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ABSTRACT

Shiyue Zhang: Towards Reliable and Inclusive Natural Language Generation
(Under the direction of Mohit Bansal)

Natural language generation (NLG) is an important subfield of natural language processing

(NLP) that produces natural language output. Despite notable advancements made by large-scale

pre-trained language models in NLG, there remain several unresolved challenges. This thesis

aims to enhance NLG from two significant aspects: reliability and inclusiveness.

For reliability, on the one hand, we introduce novel training objectives that improve the align-

ment of language generation models with desired model behaviors. To improve the answerabil-

ity of model-generated questions, we use a question answering model to provide additional re-

wards to a question generation model, encouraging the production of more answerable questions.

In addition, we propose to train language models with a mixture of forward and reverse cross-

entropies, demonstrating that the resulting models yield better generated text without complex

decoding strategies. On the other hand, we propose novel evaluation methods to assess the per-

formance of NLG models accurately and comprehensively. By combining human and automatic

evaluations, we strike a balance between reliability and reproducibility. We delve into the unex-

plored issue of unfaithfulness in extractive summaries and conclude that extractive summariza-

tion does not guarantee faithfulness.

For inclusiveness, we extend the coverage of NLG techniques to low-resource or endangered

languages. We develop the first machine translation system for supporting translation between

Cherokee, an endangered Native American language, and English, and we propose a roadmap

for utilizing NLP to support language revitalization efforts. Additionally, we investigate the un-

derrepresentation of low-resource languages during multilingual tokenization, a crucial data pre-

iii



processing step in training multilingual NLG models, and we present best practices for training

multilingual tokenizers.

Overall, this thesis works towards enhancing the trustworthiness of NLG models in practice

and facilitating support for a more diverse range of languages worldwide.
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CHAPTER 1: INTRODUCTION

Natural language generation (NLG) is distinguished from natural language understanding by

its focus on producing natural language output, though eventually, reliable NLG requires a proper

understanding of the context and the world. There is a wide range of NLG tasks (Gehrmann

et al., 2021), including machine translation (Wu et al., 2016; Bahdanau et al., 2015), text sum-

marization (Nenkova and McKeown, 2012; Liu and Lapata, 2019), data-to-text (Liu et al., 2018;

Parikh et al., 2020), story generation (Fan et al., 2018a; Yao et al., 2019), question generation (Heil-

man and Smith, 2010; Du et al., 2017), etc. Despite the diversity, they are mostly based on the

same modeling methodology: autoregressive language modeling, i.e., generating words from left

to right. Recently, due to the success of large pretrained language models (LMs) (Radford et al.,

2019; Raffel et al., 2020; Lewis et al., 2020a; Zhang et al., 2020a), finetuning pretrained LMs on

these diverse tasks has become a de facto standard and has improved the performance of diverse

tasks significantly. More excitingly, a single large pretrained LM can even perform many tasks

in a zero-shot manner simply by giving it different prompts (Brown et al., 2020). Despite this

impressive progress, even the strongest model, ChatGPT, still makes a lot of mistakes and is not

completely reliable in practice. Moreover, advanced NLG technologies are usually data-hungry

and thus only support a few high-resource languages in the world, while leaving a lot of other

languages behind. Therefore, the primary goal of this thesis is to improve the reliability and

inclusiveness of NLG technologies.

On the one hand, unreliability refers to any issue that can make NLG models untrustworthy

in practice. These issues are pervasive in the NLG pipeline: data can be noisy, biased, or incor-

rect (Bommasani and Cardie, 2020); models can produce incoherent (Holtzman et al., 2020), fac-

tually inconsistent (Cao et al., 2018; Maynez et al., 2020), or toxic (Gehman et al., 2020) text;
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evaluation methods (human or automatic evaluations) are unable to reflect the actual quality of

the model (Deutsch and Roth, 2021). All of these problems hinder NLG technologies from being

reliably applied in the real world. This thesis focuses on improving NLG reliability by proposing

alternative training objectives as well as evaluation methods.

NLG models are usually trained by maximum likelihood estimation (MLE), which does not

always align with how the models are evaluated and how we expect the model to behave. Hence,

it is necessary to propose alternative learning objectives beyond MLE. The first NLG task we

try to improve is Question generation (QG). QG is a task to produce a question for an answer

span in a text paragraph. One underlying requirement is that the generated question should be an-

swerable by the given answer. However, existing end-to-end QG models, which are trained by

MLE, do not have this constraint in their training objectives. And, the output questions are often

unanswerable by the answer. In Zhang and Bansal (2019), we propose to use an external pre-

trained QA model to verify the answerability of the generated question and use it as a reward to

train the QG model via reinforcement learning (RL). We show that our method greatly improved

the answerability of questions and achieved state-of-the-art QG performance at the time of publi-

cation.

Next, we focus on language modeling. Though human text usually has low perplexity under

the model distribution, random sampling from the model often results in incoherent and nonsen-

sical text. Therefore, we believe these models are over-generalized, in the sense that the model

distribution Qθ has larger support than the human distribution P . We believe MLE contributes

to this over-generalization problem. MLE is equivalent to minimizing the forward cross-entropy

(CE) or forward KL divergence, which has a zero-avoiding property – avoiding Qθ(x) = 0 when

P (x) ‰ 0 (Murphy, 2012). Therefore, if there is noise in the data, Qθ will try to cover the noise

as well, which leads the model to over-generalize. To address this problem, we propose tomix

MLE with an objective of minimizing the reverse CE between Qθ and P (´Ex„Qθ
[logP (x)]),

which we call MixCE (Zhang et al., 2023b). Reverse CE reflects human evaluations and can ef-

ficiently narrow the over-generalized model distribution down. However, due to the unknown
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P , optimizing reverse cross-entropy is intractable. We introduce an approximation of reverse

CE which ends up being a simple self-reinforced loss function – encouraging the model to gener-

ate what it is confident about. We show that compared to MLE, finetuning pretrained LMs with

MixCE greatly improved their sampling performance with respect to both automatic and human

evaluations.

Evaluation is critical for NLG because not only do we need it to assess and compare dif-

ferent systems but also it can provide useful feedback for model training. How to design reli-

able and reproducible evaluation methods is a long-standing problem. In text summarization,

many works conduct direct human rating, i.e., humans are asked to rate the summary from cer-

tain angles, which suffers from rating subjectivity, difficulty in designing rating criteria, and

high expense of time and budget. Another human evaluation protocol, Pyramid or LitePyra-

mid (Nenkova and Passonneau, 2004; Shapira et al., 2019), is proposed to address some of these

issues. Given human-written reference summaries, LitePyramid asks humans to break references

into summary content units (SCUs); then it asks humans to judge whether each SCU is present in

the system summary; finally, the score is the number of present SCUs divided by the total num-

ber of SCUs. LitePyramid is easier to implement and more reproducible, but still costly. On the

other hand, automatic metrics (e.g., ROUGE (Lin, 2004)) are widely used because they are fast

and low-cost, but lots of studies have criticized their unreliability. To find a trade-off between

human and automatic evaluations, following LitePyramid, we substitute the human judgment of

SCU-presence with a natural language inference (NLI) model (Zhang and Bansal, 2021) which

we call Lite2Pyramid. SCU extraction only needs to be conducted once by humans. After having

SCUs, Lite2Pyramid can run automatically for evaluating different systems. As long as the same

NLI model is being used, the same results will be obtained. Lite2Pyramid greatly outperforms

existing automatic metrics. Besides, we also propose to gradually automate SCU extraction using

Semantic Role Labeling, resulting in a spectrum of Lite2.xPyramid metrics and a fully-automatic

Lite3Pyramid metric. Overall, we show that combining human and automatic evaluations can

help to find a good balance between reproducibility and reliability.
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An increasing number of works have been focusing on evaluating the faithfulness of system

summaries (Durmus et al., 2020; Wang et al., 2020a) because unfaithfulness, e.g., changing the

meaning of the source, is widely spread across text summarization tasks and systems. These

works have only focused on abstractive summarization (generating novel sentences) rather than

extractive summarization (extracting sentences from the source). However, as we found in (Hu

et al., 2022), extracted summaries can also mislead the audience by biasing towards one side

of the sentiment. Moreover, coreference and discourse issues can also show up across extracted

sentences. To systematically study this problem, my recent work (Zhang et al., 2023a) introduced

the first error typology with five types of broad unfaithfulness problems that can appear in ex-

tractive summaries, including incorrect coreference, incomplete coreference, incorrect discourse,

incomplete discourse, as well as other misleading information. We asked humans to label these

problems out of 1600 English summaries produced by 15 diverse extractive systems. We found

that 30% of the summaries have at least one of the five issues, which demonstrates that extractive

is not faithful. We found that 5 existing faithfulness evaluation metrics for abstraction summa-

rization have poor correlations with human judgment. To remedy this, we proposed a new metric,

ExtEval, that is designed for detecting unfaithful extractive summaries and is shown to have the

best performance. Overall, we want to remind the community that even though all content is ex-

tracted from the source, there is still a chance to be unfaithful. Recently, using our collected data,

we test whether large pretrained LMs can score a faithful abstractive summary higher than an un-

faithful extractive summary of the same source document (Tam et al., 2023). Unfortunately, we

find that LMs almost always prefer the extractive summary despite the fact that it is unfaithful,

which paves the ground for more research in this direction.

On the other hand, existing LMs usually only support English or high-resource languages.

Among the 6,500 languages spoken or signed in the world today, lots of them are left behind.

Supporting as many languages as possible is an important mission of the NLP community. This

thesis works towards increasing the inclusiveness of NLG research as well as reciprocating the

underrepresented language communities via NLG technologies. Throughout my Ph.D. studies, I
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have been working on the language processing of an endangered Native American Language,

Cherokee. In collaboration with Prof. Ben Frey (a linguist, a Cherokee citizen, and a second-

language speaker of Cherokee), we collect a Cherokee-English parallel dataset (Zhang et al.,

2020b) which is also used in Stanford CS224n NLP course. We develop the first set of Cherokee-

English translation systems and an online translation demo (Zhang et al., 2021b). The demo sup-

ports both neural and statistical machine translations, provides quality estimation to inform users

how trustworthy the translation is, and collects human feedback. The demo has been used by

Cherokee speakers and learners and was featured by UNC Research in the headline story dur-

ing the American Indian Heritage Month in 2021. Besides, we also introduced a more complete

roadmap for using NLP to help revitalize endangered languages like Cherokee (Zhang et al.,

2022b), in which we proposed suggestions to NLP practitioners, approaches of NLP-assisted lan-

guage education, and future directions for Cherokee language processing. Eventually, we hope

that with the help of NLP technologies, we can increase the number of active speakers of Chero-

kee and bring it back to day-to-day use.

In addition, to make NLP more inclusive, a lot of effort has been made on developing multi-

lingual models. When multiple languages are involved, usually one single multilingual tokenizer

is trained. However, due to the different amounts of data in different languages, low-resource

languages may not be well represented in a multilingual vocabulary. As a result, they can be

excessively tokenized into characters, resulting in long sequences, and some tokens will be con-

sidered unknown. Both long sequences and unknown tokens can lead to poor downstream perfor-

mance. We systematically study how language imbalance in tokenization affects the performance

of multilingual translation (Zhang et al., 2022a). We find that translation models are surprisingly

robust to language imbalance; nonetheless, better performance is often observed when languages

are more balanced.
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1.1 Thesis Statement

The goal of this thesis is to make natural language generation (NLG) models more trustwor-

thy and support more diverse languages. Concretely, we introduce alternative NLG training ob-

jectives beyond maximum likelihood training, propose more reliable NLG evaluation methods,

and extend NLG technologies to support endangered and low-resource languages.

1.2 Overview of Chapters

The remainder of this dissertation is organized into seven chapters. Chapter 2 presents our

work on improving the answerability of model-generated questions via reinforcement learning.

Chapter 3 presents our work on improving language modeling performance by mixing forward

and reverse cross-entropies. Chapter 4 presents our work on combining human and automatic

evaluations to achieve a balance between reliability and reproducibility. Chapter 5 presents our

work on analyzing broad unfaithfulness problems in extractive summaries. Chapter 6 presents

our work on building the Cherokee-English machine translation dataset and system as well as

reviewing the roadmap of how NLP can help with language revitalization. Chapter 7 presents our

work on studying the language imbalance problem of multilingual tokenizer training. Chapter 8

summarizes the contributions herein and discusses the potential opportunities for future work.
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CHAPTER 2: ADDRESSING SEMANTIC DRIFT IN QUESTION GENERATION

2.1 Introduction

Previous QG systems follow an attention-based sequence-to-sequence structure, taking the

paragraph-level context and answer as inputs and outputting the question. However, we observed

that these QG models often generate questions that semantically drift away from the given con-

text and answer; we call this the “semantic drift” problem. As shown in Figure 2.1, the baseline

QG model generates a question that has almost contrary semantics with the ground-truth ques-

tion, and the generated phrase “the principle of enlightenment” does not make sense given the

context. We conjecture that the reason for this “semantic drift” problem is because the QG model

is trained via teacher forcing only, without any high-level semantic regularization. Hence, the

learned model behaves more like a question language model with some loose context constraint,

while it is unaware of the strong requirements that it should be closely grounded by the context

and should be answered by the given answer. Therefore, we propose two semantics-enhanced re-

wards to address this drift: QPP and QAP. Here, QPP refers to Question Paraphrasing Probability,

which is the probability of the generated question and the ground-truth question being paraphrases;

QAP refers to Question Answering Probability, which is the probability that the generated ques-

tion can be correctly answered by the given answer. We regularize the generation with these two

rewards via reinforcement learning. Experiments show that these two rewards can significantly

improve the question generation quality separately or jointly, and achieve the new state-of-the-art

performance on the SQuAD QG task.1

Next, in terms of QG evaluation, previous works have mostly adopted popular automatic eval-

uation metrics, like BLEU, METEOR, etc. However, we observe that these metrics often fall

1At the time of publication (mid-2019).
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Context: ...during the age of enlightenment, philosophers such as john locke advocated the principle
in their writings, whereas others, such as thomas hobbes, strongly opposed it. montesquieu was one of
the foremost supporters of separating the legislature, the executive, and the judiciary...

Gt: who was an advocate of separation of powers?
Base: who opposed the principle of enlightenment?
Ours: who advocated the principle in the age of enlightenment?

Figure 2.1: An examples of the “semantic drift” issue in Question Generation (“Gt” is short for
“ground truth”).

short in properly evaluating the quality of generated questions. First, they are not always corre-

lated to human judgment about answerability (Nema and Khapra, 2018). Second, since multiple

questions are valid but only one reference exists in the dataset, these traditional metrics fail to

appropriately score question paraphrases and novel generation (shown in Figure 2.3). Therefore,

we introduce a QA-based evaluation method that directly measures the QG model’s ability to

mimic human annotators in generating QA training data, because ideally, we hope that the QG

model can act like a human to ask questions. We compare different QG systems using this eval-

uation method, which shows that our semantics-reinforced QG model performs best. However,

this improvement is relatively minor compared to our improvement on other QG metrics, which

indicates improvement on typical QG metrics does not always lead to better question annotation

by QG models for generating QA training set.

Further, we investigate how to use our best QG system to enrich QA datasets and perform

semi-supervised QA on SQuADv1.1 (Rajpurkar et al., 2016). Following the back-translation

strategy that has been shown to be effective in Machine Translation (Sennrich et al., 2016b) and

Natural Language Navigation (Fried et al., 2018; Tan et al., 2019), we propose two methods to

collect synthetic data. First, since multiple questions can be asked for one answer while there is

only one human-labeled ground-truth, we make our QG model generate new questions for ex-

isting context-answer pairs in SQuAD training set, so as to enrich it with paraphrased and other

novel but valid questions. Second, we use our QG model to label new context-answer pairs from

new Wikipedia articles. However, directly mixing synthetic QA pairs with ground-truth data will

not lead to improvement. Hence, we introduce two empirically effective strategies: one is a “data
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filter” based on QAP (same as the QAP reward) to filter out examples that have low probabilities

to be correctly answered; the other is a “mixing mini-batch training” strategy that always regular-

izes the training signal with the ground-truth data. Experiments show that our method improves

both BiDAF (Seo et al., 2017; Clark and Gardner, 2018) and BERT (Devlin et al., 2019) QA

baselines by 1.69/1.27 and 1.19/0.56 absolute points on EM/F1, respectively; even without in-

troducing new articles, it can bring 1.51/1.13 and 0.95/0.13 absolute improvement, respectively.

Github repository: https://github.com/ZhangShiyue/QGforQA

2.2 Background and Related Work

Question Generation. Early QG studies focused on using rule-based methods to transform state-

ments to questions (Heilman and Smith, 2010; Lindberg et al., 2013; Labutov et al., 2015). Re-

cent works adopted the attention-based sequence-to-sequence neural model (Bahdanau et al.,

2015) for QG tasks, taking answer sentence as input and outputting the question (Du et al., 2017;

Zhou et al., 2017), which proved to be better than rule-based methods. Since human-labeled ques-

tions are often relevant to a longer context, later works leveraged information from the whole

paragraph for QG, either by extracting additional information from the paragraph (Du and Cardie,

2018; Song et al., 2018; Liu et al., 2019a) or by directly taking the whole paragraph as input

(Zhao et al., 2018; Kim et al., 2018; Sun et al., 2018). A very recent concurrent work applied the

large-scale language model pre-training strategy for QG and also achieved a new state-of-the-art

performance (Dong et al., 2019). However, the above models were trained with teacher forcing

only. To address the exposure bias problem, some works applied reinforcement learning taking

evaluation metrics (e.g., BLEU) as rewards (Song et al., 2017; Kumar et al., 2018). Yuan et al.

(2017) proposed to use a language model’s perplexity (RPPL) and a QA model’s accuracy (RQA)

as two rewards but failed to get significant improvement. Their second reward is similar to our

QAP reward except that we use QA probability rather than accuracy as the probability distribu-

tion is more smooth. Hosking and Riedel (2019) compared a set of different rewards, including
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RPPL and RQA, and claimed none of them improved the quality of generated questions. For QG

evaluation, even though some previous works conducted human evaluations, most of them still

relied on traditional metrics (e.g., BLEU). However, Nema and Khapra (2018) pointed out the

existing metrics do not correlate with human judgment about answerability, so they proposed

“Q-metrics” that mixed traditional metrics with an “answerability” score. In our work, we will

show QG results on traditional metrics, Q-metrics, as well as human evaluation, and also propose

a QA-based QG evaluation.

Question Generation for QA. As the dual task of QA, QG has been often proposed for improv-

ing QA. Some works have directly used QG in QA models’ pipeline (Duan et al., 2017; Dong

et al., 2017; Lewis and Fan, 2019). Some other works enabled semi-supervised QA with the help

of QG. Tang et al. (2017) applied the “dual learning” algorithm (He et al., 2016) to learn QA and

QG jointly with unlabeled texts. Yang et al. (2017) and Tang et al. (2018) followed the GAN

(Goodfellow et al., 2014) paradigm, taking QG as a generator and QA as a discriminator, to uti-

lize unlabeled data. Sachan and Xing (2018) proposed a self-training cycle between QA and QG.

However, these works either reduced the ground-truth data size or simplified the span-prediction

QA task to answer sentence selection. Dhingra et al. (2018) collected 3.2M cloze-style QA pairs

to pre-train a QA model, then fine-tune with the full ground-truth data which improved a BiDAF-

QA baseline. In our paper, we follow the back-translation (Sennrich et al., 2016b) strategy to

generate new QA pairs by our best QG model to augment SQuAD training set. Further, we intro-

duce a data filter to remove poorly generated examples and a mixing mini-batch training strategy

to more effectively use the synthetic data. Similar methods have also been applied in some very

recent concurrent works (Dong et al., 2019; Alberti et al., 2019) on SQuADv2.0. The main differ-

ence is that we also propose to generate new questions from existing articles without introducing

new articles.
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2.3 Question Generation

2.3.1 Base Model

We first introduce our base model which mainly adopts the model architecture from the pre-

vious state-of-the-art (Zhao et al., 2018). The differences are that we introduce two linguistic

features (POS & NER), apply deep contextualized word vectors, and tie the output projection ma-

trix with the word embedding matrix. Experiments showed that with these additions, our base

model results surpass the results reported in Zhao et al. (2018) with significant margins. Our base

model architecture is shown in the upper box in Figure 2.2 and described as follow. If we have a

paragraph p = txiu
M
i=1 and an answer a which is a sub-span of p, the target of the QG task is to

generate a question q = tyju
N
j=1 that can be answered by a based on the information in p.

Embedding. The model first concatenates four word representations: word vector, answer tag

embedding, Part-of-Speech (POS) tag embedding, and Name Entity (NER) tag embedding, i.e.,

ei = [wi, ai, pi, ni]. For word vectors, we use the deep contextualized word vectors from ELMo

(Peters et al., 2018) or BERT (Devlin et al., 2019). The answer tag follows the BIO2 tagging

scheme.

Encoder. The output of the embedding layer is then encoded by a two-layer bi-directional LSTM-

RNNs, resulting in a list of hidden representations H . At any time step i, the representation hi is

the concatenation of ÝÑ
hi and

ÐÝ
hi .

ÝÑ
h i =

ÝÝÝÝÑ
LSTM([ei;

ÝÑ
h i´1])

ÐÝ
h i =

ÐÝÝÝÝ
LSTM([ei;

ÐÝ
h i+1])

H = [
ÝÑ
hi ,

ÐÝ
hi ]

M
i=1

(2.1)

Self-attention. A gated self-attention mechanism (Wang et al., 2017) is applied to H to aggre-

gate the long-term dependency within the paragraph. αi is an attention vector between hi and

2“B”, for “Begin”, tags the start token of the answer span; “I”, for “Inside”, tags other tokens in the answer span;
“O”, for “Other”, tags other tokens in the paragraph.
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each element in H; ui is the self-attention context vector for hi; hi is then updated to fi using ui;

a soft gate gi decides how much the update is applied. Ĥ = [ĥi]
M
i=1 is the output of this layer.

ui = Hαi, αi = softmax(HTW uhi)

fi = tanh(W f [hi; ui])

gi = sigmoid(W g[hi; ui])

ĥi = gi ˚ fi + (1 ´ gi) ˚ hi

(2.2)

Decoder. The decoder is another two-layer uni-directional LSTM-RNN. An attention mecha-

nism (Luong et al., 2015) dynamically aggregates Ĥ at each decoding step to a context vector cj

which is then used to update the decoder state sj .

cj = Ĥαj, αj = softmax(ĤTW asj)

s̃j = tanh(W c[cj; sj])

sj+1 = LSTM([yj; s̃j])

(2.3)

The probability of the target word yj is computed by a maxout neural network.

õj = tanh(W o[cj; sj])

oj = [maxtõj,2k´1, õj,2ku]k

p(yj|yăj) = softmax(W eoj)

(2.4)

In practice, we keep the weight matrixW e the same as the word embedding matrix and fix it dur-

ing training. Furthermore, we apply a “pointer network” (Gu et al., 2016) to enable the model to

copy words from input.
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Figure 2.2: The architecture of our semantics-reinforced QG model.

2.3.2 Semantics-Reinforced Model

To address the “semantic drift” problem shown in Figure 2.1, we propose two semantics-

enhanced rewards to regularize the generation to focus on generating semantically valid ques-

tions.

QPP Reward. To deal with the “exposure bias” problem, many previous works directly used

the final evaluation metrics (e.g., BLEU) as rewards to train the generation models (Rennie et al.,

2017; Paulus et al., 2018). However, these metrics sometimes fail to evaluate equally to question

paraphrases and thus provide inaccurate rewards. Hence, we propose to use a pre-trained ques-

tion paraphrasing classification (QPC) model to provide paraphrasing probability as a reward.

