b), (c), and (d).

7. Out of all value function estimates in 6, obtain the largest estimate V̂ (m) and its partition.

8. If the value function estimate in Step 7, V̂ (m),jk, is greater than the value function estimate

of Step 7 in the previous (m− 1th) loop, V̂ (m−1),jk, move on to Step 9. If not, move on

to Step 9. If not, move on to 8-(a).

(a) In the previous loop(m− 1th), replace the value function estimate from Step 7 with

the next largest value function estimate.

(b) Go back to Step 6 and redo the process for the current loop(mth) with the revised

partition from the previous loop.

(c) If the value function estimate in Step 8-(b) is not still larger than that next largest

value function estimate Step 8-(a), choose the next smaller value function estimate

in the previous loop (m-1 th). Repeat the process until the value function estimate in

Step 8-(b) is larger than the value function estimate that is calculated in the previous

loop.

9. Assign a single treatment to every patient in the subgroup with estimated treatments. A

treatment should be different from the treatment that has been already given to the other

subgroup generated in Step 6. i.e., d̂(m)(xi) = a, a ̸= â(m) for ∀i ∈ Î(m).

10. Obtain the value function estimate of Step 9 and check if the difference between V̂ (m)

and V̂ ZOM is significantly different.
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11. If the difference in Step 10 is significant, finalized the decision as Step 9. i.e., d̂∗ =

d̂(m)(xi). If it is not significant,

(a) If the subgroup has the number of patients more than or equal to 10% of total

patients, move on to the next loop and repeat from Step 6.

(b) If the subgroup has the number of patients less than 10% of total patients, replace the

current partition to the partition that gives the next largest value function estimate in

the previous loop(m− 1th) and redo the current loop from Step 6 as Step 8(a) and

(b).

A.2.5 Simulation Studies

In this simulation, we found that the estimated treatment rule by Random Forest (RF)

informed Tree-based Learning resulted in greater average outcomes among individuals than the

average outcomes by Zero-order models (ZOM). For the simulated data, we set the outcome

to Y = 4X1 + 2AX2 + ϵ, where the covariates are X1 ∼ N(3, 1), X2 = 2B − 1 such that

B ∼ Bernoulli(0.5). Also, the treatments A = 1 or −1 are generated with the probability of

0.5, and the error term is generated from N(0, 1). 200 individuals were generated for a single

data set. We repeated calculating the results 500 times. In each replication, we generated a

simulated data set and estimated the treatment rule based on X1 using RF informed Tree-based

Learning. We calculated a value function estimate using equation (2), which indicates the

average outcome that individuals would have obtained if they had followed the given treatment

rule. Table A.14 provides averages of 500 value function estimates yielded by a treatment rule

created using each of the following three methods: RF informed Tree-based Learning, ZOM

with treatments equal to 1, and ZOM with treatments equal to -1. This simulation result implies

that our method, RF informed Tree-based Learning is a suitable approach for determining the

cut point of covariates, which are the elements of interpretable and advantageous treatment

rules.
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Table A.14: Average of 500 value estimates for each method
RF informed Tree-based Learning ZOM (1) ZOM (-1)

13.792 12.935 12.877

67



Figure A.4: Flowchart of the algorithm
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Figure A.5: Diagram for the analysis with outcome at 12-month visit
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 2

This chapter contains technical details including as assumptions, proofs, definitions, and

other materials supplemental to the main text of Chapters 1.4.

B.1 Proofs

Proof of Lemma 2.1. For each a ∈ {1,−1}, let W ∗
a,θ(Uθ,X, A) = UθI(A=a)

π(a;X)
− I(A=a)−π(a;X)

π(a;X)

Qθ(X, a) = I(A = a)Uθ−Qθ(X,a)
π(a;X)

+ Qθ(X, a). For fixed θ, it is straightforward to derive the

Fisher consistency from the proof of Proposition 3.1 from Zhao et al. (2019), by replacing

Q(X, a) to Qθ(X, a), and W ∗
a to W ∗

a,θ, respectively.

Proof of Theorem 2.1. (a) Since F is VC-subgraph, by Lemma 9.9 in Kosorok (2008), {Af̂n,θ :

f̂n,θ ∈ F} is VC, hence

1(A = d̂n,θ(x)) = 1(A · f̂n,θ(x) > 0)

is contained in VC class, and is thus a Glivenko-Cantelli class. Therefore,

sup
(θ,β)∈Rp×B

∣∣∣∣(En − E)
[
XTβ1{A = d̂n,θ(X)} − log{1 + exp(XTβ)}

]∣∣∣∣ P−→ 0 (B.15)

similar to Luckett et al. (2021). Let (θ̃n, β̃n) = argmax(θ,β)∈Θ×B E
[
XTβ1{A = d̂n,θ(X)} −

log{1 + exp(XTβ)
]
. Then, by Theorem 2.12 in Kosorok (2008), θ̂n = θ̃n + oP (1) and

β̂n = β̃n + oP (1).

Let

Wm
a,θ(U) =

UθI(A = a)

πm(a;X)
− I(A = a)− πm(a;X)

πm(a;X)
Qm

θ (X, a)

Rm
θ,ϕ(f) = E

[
|Wm

1,θ(U)|ϕ
{

sgn(Wm
1,θ(U))f

}
+ |Wm

−1,θ(U)|ϕ
{
− sgn(Wm

−1,θ(U))f
}]

fm,∗
θ (X) = argmin

f∈F
Rm

θ,ϕ(f).
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Then, d∗θ0(x) = sgn(fm
0,θ(x)) according to the Fisher consistency and Vθ(d)

= E
[
Qm

θ (X, d(X)) + I{A=d(X)}
πm{d(X);X}

(
Uθ − Qm

θ (X; d(X))
)]

(from the first part of the proof in

(c)). Also,

E
[
1{A = d̂n,θ(X)}|X = x

]
=E
[
1{A = d∗θ0(X)}1{d̂n,θ(X) = d∗θ0(X)}+

(
1− 1{A = d∗θ0(X)}

)
·
(
1− 1{d̂n,θ(X) = d∗θ0(Xb)}

)
|X = x

]
=E
[(
2 · 1{A = d∗θ0(X)} − 1

)
1{d̂n,θ(X) = d∗θ0(X)}

]
+ c

for some constant c. For some δ > 0,

P
(
d̂n,θ(X) = d∗θ0(X)

)
≤P
(
d∗θ(X) = d∗θ0(x), |f

∗
θ0
(X)| > δ, |f ∗

θ (X)| > δ
)
+ P

(
|f ∗

θ0
(x)| ≤ δ or |f ∗

θ (x)| ≤ δ
)

(P{d̂n,θ(X) = d∗θ(X)|X} by the proof in (b))

P−→P
(
d∗θ(X) = d∗θ0(X), |f ∗

θ0
(X)| > δ, |f ∗

θ (X)| > δ
)
+ 0

is continuous in θ and δ. Since δ is arbitrary, E
[
1{A = d̂n,θ(X)}|X = x

]
is continuous in θ.

Thus,

E
[
XTβE

[
1{A = d̂n,θ(X)}|X

]
− log{1 + exp(XTβ)}

]
(B.16)

P−→E
[
XTβE

[
1{A = d∗θ(X)}|X

]
− log{1 + exp(XTβ)}

]
(B.17)

uniformly in θ ∈ Θ where Θ is compact, because supθ∈Θ E
[∥∥d̂n,θ(X) − d∗θ(X)

∥∥] = oP (1)

from Theorem 2.1-(b). This leads to θ̃n
P−→ θ0 and β̃n

P−→ β by Theorem 2.12 and Lemma 14.3

of Kosorok (2008). Therefore, θ̂n
P−→ θ0 and β̂n

P−→ β0.