Since paraphrasing is more about semantic similarity than superficial word/phrase matching,

it treats question paraphrases more fairly (Example 1 in Figure 2.3). Therefore, we first train a

QPC model with Quora Question Pairs dataset. Next, we take it as an environment, and the QG

model will interact with it during training to get the probability of the generated question and the

ground-truth question being paraphrases as the reward.
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Example 1: Fail to score equally to paraphrases BLEU4 Q-BLEU1 QPP QAP

Context: ...the university first offered graduate degrees , in the
form of a master of arts ( ma ) , in the the 1854 – 1855 academic
year ...
Gt: in what year was a master of arts course first offered ?
Gen1: in what year did the university first offer a master of arts
?

37.30 79.39 49.71 34.09

Gen2: when did the university begin offering a master of arts ? 29.58 47.50 46.12 18.18

Example 2: Fail to score appropriately to novel generation

Context: ...in 1987 , when some students believed that the ob-
server began to show a conservative bias , a liberal newspaper ,
common sense was published...
Gt: in what year did the student paper common sense begin pub-
lication ?
Gen1: in what year did common sense begin publication ? 56.29 85.77 92.28 93.94
Gen2: when did the observer begin to show a conservative bias ? 15.03 21.11 13.44 77.15

Figure 2.3: Two examples of where QPP and QAP improve in question quality evaluation.

QAP Reward. Two observations motivate us to introduce QAP reward. First, in a paragraph,

usually, there are several facts relating to the answer and can be used to ask questions. Neither

the teacher forcing or the QPP reward can favor this kind of novel generation (Example 2 in Fig-

ure 2.3). Second, we find semantically-drifted questions are usually unanswerable by the given

answer. Therefore, inspired by the dual learning algorithm (He et al., 2016), we propose to take

the probability that a pre-trained QA model can correctly answer the generated question as a re-

ward, i.e., p(a˚|qs; p), where a˚ is the ground-truth answer and qs is a sampled question. Using

this reward, the model can not only gets positive rewards for novel generation but also be regu-

larized by the answerability requirement. Note that, this reward is supposed to be carefully used

because the QG model can cheat by greedily copying words in/near the answer to the generated

question. In this case, even though high QAPs are achieved, the model loses the question genera-

tion ability.

Policy Gradient. To apply these two rewards, we use the REINFORCE algorithm (Williams,

1992) to learn a generation policy pθ defined by the QG model parameters θ. We minimize the

loss function LRL = ´Eqs„pθ [r(q
s)], where qs is a sampled question from the model’s output dis-

tribution. Due to the non-differentiable sampling procedure, the gradient is approximated using a
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single sample with some variance reduction baseline b:

▽θLRL = ´(r(qs) ´ b)▽θ logpθ(q
s) (2.5)

We follow the effective SCST strategy (Rennie et al., 2017) to take the reward of greedy search

result qg as the baseline, i.e., b = r(qg). However, only using this objective to train QG will

result in poor readability, so we follow the mixed loss setting (Paulus et al., 2018): Lmixed =

γLRL+(1´γ)LML. In practice, we find the mixing ratio γ for QAP reward should be lower, i.e.,

it needs more regularization from teacher forcing, so that it can avoid the undesirable cheating

issue mentioned above. Furthermore, we also apply the multi-reward optimization strategy (Pa-

sunuru and Bansal, 2018) to train the model with two mixed losses alternately with an alternate

rate n : m, i.e., train with Lqpp
mixed for n mini-batches, then train with Lqap

mixed form mini-batches,

repeat until convergence. n andm are two hyper-parameters.

Lqpp
mixed = γqppLqpp

RL + (1 ´ γqpp)LML

Lqap
mixed = γqapLqap

RL + (1 ´ γqap)LML

(2.6)

Experiments show that these two rewards can significantly improve the QG performance sepa-

rately or jointly, and we achieve new state-of-the-art QG performances, see details in Section 2.6.

2.3.3 QA-Based QG Evaluation

Inspired by the idea that “a perfect QG model can replace humans to ask questions”, we in-

troduce a QA-based evaluation method that measures the quality of a QG model by its ability to

mimic human annotators in labeling training data for QA models. The evaluation procedure is de-

scribed as follows. First, we sample some unlabeled Wikipedia paragraphs with pre-extracted an-

swer spans from HarvestingQA dataset (Du and Cardie, 2018). Second, we make a QG model act

as an “annotator” to annotate a question for each answer span. Third, we train a QA model using

this synthetic QA dataset. Lastly, we use the QA model’s performance on the original SQuAD
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when did the observer begin to 
show a conservative bias?

.. in 1987, when some students
believed that the observer began to
show a conservative bias, a liberal
newspaper, common sense was 
was published …

.. in 1987, when some students

show a conservative bias, a liberal
newspaper, common sense was 
was published …

believed that the observer began to

in what year did the student paper
common sense begin publication?

D
ata

Filter

Figure 2.4: Semi-supervised QA: First, a trained QG model generates questions from new or
existing paragraphs building up a synthetic QA dataset; Second, a data filter filters out low-QAP
synthetic examples and augment the rest to human-labeled QA pairs; Lastly, the QA model is
trained with the enlarged QA dataset.

development set as the evaluation for this QG model. The higher this QA performance is, the

better the QG model mimics a human’s question-asking ability. We believe that this method pro-

vides a new angle to evaluate QG model’s quality and also a more reliable way to choose QG

models to conduct data augmentation and semi-supervised QA.

2.4 Semi-Supervised Question Answering

Since one of the major goals of developing QG systems is to generate new QA pairs and aug-

ment QA datasets, we investigate how to use our QG system to act as a question annotator, col-

lect new QA pairs, and conduct semi-supervised QA. Figure 2.4 illustrates the overall procedure

of our semi-supervised QA approach.

2.4.1 Synthetic Data Generation

To generate synthetic QA pairs, we follow the effective “back translation” approach proposed

in Neural Machine Translation (NMT) (Sennrich et al., 2016b). In NMT, the back translation

method first obtains synthetic source sentences by running a pre-trained target-to-source transla-

tion model on a monolingual dataset of the target language; then, it combines the synthetic and

ground-truth translation pairs to train the desired source-to-target translation model. Similarly, in
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the QA scenario, the paragraph/answer can be viewed as the “target sentence”, while the question

can be taken as the “source sentence”. One tricky difference is that even if the paragraphs can be

easily obtained from Wikipedia, there are no answer span labels. Therefore, we use two sources

to generate questions from, as discussed below.

Generate from existing articles. In SQuAD (Rajpurkar et al., 2016), each context-answer pair

only has one ground-truth question. However, usually, multiple questions can be asked. The di-

versity lies in question paraphrasing and different facts in the context that can be used to ask the

question. Therefore, without introducing new Wikipedia articles, we make our QG model gener-

ate diverse questions for the existing context-answer pairs in SQuAD training set by keeping the

all beam search outputs for each example.

Generate from new articles. To use unlabeled Wikipedia articles for data augmentation, an au-

tomatic answer extractor is indispensable. Some previous works have proposed methods to detect

key phrases from a paragraph and automatically extract potential answer spans (Yang et al., 2017;

Du and Cardie, 2018; Subramanian et al., 2018). Instead of building up our answer extractor,

we directly take advantage of the released HarvestingQA dataset. It contains 1.2M synthetic QA

pairs, in which both the answer extractor and the QG model were proposed by Du and Cardie

(2018). We use their paragraphs with answer span labels but generate questions with our QG

models, and only use their questions for comparison.

2.4.2 Synthetic Data Usage

In practice, we find that directly mixing the synthetic data with the ground-truth data does not

improve QA performance. We conjecture the reason is that some poor-quality synthetic examples

mislead the learning process of the QA model. Therefore, we propose two empirical strategies to

better utilize synthetic data.

QAP data filter. In the literature of self-training, similar issues have been discussed that using

model-labeled examples to train the model will amplify the model’s error. Later works proposed
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co-training or tri-training that uses two or three models as judges and only keeps examples that

all models agree on (Blum and Mitchell, 1998; Zhou and Li, 2005). Sachan and Xing (2018) also

designed question selection oracles based on curriculum learning strategy in their QA-QG self-

training circle. In this paper, we simply design a data filter based on our QAP measure (same

definition as the QAP reward) to filter poor-quality examples. We think if one question-answer

pair has a low QAP, i.e., the probability of the answer given the question is low, it is likely to

be a mismatched pair. Hence, we filter synthetic examples with QAP ă ϵ, where ϵ is a hyper-

parameter that we will tune for different synthetic datasets.

Mixing mini-batch training. When conducting semi-supervised learning, we do not want gra-

dients from ground-truth data are overwhelmed by synthetic data. Previous works (Fried et al.,

2018; Dhingra et al., 2018) proposed to first pre-train the model with synthetic data and then fine-

tune it with ground-truth data. However, we find when the synthetic data size is small (e.g., sim-

ilar size as the ground-truth data), catastrophic forgetting will happen during fine-tuning, leading

to similar results as using ground-truth data only. Thus, we propose a “mixing mini-batch” train-

ing strategy, where for each mini-batch we combine half mini-batch ground-truth data with half

mini-batch synthetic data, which keeps the data mixing ratio to 1:1 regardless of what the true

data size ratio is. In this way, we can have the training process generalizable to different amounts

of synthetic data and keep the gradients to be regularized by ground-truth data.

2.5 Experiment Setup

2.5.1 Datasets

QG. For QG, we use the SQuAD-based QG dataset3 first introduced by Du et al. (2017) which

was the most widely-used QG dataset in previous works (Song et al., 2018; Zhao et al., 2018;

Du and Cardie, 2018; Kim et al., 2018; Sun et al., 2018). It was derived from SQuADv1.1 (Ra-

jpurkar et al., 2016). Since the testing set is not open, they sampled 10% articles from the train-

3https://github.com/xinyadu/nqg/tree/master/data
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ing set as the testing set, and the original development set is still used for validation. For the QA-

based QG evaluation, we obtain new paragraphs with pre-extracted answer spans from Harvest-

ingQA (Du and Cardie, 2018). Without using their provided questions, we have different QG

models act as “annotators” to generate questions, and then use the different QG-labeled synthetic

datasets to train QA models. We use the same dev-test setup as described below.

QA. For QA, we use SQuADv1.1 (Rajpurkar et al., 2016). Previous semi-supervised QA works

sampled 10% from training set as the testing set (Yang et al., 2017; Dhingra et al., 2018). Since

we want to use the full training set in semi-supervised QA setup without any data size reduc-

tion, we instead split the original development set in half for validation and testing respectively.

For semi-supervised QA, first, without introducing new articles, we generate new questions for

SQuAD training set by keeping all beam search outputs. Second, with introducing new articles,

we obtain new paragraphs with pre-extracted answer spans from HarvestingQA (Du and Cardie,

2018). Without using their provided questions, we use our best QG model to label questions.

Meanwhile, we investigate the influence of synthetic data size, so we sample 10% to 100% ex-

amples from HarvestingQA, which are denoted as H1-H10 in our experiments.

2.5.2 Evaluation Metrics

QG. First, we use three traditional automatic evaluation metrics: BLEU4 (Papineni et al., 2002),

METEOR (Denkowski and Lavie, 2014), ROUGE-L (Lin, 2004). Second, we adopt the new “Q-

metrics” proposed by Nema and Khapra (2018), and we only use “Q-BLEU1” that was shown to

have the highest correlation with human judgments on SQuAD. We also take the QPP and QAP

rewards as two additional evaluation metrics. Further, we conduct a pairwise human comparison

between our baseline and best QG models. The detailed human evaluation setup is described in

the following. For the QA-based QG evaluation, we use the same QA evaluation metrics as fol-

lows.

QA. Following the standard evaluation method for SQuADv1.1 (Rajpurkar et al., 2016), we use

Exact Match (EM) and F1 as two metrics.
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Human Evaluation. We performed pairwise human evaluation between our baseline and the

QPP&QAP multi-reward model on Amazon Mechanical Turk. We selected human annotators

that are located in the US, have an approval rate greater than 98%, and have at least 10,000 ap-

proved HITs. We showed the annotators an input paragraph with the answer bold in the para-

graph and two questions generated by two QG models (randomly shuffled to anonymize model

identities). We then asked them to decide which one is better or choose “non-distinguishable” if

they are equally good/bad. We give human three instructions about what is a good question: first,

“answerability” – a good question should be answerable by the given answer; “making sense” – a

good question should be making sense given the surrounding context; “overall quality” – a good

question should be as fluent, non-ambiguous, semantically compact as possible. Ground-truth

questions were not provided to avoid simple matching with ground-truth.

2.5.3 Implementation Details

QG. For ELMo-QG, we first tokenize and obtain the POS/NER tags by Standford Corenlp toolkit4,

then lower-case the entire dataset. We use 2-layer LSTM-RNNs for both encoder and decoder

with hidden size 600. Dropout with a probability of 0.3 is applied to the input of each LSTM-

RNN layer. We use the pre-trained character-level word embedding from ELMo (Peters et al.,

2018) both as our word embedding and output-projection matrix, and keep it fixed. We use Adam

(Kingma and Ba, 2015) as optimizer with learning rate 0.001 for teacher forcing and 0.00001 for

reinforcement learning. Batch size is set to 32. For stability, we first pre-train the model with

teacher forcing until convergence, then fine-tune it with the mixed loss. Hyper-parameters are

tuned on development set: γqpp = 0.99, γqap = 0.97, and n : m = 3 : 1. We use beam search

with beam size 10 for decoding and apply a bi-gram/tri-gram repetition penalty as proposed in

Paulus et al. (2018). For BERT-QG, we simply replace the ELMo used above to BERT (Devlin

et al., 2019). To match with BERT’s tokenization, we use the WordPiece tokenizer to tokenize

each word obtained above and extend the POS/NER tags to each word piece. Decoder’s word-

4https://stanfordnlp.github.io/CoreNLP/
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piece outputs will be mapped to normal words by post-processing. Hyper-parameters are tuned

on development set: γqpp = 0.99, γqap = 0.97, and n : m = 1 : 3.

QA. For BiDAF-QA, we implement the BiDAF+Self-attention architecture proposed by Clark

and Gardner (2018). We use GRUs for all RNN layers with hidden size 90 for GRUs and 180

for linear layers. Dropout with a probability of 0.2 is applied to the input of each GRU-RNN

layer. We optimize the model using Adadelta with batch size 64. We also add ELMo to both the

input and output of the contextual GRU-RNN layer as proposed in (Peters et al., 2018). To match

with QG model’s setup, we also apply lower-case on QA datasets. For BERT-QA, we use the pre-

trained uncased BERT-base model5 and fine-tune it on QA datasets.

QPC. For ELMo-QPC, we follow the model architecture proposed by Conneau et al. (2017).

First, two input questions are embedded with ELMo (Peters et al., 2018). Second, the embed-

ded questions are encoded by two 2-layer bidirectional LSTM-RNNs separately with hidden size

512. Next, a max-pooling layer outputs the sentence embedding of each question, denoted by q1

and q2. Lastly, we input [q1, q2, |q1 ´ q2|, q1 ˚ q2] to an MLP to predict whether these two ques-

tions are paraphrases or not. This QPC model is trained using the Quora Question Pairs6 dataset.

We use Adam (Kingma and Ba, 2015) as optimizer with learning rate 0.0004 and batch size 64.

This model obtained 86% accuracy on QQP development set. For BERT-QPC, we also use the

pre-trained uncased BERT-base model and fine-tune it on QQP dataset, which obtained 90% ac-

curacy on QQP development set.

5https://github.com/google-research/bert
6https://tinyurl.com/y2y8u5ed
7They actually used the reversed dev-test setup as opposed to the original setup used in Du et al. (2017) and Du and
Cardie (2018) (see Section 3.1 in Zhao et al. (2018)). Thus, we also conducted the reversed dev-test setup and our
QPP&QAP model yields BLEU4/METEOR/ROUGE-L=20.76/24.20/48.91.

21

https://github.com/google-research/bert
https://tinyurl.com/y2y8u5ed


BLEU4 METEOR ROUGE-L Q-BLEU1 QPP QAP
Du and Cardie (2018) 15.16 19.12 – – – –
Zhao et al. (2018)7 16.38 20.25 44.48 – – –

Our baseline (w. ELMo) 17.00 21.44 45.89 47.80 27.29 45.15
+ BLEU4 17.72 22.13 46.52 49.07 27.09 45.96
+ METEOR 17.84 22.41 46.18 49.09 26.70 46.52
+ ROUGE-L 17.78 22.28 46.51 49.23 27.06 46.31

+ QPP 18.25 22.62 46.45 49.59 28.13 47.63
+ QAP 18.12 22.52 46.45 49.27 27.49 48.76
+ QPP&QAP 18.37 22.65 46.68 49.63 28.03 48.37

Table 2.1: The performance of different QG models.

QPP&QAP Our baseline Tie

160 131 9

Table 2.2: Pairwise human evaluation between our baseline and QPP&QAP multi-reward model.

2.6 Results

2.6.1 Question Generation

Baselines. First, as shown in Table 2.1, our baseline QG model obtains a non-trivial improve-

ment over previous best QG system (Zhao et al., 2018) which proves the effectiveness of our

newly introduced setups: introduce POS/NER features, use deep contexturalized word vectors

(from ELMo or BERT), and tie output projection matrix with non-trainable word embedding ma-

trix. Second, we apply three evaluation metrics as rewards to deal with the exposure bias issue

and improve performance. All the metrics are significantly8 (p ă 0.001) improved except QPP,

which supports that high traditional evaluation metrics do not always correlate to high semantic

similarity.

Semantics-reinforced models. As shown in Table 2.1, when using QAP and QPP separately,

all metrics are significantly (p ă 0.001) improved over our baseline and all metrics except

ROUGE-L are significantly (p ă 0.05) improved over the models using traditional metrics

8The significance tests in this paper are conducted following the bootstrap test setup (Efron and Tibshirani, 1994).
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Data Du and Cardie Our baseline QPP & QAP

H1 53.20/65.47 55.06/67.83 55.89/68.26
H2 53.40/66.28 56.23/69.23 56.69/69.19
H3 53.12/65.57 57.14/69.39 57.05/70.17

S+H1 71.16/80.75 71.94/81.26 72.20/81.44
S+H2 72.02/81.00 72.03/81.38 72.22/81.81
S+H3 71.48/81.02 72.61/81.46 72.69/82.22

Table 2.3: The QA-based evaluation results for different QG systems. The two numbers of each
item in this table are the EM/F1 scores. All results are the performance on our QA test set. “S” is
short for “SQuAD”.

as rewards. After applying multi-reward optimization, our model performs consistently best on

BLEU4/METEOR/ROUGE-L and Q-BLEU1. Notably, using one of these two rewards will also

improve the other one at the same time, but using both of them achieves a good balance between

these two rewards without exploiting either of them and results in the consistently best perfor-

mance on other metrics, which is a new state-of-the-art result.

Human evaluation. Table 2.2 shows the MTurk anonymous human evaluation study, where

we do a pairwise comparison between our baseline and QPP&QAP model. We collected 300 re-

sponses in total, 160 of which voted the QPP&QAP model’s generation is better, 131 of which

favors the baseline model, and 9 of which selected non-distinguishable.

QA-based evaluation. As shown in Table 2.3, we compare three QG systems using QA-based

evaluation on three different amounts of synthetic data and their corresponding semi-supervised

QA setups (without filter). It can be observed that both our baseline and our best QG model can

significantly improve the synthetic data’s QA performance, which means they can act as bet-

ter “annotators” than the QG model proposed by Du and Cardie (2018). However, our best QG

model only has a minor improvement over our baseline model, which means significant improve-

ment over QG metrics does not guarantee significant better question annotation ability.

9“Data Size” counts the total number of examples in training set (after filter). In Table 2.6, “New Data Size” only
counts # examples generated from articles outside SQuAD.
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Filter Data Size9 EM F1

H
1
on
ly ϵ = 0.0 120k 54.55 67.91

ϵ = 0.2 84k 61.18 71.65
ϵ = 0.4 69k 61.97 72.48
ϵ = 0.6 55k 60.38 70.51
ϵ = 0.8 40k 57.47 66.48

SQ
uA

D
+H

1 ϵ = 0.0 207k 72.97 82.18
ϵ = 0.2 171k 73.88 82.72
ϵ = 0.4 156k 73.47 82.62
ϵ = 0.6 142k 73.96 82.81
ϵ = 0.8 127k 73.65 82.77

Table 2.4: The effect of QAP-based synthetic data filter. We filter out the synthetic data with
QAP ă ϵ. All results are the performance on our QA development set.

Data Data Size EM F1

D
ev

se
t

SQuAD 87k 72.52 81.79
+ Beam5 399k 74.33 83.19
+ Beam10 706k 74.44 83.23
+ Beam15 853k 74.25 82.75
+ DivBeam10 595k 74.44 83.00

D
ev

se
t

+ H1 142k 73.96 82.81
+ H2 255k 74.19 82.84
+ H4 424k 74.42 82.82
+ H6 506k 74.27 82.97
+ H8 705k 74.64 83.14
+ H10 930k 74.27 82.97

Te
st
se
t SQuAD 87k 71.92 81.26

+ Beam10 706k 73.43 82.39
+ H8 705k 73.61 82.53
+ Beam10 + H8 1.3M 73.43 82.11

Table 2.5: The results of our semi-supervised QA method using a BiDAF-QA model.

2.6.2 Semi-Supervised Question Answering

Effect of the data filter. As shown in Table 2.4, when using synthetic data only, adding the data

filter can significantly improve QA performance. In terms of semi-supervised QA, the improve-

ment is relatively smaller, due to the regularization from ground-truth data, but still consistent

and stable.
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Methods New Data Size EM F1

Dhingra et al. base 0 71.54 80.69
+Cloze 3.2M 71.86 80.80

Our base 0 72.19 81.52
+Beam10 0 73.93 82.81
+H8 705k 74.12 82.83

Table 2.6: The comparison with the previous semi-supervised QA method. All results are the
performance on the full development set of SQuAD, i.e., our QA test + development set.

Semi-supervised QA. Table 2.5 demonstrates the semi-supervised QA results. Without intro-

ducing new articles, we keep beam search outputs as additional questions. It can be seen that

using beam search with beam size 10 (+Beam10) improves the BiDAF-QA baseline by 1.51/1.13

absolute points on the testing set. With introducing new articles, the best performance (+H8) im-

proves the BiDAF-QA baseline by 1.69/1.27 absolute points on the testing set. We also combine

the two best settings (Beam10+H8), but it does not perform better than using them separately.

We conduct two ablation studies on the development set. First, we compare beam search with

different beam sizes and diverse beam search (Li et al., 2016), but all of them perform similarly.

Second, increasing the size of synthetic data from H1 to H10, the performance saturates around

H2-H4. We also observed that when using a big synthetic dataset, e.g., H10, the model converges

even before all examples were used for training. Based on these results, we conjecture that there

is an upper bound of the effect of synthetic data which might be limited by the QG quality. To

further improve the performance, more diverse and tricky questions need to be generated. To

show how QG models help or limit the QA performance, we include some synthetic QA exam-

ples in Section 2.6.4. Finally, we compare our semi-supervised QA methods with Dhingra et al.

(2018). As shown in Table 2.6, with no or less new data injection, our methods achieve larger

improvements over a stronger baseline than their method.
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BLEU4 METEOR ROUGE-L Q-BLEU1 QPP QAP QA-Eval (H1)

Du and Cardie (2018) 15.16 19.12 – – – – 55.11/66.40

Our baseline (w. BERT) 18.05 22.41 46.57 49.38 29.08 54.61 58.63/69.97
+ QPP 18.51 22.87 46.65 49.97 30.14 55.67 60.49/71.81
+ QAP 18.65 22.91 46.76 50.09 30.09 57.51 60.12/71.14
+ QPP & QAP 18.58 22.87 46.76 50.01 30.10 56.39 59.11/70.87

Table 2.7: The performance of our stronger BERT-QG models.

Data Data Size EM F1

D
ev

se
t SQuAD 87k 81.88 88.80

+ Beam10 668k 82.34 88.97
+ H10 664k 82.88 89.53

Te
st
se
t SQuAD 87k 80.25 88.23

+ Beam10 668k 81.20 88.36
+ H10 664k 81.03 88.79
+ Beam10 + H10 1.2M 81.44 88.72

Table 2.8: The results of our semi-supervised QA method using a stronger BERT-QA model.

2.6.3 QG and QA Results with BERT

The Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019)

has recently improved a lot of NLP tasks by substantial margins. To verify if our improvements

still hold on BERT-based baselines, we propose a BERT-QG baseline and test our two semantics-

enhanced rewards; further, we conduct our semi-supervised QA method on a BERT-QA baseline.

BERT-QG. Without modifying our QG model’s architecture, we simply replaced ELMo used

above with BERT. Table 2.7 shows that our BERT-QG baseline improves previous ELMo-QG

baseline by a large margin; meanwhile, our QPP/QAP rewards significantly improve the stronger

QG baseline and achieve the new state-of-the-art QG performance w.r.t both traditional metrics

and QA-based evaluation. One difference is that the QAP-only model has the overall best perfor-

mance instead of the multi-reward model. Note that, we also obtain the QPP and QAP rewards

from BERT-based QPC and QA models, respectively.

BERT-QA. Using our QAP-reinforced BERT-QG model, we apply the same semi-supervised

QA method on a BERT-QA baseline. As shown in Table 2.8, though with smaller margins, our

26



method improves the strong BERT-QA baseline by 1.19/0.56 absolute points on testing set; even

without introducing new articles, it obtains 0.95/0.13 absolute gains.

2.6.4 Examples

Figure 2.5 shows some synthetic QA examples generated by our QG models. On SQuAD,

the first two examples show our QG models generate some paraphrases or novel questions that

enrich the dataset; the last two examples show our QG models generate easier or wrong questions

that limit the semi-supervised QA’s performance. On HarvestingQA, our QG models can output

better questions than Du and Cardie (2018) did but still generate some wrong questions.

2.7 Conclusion

We proposed two semantics-enhanced rewards to regularize a QG model to generate semanti-

cally valid questions, and introduced a QA-based evaluation method that directly evaluates a QG

model’s ability to mimic human annotators in generating QA training data. Experiments showed

that our QG model achieves new state-of-the-art performances. Further, we investigated how to

use our QG system to augment QA datasets and conduct semi-supervised QA via two synthetic

data generation methods along with a data filter and mixing mini-batch training. Experiments

showed that our approach improves both BiDAF and BERT QA baselines even without introduc-

ing new articles.
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Examples generated on SQuAD

Context: ...new york city consists of five boroughs, each of which is a separate county of new york
state...
Ground-truth: how many boroughs does new york city contain ?
ELMo-QG: how many boroughs make up new york city ?
BERT-QG: new york city consists of how many boroughs ?

Context: ...gendün gyatso traveled in exile looking for allies. however, it was not until 1518 that the
secular phagmodru ruler captured lhasa from the rinbung, and thereafter the gelug was given rights to
conduct the new years prayer...
Ground-truth: when was gelug was given the right to conduct the new years prayer ?
ELMo-QG: in what year did the secular phagmodru ruler take over lhasa ?
BERT-QG: when did the secular phagmodru ruler capture lhasa from the rinbung ?

Context: ...chopin attended the lower rhenish music festival in aix-la-chapelle with hiller, and it was
there that chopin met felix mendelssohn. after the festival, the three visited düsseldorf... they spent what
mendelssohn described as “a very agreeable day”, playing and discussing music at his piano...
Ground-truth: what two activities did frédéric do while visiting for a day in düsseldorf with
mendelssohn and hiller ?
ELMo-QG: what did mendelssohn do at his piano ?
BERT-QG: what did chopin do at his piano ?

Context: ...to limit protests, officials pushed parents to sign a document, which forbade them from hold-
ing protests, in exchange of money, but some who refused to sign were threatened...
Ground-truth: what has happened to some who refuse to agree to not protest ?
ELMo-QG: what did some who refused to sign ?
BERT-QG: what did the officials refused to sign ?

Examples generated on HarvestingQA

Context: ...nigeria prior to independence was faced with sectarian tensions and violence... some
of the ethnic groups like the ogoni, have experienced severe environmental degradation due to
petroleum extraction...
Du and Cardie (2018): what is the main reason for the ethnic groups ?
ELMo-QG: why has nigeria experienced severe environmental degradation ?
BERT-QG: why have the ogoni experienced severe environmental degradation ?

Context: ...vietnam is located on the eastern indochina peninsula... at its narrowest point in the central
quang bình province, the country is as little as across...
Du and Cardie (2018): where is the country ’s country located ?
ELMo-QG: in what province is vietnam located ?
BERT-QG: what province is vietnam ’s narrowest point ?

Context: ...the ottoman islamic legal system was set up differently from traditional european courts...
Du and Cardie (2018): where was the ottoman islamic legal system set ?
ELMo-QG: the ottoman islamic legal system was set up from what ?
BERT-QG: what was the ottoman islamic legal system set up differently from ?

Context: ...the eastern shore of virginia is the site of wallops flight facility, a rocket testing center
owned by nasa...
Du and Cardie (2018): what is the eastern shore of virginia owned by ?
ELMo-QG: what facility is owned by nasa ?
BERT-QG: what is the name of the rocket facility located by nasa ?

Figure 2.5: Some synthetic QA examples generated by our QG models.
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CHAPTER 3: TRAINING LANGUAGE MODELS BY MIXING FORWARD AND
REVERSE CROSS-ENTROPIES

3.1 Introduction

Rapid advances in pre-trained large-scale autoregressive language models (LMs) have dra-

matically improved the performance of a variety of tasks (Radford et al., 2019; Brown et al.,

2020; Zhang et al., 2022c; Chowdhery et al., 2022). However, these systems still struggle in

many open-ended generation settings, where they are asked to produce long text following a

short prompt. In these cases, we seek systems that generate sensical, coherent, fluent, and en-

gaging, or in short, human-like text (Pillutla et al., 2022).

Different decoding strategies to generate such text from pretrained LMs suffer from different

degeneration problems. Unbiased sampling1 usually results in incoherent and nonsensical text,

while greedy and beam searches often get stuck in repetition loops (Holtzman et al., 2020). These

observations suggest that the learned LM distribution Qθ still varies substantially from the human

LM distribution P . A possible reason is that the autoregressive modeling of Qθ gives a non-zero

probability to every possible sequence of tokens, while many sequences are impossible under P .

Nevertheless, we still hope that Qθ(x) is as small as possible when P (x) = 0. To this end, maxi-

mum likelihood estimation (MLE), i.e., minimizing the cross-entropy (CE) ´Ex„P [logQθ(x)], is

the most widely used objective to train Qθ(x) using sequences sampled from P . In an idealized

setting, with unlimited training data and model capacity, as well as a perfect optimizer, fitting Qθ

with MLE will learn a distribution as close to P as we like. However, in practice, we only have

finite and noisy data.

1Unbiased sampling is vanilla random sampling, i.e., sampling with temperature=1.0. It is also called ancestral sam-
pling (Eikema and Aziz, 2020) or pure sampling (Holtzman et al., 2020). We call it unbiased sampling because it
allows unbiased exploration of the model distribution.
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Figure 3.1: MixCE combines two complementary driving forces: reverse CE helps narrow the
model distribution Qθ down when it is broader than data distribution P , while forward CE helps
broaden Qθ out when it is narrower than P . Note that logP (x) is infinite when P (x) = 0. But in
practice, we use logP (x) =

ř

t log(P (xt|xăt) + ϵ) to avoid log 0 and ϵ = 1e ´ 30.

We argue that the MLE objective only weakly penalizes generations x from Qθ that are “bad”,

in the sense that P (x) = 0. When Qθ puts a small amount of probability mass onto P (x) = 0

space, MLE cannot sufficiently discourage this behavior (see Figure 3.2). Moreover, minimizing

forward CE, ´Ex„P [logQθ(x)], is equivalent to minimizing the forward KL divergence between

P and Qθ, i.e., KL(P ||Qθ) = Ex„P [logP (x)/Qθ(x)]. Forward KL has a zero-avoiding property

– avoiding Qθ(x) = 0 when P (x) ‰ 0 (Murphy, 2012). Therefore, if there is noise in the data,

Qθ will try to cover the noise as well, which leads the model to over generalize, in the sense of

putting non-trivial probability mass over P (x) = 0 generations (Huszár, 2015; Theis et al., 2016;

Ott et al., 2018; Kang and Hashimoto, 2020). As a result, we observe samples from the model de-

viating from human-like text. A common strategy is to modify the decoding method, e.g., top-k,

top-p, typical, contrastive (Fan et al., 2018a; Holtzman et al., 2020; Meister et al., 2022; Li et al.,

2022) samplings, to tailor the model distribution Qθ in a post-hoc manner to avoid unwanted gen-

erations. In contrast, our approach differs: how can we obtain a better Qθ to obviate the need for

these sampling strategies?

We propose a novel training objective for autoregressive LMs – MixCE thatMixes the for-

ward and reverse Cross-Entropies: ´η ¨ Ex„P [logQθ(x)] ´ (1 ´ η) ¨ Ex„Qθ
[logP (x)]. MixCE
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can be understood in two ways (see Section 3.3.1). First, we want model generations to be high-

quality as well as diverse. Reverse cross-entropy reflects how we conduct human evaluations,

sampling from the model Qθ and evaluating it by the human P , where the focus is text quality.

Forward cross-entropy emphasizes the diversity of model generations (Hashimoto et al., 2019).

Second, MixCE works similarly to a mixture of the forward and reverse KL divergences. The re-

verse KL divergence (KL(Qθ||P )) is zero-forcing – forcing Qθ(x) = 0 when P (x) = 0 – and

thus more strongly penalizes generating non-human-like samples compared to MLE. Overall,

MixCE combines two complementary driving forces to better fit Qθ to P (Figure 3.1).

Unfortunately, optimizing reverse cross-entropy is intractable because we do not know P .

Hence, we propose an approximation of the reverse cross-entropy (see Section 3.3.2), which

ends up being a self-reinforced loss function that encourages the model to produce generations

in which it is already confident. This loss function has the same computational complexity as

forward cross-entropy, making MixCE easy to implement and as fast as MLE.

We demonstrate the effectiveness of MixCE in both a synthetic setting, where the “human”

distribution P is known, as well as a real setting. For the synthetic case, we evaluate six learning

objectives: MixCE, MixCE˚ (MixCE without approximation), forward KL (=MLE), reverse KL,

the mixture of two KL divergences, and Jensen–Shannon (JS) divergence. We show that MixCE˚

works slightly worse than the mixture of KLs while outperforming other objectives, and MixCE

works worse than MixCE˚ but generally outperforms MLE. In real settings, we finetune GPT-

2 (Radford et al., 2019) of different sizes on three English text domains using MixCE or MLE.

Our results show that, compared to MLE, unbiased sampling from MixCE-finetuned models pro-

duces text with diversity (Meister et al., 2022) closer to the human text, higher Coherence (Su

et al., 2022), higher Mauve (Pillutla et al., 2021), and preferred by humans. When using top-p

sampling (Holtzman et al., 2020) and carefully tuning p, generations from MLE-finetuned mod-

els are similar to those generated from MixCE-finetuned models. Nonetheless, MixCE models

have tuned p values closer to 1, implying a less noisy model distribution. In addition, we modify
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the original Mauve to make it more robust to spurious features (e.g., text length), under which

MixCE still improves over MLE when using unbiased sampling.

Github repository: https://github.com/bloomberg/MixCE-acl2023

3.2 Background and Related Work

3.2.1 Autoregressive Language Modeling

Language generation is mostly based on the autoregressive language modeling methodol-

ogy. The generation of one word is conditioned on previously generated words, Qθ(xt|xăt),

and the final probability of the sequence x is the product of probabilities of each step, Qθ(x) =
ś

t Qθ(xt|xăt). Early works build n-gram neural LMs (Bengio et al., 2000) and then RNN-based

LMs (Mikolov et al., 2010), and now Transformer (Vaswani et al., 2017) has become the domi-

nant architecture. Language generation models have either a decoder-only (Mikolov et al., 2010)

or an encoder-decoder architecture (Sutskever et al., 2014; Bahdanau et al., 2015). In this work,

we focus on decoder-only LMs. In recent years, many large-scale pre-trained decoder-only LMs

have been introduced (Radford et al., 2019; Brown et al., 2020; Zhang et al., 2022c; Chowdhery

et al., 2022). They can be finetuned for downstream tasks and even perform surprisingly well in a

zero-shot or few-shot manner. Despite the impressive performance, language degeneration is one

of the key issues that remain to be solved.

3.2.2 Language Degeneration

According to Holtzman et al. (2020), language degeneration refers to output text that is bland,

incoherent, or gets stuck in repetitive loops. It is widely observed in open-ended generations

from pretrained LMs. Two commonly observed patterns of degeneration are the incoherent text

from unbiased sampling and the repetitive text from greedy or beam search. Degeneration also

appears in sequence-to-sequence generation tasks but in a slightly different form (Stahlberg and

Byrne, 2019).
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There is no agreement on what causes degeneration. Ott et al. (2018) attribute it to data noise

and the smooth class of model functions. It is inherent in the model’s structure to have support

everywhere, in particular, because all probabilities are produced by softmax, which is strictly pos-

itive. Therefore, Hewitt et al. (2022) assume that an LM distribution is the true data distribution

plus a uniform-like smoothing distribution. Based on the observation that human-like text has a

large but not too large likelihood under the learned LM distribution (Zhang et al., 2021a), a lot of

works propose empirically useful decoding methods beyond unbiased sampling and greedy/beam

search (Fan et al., 2018a; Holtzman et al., 2020; Eikema and Aziz, 2020; Basu et al., 2021; Meis-

ter et al., 2022; Li et al., 2022; Hewitt et al., 2022; Su et al., 2022; Krishna et al., 2022). One of

these approaches is the canonical top-p (or nucleus) sampling method (Holtzman et al., 2020),

which samples from top tokens that take up p proportion (e.g., 95%) of the probability mass at

each decoding step. Even though these decoding methods work impressively well, they are post-

hoc fixes rather than learning the LM accurately in the first place. Therefore, some other works

criticize the MLE training objective and propose alternative loss functions.

3.2.3 Objectives Beyond MLE

Unlikelihood training (Welleck et al., 2020; Li et al., 2020) was proposed to penalize repe-

tition (or any undesirable phenomenon) explicitly during training. The idea is to minimize the

likelihood of a set of negative tokens at each generation step during training. The selection of

negative tokens is pre-defined, e.g., tokens that appear often in the previous context. MixCE

shares the same goal with unlikelihood training – matching human distribution, but provides a

more general approach without targeting any specific problem.

Similar to our motivation, Kang and Hashimoto (2020) think that the zero-avoiding property

of MLE makes the model sensitive to dataset noise. To cover these noisy examples, the model

has to put non-trivial probability mass on the P (x) = 0 area. To combat this problem, they

propose a loss truncation method that drops high-loss (low-likelihood) examples during training

time.
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Pang and He (2021) want to address the mismatch of learning objective and human evalu-

ation (likelihood vs. quality) and introduce the GOLD algorithm to approximate reverse cross-

entropy. Our approximation is similar to theirs but has a different derivation process (see Sec-

tion 3.3.2). Moreover, GOLD is evaluated on controlled generation tasks (e.g., summarization,

translation) in which the goal is to generate one high-quality text for each input, and diversity is

not so important. In contrast, if we train the LM only with reverse CE till convergence, the model

will deterministically produce the most likely text for each prompt, which is undesirable for an

LM. Therefore, mixing forward and reverse CEs is necessary.

The idea of MixCE is also relevant to GANs (Goodfellow et al., 2014). GANs optimize the

Jensen–Shannon (JS) divergence between model and data distributions. Essentially, JS diver-

gence is also for balancing the two driving forces of forward and reverse KL divergences (Huszár,

2015), and it has been successfully used for evaluating LM-generated text (Pillutla et al., 2021).

However, probably due to the discrete nature of text, GANs have not been well applied to LM

training. Caccia et al. (2020) show that previous language GANs often trade off diversity for

quality.

A more relevant past work to ours is Popov and Kudinov (2018) which finetunes LMs with

the sum of the forward cross-entropy loss and reverse KL divergence. They train a discriminator

like what GAN does to estimate reverse KL. Differently, we directly approximate reverse cross-

entropy without training an additional discriminator.

Concurrently, with the same motivation as ours, Ji et al. (2023) propose to replace MLE with

minimizing the total variation distance (TVD) (Van Handel, 2014) between data and model dis-

tributions. Notably, their final approximation of TVD, which they call TaiLr, is equivalent to

forward cross-entropy when the hyperparameter γ = 0 and equals our approximated reverse

cross-entropy when γ = 1.
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3.3 Methodology

3.3.1 MixCE

Our MixCE learning objective for training LMs is the combination of forward and reverse

cross-entropies, written as

´η ¨ Ex„P [logQθ(x)] ´ (1 ´ η) ¨ Ex„Qθ
[logP (x)] (3.1)

where η is the mixing ratio. When η = 1, it becomes the normal MLE objective; and when η = 0,

it is the reverse cross-entropy only.

The MixCE loss can be understood in two ways. First, reverse and forward cross-entropy

(CE) emphasize quality and diversity respectively. The reverse CE, ´Ex„Qθ
[logP (x)], focuses

on quality because it resembles how we conduct human evaluations – sampling from the model

Qθ and evaluating it by the human P . In human evaluations, the focus is more on the quality

of the model-generated text. So, it is possible that a model always generates the same few high-

quality texts, but still gets high human evaluation scores. This is similar to the mode collapse

problem of GANs. The forward CE, ´Ex„P [logQθ(x)], instead focuses more on diversity be-

cause it needs any sample from P to have a non-trivial probability under Qθ (Hashimoto et al.,

2019). Note that it does not mean forward CE has zero effect on quality, rather, the model likeli-

hood Qθ(x) only loosely correlates with the human-perceived quality of x (Zhang et al., 2021a).

Second, we hypothesize that MixCE works similarly to a mixture of forward and reverse KL

divergences, which we will show empirically in our synthetic experiments (Section 3.4.1). On

the one hand, minimizing forward KL is equivalent to optimizing forward CE. On the other hand,

reverse KL divergence, Ex„Qθ
[log Qθ(x)

P (x)
], has two parts: reverse CE and negative entropy of Qθ,

Ex„Qθ
[logQθ(x)]. Reverse CE is minimized when the model deterministically outputs the most

likely example, i.e., Qθ(x) = δ(the most likely x under P ). Instead, minimizing the negative

entropy (maximizing the entropy) of the model encourages it to be as uncertain as possible, i.e.,
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Figure 3.2: Forward CE only weakly penalizes the model Qθ when it puts a small amount of
probability mass onto P (x)=0 space. And the loss magnitude is much smaller than what we will
get from reverse CE.

having a large support and uniform distribution. This entropy term counteracts the narrowing-

down effect of reverse CE. As discussed above, forward CE pushes the Q distribution to fully

cover the support of P . In this case, forward CE can also help counteract the narrowing-down

effect of reverse CE, i.e., the maximizing entropy term becomes less important when forward CE

is present. Hence, we think it is reasonable to drop it from reverse KL.

Overall, MixCE combines two complementary training signals, as shown in Figure 3.1. Re-

verse CE prevents the model distribution from being broader than the data distribution, while

forward CE is more helpful for preventing the model distribution from being narrower than the

data distribution. Although forward CE also has non-zero loss when the model distribution is too

wide, its loss magnitude is much smaller than what reverse CE provides, as shown in Figure 3.2.

When data is clean, two CEs work jointly to help learn the data distribution better. When data is

noisy, the mixing ratio η allows us to trade-off between emphasizing a good coverage of the data

and putting more weight on the actually high-quality sequences.

3.3.2 Optimization of Reverse CE

Optimizing MixCE is non-trivial. The obstacle is to minimize the reverse CE, ´Ex„Qθ
[logP (x)]

with respect to θ. To this end, we need to know P and to have a differentiable sampling opera-
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tion from Qθ. In our synthetic experiments (Section 3.4.1), we use a distribution P of our own

construction and use Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017) to make the sam-

pling operation differentiable.

However, in a real setting, we do not know P . To deal with this, we take the following steps

to derive an approximated reverse cross-entropy (we omit the negative sign for simplicity):

∇θEx„Qθ
[logP (x)] (3.2)

«∇θEx„Qθ
[P (x)] (3.3)

=
ÿ

x

∇θQθ(x)P (x) (3.4)

=
ÿ

x

Qθ(x)∇θ logQθ(x)P (x) (3.5)

=
ÿ

x

P (x)Qθ(x)∇θ logQθ(x) (3.6)

=Ex„P [Qθ(x)∇θ logQθ(x)] (3.7)

=Ex„P [
T

ź

t=1

Qθ(xt|xăt)
T

ÿ

t=1

∇θ logQθ(xt|xăt)] (3.8)

«Ex„P [
T

ÿ

t=1

Qθ(xt|xăt)∇θ logQθ(xt|xăt)] (3.9)

First, from (3.2) to (3.3), we substitute expected log-likelihood by expected accuracy. Irsoy

(2019) shows that expected accuracy is a comparable or better alternative loss function to cross-

entropy for classification tasks. Then, following the Policy Gradient theorem (Williams, 1992;

Sutton et al., 1999), we get (3.4) and (3.5), where we view model Qθ as the policy and P (x) as

the reward we want to optimize for the whole sequence. Next, we switch from the expectation

of Qθ to the expectation of P (from (3.5) to (3.6) and (3.7)), so that we can use the offline sam-

ples from P (data samples in the training set) instead of online sampling from Qθ. We unfold

Qθ(x), which results in (3.8). Until this point, theoretically, we are already able to optimize the

model using Equation (3.8) without knowing P . However, the product of Qθ(xt|xăt) has a very
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Figure 3.3: The histograms of sequence-level and token-level negative log-likelihoods of human
texts and model generations from GPT-2 large.

high variance, and in practice, it underflows when T is large. Therefore, we apply a final rough

approximation that leads to (3.9).

Equations (3.8) and (3.9) are apparently not equivalent to each other. Nonetheless, they have

similar effects. Intuitively, in (3.8), we weigh the gradients of each sequence differently based on

their sequence-level probabilities, Qθ(x); in other words, it promotes high-likelihood sequences.

Similarly, (3.9) weighs gradients at each step by Qθ(xt|xăt), i.e., promoting high-likelihood to-

kens at each step. So essentially, they both encourage the model to produce generations in which

it is already confident. We call it a self-reinforced objective.