(b) Based on the influence function arguments from the beginning of the proof for the weak

convergence of f̂n,θ in Theorem 2.4, we can conclude that proving E[∥f̂n,θ(X)− f ∗
θ (X)∥] P−→ 0
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is equivalent to proving E[∥f̃λθ
n

n,ϕ,θ(X) − f ∗
θ (X)∥] P−→ 0. We use the following lemma for the

proof. Since the proof of the following Lemma is analogous to Theorem 2.12 from Kosorok

(2008), we omit the proof of the lemma.

Lemma B.2. Let (T, d1) and (H, d2) be metric spaces. Also, let (t, h) 7→ Mn,t(h) and

(t, h) 7→ Mt(h) be stochastic processes in l∞(T × H). Assume for some {h∗t : t ∈ T},

we have lim infn→∞ inft∈T
(
−Mt(hn,t)+Mt(h

∗
t )
)
≥ 0 implies supt∈T d(hn,t, h

∗
t ) → 0 for any

sequence {hn,t : t ∈ T}. Then for a sequence of estimators {ĥn,t : t ∈ T},

(i) If supt∈T
(
−Mn,t(ĥn,t)−suph∈H(−Mn,t(h)

)
= oP (1) and supt∈T,h∈H |Mn,t(h)−Mt(h)| =

oP (1), then supt∈T d(ĥn,t, h
∗
t )

P−→ 0.

(ii) If supt∈T
(
−Mn,t(ĥn,t)−suph∈H(−Mn,t(h)

)
= oas∗(1) and supt∈T,h∈H |Mn,t(h)−Mt(h)| =

oas∗(1), then supt∈T d(ĥn,t, h
∗
t )

as∗−−→ 0.

Let Mθ(f) = E
[
|W1,θ(U)|ϕ

{
sgn(W1,θ(U))f

}
+ |W−1,θ(U)|ϕ

{
− sgn(W−1,θ(U))f

}]
and

Mn,θ(f) = En

[
|Ŵ1,θ(U)|ϕ

{
sgn(Ŵ1,θ(U))f

}
+ |Ŵ−1,θ(U)|ϕ

{
− sgn(Ŵ−1,θ(U))f

}
+λθn∥f∥2

]
.

Then according to the lemma, supθ∈Θ E[∥f̃λθ
n

n,ϕ,θ(X) − f ∗
θ (X)∥] ≤ supθ∈Θ ∥γ̃λ

θ
n

n,ϕ,θ − γ∗θ∥ ·

E[∥ξ(X)∥] P−→ 0, and further supθ∈Θ E[∥f̂n,θ(X)− f ∗
θ (X)∥] P−→ 0. Also, since E[|d̂n,θ(X)−

d∗θ(X)|] = E[1{γ̂Tn,θξ(X) ≤ 0 < γ∗θ
T ξ(X)}+ 1{γ∗θ T ξ(X) ≤ 0 < γ̂Tn,θξ(X)}] = E[1{(γ̂n,θ −

γ∗θ )
T ξ(X) ≤ −γ∗θ T ξ(X)} + 1{0 < −γ∗θ T ξ(X) ≤ −(γ̂n,θ − γ∗θ )

T ξ(X)}], we can conclude

supθ∈Θ E[|d̂n,θ(X)− d∗θ(X)|] P−→ 0 due to supθ∈Θ E[∥f̂n,θ(X)− f ∗
θ (X)∥] P−→ 0.

(c)

∣∣∣V̂θ̂n(d̂n,θ̂n)− Vθ0
(
d∗θ0
)∣∣∣

≤
∣∣∣V̂θ̂n(d̂n,θ̂n)− Vθ̂n

(
d̂n,θ̂n

)∣∣∣+ ∣∣∣Vθ̂n(d̂n,θ̂n)− Vθ0
(
d̂n,θ̂n

)∣∣∣+ ∣∣∣Vθ0(d̂n,θ̂n)− Vθ0
(
d∗θ0
)∣∣∣ . (B.18)
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It is straightforward to show that the first term of (B.18) converges to 0 in probability using the

proof of Lemma 2.1 in Zhao et al. (2019). Accordingly,

V̂ AIPWE
θ (d)

=En

[UθI{A = d(X)}
π̂{d(X);X}

− I{A = d(X)} − π̂{d(X);X}
π̂{d(X);X}

Q̂θ(X, d(X))
]

=En

[UθI{A = d(X)}
πm{d(X);X}

− I{A = d(X)} − πm{d(X);X}
πm{d(X);X}

Qm
θ (X, d(X))

]
+ oP (1)

(B.19)

P−→E
[
Qm

θ (X, d(X)) +
I{A = d(X)}
πm{d(X);X}

(
Uθ −Qm

θ (X, d(X))
)]
. (B.20)

Since π̂(a;x) P−→ πm(a;x) and Q̂θ(x, a)
P−→ Qm

θ (x, a) uniformly in θ ∈ Θ for all (x, a) ∈

Rp × {1,−1}, (B.19) holds for ∀θ ∈ Θ. Assume πm(a;x) = π(a;x). Then for each θ ∈

Θ, (B.20) = E
[
Qm

θ (X, d(X)) + I{A=d(X)}
π{d(X);X}

(
Uθ − Qm

θ (X, d(X))
)]

= E
[
Qm

θ (X, d(X)) +

E[I{A=d(X)}|X]
π{d(X);X}

(
Uθ −Qm

θ (X, d(X))
)]

= E
[
Qm

θ (X, d(X)) +
(
Uθ −Qm

θ (X, d(X))
)]

=

E[E[Uθ|X]] = E[Qθ(X, d(X))].

This time, let’s assumeQm
θ (x, a) = Qθ(x, a) for each θ ∈ Θ. Then, (B.20)= E[Qθ(X, d(X))]

+E
[ I(A=d(X))
πm(d(X);X)

(
E[Uθ|X]−Qθ(X, d(X))

)]
= E[Qθ(X, d(X))] + 0, where E[Qθ(X, d(X))]

is equivalent to Vθ(d).

For the second term of (B.18), the Dominated Convergence Theorem could be applied.

Since θ̂ P−→ θ0,
∣∣∣Vθ̂(d̂n,θ̂)− Vθ0

(
d̂n,θ̂
)∣∣∣ P−→ 0. For the third term of (B.18), we directly ap-

ply (b) of Proposition 3.1 from Zhao et al. (2019). For each θ ∈ Θ, define Rm
θ,ϕ(f) =

E[|Wm
θ,1|ϕ{sgn(Wm

θ,1)f(X)}+|Wm
θ,−1|ϕ{sgn(Wm

θ,−1)f(X)}], and cθ,m(x) = E
[∑

a |
UθI(A=a)
πm(a;X)

−
I(A=a)−πm(a;X)

πm(a;X)
Qm

θ (X, a)|
]
. Also, denote f̂n,θ̂ ≡ f̂n,θ̂(x), and f ∗

θ0
≡ f ∗

θ0
(x). Then,

∣∣∣Vθ0(f̂n,θ̂)− Vθ0
(
f ∗
θ0

)∣∣∣ (B.21)

≤ sup
x∈Rp

cθ0,m(x)ϕ̃
−1
{ |Rm

θ0,ϕ
(f̂n,θ̂)−Rm

θ0,ϕ
(f ∗

θ0
)|

infx∈Rp cθ0,m(x)

}
, (B.22)
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where ϕ̃−1(t) is an inverse function of ϕ̃(t) = |t| for hinge loss, ϕ̃(t) = 1 −
√
1− t2 for

exponential loss, ϕ̃(x) = (1 + t) log(1 + t)/2 + (1 − t) log(1 − t)/2 for logistic loss, and

ϕ̃(t) = t2 for squared hinge loss when t ≥ 0. Since ϕ̃(·) is continuous, (B.22) converges to 0 in

probability by f̂n,θ̂
P−→ f ∗

θ0
and continuous mapping theorem. Therefore, (B.21) converges to 0

in probability, and 3 of Theorem 2.1 follows.