To further illustrate why this self-reinforced objective (Equation (3.8) or (3.9)) makes sense

and their shortcomings, we conduct an analysis using GPT-2 large (Radford et al., 2019). We

first sample 5000 pieces of text from WikiText, WebText, and WritingPrompts, respectively, and
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we call them human texts. Then, using the first 50 tokens of each human text as a prompt, we

get 5000 sampling and greedy search generations from pretrained GPT-2 large (max generation

length = 512). Next, we use the same model to score human texts and model generations and get

the sequence-level and token-level negative log-likelihoods. Figure 3.3 shows the histograms of

these negative log-likelihoods.

In Figure 3.3, we take the human text histogram (in blue) as a proxy of human distribution

and the sampling text histogram (in red) as a proxy of model distribution. As you can see, the

support of model distribution usually contains the support of human distribution. It supports

our previous claim that MLE-trained models tend to over-generalize. Meanwhile, at both the

sequence and the token levels, the model on average assigns a higher probability to human text

than to text sampled from the model. Therefore, when we promote high-probability sequences

or tokens, it is equivalent to pushing the model distribution toward the human distribution. How-

ever, we need to avoid overly pushing it to the extremely high-probability region where greedy

search outputs locate (in yellow) because they are known to be poor-quality and repetitive. Also,

as shown in the figure, when promoting high-probability sequences, even if we overdo it, it will

still be within the support of human distribution. In contrast, when promoting high-probability to-

kens, it can go outside the support of the human distribution, which is the drawback of Equation

(3.9) compared to Equation (3.8). Lastly, if we train the model only with the self-reinforced ob-

jective till convergence, it is inevitable to end up with a model that can only output greedy search

generations. Hence, we need to combine it with the forward cross-entropy.

Finally, combining forward CE and Equation (3.9), our approximated MixCE objective is to

maximize

Ex„P [
T

ÿ

t=1

(η + (1 ´ η) ¨ Qθ(xt|xăt))∇θ logQθ(xt|xăt)], (3.10)

which has the same computational complexity as MLE. Since Qθ(xt|xăt) (which is around 0.017

to 0.13 when using GPT-2) is strictly lower than 1, the gradient from approximated reverse CE

(Equation (3.9)) is smaller than that from forward CE. Therefore, it is important to tune η to bal-

ance the effects of two CEs.
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3.3.3 Connection to Pang and He (2021)

Similarly, Pang and He (2021) also propose to approximate reverse CE, and the resulting

GOLD algorithm is similar to our Equation 3.9. Here, we would like to clarify the difference and

connection.

The following equation is the start policy gradient equation used by Pang and He (2021).

Eτ„πθ
[
ÿ

t

∇θ log πθ(at|st)Q̂(st, at)]

They used different notations from ours. πθ is the same as our Qθ, i.e., πθ(at|st) is the same as

our Qθ(xt|xăt). Q̂ is the accumulated future reward from timestamp t,
řT

t1=t γ
t1´trt1 , γ is the de-

cay factor and rt1 is the reward for each step. We will discuss Q̂ in detail later.

Then, they apply importance sampling to sample from a different behavioral policy πb. Since

they also use examples from the training set, their πb is the same as our human (or data) distribu-

tion P .

Eτ„πb
[
ÿ

t

wt∇θ logπθ(at|st)Q̂(st, at)]

wt is the importance weight. They use a per-action approximation: wt «
πθ(at|st)
πb(at|st)

, which is simi-

lar to how we get Equation 3.9 from Equation 3.8.

Since πb is unknown, they assume a uniform distribution: πb « 1/N (N is the number of

training examples). Hence, their final approximated gradient is:

Eτ„πb
[
ÿ

t

πθ(at|st)∇θ logπθ(at|st)Q̂(st, at)]

They define rt1 and Q̂ in three ways. The first is called δ-reward, i.e., Q̂ = 1. In this case, their fi-

nal gradient is exactly the same as our Equation 3.9. However, as you can see, we take a different

path of derivation. Instead of using this δ-reward, our Q̂ is the sequence-level reward P (x). The

reward P (x) nicely helps us to switch from the expectation of Qθ to the expectation of P (from
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Equation 3.5 to Equation 3.7). Therefore, without assuming a uniform distribution of πb, our πb is

just P .

When using the other two rewards, they also need to know P . To address this, they use an

MLE-pretrained model as a proxy of P .

Overall, we introduce a different derivation approach for approximating reverse CE. More-

over, as we mentioned in Section 3.2.3, Pang and He (2021) focused on improving controlled

generation tasks where the focus is on the quality of the text, while we focus on open-ended gen-

erations where quality and diversity are both important. Therefore, we mix reverse CE with for-

ward CE to form our MixCE learning objective.

3.4 Experiments

3.4.1 Synthetic Experiments

We first conduct experiments in a synthetic ideal setting, where we know P , to show the ef-

fectiveness of mixing two cross-entropies with or without approximation. Moreover, during eval-

uation, we can directly compare the learned model parameters against the ground truth parame-

ters of P .

Define the “human” LM P . We start by defining P as a bi-gram LM. Bi-gram means that the

prediction of the next token only depends on the immediately previous token, i.e., P (xt|xt´1).

Therefore, P is determined by a transition matrix among wordsM P RV ˆV (V =vocabulary size)

and a start token probability distribution π P RV , i.e., stochastic finite-state automata. The last

token in the vocabulary is the end-of-sequence (EOS) token. For simplicity, we initialize π as a

uniform distribution. To initializeM, we use two methods. The first is random initialization.

We sample categorical distributions from a Dirichlet (α=0.5) prior to initialize each row ofM.

However, one remaining problem is that P has support everywhere. To have P = 0 areas, we

randomly assign 0s to a certain percent of values in each row ofM and then re-normalize to sum
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to 1.2 We test 3 percentages: 10%, 50%, and 90%. The second is initialization using real data.

We sample 5000 pieces of text from WebText (Radford et al., 2019), count the occurrence of bi-

grams, and then use the occurrence to initializeM. In this case, there are naturally 0s inM, and

the larger the vocabulary size is, the sparserM is. No matter which initialization is used, we re-

serve the last row ofM for EOS and it has all 0s, i.e., will not transit to any token. We set the

vocabulary size V =20, 50, 100, 500, or 1000.3

Learn an LM Qθ. We implement model Qθ as a simple neural bigram LM. Given the word em-

bedding ei´1 of the previous token xi´1, the next token is predicted via a neural network f :

hi´1 = Dropout(ReLU(W1ei´1 + b1)),

Q(xi|xi´1) = Softmax(W2hi´1 + b2),

whereW1 P Rdˆd (d is the hidden dimension size), b1 P Rd,W2 P RdˆV , and b2 P RV are

model parameters. After training this model, the learned transition matrix can be obtained by

M1 = f(E), E is the word embedding matrix.

Synthetic data. We sample sequences from P . We set the max sequence length as 500. We sam-

ple 50K and 5K sequences as the training and validation set, respectively. There is no test set

because we directly compare the learned transition matrixM1 to the goldM during evaluation.

Metrics. (1) avg. js: we compute the JS divergence between each row (except the last row) of

M1 and the corresponding row inM, and then average across rows. This metric evaluates the

overall divergence ofM1 fromM, and equals 0 iffM1 = M; (2) avg. 0s: we get the probabilities

fromM1 from positions where the corresponding gold probabilities are 0 inM, and take their

average. IfM1 = M, avg. 0s = 0, but vice versa is not true.

2When we assign 0s, we make sure every token has non-zero transition probability to EOS.
3Our defined bi-gram LMs are always tight, i.e., do not “leak” probability mass onto infinite sequences because we
make sure that all accessible tokens also have non-zero paths to other tokens. Please refer to Du et al. (2022) for the
proof.
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Random (10%) Random (50%) Random (90%) WebText

Vocab Objective avg. js avg. 0s avg. js avg. 0s avg. js avg. 0s avg. js avg. 0s

Gold 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20 For. KL 3.65e-4 1.80e-4 7.40e-4 1.44e-4 7.56e-4 9.10e-5 9.93e-4 1.79e-4
Rev. KL 3.41e-3 5.56e-6 1.36e-1 7.42e-6 1.87e-1 1.54e-6 3.93e-3 1.95e-6
Mix KLs 3.11e-4 7.11e-5 4.89e-4 5.15e-5 4.01e-4 2.67e-5 9.91e-4 1.11e-5
JS 5.68e-3 1.17e-5 2.14e-1 4.88e-5 2.14e-1 5.24e-4 1.12e-2 5.84e-6
MixCE* 4.92e-4 1.59e-4 8.12e-4 1.05e-4 4.87e-4 2.95e-5 1.36e-3 1.19e-4
MixCE 3.31e-4 1.57e-4 7.02e-4 1.25e-4 7.08e-4 8.49e-5 1.00e-3 1.79-4

50 For. KL 6.01e-3 1.21e-3 6.47e-3 5.65e-4 2.18e-3 8.90e-5 4.30e-3 4.77e-4
Rev. KL 2.03e-2 2.01e-5 4.29e-1 1.53e-3 4.11e-1 4.55e-6 3.48e-2 5.30e-5
Mix KLs 4.65e-3 1.29e-4 4.45e-3 2.80e-4 1.54e-3 3.41e-5 3.91e-3 2.83e-4
JS 1.03e-1 9.03-5 4.74e-1 1.40e-3 4.24e-1 1.25e-5 9.23e-3 2.48e-5
MixCE* 5.20e-3 6.84e-4 4.49e-3 3.72e-4 1.48e-3 2.70e-5 3.94e-3 2.75e-4
MixCE 5.96e-3 1.20e-3 6.47e-3 5.64e-4 2.03e-3 7.70e-5 4.29e-3 4.77e-4

100 For. KL 3.34e-2 2.49e-3 3.56e-2 1.44e-3 6.98e-3 1.49e-4 9.70e-3 3.10e-4
Rev. KL 2.30e-1 1.79e-3 5.57e-1 3.62e-4 5.30e-1 6.25e-6 1.00e-1 4.04e-5
Mix KLs 2.98e-2 4.66e-4 2.74e-2 2.10e-4 5.04e-3 6.34e-5 9.19e-3 1.84e-4
JS 2.38e-1 1.06e-3 5.53e-1 9.69e-4 5.18e-1 1.32e-3 1.73e-1 5.56e-4
MixCE* 3.10e-2 1.73e-3 2.85e-2 9.16e-4 5.12e-3 6.00e-5 9.61e-3 1.87e-4
MixCE 3.29e-2 2.44e-3 3.56e-2 1.41e-3 7.01e-3 1.50e-5 9.69e-3 3.16e-6

500 For. KL 1.56e-1 1.57e-3 2.39e-1 1.49e-3 1.93e-1 8.45e-4 4.60e-2 1.78e-4
Rev. KL 2.94e-1 9.91e-4 6.78e-1 2.76e-6 6.49e-1 2.33e-6 3.05e-1 1.68e-5
Mix KLs 1.55e-1 1.45e-3 2.32e-1 8.60e-4 1.70e-1 6.83e-4 4.27e-2 1.33e-4
JS 2.95e-1 9.78e-4 5.34e-1 7.19e-4 5.75e-1 1.35e-3 2.78e-1 3.84e-5
MixCE* 1.55e-1 1.45e-3 2.34e-1 1.38e-3 1.69e-1 6.71e-4 4.23e-2 1.29e-4
MixCE 1.55e-1 1.56e-3 2.35e-1 1.46e-3 1.88e-1 6.28e-4 4.53e-2 1.64e-4

1000 For. KL 1.83e-1 8.95e-4 2.93e-1 8.80e-4 3.65e-1 7.31e-4 8.10e-2 1.50e-4
Rev. KL 2.86e-1 6.12e-4 6.85e-1 1.21e-6 6.68e-1 3.88e-6 3.30e-1 6.26e-6
Mix KLs 1.80e-1 8.64e-4 2.91e-1 8.57e-4 3.50e-1 6.86e-4 7.50e-2 1.17e-4
JS 2.88e-1 6.11e-4 4.59e-1 5.97e-4 5.80e-1 7.73e-4 3.02e-1 1.93e-5
MixCE* 1.83e-1 8.64e-4 2.92e-1 8.58e-4 3.50e-1 6.84e-4 7.44e-2 1.14e-4
MixCE 1.83e-1 8.92e-4 2.92e-1 8.76e-4 3.48e-1 6.71e-4 7.94e-2 1.42e-4

Table 3.1: Synthetic experimental results. Random (10%, 50%, 90%) randomly initializesM
and sets 10% or 50% or 90% of the probabilities to 0. WebText means initializingM by the bi-
gram occurrence in the WebText data. Gold refers to the results whenM1=M. avg. js is our main
metric, which represents the average JS divergence betweenM andM1 (please see the definition
of avg. 0s in text). Each number is a 5-seed average, and Table 3.2 shows the 95% confidence
intervals of some experiments.
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WebText

Vocab Objective avg. js avg. 0s

1000 For. KL 8.10e-2 ˘ 2.45e-4 1.50e-4 ˘ 5.58e-7
MixCE* 7.44e-2 ˘ 2.46e-4 1.14e-4 ˘ 6.15e-7
MixCE 7.94e-2 ˘ 2.15e-4 1.42e-4 ˘ 5.05e-7

Table 3.2: Synthetic experimental results with 95% confidence intervals. WebText means initial-
izingM by the bigram occurrence in the WebText data.

Objectives. (1) Forward KL, KL(P ||Qθ) = Ex„P [logP (x)/Qθ(x)], which is equivalent to

MLE; (2) Reverse KL, KL(Qθ||P ) = Ex„Qθ(x)[logQθ(x)/P (x)]; (3)Mixture of two KLs, η ¨

KL(P ||Qθ) + (1 - η) ¨ KL(Qθ||P ); (4) JS, we use a general definition of JS divergence (Huszár,

2015), η ¨ KL(P ||M ) + (1 - η) ¨ KL(Qθ||M), whereM=η ¨ P + (1 - η) ¨ Qθ;4 (5) Oracle mixture

of cross-entropies (MixCE˚), where we use the known P . (6) Approximated mixture of cross-

entropies (MixCE), where we assume P is unknown. Except for Forward KL and MixCE, the

other four objectives all need to sample from Qθ and require gradients to pass through this sam-

pling operation. To this end, we use Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017)

to make sampling differentiable.

Model selection. During training, we check the validation loss (the value of the objective func-

tion) after every epoch and only save the best checkpoint that has the lowest validation loss. For

objectives with η, we choose the best η based on the avg. js result on the validation set. We re-

port a 5-seed average for each experiment. The search space of η is [0.99, 0.9, 0.5, 0.1, 0.01].

Selected best ηs are reported in Table 3.10.

Results. Table 3.1 shows the results of our synthetic experiments. Across 4 kinds of initializa-

tion ofM and 5 vocabulary sizes, we observe some common patterns. First, the mixture of two

KLs often gets the best avg. js compared to other objectives, and MixCE˚ usually comes second.

This supports our expectation that the mixture of two cross-entropies approximates the mixture

of two KLs (Section 3.3.1), as well as demonstrates that combining two KLs or CEs can help

learn the data distribution more accurately compared to MLE. Second, the approximated MixCE

4When η = 0.5, it is the same as the objective of GAN (Goodfellow et al., 2014). But instead of using GAN’s min-
max loss, we directly optimize JS because we know P .
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usually under-performs MixCE˚ but outperforms forward KL (MLE). Third, reverse KL gener-

ally works best for the avg. 0s metric, due to its property of zero-forcing – forcing Qθ(x) = 0

when P (x) = 0. Lastly, JS divergence oftentimes works similarly to reverse KL, which is con-

sistent with the observation made by Caccia et al. (2020) – language GANs trade off diversity

for quality. As the magnitudes of both avg. js and avg. 0s are fairly small, we examine the 95%

confidence intervals under one synthetic experimental setting – initializing the transition matrix

M by the bigram occurrence in the WebText data and setting vocabulary size as 1000. Table 3.2

contains the results. We can see that 95% confidence intervals are small enough to maintain the

trend of the results.

3.4.2 GPT-2 Experiments

Next, we test MixCE in a real setting where we do not know P , but we have finite samples

from P . We use GPT-2 (Radford et al., 2019) as the LM Qθ. Though GPT-2 models are already

pre-trained by MLE, for simplicity, we use different objectives to finetune it. We test GPT-2 in

3 sizes: small (24M), medium (355M), and large (774M). See more implementation details in

Section 3.5.3.

Real data. We use English text data from 3 domains: (1) WikiText (Merity et al., 2016): text

from Wikipedia; (2) WebText (Radford et al., 2019): text from the Web. It was used for pretrain-

ing GPT-2; and (3) WritingPrompts (Fan et al., 2018a): text from the writing prompts forum of

Reddit. We sample from each of these 3 datasets to form our training, development, and test sets.

By default, our training/development/test set contains 50K/5K/5K examples. Please find more

details about these datasets in Section 3.5.3.

Metrics. (1) Perplexity (ppl) is defined as e´ 1
N˚T

ř

N

ř

T logeQθ(xt|xăt), where N is the number

of examples and T is the sequence length. Perplexity is not necessarily correlated with human

perceived quality (Zhang et al., 2021a). (2) Diversity (div): following Meister et al. (2022), we

define n-gram diversity as the average fraction of unique vs. total n-grams for n P {1, 2, 3, 4}

in each piece of text. (3)Mauve (Pillutla et al., 2021) compares model-generated text against

45



human text via a KL divergence curve and is the state-of-the-art metric for open-ended text gener-

ation. We use Mauve as our primary metric for model selection. (4) Coherence (coh) (Su et al.,

2022) computes the cosine similarity between the embedding of prompt and the embedding of

continuation, and embeddings are from SimCSE (Gao et al., 2021). All metrics are the closer to

human scores the better.

Objectives. Since we have no access to P , we can only implement two out of the six objec-

tives we test in the synthetic setting: (1)MLE, which is equal to forward CE or forward KL; (2)

MixCE, the approximated mixture of cross-entropies.

Decoding. We use unbiased sampling (see footnote 1) as our primary decoding method as it

allows us to explore the learned distribution in an unbiased way (Eikema and Aziz, 2020). Ad-

ditionally, we test top-p sampling (Holtzman et al., 2020) to check if MixCE is complementary

to advanced decoding methods, and we carefully tune p based on the Mauve score on the devel-

opment set. For each text, we take the first 50 tokens (by GPT-2 tokenizer) as the prompt and set

the max generation length as 512.

Model selection. We finetune the model for 5 epochs on the training set and save the best check-

point with the lowest dev loss. We select the best mixing ratio η and the best p based on the Mauve

score on the dev set. The search space of η is [0.99, 0.9, 0.7, 0.5, 0.3, 0.1, 0.01, 0.0] and that of p

is [0.85, 0.87, 0.89, 0.91, 0.93, 0.95, 0.97, 0.99]. Selected best ηs are reported in Table 3.11. Best

ps are reported in Table 3.4. Metric scores are reported on the test set and are 3-run averages be-

cause sampling is stochastic.

Results. Table 3.3 shows unbiased sampling results of models in different sizes and finetuned

with different objectives on three datasets. As you can see, MixCE-finetuned models usually

get worse perplexity but consistently better diversity, mauve, and coherence, compared to MLE-

finetuned models. Table 3.4 shows top-p sampling results from the same models as Table 3.3.

Since perplexity will not change as the decoding method changes, we instead report the selected

best p in this table. It can be seen that after carefully applying top-p sampling, MixCE-finetuned
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WikiText WebText WritingPrompts

Model Size Objective ppl div mauve coh ppl div mauve coh ppl div mauve coh

Human - 0.89 1.0 0.628 - 0.84 1.0 0.633 - 0.85 1.0 0.473

Small MLE 26.98 0.91 0.67 0.556 21.45 0.87 0.90 0.555 28.45 0.87 0.85 0.397
MixCE 35.04 0.87 0.93 0.567 21.69 0.85 0.92 0.565 28.79 0.86 0.89 0.403

Medium MLE 20.43 0.90 0.73 0.573 15.92 0.87 0.88 0.560 22.72 0.88 0.89 0.414
MixCE 25.92 0.88 0.95 0.584 16.51 0.83 0.93 0.585 23.04 0.86 0.91 0.419

Large MLE 18.24 0.90 0.75 0.567 14.13 0.87 0.81 0.570 21.95 0.87 0.87 0.425
MixCE 23.44 0.88 0.95 0.578 14.66 0.82 0.94 0.592 21.04 0.86 0.94 0.429

Table 3.3: Unbiased sampling results of models finetuned by MLE or MixCE on three datasets.
For all metrics, the closer to the human scores the better. Bold numbers are the ones that are
closer to human scores in each setting. Each number is a 3-run average.

WikiText WebText WritingPrompts

Model Size Objective best p div mauve coh best p div mauve coh best p div mauve coh

Human - 0.89 1.0 0.628 - 0.84 1.0 0.633 - 0.85 1.0 0.473

Small MLE 0.85 0.89 0.93 0.584 0.93 0.84 0.94 0.580 0.97 0.86 0.90 0.410
MixCE 0.99 0.87 0.95 0.568 0.99 0.84 0.93 0.571 0.99 0.85 0.90 0.407

Medium MLE 0.85 0.88 0.95 0.602 0.93 0.85 0.95 0.592 0.97 0.86 0.92 0.428
MixCE 0.99 0.87 0.96 0.590 0.99 0.81 0.93 0.594 0.99 0.85 0.92 0.427

Large MLE 0.87 0.89 0.96 0.594 0.95 0.84 0.87 0.593 0.99 0.86 0.89 0.430
MixCE 0.99 0.87 0.97 0.580 0.99 0.81 0.94 0.601 0.99 0.86 0.94 0.435

Table 3.4: Top-p sampling results of the same models as Table 3.3. Since changing the decoding
method will not affect perplexity, we report the selected best p instead.

models work on par with MLE-finetuned models for diversity, mauve, and coherence. Nonethe-

less, the best p for MixCE models is always 0.99, while MLE models have smaller and more di-

verse ps. This indicates that MixCE leads to a less noisy model distribution.

Human evaluation. Besides automatic metrics, we also conduct a human evaluation. Follow-

ing Krishna et al. (2022), we conduct blind A/B testing. We randomly sample 105 examples from

each dataset. For each example, we ask humans to read two generations from MLE and MixCE-

finetuned GPT-2 large models, respectively, and the order of showing these two generations is

random. We use unbiased sampling to get the generations. Then, we ask them to judge which one

is better (or they are the same) and justify their preference, based on fluency, coherence, infor-

mativeness, and whether it is sensical. We conduct this evaluation on Amazon Mechanical Turk

and collect 3 responses for each example. Please refer to Section 3.5.2 for more details and ex-
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Which is better?

Dataset MixCE MLE Same

WikiText 135* 85 95
WebText 139* 79 97
WritingPrompts 111 119 85

Table 3.5: Human evaluation results. The star (*) means significantly better (p ă0.01). The sig-
nificance test is conducted following the bootstrap test setup (Efron and Tibshirani, 1994).

WikiText WebText WritingPrompts

Data Size Objective ppl div mauve coh ppl div mauve coh ppl div mauve coh

Human - 0.89 1.0 0.628 - 0.84 1.0 0.633 - 0.85 1.0 0.473

10K MLE 29.23 0.91 0.60 0.537 22.03 0.88 0.82 0.542 30.40 0.88 0.74 0.385
MixCE 36.70 0.88 0.93 0.546 22.79 0.83 0.86 0.562 30.65 0.87 0.81 0.395

25K MLE 27.90 0.91 0.68 0.545 21.75 0.88 0.86 0.547 29.37 0.88 0.79 0.394
MixCE 35.73 0.88 0.94 0.562 21.97 0.85 0.88 0.561 29.67 0.86 0.86 0.401

100K MLE 25.93 0.90 0.69 0.559 21.31 0.87 0.90 0.556 27.63 0.87 0.88 0.401
MixCE 34.13 0.87 0.93 0.575 21.58 0.85 0.92 0.566 28.01 0.85 0.90 0.409

Table 3.6: Unbiased sampling results of GPT-2 small models finetuned by MLE or MixCE on
three datasets of different training data sizes. All metrics are the closer to the human scores the
better. Bold numbers are the ones that are closer to human scores in each setting.

amples. The final results are shown in Table 3.5. As you can observe, MixCE-finetuned models

significantly outperform MLE-finetuned models on both WikiText and WebText domains, while

the two methods perform similarly on WritingPrompts. It is also worth noting that, compared to

the results shown in Table 3.3, none of the 4 automatic metrics share the same trend with human

evaluation.