Proof of Theorem 2.2. Before giving the proof, we need the following Lemma B.3.

Lemma B.3. Under the conditions of Theorem 2.2, t 7→ ht is uniformly equicontinuous over T ,

ĥ is separable, and ∀ open G ⊂ H̃ containing ĥ, we have that for every compact K ⊂ H ,

inf
h̃∈Gc∩K̃

inf
t∈T

(
Mt(ĥt)−Mt(h̃)

)
> 0. (B.23)

Proof of Lemma B.3. Fix t∗ ∈ T and η > 0. For any h1 ∈ H , let Bη(h1) = {h ∈ H :

d2(h, h1) < η}. Also for any h1 ∈ H̃ , let Gη = {h2 ∈ H̃ : h2,t ∈ Bη(h1,t),∀t ∈ T}.

We know by the assumptions that there exists a compact K ⊂ H such that ĥ ∈ K̃ (i.e.,

ĥt ∈ K, ∀t ∈ T ). We also know by the assumed uniqueness of the maximizer ĥt for each t ∈ T ,

that

Mt1(ĥt1)− sup
h∈Bc

η(ĥt1 )∩K
Mt1(h) ≥ ϵ (B.24)

for some ϵ > 0. We also know there exists a δ > 0 such that

sup
t∈T :d1(t,t1)<δ

sup
h∈K

|Mt(h)−Mt1(h)| ≤ ϵ/3. (B.25)
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Thus, for any t ∈ T such that d1(t, t1) < δ, we have that

Mt(ĥt)− sup
h∈Bc

η(ĥt1 )∩K
Mt(h) ≥Mt(ĥt1)− sup

h∈Bc
η(ĥt1 )∩K

Mt1(h)− ϵ/3

≥Mt1(ĥt1)− sup
h∈Bc

η(ĥt1 )∩K
Mt1(h)− 2ϵ/3

≥ ϵ/3,

therefore, d2(ĥt1 , ĥt) < η. The first inequality follows from ĥt being the maximizer of h 7→

M(h) combined with (B.25). The second inequality follows from a reapplication of (B.25), and

the next inequality follows from (B.24). Since η was arbitrary, we have that ĥt is continuous at

t = t1. Since t1 was arbitrary and T is compact, we have the desired uniform equicontinuity of

t 7→ ĥt. We also conclude that ĥ is separable. This also implies that t 7→Mt(ĥt) is uniformly

equicontinuous in t.

For the next part, for any open set G ⊂ H̃ such that ĥ ∈ G, there exists an η > 0 such that

ĥ ∈ Gη ⊂ G ⊂ H . Recall K̃ from before for which ĥ ∈ K̃. Then,

inf
h∈Gc∩K̃

inf
t∈T

(
Mt(ĥt)−Mt(h)

)
≥ inf

h∈Gc
η∩K̃

inf
t∈T

(
Mt(ĥt)−Mt(h)

)
= inf

t∈T

(
Mt(ĥt)− sup

h1∈Bc
η(h̃t)∩K

Mt(h1)
)

> 0,

by uniform continuity in t of Mt, Mt(ĥt) and ĥt.

If this were not true, the uniform continuity would imply ∃t ∈ T such that Mt(ĥt) −

sup
h1∈Bc

η(ĥt)∩K

Mt(h1) ≤ 0, but this would violate the uniqueness of the maximum for all t ∈ T . Thus the

desired results follow almost surely.
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We continue the proof for Theorem 2.2. Let F be a closed subset of H̃ . Fix ϵ > 0, and let

K ⊂ H be compact such that lim inf
n→∞

P∗(ĥn ∈ K̃) ≥ 1− ϵ and P (ĥ ∈ K̃) > 1− ϵ. Now,

lim sup
n→∞

P ∗(ĥn ∈ F ) ≤ lim sup
n→∞

P ∗(ĥn ∈ F ∩ K̃) + ϵ

≤ lim sup
n→∞

P ∗
(

sup
h1∈F∩K̃

inf
h2∈F c∩K̃

inf
t∈T

(
Mn,t(h1,t)−Mn,t(h2,t)

)
+ oP (1)

≥ 0

)
+ ϵ

≤ P

(
sup

h1∈F∩K̃
inf

h2∈F c∩K̃
inf
t∈T

(
Mt(h1,t)−Mt(h2,t)

)
≥ 0

)
+ ϵ, (B.26)

where P ∗ is outer probability. If ĥ ∈ F c∩ K̃, then, for some η > 0, Gη ∋ ĥ and Gη∩F = ∅(the

null set). Then,

− sup
h1∈F∩K̃

inf
h2∈F c∩K̃

inf
t∈T

(
Mt(h1,t)−Mt(h2,t)

)
= inf

h1∈F∩K̃
sup

h2∈F c∩K̃
inf
t∈T

(
Mt(h2,t)−Mt(h1,t)

)
= inf

h1∈F∩K̃
sup
t∈T

(
Mθ(ĥt)−Mt(h1,t)

)
≥ inf

h1∈Gc
η∩K̃

sup
t∈T

(
Mt(ĥt)−Mt(h1,t)

)
≥ inf

t∈T

(
Mt(ĥt)− sup

h̃∈Bc
η(ĥt)∩K̃

Mt(h̃)
)
> 0

by Lemma B.3. But this contradicts the event in (B.26) so that ĥ ∈ (F c ∩ K̃)c = F ∪ K̃c.

Therefore, lim sup
n→∞

P ∗(ĥn ∈ F ) ≤ P (ĥ ∈ F ) + 2ϵ, and the results follow since ϵ is arbitrary.

The other conclusions follow from Lemma B.3.
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Proof of Theorem 2.3. Assume that inft∈T
(
Mn,t(ĥn,t)−suph∈Nt

Mn,t(h)
)
≥ −K1r

−2
n for some

K1 > 0, and the quadratic condition (2.6) holds for all t ∈ T and h ∈ H. Then,

P ∗(rn sup
t∈T

d(ĥn,t, h
∗
t ) > 2M)

=
∑
j≥M

P ∗(2j−1 < rn sup
t∈T

d(ĥn,t, h
∗
t ) ≤ 2j).

Let the “peels”, Sj,n = {h : 2j−1 < rn supt∈T d(h, h
∗
t ) ≤ 2j}. Then,

P (2j−1 < rn sup
t∈T

d(ĥn,t, h
∗
t ) ≤ 2j)

≤ P
(
sup
t∈T

sup
h∈Sj,n

Mn,t(h)−Mn,t(h
∗
t ) +K1r

−2
n ≥ 0

)
.

Let M ′
n,t =Mn,t −Mt. Then,

P
(

sup
t∈T,h∈Sj,n

[
Mn,t(h)−Mn,t(h

∗
t ) +K1r

−2
n

]
≥ 0
)

= P
(

sup
t∈T,h∈Sj,n

[
M

′

n,t(h)−M
′

n(h
∗
t ) +Mt(h)−Mt(h

∗
t ) +K1r

−2
n

]
≥ 0
)

≤ P
(

sup
t∈T,h∈Sj,n

[
M

′

n,t(h)−M
′

n(h
∗
t ) +K1r

−2
n

]
≥ − sup

t∈T,f∈Sj,n

[
Mt(h)−Mt(h

∗
t )
])
.
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By (2.6), (2.7), and (2.8),

P ∗( sup
t∈T,h∈Sj,n

[
Mn,t(h)−Mn,t(h

∗
t ) +K1r

−2
n

]
≥ 0
)

≤ P ∗( sup
t∈T,h∈Sj,n

[
M

′

n,t(h)−M
′

n,t(h
∗
t ) +K1r

−2
n

]
≥ − sup

t∈T,h∈Sj,n

[
Mt(h)−Mt(h

∗
t )
])

≤ P ∗( sup
t∈T,h∈Sj,n

[
M

′

n,t(h)−M
′

n,t(h
∗
t ) +K1r

−2
n

]
≥ sup

t∈T
c1d

2(h, h∗t )
)

≤ P ∗( sup
t:t∈T,h∈Sj,n

[
M

′

n,t(h)−M
′

n,t(h
∗
t )
]
≥ c12

2j−2 −K1

r2n

)
≤ P ∗( sup

t∈T,h:d(h,h∗
t )<

2j

rn

[
M

′

n,t(h)−M
′

n,t(h
∗
t )
]
≥ c12

2j−2 −K1

r2n

)
≤ E∗( sup

t∈T,h:d(h,h∗
t )<

2j

rn

[
M

′

n,t(h)−M
′

n,t(h
∗
t )
])
/
c12

2j−2 −K1

r2n

)
≤ c2ϕn(2

j/rn)r
2
n√

n(c122j−2 −K1)

≤ c2c32
jα

c122j−2 −K1

.

Therefore,

P (rn sup
t∈T

d(ĥn,t, h
∗
t ) > 2M) ≤

∑
j≥M

c2c32
jα

c122j−2 −K1

.

Thus there exists a constant M such that lim supn→∞ P (rnd(ĥn,t, h
∗
t ) > 2M) ≤ 2ϵ since the

right term goes to 0 as M → ∞. Since ϵ is arbitrary, rnd(ĥn,t, h∗t ) = OP (1).

Proof of Theorem 2.4. We split f̂n,θ̂n(X)− f ∗
θ0
(X) as below.

f̂n,θ̂n(X)− f ∗
θ0
(X) (B.27)

=
(
f̂n,θ̂n(X)− f ∗

θ̂n
(X)

)
+
(
f ∗
θ̂n
(X)− f ∗

θ0
(X)

)
. (B.28)

=
{(
γ̂n,θ̂n − γ∗

θ̂n

)
+
(
γ∗
θ̂n

− γ∗θ0
)}T

ξ(X). (B.29)
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Using Lemma B.4 below, we obtain the rate of convergence of the first term of (B.28) is

equal to
√
n. We start with identifying the asymptotic distribution of

√
n(γ̂θ̂n − γ∗

θ̂n
). Recall

U = (X,A, Y, Z). Define mθ
γh
(U) ≡ −

∑
a |Wa,θ(U)|ϕ(a · sgn(Wa,θ(U))ξ(X)T (γ∗θ + γh√

n
))

such that Mθ(γh) = E[mθ
γh
(U)], where h(X) = γTh ξ(X) ∈ H. Similarly, let m̂θ

γh
(U) ≡

−
∑

a |Ŵa,θ(U)|ϕ(a · sgn(Ŵa,θ(U))ξ(X)T (γ∗θ + γh√
n
)) such that M̂θ(γh) = En[m̂

θ
γh
(U)]. We

also let m̂(j),θ
γ∗
θ

(U) = ( ∂
∂γ
)jm̂θ

γ(U)
∣∣
γ=γ∗

θ

for j = 1, 2, and m(j),θ
γ∗
θ

(U) be similarly defined for

mθ
γ∗
θ
(U). We first show that the limiting distribution of

√
n(γ̂n,θ − γ∗θ ) is equivalent to the

limiting distribution of
√
n(γ̃λn

n,ϕ,θ − γ∗θ ) such that f̃ ∗
n,ϕ,θ(X) = γ̃λn

n,ϕ,θξ(X) where f̃λn
n,ϕ,θ is

estimated by (2.3) without sample splitting technique. In order to prove this, we borrow the

influence function vectors of
√
n(γ̃λn

n,ϕ,θ − γ∗θ ), which is derived later in this proof. Then, we

have

√
n(γ̃λn

n,ϕ,θ − γ∗θ ) = −V −1
θ (Gnm

(1),θ
γ∗
θ

(U) +NT
θ

√
n(V̂ − V0)) + oP (1)

= Gn(−V −1
θ m

(1),θ
γ∗
θ

(U)) + (−V −1
θ NT

θ

√
n(V̂ − V0)) + oP (1)

= n−1/2

n∑
i=1

(−V −1
θ m

(1),θ
γ∗
θ

(Ui) + n−1/2

n∑
i=1

(−V −1
θ NT

θ ψV (Ui)) + oP (1)

= n−1/2

n∑
i=1

Iθ1 (Ui) + n−1/2

n∑
i=1

Iθ2
T
I3(Ui) + oP (1),

where Vθ = E
[∑

a −|Wa,θ(U)|ϕ̈
(
a · sgn(Wa,θ(U))γ

∗
θ
T ξ(X)

)
ξ(X)ξ(X)T

]
and Iθ(Ui) =

Iθ1 (Ui) + Iθ2
T
I3(Ui) is a q × 1 independent and identically distributed influence function vec-

tor such that Iθ1 (Ui) = −V −1
θ m

(1),θ
γ∗
θ

(Ui), Iθ2 = −NθV
−1
θ , and I3(Ui) = ψV (Ui). Denote

G(j)
n =

√
nj(E(j)

n − E) and E(j)
n = n

nj
En1{i∈Ij} where Ij denotes the jth fold. Similarly,

G(−j)
n =

√
n− nk(E(−j)

n − E) and E(−j)
n = n

n−nj
En1{i/∈Ij}. Let γ̂(j)θ be an estimator for γ∗θ by

samples not included in {i : i ∈ Ij} such that f̂ (j)
n,θ = (γ̂

(j)
n,θ)

T ξ where f̂ (j)
θ ≡ f̂

λn,(j)
n,ϕ,θ . Then
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considering the sample splitting technique,

√
n− nj(γ̂

(j)
n,θ − γ∗θ ) = G(−j)

n Iθ1 (U) + (−V −1
θ NT

θ

√
n− nj(V̂

(j)
n − V0))

= G(−j)
n I1(U) + Iθ2

T
√
n− nj√
nj

G(j)
n I3(U)

where V̂ (k)
n is estimated using samples in the jth fold. Thus, for θ ∈ Θ,

√
n(γ̂n,θ − γ∗θ ) =

√
n(

1

J

J∑
j=1

(γ̂
(j)
θ − γ∗θ ))

=

√
n

J

J∑
j=1

1
√
n− nj

[
G(−j)

n Iθ1 (U) +

√
n− nj√
nj

Iθ2
TG(j)

n I3(U)
]

=

√
n

J

J∑
j=1

n

n− nj

(En − E)1(i /∈ Ij)I
θ
1 (Ui) (B.30)

+

√
n

J

J∑
j=1

n

nj

(En − E)1(i ∈ Ij)I
θ
2

T
I3(Ui). (B.31)

Since {Iθ1 (U ; θ) : θ ∈ Θ} and {Iθ2
T
I3(U) : θ ∈ Θ} are Glivenko-Cantelli class with

integrable envelope, T1,n ≡
√
nmax1≤j≤J

∣∣∣ (J−1)n
J(n−nj)