3.4.3 Robustness & Analysis

Varying training data sizes. We test 3 other training data sizes: 10K, 25K, and 100K using

GPT-2 small. Table 3.6 contains the results which share the same trend as Table 3.3: MixCE-

finetuned models get worse perplexity but in general work better than MLE-finetuned models for

diversity, mauve, and coherence.
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WikiText WebText WritingPrompts

Model Size Objective c-mauve100 c-mauve100 c-mauve200 c-mauve300 c-mauve100 c-mauve200 c-mauve300

Human 0.97 0.96 0.96 0.96 0.96 0.96 0.96

Small MLE 0.92 0.93 0.92 0.90 0.94 0.94 0.92
MixCE 0.92 0.94 0.94 0.93 0.95 0.94 0.94

medium MLE 0.94 0.93 0.91 0.90 0.94 0.94 0.93
MixCE 0.93 0.95 0.94 0.94 0.95 0.94 0.94

Large MLE 0.93 0.93 0.93 0.91 0.94 0.94 0.93
MixCE 0.93 0.94 0.94 0.93 0.95 0.95 0.95

Table 3.7: Controlled mauve results. Unbiased sampling is used as the decoding method, i.e.,
using the same model generations as Table 3.3. Human scores are not 1 because sampling 10K
fragments twice result in two different sets. Each number is a 3-run average.

WikiText WebText WritingPrompts

Model Size c-coh100 c-coh100 c-coh200 c-coh300 c-coh100 c-coh200 c-coh300

Human 0.570 0.521 0.583 0.600 0.412 0.470 0.481

Small MLE 0.504 0.444 0.515 0.535 0.350 0.412 0.429
MixCE 0.508 0.458 0.524 0.545 0.363 0.422 0.437

Medium MLE 0.518 0.446 0.515 0.535 0.355 0.415 0.432
MixCE 0.527 0.484 0.546 0.565 0.362 0.425 0.437

Large MLE 0.521 0.449 0.515 0.536 0.372 0.431 0.447
MixCE 0.522 0.469 0.531 0.569 0.369 0.434 0.450

Table 3.8: Controlled coherence results. Unbiased sampling is used as the decoding method, i.e.,
using the same model generations as Table 3.3. Each number is a 3-run average.

Varying η and max generation length. To examine how the mixing ratio η and the max genera-

tion length affect the performance, we show the mauve score curves on the dev set in Figure 3.4.

The x-axis is the mixing ratio η from 0 to 1 (MixCE=MLE when η = 1), and the y-axis is the

mauve score with different max generation lengths (128, 320, and 512). First, reasonable perfor-

mances are usually observed when η ě 0.1, and only training the models with approximated re-

verse CE (i.e., η = 0) leads to degeneration. Second, the advantage of MixCE is more prominent

when the max generation length is longer.

Controlled Mauve and Coherence. The max generation length is not the actual text length be-

cause when sampling from the model, EOS can be generated at any step. We find that the actual

length of the text is a confounding factor of mauve computation. For example, when we compute

mauve between a set of texts and the same set with an extra new line token after each text (or the
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same set with the last k tokens being truncated), the score will be lower than 0.01. Though you

may think truncating all texts to the same length can resolve this problem, we find that the incom-

pleteness caused by truncation can also be a confounding factor. For instance, keeping human

texts intact, we truncate texts generated by two systems by their shorter lengths (i.e., for each ex-

ample, we truncate text1 and text2 by min_length(text1, text2)). Then, the system whose texts get

truncated less will get a greatly larger mauve score than the other system. Therefore, to eliminate

the influence of these two confounding factors, we propose a controlled mauve computation ap-

proach. Concretely, for the set of human texts Th and the set of model-generated texts Tm, we

randomly sample 10K L-length text fragments from each of these two sets. L is the number of

tokens in each text fragment. After that, we compute the mauve between these two sets of 10K

text fragments. We denote this controlled mauve as c-mauveL.

Fh,L = tf i
h,Lu10Ki=1 , f

i
h,L „ Th

Fm,L = tf i
m,Lu10Ki=1 , f

i
m,L „ Tm

c-mauveL = mauve(Fh,L,Fm,L)

To sample each fragment, we first randomly sample a text ti from the set, and then randomly se-

lect a start token s (as long as there are more than L tokens from s to the end of ti), then the frag-

ment is ti[s : s + L]. We set L = 100, 200, and 300, except that we could not get 10K 200-token

fragments from WikiText because its texts are shorter. Finally, Table 3.7 shows the results. As

you can see, c-mauve scores are in general very high (ě 0.90), which may indicate that, after con-

trolling the confounding factors, the ability of mauve to distinguish model text from human text

has been weakened. MixCE still gets better performance than MLE in most cases. The Coher-

ence score (Su et al., 2022) computes the cosine similarity between the prompt and the continua-

tion. We suspect that the length of the continuation may affect the score. Therefore, following the

same idea of controlled mauve, we also sample 10K fragments of the same length from the set

of texts for evaluation and compute coherence on the fragments. And for each fragment, we take
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WikiText WebText WritingPrompts

Model Size Objective avg. len avg. len avg. len

Human 124.5 304.5 332.5

Large MLE 114.8 284.2 325.8
MixCE 89.0 298.9 326.4

Table 3.9: Unbiased sampling text lengths of models finetuned by MLE or MixCE on three
datasets. Length is computed by simply splitting text by whitespaces.

the first 50 tokens as the prompt and the rest as the continuation. Table 3.8 shows the results. As

you can observe, under this controlled setting, MixCE-finetuned models generally achieve better

coherence over MLE-finetuned models.

Text length of model generations. Though by default we set the max generation length as 512,

the actual text length can vary as the EOS token can be sampled at any time step. Therefore, we

list the average text length of the human text and GPT2-large generations in Table 3.9. We ob-

serve that model generations are always shorter than human text. Compared to MLE, our MixCE-

finetuend model produces shorter text on WikiText while producing longer text on the other two

datasets. We suspect that the shorter length of MixCE on WikiText is due to the small mixing ra-

tio (0.1) chosen based on mauve (see Table 3.11). However, we do not think shorter text length

leaves to better mauve, as shown by the other two datasets and discussed in our proposal of con-

trolled mauve.

3.5 Implementation Details

3.5.1 Best η

Table 3.10 has the best ηs for synthetic experiments. Table 3.11 contains the best ηs selected

for GPT-2 experiments.

51



Model section is based on avg. js

Random (50%) WebText Random (10%) Random (90%)

Vocab Objective best η best η best η best η

20 Mix KLs 0.99 0.9 0.99 0.99
JS 0.9 0.9 0.9 0.9
MixCE* 0.99 0.99 0.99 0.99
MixCE 0.9 0.99 0.99 0.99

50 Mix KLs 0.99 0.99 0.9 0.99
JS 0.01 0.99 0.9 0.9
MixCE* 0.99 0.99 0.99 0.99
MixCE 0.99 0.99 0.99 0.9

100 Mix KLs 0.9 0.99 0.9 0.99
JS 0.01 0.99 0.99 0.01
MixCE* 0.99 0.99 0.99 0.99
MixCE 0.5 0.9 0.5 0.99

500 Mix KLs 0.9 0.99 0.99 0.99
JS 0.99 0.99 0.99 0.99
MixCE* 0.99 0.99 0.99 0.99
MixCE 0.1 0.5 0.1 0.1

1000 Mix KLs 0.99 0.99 0.99 0.99
JS 0.99 0.99 0.99 0.99
MixCE* 0.99 0.99 0.99 0.99
MixCE 0.1 0.5 0.1 0.1

Table 3.10: The selected best η of synthetic experiments reported in Table 3.1. The model sec-
tion is based on avg. js.

3.5.2 Human Evaluation Details

We conduct A/B testing (or pairwise comparison) to compare generations from two models.

As shown in Figure 3.5, in each job, we give the evaluator two text paragraphs (in random order)

that share the same beginning part (the prompt) but have different continuations. Then, they need

to choose which one they think is better (or non-distinguishable). To avoid random selections,

they are also asked to provide a justification for their choice. We find this justification not only

gives us additional explanations of their choices but also helps us easily identify bad workers,

because bad workers tend to use one single justification or several repeated justifications.

We instruct them by defining a good text paragraph as being:
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Model section is based on mauve (max length=512) on dev set

WikiText WebText WritingPrompts

Model Size Objective best η best η best η

Small MixCE 0.1 0.5 0.5

Medium MixCE 0.1 0.3 0.5

Large MixCE 0.1 0.3 0.7

Table 3.11: The selected best η of GPT-2 experiments reported in Table 3.3. The model section is
based on mauve (max length=512) on the dev set.

Fluent: Should have no obviously ungrammatical sentences, missing components, etc. that

make the text difficult to read.

Coherent: Should stay on topic with the prompt and build from sentence to sentence to a

coherent body of information.

Informative: Should have diverse and interesting content.

Sensical: Should generally make sense.

Since short text has little information and long text is difficult to read, we only use paragraphs

with 5 to 8 sentences for evaluation. If a paragraph has more than 8 sentences, we truncate it to 8

sentences. And we remove paragraphs with less than 400 or more than 2000 characters. Besides,

to eliminate the influence of length difference, we do not select examples whose length difference

between two paragraphs is more than 1 sentence or more than 200 characters.

We conduct this evaluation on Amazon Mechanical Turk. We only allow workers, who are

located in the US, have a Masters Qualification,5 have an approval rate larger than 97%, and have

more than 10000 HITs approved, to do our tasks. In addition, we first ran a testing batch, then

manually checked the results, and selected 44 qualified workers to continue doing the rest of our

tasks.

For each of the 3 datasets, we sampled 105 examples and collected 3 responses per exam-

ple. In total, we received 945 human evaluations. We pay workers $1 per response, and it takes

around 5 minutes to finish one response, i.e., the hourly rate is around $12.

5https://www.mturk.com/worker/help
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Dataset all agree 2 agree no agreement

WikiText 24% 59% 17%

WebText 24% 52% 24%

WritingPrompts 20% 70% 10%

Table 3.12: Inter-annotator agreement. The numbers are the portions of examples that have a
3-annotator agreement (all agree), a 2-annotator agreement (2 agree), or no agreement. E.g., 24%
of examples used in human evaluation for WikiText have an agreement among 3 annotators.

Table 3.12 shows the inter-annotator agreements.

3.5.3 Reproducibility

In our GPT-2 experiments, we use English text data from 3 domains: (1) WikiText (Merity

et al., 2016): text from Wikipedia, and we use wikitext-103-raw-v1 from Hugging Face.6 Its li-

cense is Creative Commons Attribution-ShareAlike License (CC BY-SA 4.0). (2) WebText (Rad-

ford et al., 2019): text from the Web. It was used for pretraining GPT-2. The full WebText is not

available but they released a subset on Github7. The GitHub repository contains an MIT license,

and they did not specify the license of the data. But they indicated in the readme: “We look for-

ward to the research produced using this data!” (3) WritingPrompts (Fan et al., 2018a)8: text

from the writing prompts forum of Reddit. Its GitHub repository also contains an MIT license

without specification of the data license. However, WritingPrompts has been used by many other

research works, e.g., Pillutla et al. (2021). We use their official dev and test sets as much as pos-

sible. If they have fewer than 5K examples, we sample from their official training set to make up

the rest.

All of our experiments were conducted on NVIDIA Tesla V100 32G GPUs. We use a single

GPU to run each experiment and change the batch size to fit models of different sizes. When fine-

tuning GPT-2 small using a single GPU with MLE or MixCE, it took less than 1 hour to finish

6https://huggingface.co/datasets/wikitext
7https://github.com/openai/gpt-2-output-dataset
8https://github.com/facebookresearch/fairseq/tree/main/examples/stories
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5 epochs on 50K WikiText training data and took less than 2 hours to finish 5 epochs on 50K

WebText or WringPrompts training data.

We implemented our GPT-2 based models based on the GPT-2 modeling code from Hugging

Face Transformers9. For training and evaluation, we modified the example script of causal lan-

guage model training10. We used the default optimizer, learning rate, scheduler, etc. in that script.

But we set the maximum training epochs as 5 and changed the batch size and gradient accumula-

tion steps based on the model size to fit it in one 32G-memory GPU.

3.6 Conclusion

We propose a novel training objective, MixCE, for autoregressive language modeling. MixCE

combines forward and reverse cross-entropies, which can be viewed as combining two comple-

mentary driving forces for better fitting the model distribution to the data distribution. We demon-

strate the superiority of MixCE over MLE in both synthetic and real settings via both automatic

and human evaluations. In the future, MixCE can be potentially used for pretraining language

models.

9https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/
modeling_gpt2.py
10https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-
modeling/run_clm_no_trainer.py
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Figure 3.4: The mauve scores obtained by MixCE-finetuned GPT-2 models on development
sets with different max generation lengths and different η. Note that when η = 1, MixCE is
equivalent to MLE. The x-axis is the mixing ratio η, and the y-axis refers to mauve scores with
different max generation lengths. The 3 lines in each subplot show the results of GPT-2 models
in different sizes. The 3 subplots in each row are the results of 3 datasets respectively. Unbiased
sampling is used as the decoding method. Each dot is the average of 3 runs of sampling and the
error bar shows the standard deviation of 3 runs.
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Figure 3.5: Human evaluation interface and a random example from our collected human annota-
tions.
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CHAPTER 4: SEMI-AUTOMATIC SUMMARY EVALUATION

4.1 Introduction

Evaluating the quality of summaries is a challenging task. Human evaluation is usually re-

garded as the gold standard. Out of different human evaluation methods, Pyramid (Nenkova

and Passonneau, 2004) has been perceived as an objective and reliable protocol and used by

early summarization benchmarks, e.g., TAC (DBL, 2008, 2009). Given one or several reference

summaries of an example, human assessors first exhaustively extract Summary Content Units

(SCUs), each SCU contains a single fact, from the reference(s), and then check whether they are

present in a system summary. Figure 4.1 shows an example of human-labeled SCUs. Despite the

reliability, manual evaluation is usually: (1) not reproducible, results may change when differ-

ent evaluators are involved, making it hard to compare the results across papers; (2) expensive,

in terms of time and cost. Thus, it is unlikely to apply human evaluation extensively in model se-

lection (e.g., to choose the best checkpoint); instead, people usually treat it as an additional qual-

ity verification step. Aiming to work as a proxy of humans, many automatic metrics have been

proposed (Lin, 2004; Tratz and Hovy, 2008; Giannakopoulos and Karkaletsis, 2011; Yang et al.,

2016; Zhang et al., 2020c; Deutsch et al., 2021). However, most of them cannot reliably substi-

tute human evaluation due to the unstable performance across datasets (Bhandari et al., 2020),

weak to moderate correlations with human judgment (Fabbri et al., 2021), or more indication of

topic similarity than information overlap (Deutsch and Roth, 2021).

In this work, we want to combine human and automatic evaluations and find a balance be-

tween reliability and reproducibility (plus expense). Recall the Pyramid method (Nenkova and

Passonneau, 2004), where these SCUs for reference summaries only need to be annotated once,

then they can be fixed. It means SCUs can come with the datasets and are reusable for evaluating
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different systems. Hence, what hinders this method from being reproducible is its second step of

asking humans to judge the presence of SCUs in system summaries. Whenever we have a new

summarizer, we need to collect human labels for this step. Therefore, we propose to retain the

reusable SCUs but replace human effort in the second step with a neural model. Basically, people

are answering whether a SCU is entailed by the summary, which is closely related to the Natu-

ral Language Inference (NLI) task, i.e., judging whether a hypothesis is entailed by the premise.

A lot of NLI datasets are available (Bowman et al., 2015; Williams et al., 2018a; Thorne et al.,

2018; Nie et al., 2020) and recent NLI models have achieved close-to-human-level performance.

Hence, we use a pretrained NLI model and finetune it on some in-domain gold labels of SCUs’

presence. Then, we replace humans with the finetuned model, so that the evaluation results are

reproducible as long as the same model is used. Meanwhile, it can run automatically during de-

velopment to guide model selection and the evaluation cost will be dramatically reduced. Shapira

et al. (2019) propose LitePyramid to simplify the standard Pyramid method via crowdsourcing.

Following but different from their work, we additionally automate the presence annotation, and

hence we call our method Lite2Pyramid.

Lite2Pyramid still requires human efforts to extract SCUs from reference summaries, and this

step is usually considered to be more difficult. Early benchmarks, e.g., TAC (DBL, 2008, 2009),

are small-sized with fewer than 100 examples in the evaluation set, for which it is already expen-

sive to manually collect SCUs. However, current popular summarization datasets, e.g., CNN/DM

(Hermann et al., 2015), contain more than 10K evaluation examples, and hence we want to sim-

ulate SCUs via an automatic method for such large-scale datasets. For this, we make use of Se-

mantic Role Labeling (SRL) that can automatically decompose a sentence to semantic triplets,

e.g., subject-verb-object, and we take each triplet as a pseudo-SCU, which we call Semantic

Triplet Unit (STU). Figure 4.1 illustrates the difference between SCUs and STUs. Although

STUs do not always contain a single fact and some information might also be misrepresented,

we find that it can reasonably simulate SCUs and lead to a fully automatic metric, Lite3Pyramid.
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Lastly, instead of using either all human-labeled SCUs or all automated STUs, we investigate

balanced trade-offs in between, e.g., using half SCUs and half STUs. A naive way is to randomly

sample some reference sentences and substitute their SCUs with STUs. However, we find it is

unstable and sometimes even works worse than using all STUs. More reasonably, we design an

active learning (Settles, 2012) inspired selection method to help decide which sub-parts of the

dataset are more worthy of obtaining expensive SCUs for. For this, we develop a regressor to pre-

dict the “simulation easiness” of each reference sentence: if a sentence is too complex to be well

represented by STUs, we will ask humans to annotate SCUs for it; otherwise, we can apply auto-

matic SRL. We call this method as Lite2.xPyramid, since it provides a smooth, flexible transition

from Lite2Pyramid to Lite3Pyramid and balances reliability with cost.

To comprehensively evaluate the quality of metrics, we not only use 3 existing meta-evaluation

datasets (TAC2008 (DBL, 2008), TAC2009 (DBL, 2009), REALSumm (Bhandari et al., 2020))

but also newly collect PyrXSum with 100 XSum (Narayan et al., 2018a) test examples plus sum-

maries produced by 10 systems. Next, we compare our new metrics to 15 existing automatic met-

rics on these 4 meta-evaluation setups for both system-level and summary-level correlations with

human Pyramid scores. We find that Lite2Pyramid consistently has the best summary-level cor-

relations and is reliable as an out-of-the-box metric. Lite3Pyramid also mostly performs better or

competitively. Lastly, the regressor-based Lite2.xPyramid can help substantially reduce annota-

tion efforts for only small correlation drops, e.g., on TAC2008, TAC2009, it trades off only 0.01

absolute summary-level Pearson correlation and 0 system-level correlation for 50% SCU reduc-

tion.

Github repository: https://github.com/ZhangShiyue/Lite2-3Pyramid

4.2 Background and Related Work

Each example in a summarization dataset contains single or multiple source document(s) and

one or several human-written reference(s). System-generated summaries are evaluated by com-
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paring them to the references (i.e., reference-based) or directly scored (i.e., reference-free). This

evaluation process is critical and directly affects our development choices.

Human (or manual) evaluation has been considered as the gold standard. Early benchmarks

(DBL, 2008, 2009) conducted three human evaluations: Responsiveness, Linguistic Quality, and

Pyramid. The first two ask humans to directly rate the overall responsiveness or linguistic quality

on a Likert scale. Following this, some works collect ratings for different aspects, e.g., relevance,

readability (Paulus et al., 2018; Kryscinski et al., 2019; Fabbri et al., 2021). However, these rat-

ings may suffer from raters’ subjectivity. Pyramid (Nenkova and Passonneau, 2004) has been

perceived as a more objective method, and it is reference-based. It has two steps: pyramid cre-

ation and system evaluation. In the first step, humans exhaustively find the Summary Content

Unit (SCU) contributors from references, each contributor describes a single fact; contributors

with the same meaning will be merged into one single SCU; then each SCU is weighted by how

many contributors it has, equal to the number of references in which it is found. In the second

step, each SCU has been manually checked its presence in the system summary; and the Pyra-

mid score is the normalized sum of present SCUs’ weights (essentially, a recall score). Passon-

neau (2010) normalize it by the total weight of the best possible summary. Recently, Shapira

et al. (2019) propose LitePyramid. It removes SCU merging and weighting, allowing SCUs of

the same meaning to co-exist, and they show that the evaluation can be reliably conducted by

crowdsourcing workers.

Automatic metrics trade off the reliability of human evaluation for reproducibility, low

cost, and fast speed. Many automatic metrics have been introduced, the majority of which are

reference-based. Some metrics measure the n-gram overlap (Papineni et al., 2002; Lin, 2004),

out of which ROUGE (Lin, 2004) is the most widely adopted metric till today. Some other works

compute the similarity over n-gram graphs (Giannakopoulos and Karkaletsis, 2011; Giannakopou-

los et al., 2008) or distributions (Lin et al., 2006). Since exact n-gram matching is too rigid, ME-

TEOR (Banerjee and Lavie, 2005; Denkowski and Lavie, 2014) provides flexibility by stem-

ming, synonyms, etc., and recently, a few metrics enable “soft” matching through contextualized
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word embeddings (Zhao et al., 2019; Clark et al., 2019; Zhang et al., 2020c). However, Deutsch

and Roth (2021) point out that the n-gram based metrics indicate more topic similarity than infor-

mation overlap. Structural evaluation metrics have also been proposed beyond n-grams. BEwT-

E (Tratz and Hovy, 2008) decomposes the system summary and the reference(s) into syntactic

units and compute their similarities, and decomposed-ROUGE (Deutsch and Roth, 2021) com-

putes ROUGE for each syntactic category. APES (Eyal et al., 2019) and QAEval (Deutsch et al.,

2021) are QA-based metrics that assume similar answers will be obtained from similar system

summaries and reference(s).

Automatic Pyramid methods have also been proposed (Yang et al., 2016; Hirao et al., 2018;

Gao et al., 2019). They usually decompose both the system summary and the references into

smaller units (e.g., Elementary Discourse Units) and compare the two list of units. Differently,

our Lite3Pyramid only decomposes the reference summaries to semantic triplet units (STUs),

and we use NLI to judge the presence of each STU in the system summary, which is closer to

the original Pyramid’s procedure and leads to better correlations with human scores (refer to Sec-

tion 4.5). Peyrard et al. (2017) propose a learned metric, S3, that is trained to directly predict hu-

man Pyramid or Responsiveness scores based on ROUGE, FrameNet features, etc. Sellam et al.