−1
∣∣∣→ 0, and T2,n ≡

√
nmax1≤j≤J

∣∣∣ n
Jnj

−

1
∣∣∣→ 0 as n→ ∞, for (B.30),

∣∣∣∣√nJ
J∑

j=1

n

n− nj

(En − E)1(i /∈ Ij)I
θ
1 (Ui)−GnI

θ
1 (U ; θ)

∣∣∣∣
≤T1,n∥EnI

θ
1 (U ; θ)∥Θ

P−→ 0,

uniformly over Θ. Similarly for (B.31),

∣∣∣∣√nJ
J∑

j=1

n

nj

(En − E)1(i ∈ Ij)I
θ
2

T
I3(Ui)−GnI

θ
2

T
I3(U)

∣∣∣∣
≤T2,n∥EnI

θ
2

T
I3(U)∥Θ

P−→ 0.
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Therefore, we can substitute
√
n(γ̂n,θ − γ∗θ ) with

√
n(γ̃λn

n,ϕ,θ − γ∗θ ), which is estimated

without the sample splitting technique. For the remainder of the proof, we will show the weak

convergence of
√
n(γ̃λn

n,ϕ,θ − γ∗θ ). Fix a compact Γ ⊂ Rq. We have

M̃n,θ(γh) ≡ n
(
M̂n,θ(γ

∗
θ +

γh√
n
)− M̂n,θ(γ

∗
θ )
)

= nEn

[
−
∑
a

|Ŵa,θ(U)|
{
ϕ
(
a · sgn(Ŵa,θ(U))ξ(X)T (γ∗θ +

γh√
n
)
)

− ϕ
(
a · sgn(Ŵa,θ(U))ξ(X)Tγ∗θ

)}
+ λn(∥(γ∗θ +

γh√
n
)T ξ(X)∥2 − ∥γ∗θ

T ξ(X)∥2)
]

= Gn

[√
n(m̂θ

γ∗
θ+γh/

√
n(U)− m̂θ

γ∗
θ
(U))− γTh m̂

(1),θ
γ∗
θ

(U)
]

(B.32)

+ γThGnm̂
(1),θ
γ∗
θ

(U) (B.33)

+ nE
[
m̂θ

γ∗
θ+γh/

√
n(U)− m̂θ

γ∗
θ
(U)
]
, (B.34)

where m̂(1),θ
γ∗
θ

(U) = −
∑

a |Ŵa,θ(U)|ϕ̇
{
a · sgn(Ŵa,θ(U))ξ(X)Tγ∗θ

}
a · sgn(Ŵa,θ(U))ξ(X) +

2λn(γ
∗
θ
T ξ(X))γ∗θ .

Using more empirical process arguments, we discover the limiting distributions of (B.32),

(B.33), and (B.34). Firstly for (B.32), we show that the conditions in Theorem 11.20 in Kosorok

(2008) are satisfied. Let γ1 and γ2 be some arbitrary elements in Γ. We have

|m̂θ
γ1
(u)− m̂θ

γ2
(u)|

=
∣∣|Ŵ1,θ(u)|ϕ{sgn(Ŵ1,θ(u))γ

T
1 ξ(x)}+ |Ŵ−1,θ(u)|ϕ{−sgn(Ŵ−1,θ(u))γ

T
1 ξ(x)}+ λn∥γT1 ξ(x)∥2

−|Ŵ1,θ(u)|ϕ{sgn(Ŵ1,θ(u))γ
T
2 ξ(x)} − |Ŵ−1,θ(u)|ϕ{−sgn(Ŵ−1,θ(u))γ

T
2 ξ(x)} − λn∥γT2 ξ(x)∥2

∣∣
≤
∣∣|Ŵ1,θ(u)|

(
ϕ{sgn(Ŵ1,θ(u))γ

T
1 ξ(x)} − ϕ{sgn(Ŵ1,θ(u))γ

T
2 ξ(x)}

)∣∣
+
∣∣|Ŵ−1,θ(u)|

(
ϕ{−sgn(Ŵ−1,θ(u))γ

T
1 ξ(x)} − ϕ{−sgn(Ŵ−1,θ(u))γ

T
2 ξ(x)}

)∣∣
+ |λn(∥γT1 ξ(x)∥2 − ∥γT2 ξ(x)∥2)|

≲
(
|Ŵ1,θ(u)|+ |Ŵ−1,θ(u)|+ |(γ1 + γ2)

T ξ(x)|
)
∥ξ(x)∥ · ∥γ1 − γ2∥.
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Let ṁθ(·) = c
(
|Ŵ1,θ(·)|+ |Ŵ−1,θ(·)|+ |(γ1+ γ2)

T ξ(x)|
)

for some constant c. Also, define

knγhθ
(u) ≡

√
n(m̂θ

γ∗
θ+

γhθ√
n

(u)− m̂θ
γ∗
θ
(u))− γThθ

m̂
(1),θ
γ∗
θ

(u), where the subscript θ of h emphasizes

that it is in the neighborhood of the maximum of mθ
γ∗
θ
, which is γ∗θ . Let h1,θ and h2,θ be arbitrary

hθ ∈ H. For each θ ∈ Θ,

| sup
θ∈Θ

knγh1,θ
(u)− sup

θ∈Θ
knγh2,θ

(u)|

≤ sup
θ∈Θ

|knγh1,θ (u)− knγh2,θ
(u)|

= sup
θ∈Θ

∣∣√n(m̂θ

γ∗
θ+

γh1,θ√
n

(x)− m̂θ
γ∗
θ
(u))− γTh1,θ

m̂
(1),θ
γ∗
θ

(u)−
√
n(m̂

γ∗
θ+

γh2,θ√
n

(u)− m̂γ∗
θ
(u))

+ γTh2,θ
m̂

(1),θ
γ∗
θ

(u)
∣∣

= sup
θ∈Θ

∣∣√n(m̂
γ∗
θ+

γh1,θ√
n

(u)− m̂
γ∗
θ+

γh2,θ√
n

(u)
)
− (γh1,θ

− γh2,θ
)T m̂

(1),θ
γ∗
θ

(u)
∣∣

≤ sup
θ∈Θ

{
ṁθ(u)∥ξ(x)∥+ ∥m̂(1),θ

γ∗
θ

(u)∥
}
∥γh1,θ

− γh2,θ
∥.

Thus for Fn ≡ {supθ∈Θ u
n
γhθ

: γhθ
∈ Γ},

sup
Q
N(ϵ∥Fn∥Q,2,Fn, L2(Q))

≤ sup
Q
N[](ϵ∥Fn∥Q,2,Fn, L2(Q))

≤N(
ϵ

2
,Γ, d(γh1,θ

, γh2,θ
))

≲(
1

ϵ
)p,

where the envelope Fn ≡ supθ∈Θ{|ṁθ|∥ξ∥X + ∥m̂(1),θ
γ0,θ ∥}∥γhθ

∥Γ and E|F 2
n(u)| <∞. Theorem

9.18 from Kosorok (2008) is applied to the first inequality, and the second inequality is derived

by utilizing Theorem 9.23 from Kosorok (2008) with ∥ · ∥Q,2 for any probability measure Q on

X . Therefore, lim supn→∞ supQ

∫ 1

0

√
logN(ϵ∥Fn∥Q,2,Fn, L2(Q))dϵ <∞.
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Now letH(s, t) = limn→∞ E(supθ∈Θ k
n
γhs,θ

knγht,θ
)−E(supθ∈Θ k

n
γhs,θ

)E(supθ∈Θ k
n
γht,θ

). Then,

∥E(sup
θ∈Θ

knγhs,θ
(u)knγht,θ

(u))∥Γ

=∥E(sup
θ∈Θ

n(m̂
γ∗
θ+

γhs,θ√
n

(u)− m̂γ∗
θ
(u)−

γThs,θ√
n
m̂

(1),θ
γ∗
θ

(u))2)∥Γ

=nE
(
sup
θ∈Θ

{
γThs,θ√
n
ṁγ0,θ(u) + o

(
(
∥γhs,θ

∥
√
n

)2
)
−
γThs,θ√
n
ṁγ0,θ(u)}

)2
=o(sup

θ∈Θ

∥γhs,θ
∥4

n
).

The second equality follows from Taylor’s theorem for fixed u. Therefore, H(s, t) =

0. Moreover, since Fn does not depend on n and Fn < ∞, lim supn→∞ EF 2
n < ∞ and

limn→∞ EF 2
n1{Fn > ϵ

√
n} = 0, for each ϵ > 0. Also, we have,

sup
supθ∈Θ ∥γh1,θ ,γh2,θ∥<δn

(sup
θ∈Θ

knγh1,θ
− sup

θ∈Θ
knγh2,θ

)2

= sup
supθ∈Θ ∥γh1,θ ,γ2t,θ∥<δn

(√
n(m̂

γ∗
θ+

γh1,θ√
n

− m̂
γ∗
θ+

γh2,θ√
n

)− (γh1,θ
− γh2,θ

)T m̂
(1),θ
γ∗
θ

)2
≤ sup

θ∈Θ

(
|ṁθ|∥ξ∥+ ∥ṁ(1),θ

γ∗
θ

∥
)2

sup
supθ∈Θ ∥γh1,θ ,γh2,θ∥<δn

∥γh1,θ
− γh2,θ

∥2

≤ sup
θ∈Θ

(
|ṁθ|∥ξ∥+ ∥m̂(1),θ

γ0
∥
)2
δ2n

→ 0, as δn ↓ 0.

Therefore, supθ∈Θ Gn(k
n
γhθ

)⇝ 0 in l∞(Γ). Next, for (B.34), we have,

nE
[
m̂θ

γ∗
θ+γh/

√
n(U)− m̂θ

γ∗
θ
(U)
]

= nE
[
mγ∗

θ+γh/
√
n(U)−mγ∗

θ
(U)
]

(B.35)

+ nE
[
(m̂γ∗

θ+γh/
√
n(U)− m̂γ∗

θ
(U)−mγ∗

θ+γh/
√
n(U) +mγ∗

θ

]
. (B.36)

83



It is easily shown that (B.35)= 1
2
γTh Vθγh + o(1), where Vθ = E

[∑
a −|Wa,θ(U)|ϕ̈

(
a · sgn(Wa,θ

(U))γ∗θ
T ξ(X)

)
ξ(X)ξ(X)T

]
. For (B.36),

(B.36) = nE
[
m̂γ∗

θ+γh/
√
n(U)−mγ∗

θ+γh/
√
n(U)− (m̂γ∗

θ
(U)−mγθ∗ (U))

]
= −

∑
a

E
[√

n
(
|Ŵa,θ(U)| − |Wa,θ(U)|

)
ϕ̇
(
a · sgn(Wa,θ(U))ξ(X)Tγ∗θ

)
a

· sgn(Wa,θ(U))ξ(X)Tγh

]
+ oP (1)

= −
∑
a

E
[√

n
(
|Wa,θ(U) +

√
n(Ŵa,θ(U)−Wa,θ(U))/

√
n| − |Wa,θ(U)|

)
·

ϕ̇
(
a · sgn(Wa,θ(U))ξ(X)Tγ∗θ

)
a · sgn(Wa,θ(U))ξ(X)Tγh

]
+ oP (1)

= −
∑
a

E
[{

1(Wa,θ(U)±
Kϵ√
n
∈ N0) ·

√
n
(
|Wa,θ(U) +

√
n(Ŵa,θ(U)−Wa,θ(U))

/
√
n| − |Wa,θ(U)|

)
+ 1(Wa,θ(U)±

Kϵ√
n
/∈ N0) ·

√
n
(
|Wa,θ(U) +

√
n(Ŵa,θ(U)−Wa,θ(U))

/
√
n| − |Wa,θ(U)|

)}
· ϕ̇
(
a · sgn(Wa,θ(U))ξ(X)Tγ∗θ

)
a · sgn(Wa,θ(U))ξ(X)T

γh

]
+ oP (1)

= oP (1)−
∑
a

E
[√

n(Ŵa,θ(U)−Wa,θ(U))ϕ̇
(
aξ(X)Tγ∗θ

)
a · sgn(Wa,θ(U))ξ(X)Tγh

]
=

√
n(V̂n − V0)

TE
[
−
∑
a

Dθ
a(U)ϕ̇

(
a · sgn(Wa,θ(U))ξ(X)Tγ∗θ

)
aξ(X)T

]
γh + oP (1),

where N0 is a neighborhood of 0 and Kϵ is a compact interval depending on arbitrary ϵ > 0.

Let’s denote Nθ ≡ E
[
−
∑

aD
θ
a(U)ϕ̇

(
a · sgn(Wa,θ(U))ξ(X)Tγ∗θ

)
aξ(X)T

]
. Then, M̃n,θ(γh) =

1
2
γTh Vθγh + γTh

(
Gnm

(1),θ
γ∗
θ

(U) +NT
θ

√
n(V̂n − V0)

)
+ E1

n(θ), where supθ∈Θ ∥E1
n(θ)∥ = oP (1).

Therefore,
√
n(γ̂n,θ − γ∗θ ) = −V −1

θ

(
Z1(θ) +NT

θ Z2

)
+ oP (1) where Z1 and Z2 are defined as

the following limiting distributions:

 Gnm
(1),θ
γ∗
θ

(U)

√
n(V̂n − V0)

⇝
 Z1(θ)

Z2

 ,
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uniformly over Θ, where Z1(θ) is a tight, mean zero p-dimensional Gaussian process vec-

tor with covariance ΣU(θ1, θ2) = E[Z1(θ1)Z1(θ2)], Z2 ∼ N(0,Σ22) of dimensional dp, and

the covariance of Z1(θ) and Z2 is E[Z1(θ)Z2] = E[m(1),θ
γ∗
θ

(U)ψV (U)]]. Then, the limiting

distribution of
√
n(γ̂n,θ − γ∗θ ) is distribution of −V −1

θ Z̃(θ), where Z̃(θ) is a vector Gaussian

process indexed by θ with covariance E
[
m

(1),θ
γ∗
θ

(U)
(
m

(1),θ
γ∗
θ

(U)
)T ]

+NT
θ E
[
ψV (U)ψ

T
V (U)

]
Nθ +

E
[
m

(1),θ
γ∗
θ

(U)ψT
V (U)

]
Nθ+N

T
θ E
[
ψV (U)

(
m

(1),θ
γ∗
θ

(U)
)T ]. Let gθ = −V −1

θ (Gnm
(1),θ
γ∗
θ

+NT
θ

√
n(V̂n−

V0)). Also, let Aθ ≡ E
[
m

(1),θ
γ∗
θ

(U)
(
m

(1),θ
γ∗
θ

(U)
)T ]

+NT
θ E
[
ψV (U)ψ

T
V (U)

]
Nθ + E

[
m

(1),θ
γ∗
θ

(U)ψT
V

(U)
]
Nθ +NT

θ E
[
ψV (U)

(
m

(1),θ
γ∗
θ

(U)
)T ], and Aθ,θ′ ≡ E

[
m

(1),θ
γ∗
θ

(U)
(
m

(1),θ
γ∗
θ
′
(U)
)T ]

+NT
θ E
[
ψV (U)

ψT
V (U)

]
Nθ′ +E

[
m

(1),θ
γ∗
θ

(U)ψT
V (U)

]
Nθ′ +NT

θ E
[
ψV (U)

(
m

(1),θ
γ∗
θ
′
(U)
)T ]. It is straightforward now

to verify that, as θ → θ0, Wa,θ → Wa,θ0 , m
(1),θ
γ∗
θ

→ m
(1),θ
γ∗
θ0

, and Nθ → Nθ0 . Also, Vθ → Vθ0

and V −1
θ → V −1

θ0
. Then, E

[
∥gθ − gθ0∥2

]
= V −1

θ AθV
−1
θ + V −1

θ0
Aθ0V

−1
θ0

− 2V −1
θ Aθ,θ0V

−1
θ0

→ 0.