(2020) propose a learned metric for machine translation, BLEURT, that finetunes a BERT (De-

vlin et al., 2019) model with human ratings to directly predict the similarity score of a (reference,

model translation) pair, and they show that it can also be successfully applied for WebNLG (Gar-

dent et al., 2017) tasks. We are similar to both S3 and BLEURT in the way of learning to evalu-

ate through finetuning NLP models with human labels. Xu et al. (2020c) is distantly related to

us in the way of representing texts by SRL, but it is used to weigh the content in the source doc-

ument(s). Besides, some reference-free metrics are introduced for summary quality estimation

(Xenouleas et al., 2019; Gao et al., 2020; Vasilyev et al., 2020) or faithfulness evaluation (Dur-

mus et al., 2020; Wang et al., 2020a).

Semi-automatic evaluation is introduced by Zhou et al. (2007). They automatically de-

compose both system summary and reference(s) into semantic units and then ask humans to
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Catherine Nevin was allowed out despite being jailed for life in April 2000. 
62-year-old was seen on the bus, with a pal and walking around in Dublin...

Reference

Catherine Nevin was allowed  out        despite being jailed for life in April 2000 .
ARG1 V ARGM-DIR ARGM-ADV

Catherine Nevin was allowed out despite being jailed  for life    in April 2000 .
ARG1 V ARGM-TMPARGM-TMP

62-year-old was seen on the bus, with a pal and walking around in Dublin.
ARG1 V ARGM-LOC ARGM-COM

62-year-old was seen on the bus, with a pal and walking around   in Dublin .
ARG1 V ARGM-LOCARGM-LOC

coref

SCUs
1. Catherine Nevin was allowed out.
2. Catherine Nevin was jailed for life.
3. Catherine Nevin was jailed in April.
4. Catherine Nevin was jailed in 2000.
5. Catherine Nevin is a 62 year old.
6. Catherine Nevin was seen on the bus.
7. Catherine Nevin was with a pal. 
8. Catherine Nevin was walking around 
    in Dublin.

1. Catherine Nevin was allowed out.
2. Catherine Nevin was allowed despite 
    being jailed for life in April 2000.
3. Catherine Nevin being jailed for life.
4. Catherine Nevin being jailed in April 2000. 
5. Catherine Nevin was seen on the bus.
6. Catherine Nevin was seen with a pal. 
7. Catherine Nevin walking around.
8. Catherine Nevin walking in Dublin.
9. Catherine Nevin is 62-year-old.

STUs0.5*SCUs + 0.5*STUs

Catherine Nevin was allowed out on day release on Wednesday afternoon.
The 62-year-old was permitted to attend an addiction studies course.
She was jailed for life in April 2000... She laughed and joked with a pal...

Summary

1
1
1
1
1
0
1
0

NLI

SRL

1.0
1.0

0.0

1.0
1.0
1.0

0.99
0.0

1.0

0.88

1.0
1.0
0.0

0.97
0.04
0.0
1.0

Gold = 0.75 Lite2Pyramid = 0.75 Lite3Pyramid = 0.65

1. Catherine Nevin was allowed out.
2. Catherine Nevin was allowed despite 
    being jailed for life in April 2000.
3. Catherine Nevin being jailed for life.
4. Catherine Nevin being jailed in April 2000. 
5. Catherine Nevin is a 62 year old.
6. Catherine Nevin was seen on the bus.
7. Catherine Nevin was with a pal. 
8. Catherine Nevin was walking around 
    in Dublin.

1.0

0.88

1.0
1.0

0.0
1.0

0.99
0.0

Lite2.5Pyramid = 0.735

regressorReference

Figure 4.1: The illustration of our metrics. This data example is from REALSumm (Bhandari
et al., 2020) (we omit unnecessary content by ‘...’). For gold labels, ‘1’ stands ‘present’ and ‘0’
stands ‘not present’. Other scores are the 2-class entailment probabilities, p2c(e), from our fine-
tuned NLI model.

match/align the two lists of units. In contrast, our semi-automatic Lite2Pyramid retains the reusable

SCUs while automatically judges the SCUs’ presence in the system summary (via NLI).

4.3 Our Method

4.3.1 Lite2yramid

Lite2Pyramid is a semi-automatic metric that retains human-labeled Summary Content Units

(SCUs) to represent reference summaries of a data example i, i.e., tSCUiju
Ni
j=1, where Ni is the

total number of SCUs from all reference summaries. The original Pyramid (Nenkova and Pas-

sonneau, 2004; Passonneau, 2010) assumes there are multiple references available (e.g., TAC

datasets (DBL, 2008, 2009) have 4 references per example). Therefore, each SCU comes with
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weight, twiju
Ni
j=1, representing the number of reference summaries in which the SCU is found.

To evaluate a particular system summary si, the standard Pyramid method manually checks each

SCU’s presence, sums up the weights of present SCUs, and normalizes it:

Pyramidi =
řNi

j=1 wijPresence(SCUij, si)

the best possible score
(4.1)

The best possible score is the highest sum of weights the summary can obtain with the same

number of present SCUs (details can be found in (Passonneau, 2010)). Differently, LitePyra-

mid (Shapira et al., 2019) takes a union of SCUs from all reference summaries with duplication

(we use SCU˚ to distinguish it from the de-duplicated SCU used above) and then samples the

same number (K) of SCUs for every data example, hence:

LitePyramidi =
řK

j=1 Presence(SCU˚
ij, si)

K

Without weighting, this method also works in single-reference situations. Different from this

method, we keep the exhaustive set (instead of a fixed-size sample) of SCUs for each example

(also used by Bhandari et al. (2020)). Importantly, we replace human efforts of checking SCUs’

presence with a Natural Language Inference (NLI) model fnli’s entailment prediction. Using e to

denote entailment, our metric can be written as:

Lite2Pyramidi =
řNi

j=1 wijfnli(e|SCUij, si)
řNi

j=1 wij

(4.2)

Note that multiplying the weights and dividing by the sum of the weights is equal to repeating

SCUi for wi times, which shows how we treat SCUs as an exhaustive set with duplication. For

single-reference datasets (CNN/DM or XSum), the weights are all 1. Plus, the above equations

all compute summary-level scores. To get one single score for the system, we simply take the

average across examples, e,g., 1
|D|

ř

iPD Lite2Pyramid(si).
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The fnli function can be implemented in four different ways, denoted as p3c, l3c, p2c, l2c, and

explained below. Following the standard 3-class setting of NLI tasks, the NLI model will pre-

dict whether the SCUij is entailed by or neutral to or contradicted with the summary si. Hence,

we can use either the output probability of entailment class p3c(e) or the predicted 1 or 0 entail-

ment label l3c(e) as the function fnli. However, existing NLI datasets (Bowman et al., 2015;

Williams et al., 2018b; Thorne et al., 2018; Nie et al., 2020) have different data distributions

and domains from the summarization data; hence models trained on these datasets may not per-

form well in judging the presence of SCUs. Therefore, we finetune the pretrained NLI model

by human-labeled SCUs plus presence labels. Since humans only give 2-class labels (present

or not present), we adapt the model to perform two-way classification. Specifically, we add

up the logits of neutral (n) and contradiction (c) classes as the logit of the “not present” label:

p2c(e) = exp(logite)
exp(logite)+exp(logitn+logitc)

. Again, we can use p2c(e) or l2c(e) as fnli after finetuning. In

our experiments, we call the pretrained NLI model on NLI datasets as “zero-shot” because it has

not seen summarization data. Empirically, we find that when using the zero-shot NLI model, l3c

works best; while after finetuning, p2c usually works best.

4.3.2 Lite3yramid

Lite3Pyramid fully automates Lite2Pyramid by simulating the human-annotated SCUs with

automatic extracted semantic triplets. We use a Semantic Role Labeling (SRL) model (Carreras

and Màrquez, 2005; Palmer et al., 2010; He et al., 2017; Shi and Lin, 2019) to achieve this goal.

SRL determines the latent predicate-argument structure of a sentence, e.g., who did what to whom.

As shown in Figure 4.1, the SRL model will identify several frames for each sentence, and each

frame has one verb and a few arguments. For each frame, we keep the verb and any arguments

before the verb unchanged, then we enumerate the arguments after the verb to form a list of

triplets as {(ARGbefore, V, ARGi
after)}Mi=1, whereM is the number of arguments after the verb.

We concatenate the three elements in each triplet to form a short sentence because a SCU is a

short sentence and we want to resemble it as much as possible. We call these short sentences Se-
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mantic Triplet Units (STUs).1 For example, as illustrated by Figure 4.1, based on the 4 frames

identified by SRL, we extract 9 STUs from the reference.

Since one entity can be referred to by pronouns or different names in the summary, we also

apply Coreference Resolution (Lee et al., 2018) to improve the simulation quality. As shown in

Figure 4.1, Catherine Nevin and 62-year-old are identified as coreference, so we use Catherine

Nevin as the subjects of STUs and add an additional STU Catherine Nevin is 62-year-old.2 In our

experiments, we only apply coreference resolution for REALSumm because empirically, on TAC

datasets, we find applying it works worse than not applying; and PyrXSum has one-sentence sum-

maries where coreference hardly appears.3 Although STUs seem to reasonably simulate SCUs

for the example in Figure 4.1, it has limitations, especially, when the sentence is syntactically

complicated, e.g., with a lot of modifiers, clauses, complements (refer to Section 4.5 for more

discussions).

After we obtain the STUs from all reference summaries, we score a system summary si by:

Lite3Pyramidi =
1

Mi

Mi
ÿ

j=1

fnli(e|STUij, si)

whereMi is the total number of STUs. Note that there is no weight because we extract STUs

from every reference summary and take a union, which allows STUs of the same meaning to co-

exist.

1Note that simple concatenation might not lead to grammatical sentences, but we expect the NLI model to be robust
to small grammar errors. Additionally, we make a small fix in two cases: if the token before V in the original sen-
tence is classified as a negation modifier, ARGM-NEG, or is a Be verb, we add it to the STU sentence (e.g., for the
3rd STU in Figure 4.1, we bring back “being” before “jailed”).
2In practice, we use the name appeared first in the reference to unify the mentions in STUs and use the template
“name1 is namen” to generate additional STUs.
3Even for REALSumm, removing the coreference resolution step will only cause around 0.01 absolute correlation
drops.
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4.3.3 Lite2.xyramid

As discussed so far, human-annotated SCUs are accurate yet expensive, whereas automat-

ically extracted STUs are cheap yet sometimes erroneous. The next natural question is how to

find a balance between them. One way is to randomly replace 50% sentences’ SCUs with STUs,

but a more intuitive way is to make the decision based on the “easiness” of simulating the sen-

tence’s SCUs by STUs. If the sentence is unlikely to be well represented by STUs, we can ask

humans to label SCUs for it; otherwise, we can use STUs to reduce cost. This is similar to how

active learning (Settles, 2012) chooses which training examples to collect human labels for. We

define simulation easiness as the average simulation accuracy of each SCU. ROUGE-1-F1 (R1F1)

(Lin, 2004) is used to measure the simulation accuracy: Accj = maxmR1F1(SCUj, STUm).

Then, the easiness of a sentence with Nsent SCUs is written by Easinesssent = 1
Nsent

řNsent

j=1 Accj .

The higher the easiness score is, the more accurately the STUs resemble SCUs.

After we obtain these gold easiness scores, we want to train a regressor to predict the score

based on sentence complexity features. As we mentioned above, the sentence’s syntax can indi-

cate its simulation difficulty. Therefore, we get the Constituency Parsing tree (Joshi et al., 2018)

of each sentence and define the following features: (1) sentence length; (2) linearized parsing

tree length; (3) parsing tree depth; (4) sentence length / parsing tree depth; (5) the counts for each

of the 65 non-terminal tokens (e.g., NNP). In total, we represent each sentence with a 69-dim

feature vector. Then, we train an XGBoost (Chen and Guestrin, 2016) regressor to predict the

simulation easiness by minimizing the mean squared errors. Given this regressor, we propose

to replace top 0.x scored sentences’ SCUs with STUs, leading to Lite2.xPyramid. For example,

Lite2.5Pyramid (illustrated in Figure 4.1) means that we use STUs for the top 50% scored sen-

tences and use SCUs for the other half.
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4.4 Evaluation

4.4.1 Correlation with Human Scores

Following the standard meta-evaluation strategies used in previous works (Peyrard et al.,

2017; Bhandari et al., 2020; Deutsch et al., 2021), we evaluate metrics by two types of correla-

tion with gold human scores.

System-level correlation aims to evaluate how well the metric can compare different summa-

rization systems? We denote the correlation measure asK, human scores as h, the metric as

m, and generated summaries as s. We assume there are N examples and S systems in the mete-

evaluation dataset. Then, the system-level correlation is defined as:

Ksys
m,h = K([

1

N

N
ÿ

i=1

m(si1), ...,
1

N

N
ÿ

i=1

m(siS)],

[
1

N

N
ÿ

i=1

h(si1), ...,
1

N

N
ÿ

i=1

h(siS)])

Summary-level correlation answers if the metric can reliably compare summaries generated by

different systems for the same document(s). Using the same notations, this correlation is written

by:

Ksum
m,h =

1

N

N
ÿ

i=1

K([m(si1), ...,m(siS)],

[h(si1), ..., h(siS)])

We use Pearson r or Spearman ρ as the correlation measureK. Pearson measures linear correla-

tion while Spearman measures ranking correlation.
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4.4.2 Metrics for Comparison

ROUGE-1, ROUGE-2, and ROUGE-L (Lin, 2004) are based on n-gram overlap and are widely

used in summarization literature till today.

AutoSummENG (Giannakopoulos et al., 2008) uses n-gram graphs to compare the system sum-

mary to the reference(s).

METEOR (Banerjee and Lavie, 2005; Denkowski and Lavie, 2014) computes similarity through

text alignment and uses stem, synonyms, paraphrases to allow more flexible matching.

BEwT-E (Tratz and Hovy, 2008) decomposes summary into syntactic units and computes the

similarity based on those units.

S3 (Peyrard et al., 2017) is a learned metric trained on TAC2008/2009 datasets to predict human

Pyramid (pyr) or Responsiveness (resp) scores.

PyrEval (Gao et al., 2019) automate Pyramid by simulating SCUs through Emergent Discovery

of Units of Attraction. It returns four scores. Empirically, we find that quality and comprehensive

work better, so we only keep these two in our result tables. Note that it only supports multi-reference

situations because it retains SCUs’ weighting step.

BERTScore (Zhang et al., 2020c) aligns unigrams between two texts through the contextualized

word embeddings from BERT (Devlin et al., 2019). We also compare to BERTScore (idf) that

down-weights unigrams with high document frequency.

MoverScore (Zhao et al., 2019) also uses contextualized word embeddings. Differently, they

minimize the “transportation cost” between two texts.

QAEval (Deutsch et al., 2021) leverages Question Answering to evaluate the similarity of two

texts, i.e., if they have the same meaning, the same answer should be inferred from them for the

same question. They use either Exact Match (EM) or F1 (F1) to evaluate answer similarity.

4.4.3 Data

We evaluate human-metric correlations on three existing English meta-evaluation datasets:

TAC2008 (DBL, 2008), TAC2009 (DBL, 2009), REALSumm (Bhandari et al., 2020). TAC08
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contains 96/58 examples/systems and TAC09 has 88/55 examples/systems. We compute the

correlations with their official Pyramid scores (Equation 4.1).4 REALSumm has 100 CNN/DM

(Hermann et al., 2015) test examples and 25 systems. They label SCUs by themselves and col-

lect SCU-presence labels on Amazon Mechanical Turk (AMT). Both TAC and CNN/DM have

long and extractive summaries. To complete our evaluation, we newly collect an English meta-

evaluation dataset PyrXSum for 100 XSum (Narayan et al., 2018a) (has short and abstractive

summaries) testing examples. Following REALSumm, we (authors) manually label SCUs and

collect SCU-presence labels for summaries generated by 10 systems5 on AMT. We collect 4 re-

sponses per summary (100 * 10 * 4 HITs) and filter responses from a noisy worker. We use the

majority vote to label each SCU’s presence and break ties by“not present”. See more data col-

lection details of PyrXum in Section 4.6.1.

4.4.4 Models

We use the pretrained RoBERTa-large (Liu et al., 2019b) based NLI model released by Nie

et al. (2020), which has been trained on multiple NLI datasets. We continually finetune this model

with the gold SCUs plus SCU-presence labels always for 2 epochs. For SRL, Coreference Res-

olution, and Constituency Tree Parser, we use the out-of-the-box tools provided by AllenNLP

(Gardner et al., 2018; Shi and Lin, 2019; Lee et al., 2018; Joshi et al., 2018). See the complete

implementation details in Section 4.6.2.
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System-level Summary-level

TAC08 TAC09 RealSumm PyrXSum TAC08 TAC09 RealSumm PyrXSum
Metrics r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

ROUGE-1 .87 .87 .91 .86 .82 .83 .92 .90 .62 .61 .69 .63 .53 .50 .52 .50
ROUGE-2 .90 .90 .92 .90 .84 .82 .93 .91 .63 .62 .71 .64 .46 .43 .53 .51
ROUGE-L .87 .86 .93 .87 .83 .81 .94 .92 .57 .55 .66 .59 .46 .42 .52 .51
AutoSummENG .90 .89 .91 .89 .53 .51 .92 .91 .65 .64 .71 .64 .34 .34 .56 .53
METEOR .90 .89 .93 .88 .84 .84 .94 .89 .65 .64 .73 .68 .54 .49 .58 .56
BEwT-E .92 .91 .95 .92 .83 .84 .93 .86 .66 .65 .75 .68 .47 .45 .54 .52
S3 pyr .90 .89 .95 .89 .86 .85 .94 .89 .66 .65 .75 .68 .54 .50 .57 .54
S3 resp .91 .91 .94 .90 .86 .86 .94 .90 .67 .65 .74 .68 .52 .48 .57 .54
PyrEval qual .83 .81 .88 .80 - - - - .40 .39 .49 .44 - - - -
PyrEval comp .83 .80 .90 .79 - - - - .41 .40 .53 .45 - - - -
BertScore .88 .87 .90 .90 .73 .77 .92 .89 .61 .60 .70 .65 .48 .46 .57 .54
BertScore (idf) .89 .88 .91 .90 .73 .78 .93 .90 .62 .61 .71 .66 .48 .46 .58 .55
MoverScore .91 .89 .95 .90 .40 .31 .92 .91 .64 .63 .73 .68 .39 .36 .57 .54
QAEval EM .83 .81 .85 .83 .61 .51 .86 .85 .48 .48 .64 .55 .28 .27 .29 .27
QAEval F1 .89 .87 .90 .87 .72 .65 .90 .83 .61 .60 .70 .63 .38 .35 .46 .42

Lite3Pyramid .93 .91 .97 .93 .89 .87 .89 .86 .71 .69 .78 .73 .57 .53 .51 .48
Lite2.5Pyramid .95 .93 .97 .94 .90 .88 .92 .87 .76 .75 .82 .77 .62 .57 .64 .59
Lite2Pyramid .95 .93 .97 .94 .89 .86 .95 .92 .77 .76 .83 .78 .64 .60 .74 .66
Lite2Pyramid-0 .86 .83 .95 .88 .86 .82 .96 .92 .62 .61 .74 .68 .56 .53 .73 .72

Table 4.1: 5-fold (split by examples) cross-validation results. In each column, the bold numbers
are the best and the underline numbers are the best out of automatic metrics. All Lite2Pyramid-0
numbers are based on fnli = l3c, while all other numbers of our metrics are based on fnli = p2c.

4.5 Results

4.5.1 Human-Metric Correlation Results

Since we find that finetuning the NLI model with in-domain presence labels is greatly bene-

ficial, following Peyrard et al. (2017), we evaluate by 5-fold cross-validation. For each dataset,

we split it into 5 folds, finetune the NLI model and train the regressor on 4 folds, test on the left

one, and repeat for 5 times. We report the 5-fold average correlations of both our metrics and the

15 metrics we compare to for fair comparison. Instead of random splitting, we split the data by

examples or by systems, aiming to check the generalizability across examples or systems. E.g.,

4We find that the exhaustive set based computation (replacing fnli in Equation 4.2 by gold labels) has close to per-
fect correlation with TAC’s official scores. REALSumm also use this computation as reflected by the gold score in
Figure 4.1.
5Fast Abs RL (Chen and Bansal, 2018), PtGen (See et al., 2017), ConvS2S and T-ConvS2S (Narayan et al., 2018a),
TransAbs and BertAbs and BertExtAbs (Liu and Lapata, 2019), T5 (Raffel et al., 2020), BART (Lewis et al., 2020a),
PEGASUS (Zhang et al., 2020a)
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if we split REALSumm by examples, each fold has summaries of 20 examples; when split by

systems, each fold has summaries generated by 5 systems.

Table 4.1 shows our 5-fold (split by examples) cross-validation results. Firstly, it can be ob-

served that our Lite2Pyramid always has the best or close to the best correlations; especially,

it has 0.08 to 0.16 higher summary-level correlations than the best metrics we compare to. It

demonstrates the advantage of semi-automatic evaluation which dramatically improves relia-

bility without losing reproducibility. Meanwhile, it indicates that the finetuned NLI model can

generalize to new data examples and works reasonably well as a proxy of human judgment. In

contrast, Lite2Pyramid-0, which uses a non-finetuned NLI model, usually works greatly worse

than Lite2Pyramid, which indicates the importance of in-domain finetuning. It is surprising that

Lite2Pyramid-0 works better than or similar to Lite2Pyramid on PyrXSum. We conjecture that

because our PyrXSum is relatively small-size, the finetuning will not make big difference.

Secondly, our Lite3Pyramid has the best correlations comparing to the other automatic met-

rics, except for PyrXSum; again, its advantage is more prominent on summary-level correlation

(around 0.03 to 0.05 better). Its failure in PyrXSum is caused by the limitation of SRL. XSum’s

reference summary sentences usually have a lot of modifiers, adverbial phrases/clauses, or com-

plements, which increases the difficulty of decomposing it into STUs. E.g., for the summary

“Netherlands midfielder Wesley Sneijder has joined French Ligue 1 side Nice on a free trans-

fer”, human annotates the following 5 SCUs: “Wesley Sneijder is a midfielder”, “Wesley Snei-

jder comes from Netherlands”, “Wesley Sneijder has joined French Ligue 1 side”, “Wesley Snei-

jder has joined Nice”, and “Wesley Sneijder has been on a free transfer”. However, since SRL

frames are centered around verbs, it can only extract two STUs: “Netherlands midfielder Wesley

Sneijder joined French Ligue 1 side Nice” and “Netherlands midfielder Wesley Sneijder joined

on a free transfer”. On average, human labels 4.8 SCUs per PyrXSum summary, however, the

number is only 2.8 for STUs. Hence, a better semantic unit decomposer needs to be designed to

improve Lite3Pyramid’s accuracy.

72



0 20 40 60 80 100
The Percentage of STUs (%)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Su
m

m
ar

y-
le

ve
l P

ea
rs

on
 C

or
re

la
tio

n

Random
Regressor
TAC08
TAC09
REALSumm
PyrXSum

Figure 4.2: Lite2.xPyramid curves and its comparison to replacing random sentences’ SCUs with
STUs.