Therefore, by Lemma 13.3 in Kosorok (2008), since θ̂ → θ0,

√
n(γ̂θ̂ − γ∗

θ̂
)⇝ −V −1

θ0
Gθ0 , (B.37)

where Gθ0 is mean zero Gaussian process with covariance Aθ0 = E
[
m

(1),θ
γ∗
θ0

(U)(m
(1),θ
γ∗
θ0

(U)T
]
+

Nθ0)
TE
[
ψV (U)ψ

T
V (U)

]
Nθ0 + E

[
m

(1),θ
γ∗
θ0

(U)ψT
V (U)

]
Nθ0 +NT

θ0
E
[
ψV (U)

(
m

(1),θ
γ∗
θ0

(U)
)T ]. For the

latter term on (B.28), we obtain the limiting distribution of
√
n(γ∗

θ̂
− γ∗θ0). Let Ṁθ(γ) ≡

∂
∂γ
Mθ(γ) = E

[
−
∑

a |Wa,θ(U)|ϕ̇{a · sgn(Wa,θ(U))γ
T ξ(X)}a · sgn(Wa,θ(U))ξ(X)

]
, and note

that Ṁθ(γ) = 0. Then, from Taylor’s Theorem,

√
n(γθ̂∗ − γ∗θ0) (B.38)

=
√
nB0(θ̂ − θ0) + oP (

√
n∥θ̂ − θ0∥)), (B.39)
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where B0 =
(

∂γ
∂θ

)
θ=θ0

is a q × p matrix. We can obtain this since
(

∂γ
∂θ

)
θ=θ0

= −
(
A−1

1

A2

)
θ=θ0

where

A1 =
∂Ṁθ(γ)

∂γ

= −E
[{∑

a

|Wa,θ(U)|ϕ̈(a · sgn(Wa,θ(U))aγ
∗
θ
T ξ(X))

}
ξ(X)ξ(X)T

]
, and

A2 =
∂Ṁθ(γ)

∂θ

= −E
[∑

a

a ·
(I(A = a)

π(a;X)
(Y − Z)− I(A = a)− π(a;X)

π(a;X)
(QY (X)−QZ(X))

)
· ωθ(X)(1− ωθ(X))ϕ̇{a · sgn(Wa,θ(U))γ

∗
θ
T ξ(X)}ξ(X)XT

]
− 2E

[∑
a

Wa,θ(U)
(I(A = a)

π(a;X)
(Y − Z)− I(A = a)− π(a;X)

π(a;X)
(QY (X)−QZ(X))

)
· ωθ(X)(1− ωθ(X))ϕ̈

{
a · sgn(Wa,θ(U))γ

∗
θ
T ξ(X)

}
γ∗θ

T ξ(X)ξ(X)XT
∣∣∣Wa,θ(U) = 0

]
.

Then the desired conclusions follow.

Lemma B.4. Assume that E∥π̂(a;X) − π(a;X)∥2P,2 = O(n−1) and E∥Q̂θ(X, a) − Qθ(X,

a)∥2P,2 = O(n−1). Let f̂n,θ = argmaxf∈F M̂n,θ(f), where M̂n,θ(f) = En[−
∑

a |Ŵa,θ|ϕ(a ·

sgn(Ŵa,θ)f) + λn∥f∥2], and f ∗
θ = argmaxf∈F Mθ(f), where Mθ(f) = E[−

∑
a |Wa,θ|ϕ(a ·

sgn(Wa,θ)f)]. Then, the rate of convergence of f̂n,θ to f ∗
θ is rn =

√
n uniformly over θ ∈ Θϵ

0.

Proof of Lemma B.4. We prove this by verifying the conditions in Theorem 2.3. For f in the

neighborhood Nθ,

Mθ(f)−Mθ(f
∗
θ ) ≲ −c1d(f, f ∗

θ )
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for c1 > 0 by the definition of f ∗
θ , and non-singularity and continuity of the second derivative

matrix of M̈θ(f) uniformly over θ ∈ Θϵ
0. Next, for all θ ∈ Θϵ

0

√
n(M̂n,θ −Mθ)f −

√
n(M̂n,θ −Mθ)f

∗
θ

= Gn

(
− |Ŵ1,θ|ϕ(sgn(Ŵ1,θ)f)− |Ŵ−1,θ|ϕ(−sgn(Ŵ−1,θ)f)− λn∥f∥2

+ |Ŵ1,θ|ϕ(sgn(Ŵ1,θ)f
∗
θ ) + |Ŵ−1,θ|ϕ(−sgn(Ŵ−1,θ)f

∗
θ ) + λn∥f ∗

θ ∥2
)

(B.40)

−
√
nE

(∑
a

(
|Ŵa,θ|

{
ϕ(a · sgn(Ŵa,θ)f)− ϕ(a · sgn(Ŵa,θ)f

∗
θ

}
− |Wa,θ|

{
ϕ(a · sgn(Wa,θ)− ϕ(a · sgn(Wa,θ))

})
+ λθn(∥f∥2 − ∥f ∗

θ ∥2)

)
. (B.41)

For fixed θ ∈ Θϵ
0, let Gθ = {gθ(f) : gθ(f) = −|Ŵ1,θ|ϕ(sgn(Ŵ1,θ)f) − |Ŵ−1,θ|ϕ(−sgn

(Ŵ−1,θ)f)+ |Ŵ1,θ|ϕ(sgn(Ŵ1,θ)f
∗
θ )+ |Ŵ−1,θ|ϕ(−sgn(Ŵ−1,θ)f

∗
θ )−λθn(∥f∥2−∥f ∗

θ ∥2), f ∈ Nθ},

and let Gθ be an envelope function for Gθ. Then for (B.40), by Theorem 11.1 in Kosorok (2008),

we have

E sup
d(f,f0)<δ

∣∣Gn(gθ(f))
∣∣

≤ E sup
gθ∈G

∣∣Gn(gθ(f))
∣∣

≤ c2J
∗(1,Gθ)∥Gθ∥P,1

for some c2 <∞. J∗(1,G) is computed as

J∗(1,Gθ) = sup
Q

∫ 1

0

√
1 + logN(ϵ∥Gθ∥Q,2,Gθ, L2(Q))dϵ

≤
∫ 1

0

√
1 +KV Cθ

(
1

ϵ
)2−2/V Cθdϵ

≲ 1.
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The first inequality is from Corollary 9.5 in Kosorok (2008). V Cθ is the VC-index of Gθ,

and KV Cθ
is some constant greater than 0. Let f1,θ = argmaxd(f,f∗

θ )≤δ

{∑
a∈{−1,1} |Ŵa,θ|{ϕ(a ·

sgn(Ŵa,θ)f)−ϕ(a·sgn(Ŵa,θ)f
∗
θ )}−λθn(∥f∥2−∥f ∗

θ ∥2)
}

. Then by Assumption 2.8 and Hölder’s

inequality,

sup
θ∈Θϵ

0

∥Gθ∥P,1

= sup
θ∈Θϵ

0

∥∥∥∥ ∑
a∈{−1,1}

∣∣∣(I(A = a)