Lastly, Lite2.xPyramid alleviates the problem mentioned above by deferring complex sen-

tences to humans to annotate SCUs for. As shown in Table 4.1, Lite2.5Pyramid, which saves half

human effort by substituting 50% sentences’ SCUs with STUs, always has correlation reduction

less than half of the difference between Lite2Pyramid and Lite3Pyramid and sometimes even has

better system-level correlations than Lite2Pyramid. The full Lite2.xPyramid curves are shown

in Figure 4.2, where the x-axis is the percentage of STUs (the higher means the fewer human ef-

forts involved) and the y-axis is the summary-level Pearson correlation (Figure 4.3 shows system-

level correlations). We can see that our Lite2.xPyramid offers a smoothing transition from semi-

automatic Lite2Pyramid to automatic Lite3Pyramid. More importantly, compared to randomly

selecting sentences (yellow dash lines), our regressor-based selection achieves a slower correla-

tion reduction, i.e., saving the same amount of human effort our method can retain higher metric

quality. Plus, this curve gives people flexible choices per their budget.

The 5-fold (split by systems) cross-validation results are in Table 4.2. The same trends are

mostly observed. Lite2Pyramid still has 0.06 to 0.21 higher summary-level correlations across

all datasets. Lite3Pyramid achieves the best or competitive correlations comparing to other au-

tomatic metrics except for the system-level correlations on REALSumm and PyrXSum. And,

Lite2.xPyramid also nicely bridges Lite2Pyramid and Lite3Pyramid and works better than random
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Figure 4.3: Lite2.xPyramid curves (for system-level correlations) and its comparison to replacing
random sentences’ SCUs with STUs.

replacement. However, differently, Lite2Pyramid does not get the best system-level correlations

on REALSumm and PyrXSum, which may indicate the bigger generalization challenge across

different systems.

Takeaway: Lite2Pyramid consistently has the best summary-level correlations and the best system-

level correlations in most cases. The automatic Lite3Pyramid also mostly works better than other

automatic metrics. Lite2.xPyramid provides flexible and balanced degrees of automation per bud-

get.

4.5.2 Out-of-the-Box Generalization

We release the finetuned NLI models and the pretrained sentence regressors for future usage,

so that they will work as out-of-the-box evaluation metrics for any summarization tasks. Then, a

natural question to ask is how will the metrics perform on a new summarization task? To better

estimate the out-of-the-box performance, we simulate out-of-the-box situations by training the

NLI model and the regressor on some dataset(s) and then evaluate metrics on the other dataset(s).

For example, in the last big row (starting with TAC08+TAC09+REALSumm) of Table 4.3, we

finetune the NLI model and train the regressor on the entire TAC08+TAC09+REALSumm data

then evaluate our metrics on PyrXSum only. Meanwhile, we also compare to other metrics. Dif-
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System-level Summary-level

TAC08 TAC09 REALSumm PyrXSum TAC08 TAC09 REALSumm PyrXSum
Metrics r ρ r ρ r ρ r ρ r ρ r ρ r ρ r ρ

ROUGE-1 .92 .92 .93 .88 .76 .66 1.0 1.0 .61 .59 .66 .60 .47 .43 .30 .30
ROUGE-2 .96 .96 .97 .93 .82 .82 1.0 1.0 .63 .60 .67 .61 .43 .41 .30 .30
ROUGE-L .93 .91 .95 .90 .82 .84 1.0 1.0 .56 .53 .62 .57 .40 .36 .29 .29
AutoSummENG .94 .89 .96 .91 .51 .40 .60 .60 .64 .62 .68 .62 .33 .32 .07 .07
METEOR .94 .93 .95 .88 .81 .76 .60 .60 .65 .62 .70 .65 .49 .46 .26 .26
BEwT-E .96 .94 .98 .93 .82 .72 .60 .60 .65 .62 .72 .66 .43 .40 .28 .28
S3 pyr .95 .93 .95 .89 .81 .78 1.0 1.0 .66 .63 .71 .65 .49 .45 .24 .24
S3 resp .96 .94 .96 .90 .82 .82 1.0 1.0 .66 .64 .71 .65 .48 .44 .22 .22
PyrEval qual .91 .88 .91 .84 - - - - .40 .38 .46 .42 - - - -
PyrEval comp .90 .87 .93 .80 - - - - .41 .39 .49 .44 - - - -
BertScore .91 .89 .98 .89 .69 .68 .60 .60 .61 .58 .67 .62 .43 .40 .12 .12
BertScore (idf) .93 .90 .97 .89 .70 .68 .60 .60 .61 .58 .68 .63 .44 .41 .10 .10
MoverScore .95 .92 .96 .90 .47 .46 .20 .20 .64 .61 .71 .65 .37 .34 .14 .14
QAEval EM .94 .90 .97 .92 .83 .70 .60 .60 .48 .47 .58 .53 .22 .20 .46 .46
QAEval F1 .97 .93 .98 .95 .86 .78 .20 .20 .61 .58 .66 .60 .31 .29 .42 .42

Lite3Pyramid .98 .95 .99 .97 .78 .76 .20 .20 .74 .71 .78 .73 .49 .47 .48˚ .48˚

Lite2.5Pyramid .99 .96 .99 .97 .71 .70 .60 .60 .84 .81 .86 .82 .53 .51 .53˚ .53˚

Lite2Pyramid .99 .98 .99 .98 .74 .72 1.0 1.0 .87 .84 .88 .84 .56 .52 .66˚ .66˚

Lite2Pyramid-0 .88 .85 .97 .90 .73 .72 1.0 1.0 .62 .60 .71 .66 .48 .47 .63 .63

Table 4.2: 5-fold (split by systems) cross-validation results. In each column, the bold numbers
are the best and the underline numbers are the best out of automatic metrics. All Lite2Pyramid-0
numbers are based on fnli = l3c. All other numbers of our metrics are based on fnli = p2c, except
that those star˚ numbers are based on fnli = l2c.

ferent from the numbers in Table 4.1, numbers in Table 4.3 are calculated on the entire meta-

evaluation set instead of the average of 5 folds.

It can be observed from Table 4.3 that our Lite2Pyramid retains its advantage in most out-

of-the-box situations, especially for summary-level correlation. Though Lite3Pyramid does not

always outperform the best metrics, it stays competitive. In addition, Lite2.5Pyramid retains its

feature of trading off less than 50% correlation for saving 50% human effort. Surprisingly, learn-

ing from more data does not perform better: for PyrXSum, learning from all three other datasets

(TAC08+TAC09+REALSumm) gets significantly worse performance than learning from TAC08

only or TAC08+TAC09. We conjecture that the difference between REALSumm (originated

from CNN/DM (Hermann et al., 2015)) and PyrXSum (originated from XSum (Narayan et al.,

2018a)) leads to a “distribution shift”, which causes the performance drop. Besides, though new

metrics have been proposed, ROUGE is still the dominant evaluation metric in the summariza-
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System-level Summary-level

TAC09 REALSumm PyrXSum TAC09 REALSumm PyrXSum
Metrics r ρ r ρ r ρ r ρ r ρ r ρ

ROUGE-1 .93 .89 .91 .92 .98 .96 .69 .63 .53 .50 .52 .50
ROUGE-2 .94 .95 .96 .95 .99 .95 .71 .64 .46 .43 .53 .51
ROUGE-L .96 .92 .94 .95 .99 .95 .66 .59 .46 .42 .52 .51
AutoSummENG .93 .93 .59 .60 .97 .94 .71 .64 .34 .34 .56 .53
METEOR .95 .91 .94 .92 .99 .98 .73 .68 .54 .49 .58 .56
BEwT-E .97 .96 .91 .89 .99 .98 .75 .68 .47 .45 .54 .52
S3 pyr .97 .92 .96 .94 .99 .99 .75 .67 .54 .50 .57 .54
S3 resp .96 .94 .97 .95 .99 .98 .74 .68 .52 .48 .57 .54
PyrEval qual .94 .90 - - - - .49 .44 - - - -
PyrEval comp .95 .86 - - - - .53 .45 - - - -
BertScore .92 .94 .79 .83 .97 .90 .70 .65 .48 .46 .57 .54
BertScore (idf) .93 .95 .79 .83 .97 .90 .71 .66 .48 .46 .58 .55
MoverScore .97 .92 .44 .32 .98 .84 .74 .68 .39 .36 .57 .54
QAEval EM .88 .94 .88 .86 .95 .95 .64 .55 .28 .27 .29 .27
QAEval F1 .93 .95 .91 .89 .95 .84 .70 .63 .38 .35 .46 .43

TAC08 Lite3Pyramid .99 .97 .92 .93 .97 .90 .78 .72 .53 .48 .56 .53
Lite2.5Pyramid .99 .97 .92 .92 .98 .95 .82 .77 .58 .54 .66 .61
Lite2Pyramid .99 .98 .94 .95 .99 .99 .83 .78 .61 .57 .71 .66

TAC08 Lite3Pyramid - - .94 .95 .97 .88 - - .52 .49 .56 .53
+TAC09 Lite2.5Pyramid - - .93 .95 .97 .96 - - .57 .53 .66 .60

Lite2Pyramid - - .94 .95 .99 .98 - - .59 .56 .71 .65

TAC08 Lite3Pyramid - - - - .97 .88 - - - - .50 .44
+TAC09 Lite2.5Pyramid - - - - .98 .94 - - - - .60 .55
+REALSumm Lite2Pyramid - - - - .99 .94 - - - - .70 .64

Table 4.3: Out-of-the-box generalization results. In each column, the bold numbers are the best
and the underline numbers are the best out of automatic metrics.

tion literature. However, based on our comparison, ROUGE is not the best evaluation choice

in most cases, while METEOR (Banerjee and Lavie, 2005) and the learning-based metric, S3

(Peyrard et al., 2017), have fairly good correlations with human judgment. Overall, our automatic

Lite3Pyramid is on a par with them, having the best performance in 4 cases (4 underline scores in

Table 4.3).

Takeaway: When evaluating for a new summarization task with human-labeled SCUs, one could

expect that Lite2Pyramid is reliably trustworthy and should be the top choice. Lite3Pyramid is

also a fairly good choice for fully automatic evaluation. Finally, our pretrained regressor can

guide people on which data examples are more worthy of spending manual effort on annotating

SCUs.
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Speed: Since SCUs’ collection or STUs’ extraction can be treated as data processing steps, the

main speed bottleneck is running the NLI model. When a single TITAN V GPU is available, it

takes around 2.5 minutes to evaluate 500 REALSumm (i.e., CNN/DM) examples.

Usage: We provide the support of our metrics through our github repository and we will also

incorporate it within the SacreROUGE library (Deutsch and Roth, 2020).

4.5.3 Performance of Individual Modules

NLI. On REALSumm, the finetuned and non-finetuned NLI models get 82.34% and 80.51%

accuracy for SCU-presence prediction, respectively. Similarly, 92.53%/87.63% are for TAC08,

93.25%/88.66% are for TAC09, and 92.45%/91.13% are for PyrXSum. Each number is an aver-

age of 5 folds (split by examples). As shown in Table 4.1, Lite2Pyramid (with finetuned NLIs)

always gets higher correlations than Lite2Pyramid-0 (with non-finetuned NLIs) except for PyrX-

Sum. Therefore, we think NLI accuracy positively affects the results. In our work, we use a

RoBERTa (Liu et al., 2019b) based NLI models. Here, to evaluate our metrics’ robustness to

different types of NLI models, we test an ALBERT (Lan et al., 2020) based NLI model.6 On RE-

ALSumm, Lite2Pyramid gets 0.90/0.64 system/summary-level Pearson correlations with human,

similar to our RoBERTa-NLI based results (0.89/0.64).

Regressor. On REALSumm, TAC08, TAC09, and XSum, our regressors’Mean Absolute Er-

rors (MAE) are 0.135, 0.211, 0.206, and 0.090, respectively. On REALSumm, we test a weaker

regressor (MAE=0.167), while we get similar results (0.89/0.62 system/summary-level Pearson

correlations for Lite2.5Pyramid) to our original regressor (0.90/0.62). However, the sentence se-

lector guided by our regressor always works better than the random selector (shown in Figure 4.2

and Figure 4.3). We think the regressor influences the results by determining the ranking. If we

reverse the ranking from the regressor, i.e., replacing SCUs with STUs for more complex sen-

tences, we get lower correlations (0.88/0.60). In our work, we use XGBoost regressor instead

of regressors based on pretrained LM because we think to determine the simulation easiness of

6ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli
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Model Fast Abs RL PtGen ConvS2S T-ConvS2S TransAbs BertAbs BertExtAbs T5 BART PEGASUS

R2 7.02 9.68 11.58 11.46 10.85 15.63 17.68 21.01 23.96 26.23
Pyramid 0.09 0.09 0.12 0.12 0.07 0.19 0.22 0.29 0.31 0.31

Table 4.4: The ROUGE-2 (R2) and gold Pyramid scores obtained by 10 systems on the 100
XSum testing examples.

sentences, syntactic features are more important than semantic features, and we want to keep

the regressor as light-weight as possible. Here, we evaluate a RoBERTa-based regressor on RE-

ALSumm and it gets 0.89/0.62 system/summary-level Pearson correlations for Lite2.5Pyramid,

which is similar to our XGBoost regressor’s results (0.90/0.62).

4.6 Implementation Details

4.6.1 PyrXSum

Both TAC08/09 (DBL, 2008, 2009) and REALSumm (Bhandari et al., 2020) (examples from

CNN/DM (Hermann et al., 2015)) have long and extractive summaries. As a complementary,

we collect a new meta-evaluation dataset, PyrXSum, for XSum (Narayan et al., 2018a) which

contains short and abstractive summaries. We random sample 100 examples from XSum’s test-

ing set. Then, following Bhandari et al. (2020), we (authors) annotate Semantic Content Units

(SCUs) for reference summaries of the 100 examples. After annotation, another non-author na-

tive English speaker is invited to double-check the annotated SCUs and give improvement sug-

gestions. Finally, we annotate 2 to 11 SCUs per reference; on average, there are 4.8 SCUs per

reference.

Next, we obtain model generated summaries for these 100 examples from 10 abstractive sum-

marization systems: Fast Abs RL (Chen and Bansal, 2018), PtGen (See et al., 2017), ConvS2S

and T-ConvS2S (Narayan et al., 2018a), TransAbs and BertAbs and BertExtAbs (Liu and Lap-

ata, 2019), T5 (Raffel et al., 2020), BART (Lewis et al., 2020a), and PEGASUS (Zhang et al.,

2020a). We do not include extractive summarization systems because XSum is known to be

extremely abstractive and even oracle extractive method has low performance (Narayan et al.,
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Figure 4.4: The Amazon Mechanical Turk user interface for collecting human labels of SCUs’
presence.
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2018a). For Fast Abs RL, we use their open-source code7 to train a model on XSum training

set and get its generations for these 100 examples. We directly use the model outputs of PtGen,

ConvS2S, and T-ConvS2S, released by Narayan et al. (2018a).8 For TransAbs, BertAbs, and

BertExtAbs, we also directly use the model outputs released by Liu and Lapata (2019).9 For

BART (Lewis et al., 2020a) and PEGASUS (Zhang et al., 2020a), we take advantage of the XSum

pretrained models released on HuggingFace10 and generate summaries from them. Lastly, we

finetune T5 large on XSum training set via Transformers of HuggingFace (Wolf et al., 2020) and

generate summaries from the finetuned model. Table 4.4 lists the ROUGE-2 (R2) (Lin, 2004)

results of the 10 systems evaluated only on the 100 examples.

Then, we collect the SCUs’ presence labels for each system summary on Amazon Mechan-

ical Turk. Figure 4.4 illustrates the data annotation instructions and interfaces shown to crowd-

sourcing workers. The summaries usually only contain one sentence. We estimate it will take

around 30-45 seconds for a native English speaker to finish one HIT. Following Bhandari et al.

(2020), we pay $0.15 per HIT, which is respectably higher than the U.S. federal minimum wage

requirement. Meanwhile, we select annotators that are located in the U.S., have an approval rate

greater than 98%, and have at least 10,000 approved HITs.

We collect 4 responses per summary (100 * 10 * 4 HITs) and finally, 104 workers were in-

volved. After annotation, we filter the annotations from a noisy worker who did 210 HITs but

disagreed with the majority in 72% of the time. After this filtering, we obtain an average inter-

annotator agreement (Krippendorff’s alpha (Krippendorff, 2011)) of 0.73. Following Bhandari

et al. (2020), we use the majority vote to mark the presence of an SCU and break ties by“not

present”. Table 4.4 shows the gold Pyramid scores of different systems.

7https://github.com/ChenRocks/fast_abs_rl
8https://github.com/EdinburghNLP/XSum
9https://github.com/nlpyang/PreSumm
10https://huggingface.co/facebook/bart-large-xsum, https://huggingface.co/google/pegasus-
xsum
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Usually judging the presence of SCUs is considered as a task with little ambiguity, reflected

by the high inter-annotator agreements achieved by REAMSumm (0.66) (Bhandari et al., 2020)

and our PyrXSum (0.73). To further verify this, on REALSumm, instead of taking the major-

ity vote, we randomly sample 1 out of 4 as the gold label. We conduct this for 3 rounds and test

Lite2Pyramid’s correlations with these 3 sets of human labels. We get 0.89/0.63, 0.90/0.63,

0.90/0.63 system/summary-level Pearson correlations, respectively. They are close to each other

and also close to the results obtained from the majority vote (0.89/0.64). This means workers

give rather consistent SCU-presence labels.

4.6.2 Experimental Details

NLI. For the natural language inference (NLI) used in our work, we take advantage of the pre-

trained NLI released by Nie et al. (2020).11 We use the RoBERTa (Liu et al., 2019b) large based

version.12 This model is implemented on HuggingFace’s Transformers (Wolf et al., 2020) and

was trained on SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018b), FEVER (Thorne

et al., 2018), and ANLI (Nie et al., 2020). We directly use this pretrained model for our Lite2Pyramid-

0 metric. When we finetune this model, for simplicity, we always use learning rate=1e-5, linear

schedule with warmup, and AdamW (Loshchilov and Hutter, 2018) optimizer, and we always

finetune for 2 epochs.

SRL. For Semantic Role Labeling (SRL) model, we use the out-of-the-box SRL model pre-

trained by AllenNLP (Gardner et al., 2018).13 And it is based the model proposed by Shi and Lin

(2019).

11https://github.com/facebookresearch/anli
12ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
13https://demo.allennlp.org/semantic-role-labeling
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Coreference Resolution. For the Coreference Resolution model, we also use the out-of-the-box

Coreference model pretrained by AllenNLP (Gardner et al., 2018).14 And it is based the model

proposed by Lee et al. (2018).

Constituency Parsing. For the Constituency Parsing model, we also use the out-of-the-box

parser pretrained by AllenNLP (Gardner et al., 2018).15 And it is based the model proposed by

Joshi et al. (2018).

Regressor. The full features we used to train the regressor are: (1) sentence length (in words);

(2) linearized parsing tree length (in characters); (3) parsing tree depth; (4) parsing tree depth

divided by sentence length; (5) the counts of parsing tree non-terminal tokens.16 Then, we train

the regressor through the XGBoost Python Package17 and we set the max depth=3, learning rate

eta=0.1, number of round=40.

4.7 Conclusion

We propose to combine manual effort and automation for summary evaluation. We introduce

a semi-automatic Lite2Pyramid that gains reproducibility by replacing part of human effort with

an NLI model. Following it, an automatic Lite3Pyramid is proposed through decomposing refer-

ences by SRL. Plus, we propose a simple yet effective regressor to decide which sentences are

more worthy of labeling SCUs for, leading to flexible transition metrics, Lite2.xPyramid. Evaluat-

ing on four meta-evaluation datasets and comparing to 15 other automatic metrics, Lite2Pyramid

consistently has the best summary-level correlations; Lite3Pyramid also performs better or com-

petitively; and Lite2.xPyramid offers flexible degrees of automation, and its regressor will pro-

vide useful or expense-saving guidance for future datasets.

14https://demo.allennlp.org/coreference-resolution
15https://demo.allennlp.org/constituency-parsing
16WRB, RBR, ADVP, VBG, $, ”, WHADVP, -RRB-, JJR, NAC, PRP, NNS, WP, VBZ, MD, WDT, NP, ADJP,
PDT, EX, UH, NN, NFP, SYM, PRP$, RBS, FRAG, NX, CONJP, RP, WHPP, CC, VBD, LS, ., SBAR, TO, JJ,
IN, VP, -LRB-, S, QP, SQ, CD, “, X, POS, XX, PP, PRT, JJS, HYPH, „ RB, VBN, :, VBP, DT, VB, SINV, UCP,
WHNP, NNPS, NNP.
17https://xgboost.readthedocs.io/en/latest/python/index.html
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CHAPTER 5: EXTRACTIVE IS NOT FAITHFUL: FAITHFULNESS EVALUATION
FOR EXTRACTIVE SUMMARIZATION

5.1 Introduction

Text summarization is the process of distilling the most important information from a source

to produce an abridged version for a particular user or task (Maybury, 1999). Although there are

many types of text summarization tasks, in this work, we focus on the task of general purpose

single document summarization. To produce summaries, usually either extractive summarization

methods, i.e., extracting sentences from the source, or abstractive summarization methods, i.e.,

generating novel text, are applied (Saggion and Poibeau, 2013).

Abstractive summarization attracts more attention from recent works because it can produce

more coherent summaries and behaves more like humans (Cohn and Lapata, 2008). Impressive

progress has been made for abstractive summarization by large-scale pre-trained models (Lewis

et al., 2020b; Zhang et al., 2020a). However, unfaithfulness problems, i.e., hallucinating new in-

formation or generating content that contradicts the source, are widely spread across models and

tasks (Cao et al., 2018; Maynez et al., 2020). Although these problems do not necessarily get cap-

tured by typically-used evaluation metrics, e.g., ROUGE (Lin, 2004), even minor unfaithfulness

can be catastrophic and drive users away from real-world applications. Therefore, an increasing

volume of research has focused on analyzing (Falke et al., 2019; Maynez et al., 2020; Goyal and

Durrett, 2021), evaluating (Kryscinski et al., 2020; Goyal and Durrett, 2021; Wang et al., 2020a;

Durmus et al., 2020; Scialom et al., 2021; Xie et al., 2021), or addressing (Cao et al., 2018; Li

et al., 2018; Fan et al., 2018b; Chen et al., 2021; Cao and Wang, 2021; Xu et al., 2022; Wan and

Bansal, 2022) unfaithfulness problems in abstractive summarization.
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Extractive summarization is known to be faster, more interpretable, and more reliable (Chen

and Bansal, 2018; Li et al., 2021; Dreyer et al., 2021). And the selection of important information

is the first skill that humans learn for summarization (Kintsch and van Dijk, 1978; Brown and

Day, 1983). Recently, some works discuss the trade-off between abstractiveness and faithfulness

(Ladhak et al., 2022; Dreyer et al., 2021). They find that the more extractive the summary is, the

more faithful it is.1 This may give the community the impression that if the content is extracted

from the source, it is guaranteed to be faithful. However, is this always true? In this work, we

will show that, unfortunately, it is not.

The problems of extractive summarization are usually referred as coherence, out-of-context,

or readability issues (Nanba and Okumura, 2000; Nenkova and McKeown, 2012; Saggion and

Poibeau, 2013; Dreyer et al., 2021). Though they may sound irrelevant to faithfulness, some

early works give hints of their unfaithful ingredients. Gupta and Lehal (2010) describe the ‘dan-

gling’ anaphora problem – sentences often contain pronouns that lose their referents when ex-

tracted out of context, and stitching together extracts may lead to a misleading interpretation of

anaphors. Barzilay et al. (1999) comment on extractive methods for multi-document summa-

rization, that extracting some similar sentences could produce a summary biases towards some

sources. Cheung (2008) says that sentence extraction produces extremely incoherent text that did

not seem to convey the gist of the overall controversiality of the source. These all suggest that

even though all information is extracted directly from the source, the summary is not necessarily

faithful to the source. However, none of these works has proposed an error typology nor quantita-

tively answered how unfaithful the model extracted summaries are, which motivates us to fill in

this missing piece.