π̂(a;X)
− I(A = a)

π(a;X)
)(Uθ −Qθ(X, a)) +

I(A = a)

π(a;X)
(Uθ −Qθ(X, a))

+ (
I(A = a)

π̂(a;X)
− I(A = a)

π(a;X)
)(Qθ(X, a)− Q̂θ(X, a)) + (

I(A = a)

π(a;X)
− 1)(Qθ(X, a)

− Q̂θ(X, a))

+Qθ(X, a)
∣∣∣(ϕ(a · sgn(Ŵa,θ)f1,θ)− ϕ(a · sgn(Ŵa,θ)f

∗
θ ))− λθn(∥f1,θ∥2 − ∥f ∗

θ ∥2)
∥∥∥∥
P,2

≤ sup
θ∈Θϵ

0

∑
a∈{−1,1}

∥∥∥∥I(A = a)

π̂(a;X)
− I(A = a)

π(a;X)
)(Uθ −Qθ(X, a)) +

I(A = a)

π(a;X)
(Uθ −Qθ(X, a))

+ (
I(A = a)

π(a;X)
− 1)(Qθ(X, a)− Q̂θ(X, a)) +Qθ(X, a)

∥∥∥∥
P,2

·
∥∥∥∥ϕ(a · sgn(Ŵa,θ)f1,θ)

− ϕ(a · sgn(Ŵa,θ)f
∗
θ )

∥∥∥∥
P,2

+ sup
θ∈Θϵ

0

∑
a∈{−1,1}

∥∥∥∥(I(A = a)

π̂(a;X)
− I(A = a)

π(a;X)
)(Qθ(X, a)− Q̂θ(X, a))

∥∥∥∥
P,2

·
∥∥∥∥ϕ(a · sgn(Ŵa,θ)

· f1,θ)− ϕ(a · sgn(Ŵa,θ)f
∗
θ )

∥∥∥∥
P,2

+

∥∥∥∥λθn(∥f1,θ∥2 − ∥f ∗
θ ∥2)

∥∥∥∥
P,2

≤ O(n− 1
2 δ)
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For (B.41),

√
n sup

θ∈Θϵ
0

E

(∑
a

(
|Ŵa,θ|

{
ϕ(a · sgn(Ŵa,θ)f)− ϕ(a · sgn(Ŵa,θ)f

∗
θ

}
− |Wa,θ|

{
ϕ(a · sgn(Wa,θ)− ϕ(a · sgn(Wa,θ))

})
+ λθn(∥f∥2 − ∥f ∗

θ ∥2)

)

≲
√
nO(n− 1

2 )δ

= O(1)δ.

Let ϕn(δ) = δ. Also, let γ = 3
2
. Then ϕn(δ)

δγ
= δ−

1
2 . Then, (2.7) is satisfied. Also,

r2nϕ(r
−1
n ) = r2n · 1

rn
= rn ≤ c3

√
n. Choose rn = n

1
2 . Then, all conditions in Theorem 2.3 are

satisfied.

Proof of Theorem 2.5. Let l̂n(θ, β) be a log of pseudo-likelihood L̂n(θ, β). Also, let ûn(θ) =

n−1/2
∑n

i=1Xi

[
1
{
Ai = d̂n,θ(Xi)

}
− Pβ0(Xi)

]
. We use similar arguments as in the proof for

the Theorem 13 in Luckett et al. (2021). We have

n−1/2{l̂n(θ̂n, β̂n)}

=n−1/2

n∑
i=1

XT
i β0
[
1
{
Ai = d̂n,θ̂n(X)

}
−
{
Ai = d̂n,θ0(X)

}]
+

1

2
vn(θ̂n, β∗)

=n1/2E
(
XTβ0

[
1
{
A = d̂n,θ̂n(X)

}
− 1
{
A = d∗θ0(X)

}])
− n1/2E

(
XTβ0

[
1
{
A = d̂n,θ0(X)

}
− 1
{
A = d∗θ0(X)

}])
+ oP (1 +

√
n∥θ̂n − θ0∥)

= −E
(
XTβ0{2Pβ0(X)− 1}

∣∣√n{f̂n,θ̂(X)− f ∗
θ0
(X)}

∣∣∣∣∣f ∗
θ0
(X) = 0

)
{1 + oP (1)}g0

+OP (1) + oP (1 +
√
n∥θ̂n − θ0∥)

≤ −E
(
XTβ0{2Pβ0(X)− 1}

∣∣(−V −1
θ0
Z̃ +B0

√
n(θ̂ − θ0))

T ξ(X)
∣∣∣∣∣f ∗

θ0
(X) = 0

)
· {1 + oP (1)}g0 +OP (1) + oP (1 +

√
n∥θ̂n − θ0∥)

≤ −δ2δ21

(
exp (δ1)− 1

exp (δ1) + 1

)
√
n∥θ̂ − θ0∥{1 + oP (1)}+OP (1) + oP (1 +

√
n∥θ̂ − θ0∥),
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where vn(θ̂n, β∗) = n−1/2ûn(θ̂n)
T I−1

n (β∗)ûn(θ̂n), and β∗ is a point between β̂n and β0. There-

fore,
√
n∥θ̂ − θ0∥ = OP (1).

Since the second term of the last equality does not depend on θ̂, we can let θ̂ = argmaxũ∈Rp

Mn(θ0 + ũ/
√
n) where

Mn(θ0 + ũ/
√
n) = n−1/2

n∑
i=1

XT
i β0

[
1
{
Ai = d̂n,θ0+ũ/

√
n(Xi)

}
− 1
{
Ai = d∗θ0(Xi)

}]
+ vn(θ0 + ũ/

√
n, β∗)/2.

Let hn(ũ) = θ0 + ũ/
√
n. We use similar arguments as in Luckett et al. (2021). Since we have

oP (1 +
√
n∥θ̂ − θ0∥) = oP (1), for any compact set K ⊂ Rp,

argmin
ũ∈K

Mn{hn(ũ)}

=argmin
ũ∈K

n1/2E
(
XTβ0

[
1
{
Ai = d̂hn(ũ)(Xi)

}
− 1
{
Ai = d∗θ0(Xi)

}])
+ oP (1)

= argmin
ũ∈K

E
(
XTβ0{2Pβ0(X)− 1}

∣∣√n{f̂hn(ũ)(X)− f ∗
θ0
(X)

}∣∣∣∣∣fθ0(X) = 0
)
g0 + oP (1)

⇝ argmin
ũ∈K

E
(
XTβ0{2Pβ0(X)− 1}|(−V −1

θ0
Z̃ +B0ũ)

T ξ(X)|
∣∣∣fθ0(X) = 0

)
g0,

where Z is a tight mean zero Gaussian process with covariance Aθ0 . Let M(ũ) = E
(
XTβ0{2

·Pβ0(X) − 1}|(−V −1
θ0
Z̃ + B0ũ)

T ξ(X)
∣∣∣fθ0(X) = 0

)
. By the argmax theorem in chapter

14 of Kosorok (2008), since Mn(hn(ũ)) ⇝ M(ũ) in l∞(K), we have Ũn ⇝ Ũ where

Ũn = argminu∈Rp Mn(hn(u)) and Ũ = argminu∈Rp M(u). Also, since
√
n(β̂n − β0) =

In(β∗)
−1ûn(θ̂n) and û(θ̂n) = ZA,n+

√
nEn[X(1{A = d̂n.θ̂n(X)}−1{A = d∗θ0(X)}],

√
n(β̂n−

β0) converges weakly to I−1
0 (ZA − k(Z̃, Ũ)).
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