In this work, we conduct a thorough investigation of the broad unfaithfulness problems in

extractive summarization. Although the literature of abstractive summarization usually limits

unfaithful summaries to those that are not entailed by the source (Maynez et al., 2020; Kryscin-

ski et al., 2020), we discuss broader unfaithfulness issues including and beyond not-entailment.

1Note that some previous works seemed to interchange the usage of factuality and faithfulness. But we think they are
slightly different. Thus, we stick to faithfulness that represents the property of staying true to the source.
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We first design a typology consisting five types of unfaithfulness problems that could happen

in extractive summaries: incorrect coreference, incomplete coreference, incorrect discourse, in-

complete discourse, and other misleading information (see definitions in Figure 5.2). Among

them, incorrect coreference and incorrect discourse are not-entailment based errors. An exam-

ple of incorrect coreference is shown in Summary 1 of Figure 5.1, where that in the second sen-

tence should refer to the second document sentence –But they do leave their trash, but it incor-

rectly refers to the first sentence in the summary. Summaries with incomplete coreferences or

discourses are usually entailed by the source, but they can still lead to unfaithful interpretations.

Lastly, inspired by misinformation (O’Connor and Weatherall, 2019), our misleading informa-

tion error type refers to other cases where, despite being entailed by the source, the summary still

misleads the audience by selecting biased information, giving the readers wrong impressions, etc

(see Section 5.2).

We ask humans to label these problems out of 1600 model extracted summaries that are pro-

duced by 16 extractive summarization systems for 100 CNN/DM English articles (Hermann

et al., 2015). These 16 systems cover both supervised and unsupervised methods, include both

recent neural-based and early graph-based models, and extract sentences or elementary discourse

units (see Section 5.3). By analyzing human annotations, we find that 30.3% of the 1600 sum-

maries have at least one of the five types of errors. Out of which, 3.9% and 15.4% summaries

contain incorrect and incomplete coreferences respectively, 1.1% and 10.7% summaries have

incorrect and incomplete discourses respectively, and other 4.9% summaries still mislead the

audience without having coreference or discourse issues. The non-negligible error rate demon-

strates that extractive is not necessarily faithful. Among the 16 systems, we find that the two or-

acle extractive systems (that maximize ROUGE (Lin, 2004) against the gold summary by using

extracted discourse units or sentences) surprisingly have the most number of problems, while the

Lead3 model (the first three sentences of the source document) causes the least number of issues.

We examine whether these problems can be automatically detected by 5 widely-used met-

rics, including ROUGE (Lin, 2004) and 4 faithfulness evaluation metrics for abstractive summa-
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Document:
(CNN) Most climbers who try don’t succeed in summiting the 29,035-foot-high Mount Everest,
the world’s tallest peak.
But they do leave their trash. Thousands of pounds of it.
That’s why an experienced climbing group from the Indian army plans to trek up the 8,850-meter
mountain to pick up at least 4,000 kilograms (more than 8,000 pounds) of waste from the high-altitude
camps, according to India Today.
The mountain is part of the Himalaya mountain range on the border between Nepal and the Tibet region.
The 34-member team plans to depart for Kathmandu on Saturday and start the ascent in mid-May.
The upcoming trip marks the 50th anniversary of the first Indian team to scale Mount Everest [...]
More than 200 climbers have died attempting to climb the peak, part of a UNESCO World Heritage
Site. The Indian expedition isn’t the first attempt to clean up the trash left by generations of hikers[...]

Summary 1 (incorrect coreference):
(CNN) Most climbers who try don’t succeed in summiting the 29,035-foot-high Mount Everest, the
world’s tallest peak.
That’s why an experienced climbing group from the Indian army plans to trek up the 8,850-meter
mountain to pick up at least 4,000 kilograms (more than 8,000 pounds) of waste from the high-altitude
camps, according to India Today. [...]

Summary 2 (incomplete coreference & incorrect discourse) :
That’s why an experienced climbing group from the Indian army plans to trek up the 8,850-meter
mountain
to pick up at least 4,000 kilograms
More than 200 climbers have died
to clean up the trash [...]

Summary 3 (incomplete discourse & incomplete coreference):
But they do leave their trash. Thousands of pounds of it. [...]

Figure 5.1: An example from CNN/DM (Hermann et al., 2015) testing set showing the first four
types of unfaithfulness problems defined in section 5.2. The three summaries are generated by
NeuSumm (Zhou et al., 2018a) Oracle (disco) (Xu et al., 2020a), and BERT+LSTM+PN+RL
(Zhong et al., 2019), respectively. All extracted sentences or discouse units are underlined in
the document. The problematic parts are bolded in the summary. The incorrect reference in the
summary is marked with red, and the correct reference is marked with blue in the document. We
replace non-relevant sentences with [...].

rization (FactCC (Kryscinski et al., 2020), DAE (Goyal and Durrett, 2020), QuestEval (Scialom

et al., 2021), BERTScore (Zhang et al., 2020c)). We find that, except BERTScore, they have ei-

ther no or small correlations with human labels. We design a new metric, ExtEval, for extractive

summarization. It contains four sub-metrics that are used to detect incorrect coreference, incom-

plete coreference, incorrect or incomplete discourse, and sentiment bias, respectively. We show

that ExtEval performs best at detecting unfaithful extractive summaries (see Section 5.4 for more

details). Finally, we discuss the generalizability and future directions of our work in Section 5.5.
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Type Definition Rationale

Incorrect
Coreference

An anaphor in the summary refers to a different entity from
what the same anaphor refers to in the document. The anaphor
can be a pronoun (they, she, he, it, this, that, those, these, them,
her, him, their, her, his, etc.) or a ‘determiner (the, this, that,
these, those, both, etc.) + noun’ phrase.

Not-entailment

Incomplete
Coreference

An anaphor in the summary has ambiguous or no antecedent. Ambiguous interpre-
tation

Incorrect
Discourse

A sentence with a discourse linking term (e.g., but, and, also, on
one side, meanwhile, etc.) or a discourse unit (usually appears
as a sub-sentence) falsely connects to the following or preced-
ing context in the summary, which leads the audience to infer a
non-exiting fact, relation, etc.

Not-entailment

Incomplete
Discourse

A sentence with a discourse linking term or a discourse unit has
no necessary following or preceding context to complete the
discourse.

Ambiguous interpre-
tation

Other Mis-
leading
Information

Other misleading problems include but do not limit to leading
the audience to expect a different consequence and conveying a
dramatically different sentiment.

Bias and wrong im-
pression

Figure 5.2: Our typology of broad unfaithfulness problems in extractive summarization.

In summary, our contributions are (1) a taxonomy of broad unfaithfulness problems in extrac-

tive summarization, (2) a human-labeled evaluation set with 1600 examples from 16 diverse ex-

tractive systems, (3) meta-evaluations of 5 existing metrics, (4) a new faithfulness metric (ExtE-

val) for extractive summarization. Overall, we want to remind the community that even when the

content is extracted from the source, there is still a chance to be unfaithful. Hence, we should be

aware of these problems, be able to detect them, and eventually resolve them to achieve a more

reliable summarization.

Github repository: https://github.com/ZhangShiyue/extractive_is_not_faithful

5.2 Broad Unfaithfulness Problems

In this section, we will describe the five types of broad unfaithfulness problems (Figure 5.2)

we identified for extractive summarization under our typology. In previous works about abstrac-

tive summarization, unfaithfulness usually only refers to the summary being not entailed by the
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source (Maynez et al., 2020; Kryscinski et al., 2020). The formal definition of entailment is t en-

tails h if, typically, a human reading t would infer that h is most likely true (Dagan et al., 2005).

While we also consider being not entailed as one of the unfaithfulness problems, we will show

that there is still a chance to be unfaithful despite being entailed by the source. Hence, we call the

five error types we define here the ‘broad’ unfaithfulness problems, and we provide a rationale

for each error type in Figure 5.2.

The most frequent unfaithfulness problem of abstractive summarization is the presence of in-

correct entities or predicates (Gabriel et al., 2021; Pagnoni et al., 2021), which can never happen

within extracted sentences (or elementary discourse units2). For extractive summarization, the

problems can only happen ‘across’ sentences (or units).3 Hence, we first define four error types

about coreference and discourse. Following SemEval-2010 (Màrquez et al., 2013), we define

coreference as the mention of the same textual references to an object in the discourse model, and

we focus primarily on anaphors that require finding the correct antecedent. We ground our dis-

course analysis for systems that extract sentences in the Penn Discourse Treebank (Prasad et al.,

2008), which considers the discourse relation between sentences as “lexically grounded”. E.g.,

the relations can be triggered by subordinating conjunctions (because, when, etc.), coordinating

conjunctions (and, but, etc.), and discourse adverbials (however, as a result, etc). We refer to

such words as discourse linking terms. For systems that extract discourse units, we follow the

Rhetorical Structure Theory (Mann and Thompson, 1988) and assume every unit potentially re-

quires another unit to complete the discourse.

Finally, inspired by the concept of misinformation (incorrect or misleading information pre-

sented as fact), we define the fifth error type – misleading information that captures other mis-

leading problems besides the other four errors. The detailed definitions of the five error types are

as follows:

2Elementary Discourse Unit (or EDU) is a concept from the Rhetorical Structure Theory (Mann and Thompson,
1988). Each unit usually appears as a sub-sentence.
3Even though some may argue that extracted sentences should be read independently, in this work, we take them as a
whole and follow their original order in the document. We think this is a reasonable assumption and shares the same
spirit of previous works that talk about the coherence issue of extractive summaries (Gupta and Lehal, 2010).
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Incorrect coreference happens when the same anaphor is referred to different entities given

the summary and the document. The anaphor can be a pronoun (they, she, he, it, etc.) or a ‘de-

terminer (the, this, that, etc.) + noun’ phrase. This error makes the summary not entailed by the

source. An example is Summary 1 of Figure 5.1, where the mention that refers to the sentence

–But they do leave their trash. Thousands of pounds of it – in the document but incorrectly refers

toMost climbers who try don’t succeed in summiting the 29,035-foot-high Mount Everest. Users

who only read the summary may think there is some connection between cleaning up trash and

the fact that most climbers do not succeed in summiting the Mount Everest.

Incomplete coreference happens when an anaphor in the summary has ambiguous or no an-

tecedent.4 Following the formal definition of entailment, these examples are considered to be

entailed by the document. Nonetheless, it sometimes can still cause unfaithfulness, as it leads

to ‘ambiguous interpretation’. For example, given the source “Jack eats an orange. John eats an

apple” and the faithfulness of “He eats an apple” depends entirely on whom “he” is. Figure 5.1

illustrates an example of incomplete coreference, where Summary 2 starts with that’s why, but

readers of that summary do not know the actual reason. Please refer to Figure 5.4 for another ex-

ample with a dangling pronoun and ambiguous antecedents.

Incorrect discourse happens when a sentence with a discourse linking term (e.g., but, and,

also, etc.)5 or a discourse unit falsely connects to the following or preceding context in the sum-

mary, which leads the audience to infer a non-exiting fact, relation, etc. An example is shown by

Summary 2 in Figure 5.1, where More than 200 climbers have died falsely connects to clean up

the trash, which makes readers believe 200 climbers have died because of cleaning up the trash.

But in fact, they died attempting to climb the peak. This summary is also clearly not entailed by

the source.

4Note that sometimes a ‘determiner + noun’ phrase has no antecedent, but it does not affect the understanding of the
summary or there is no antecedent of the mention in the document either. In which case, it is not an anaphor, and
thus we do not consider it as an incomplete coreference.
5We do not consider implicit (without a linking term) discourse relations between sentences because it hardly ap-
pears in our data and will cause a lot of annotation ambiguity.
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Incomplete discourse happens when a sentence with a discourse linking term or a discourse

unit has no necessary following or preceding context to complete the discourse. Similar to incom-

plete coreference, summaries with this error are considered entailed, but the broken discourse

makes the summary confusing and thus may lead to problematic interpretations. An example is

shown in Figure 5.1. Summary 3 starts with but, and readers expect to know what leads to this

turning, but it is never mentioned. See Figure 5.5 for another example that may leave readers

with a wrong impression because of incomplete discourse.

Other misleading information refers to other misleading problems besides the other four er-

ror types. It includes but does not limit to leading the audience to expect a different consequence

and conveying a dramatically different sentiment. This error is also difficult to capture using the

entailment-based definition. Summaries always select partial content from the source, however,

sometimes, the selection can mislead or bias the audience. Gentzkow et al. (2015) show that fil-

tering and selection can result in ‘media bias’. We define this error type so that annotators can

freely express whether they think the summary has some bias or leaves them with a wrong im-

pression. The summary in Figure 5.6 is labeled as misleading by two annotators because it can

mislead the audience to believe that the football players and pro wrestlers won the contest and ate

13 pounds of steak.

Note that we think it is also valid to separate misleading information and incomplete corefer-

ence/discourse, as they are less severe in unfaithfulness compared to not-entailment-based incor-

rect coreference/discourse, but we choose to cover all of them under the ‘broad unfaithfulness’

umbrella for completeness.

5.3 Human Evaluation

In this section, we describe how we ask humans to find and annotate the unfaithfulness prob-

lems.
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5.3.1 Data

We randomly select 100 articles from CNN/DM test set (Hermann et al., 2015) because it is

a widely used benchmark for single-document English summarization and extractive methods

perform decently well on it. The dataset is distributed under an Apache 2.0 license.6 We use 16

extractive systems to produce summaries, i.e., 1600 summaries in total. We retain the order of

sentences or units in the document as their order in the summary.

Ten supervised systems: (1) Oracle maximizes the ROUGE between the extracted summary

and the ground-truth summary; (2) Oracle (discourse) (Xu et al., 2020a) extracts discourse units

instead of sentences to maximize ROUGE while considering discourse constraints; (3) RNN Ext

RL (Chen and Bansal, 2018); (4) BanditSumm (Dong et al., 2018); (5) NeuSumm (Zhou et al.,

2018b); (6) Refresh (Narayan et al., 2018b); (7) BERT+LSTM+PN+RL (Zhong et al., 2019);

(8)MatchSumm (Zhong et al., 2020); (9) HeterGraph (Wang et al., 2020b); (10) Histruct+

(Ruan et al., 2022). We implement the Oracle system, and we use the open-sourced code of RNN

Ext RL7 and output of Oracle (discourse)8. We get summaries from Histruct+ using their released

code and model.9 The summaries of other systems are from REALSumm (Bhandari et al., 2020)

open-sourced data.10

Six unsupervised systems: (1) Lead3 extracts the first three sentences of the document

as the summary; (2) Textrank (Mihalcea and Tarau, 2004); (3) Textrank (ST): ST stands for

Sentence Transformers (Reimers and Gurevych, 2019); (4) PacSum (tfidf) and (5) PacSum

(bert) (Zheng and Lapata, 2019); (6)MI-unsup (Padmakumar and He, 2021). We implement

6https://huggingface.co/datasets/cnn_dailymail
7https://github.com/ChenRocks/fast_abs_rl
8https://github.com/jiacheng-xu/DiscoBERT
9https://github.com/QianRuan/histruct
10https://github.com/neulab/REALSumm
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Figure 5.3: The unfaithfulness error distributions of 16 extractive summarization systems.

Lead3 and use the released code of PacSum.11 For Textrank, we use the summa package.12 For

MI-unsup, we directly use the system outputs open-sourced by the authors.13

Even though only Oracle (discourse) explicitly uses the discourse structure (the Rhetorical

Structure Theory graph), some other systems also implicitly model discourse, e.g., HeterGraph

builds a graph of sentences based on word overlap.

5.3.2 Setup

We ask humans to label unfaithfulness problems out of the 1600 system summaries. The an-

notation interface (HTML page) is shown in Figure 5.8. It first shows the summary and the docu-

ment. The summary sentences are also underlined in the document. To help with annotation, we

11https://github.com/mswellhao/PacSum
12https://github.com/summanlp/textrank
13https://github.com/vishakhpk/mi-unsup-summ
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run a state-of-the-art coreference resolution model, SpanBERT (Joshi et al., 2020a) via AllenNLP

(v2.4.0) (Gardner et al., 2018) on the summary and the document respectively. Then, mentions

from the same coreference cluster will be shown in the same color. Since the coreference model

can make mistakes, we ask annotators to use them with caution.

Annotators are asked to judge whether the summary has each of the five types of unfaithful-

ness via five yes or no questions and if yes, justify the choice by pointing out the unfaithful parts.

Details of the annotation can be found in Section 5.6.1.

Four annotators, two of the authors (PhD students trained in NLP/CL) and two other CS un-

dergraduate students (researchers in NLP/CL), conducted all annotations carefully in about 3

months. Each of the 1600 summaries first was labeled by two annotators independently. Then,

they worked together to resolve their differences in annotating incorrect/incomplete coreferences

and incorrect/incomplete discourses because these errors have little subjectivity and agreements

can be achieved. The judgment of misleading information is more subjective. Hence, each anno-

tator independently double-checked examples that they labeled no while their partner labeled yes,

with their partner’s answers shown to them. They do not have to change their mind if they do not

agree with their partner. This step is meant to make sure nothing is missed by accident. In total,

149 examples have at least one misleading label, out of which, 79 examples have both annota-

tors’ misleading labels. In analysis, we only view a summary as misleading when both annotators

labeled yes, regardless of the fact that they may have different reasons.

5.3.3 Results of Human Evaluation

Finally, we find that 484 out of 1600 (30.3%) summaries contain at least one of the five prob-

lems. 63 (3.9%) summaries contain incorrect coreferences, 247 (15.4%) summaries have incom-

plete coreferences, 18 (1.1%) summaries have incorrect discourses, 171 (10.7%) have incomplete

discourses, and 79 (4.9%) summaries are misleading. The error breakdowns for each system are

illustrated in Figure 5.3. Note that one summary can have multiple problems, hence why Oracle

(discourse) in Figure 5.3 has more than 100 errors.
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The nature of different models makes them have different chances to create unfaithfulness

problems. For example, the Lead3 system has the least number of problems because the first

three sentences of the document usually have an intact discourse, except in a few cases it re-

quires one more sentence to complete the discourse. In contrast, the two Oracle systems have the

most problems. The Oracle model often extracts sentences from the middle part of the document,

i.e., having a higher chance to cause dangling anaphora or discourse linking. The Oracle (dis-

course) model contains the most number of incorrect discourses because concatenating element

discourse units together increases the risk of misleading context. Furthermore, better systems

w.r.t ROUGE scores do not necessarily mean that the summaries are more faithful, e.g., the lat-

est system Histruct+ still contains many unfaithfulness errors, indicating the need to specifically

address such faithfulness issues.

Cao et al. (2018) show that about 30% abstractive summaries generated for CNN/DM are not

entailed by the source. Also on CNN/DM, FRANK (Pagnoni et al., 2021) finds that about 42%

abstractive summaries are unfaithful, including both entity/predicate errors and coreference/dis-

course/grammar errors. Compared to these findings, extractive summarization apparently has

fewer issues. We do note, however, that the quantity is not negligible, i.e., extractive ‰ faithful.

5.4 Automatic Evaluation

Here, we analyze whether existing automatic faithfulness evaluation metrics can detect un-

faithful extractive summaries. We additionally propose a new evaluation approach, ExtEval.

5.4.1 Meta-evaluation Method

To evaluate automatic faithfulness evaluation metrics (i.e., meta-evaluation) for extractive

summarization, we follow the faithfulness evaluation literature of abstractive summarization

(Durmus et al., 2020; Wang et al., 2020a; Pagnoni et al., 2021) and compute the correlations

between metric scores and human judgment on our meta-evaluation dataset (i.e., the 1600 ex-
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amples). Though one summary can have multiple issues for one error type, for simplicity, we

use the binary (0 or 1) label as the human judgment of each error type. In addition, we introduce

an Overall human judgment by taking the summation of the five error types. So, the maximum

score of Overall is 5. We use Pearson r or Spearman ρ as the correlation measure.

This meta-evaluation method is essentially assessing how well the metric can automatically

detect unfaithful summaries, which is practically useful. For example, we can pick out sum-

maries with high unfaithfulness scores and ask human editors to fix them. One underlying as-

sumption is that the metric score is comparable across examples. However, some metrics are

example-dependent (one example’s score of 0.5 ‰ another example’s score of 0.5), e.g., ROUGE

is influenced by summary length (Sun et al., 2019). In practice, we do not observe any significant

effect of example dependence on our correlation computation.

To understand the correlation without example-dependence issues, we provide two alternative

evaluations system-level and summary-level correlations, which have been reported in a number

of previous works (Peyrard et al., 2017; Bhandari et al., 2020; Deutsch et al., 2021; Zhang and

Bansal, 2021). These two correlations assess the effectiveness of the metrics to rank systems.

System-level correlation evaluates how well the metric can compare different summarization

systems. We denote the correlation measure asK, human scores as h, the metric asm, and gen-

erated summaries as s. We assume there are N documents and S systems in the mete-evaluation

dataset. The system-level correlation is defined as follows:

Ksys
m,h = K([

1

N

N
ÿ

i=1

m(si1), ...,
1

N

N
ÿ

i=1

m(siS)],

[
1

N

N
ÿ

i=1

h(si1), ...,
1

N

N
ÿ

i=1

h(siS)])

In our case, N = 100 and S = 16. We use Pearson r or Spearman ρ as the correlation measure

K.
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Summary-level correlation evaluates if the metric can reliably compare summaries generated

by different systems for the same document. Using the same notations as above, it is written by:

Ksum
m,h =

1

N

N
ÿ

i=1

K([m(si1), ...,m(siS)],

[h(si1), ..., h(siS)])

5.4.2 Existing Faithfulness Evaluation Metrics

In faithfulness evaluation literature, a number of metrics have been proposed for abstractive

summarization. They can be roughly categorized into two groups: entailment classification and

question generation/answering (QGQA). Some of them assume that the extractive method is in-

herently faithful.

We choose FactCC (Kryscinski et al., 2020) and DAE (Goyal and Durrett, 2020) as repre-

sentative entailment classification metrics. However, since they are designed to check whether

each sentence or dependency arc is entailed by the source, we suspect that they cannot detect

discourse-level errors. QuestEval (Scialom et al., 2021) is a representative QGQA metric, which

theoretically can detect incorrect coreference because QG considers the long context of the sum-

mary and the document. We also explore BERTScore Precision (Zhang et al., 2020c) that is

shown to well correlate with human judgment of faithfulness (Pagnoni et al., 2021; Fischer,

2021), as well as ROUGE-2-F1 (Lin, 2004).

Note that for all metrics except for DAE, we negate their scores before computing human-

metric correlations because we want them to have higher scores when the summary is more un-

faithful, just like our human labels. Table 5.1 shows their original scores for the 16 systems.
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ROUGE-2-F1 FactCC DAEÓ QuestEval BERTScore Pre. ExtEvalÓ Human OverallÓ

Oracle 25.09 0.95 0.02 0.45 0.92 0.98 0.63
Oracle (discourse) 33.38 0.77 0.00 0.55 0.89 1.65 1.04

RNN Ext RL 12.89 0.97 0.00 0.49 0.95 0.59 0.27
BanditSumm 13.48 0.91 0.00 0.48 0.93 0.57 0.28
NeuSumm 13.69 0.90 0.01 0.48 0.91 0.52 0.26
Refresh 12.96 0.93 0.00 0.48 0.92 0.66 0.36
BERT+LSTM+PN+RL 14.34 0.90 0.00 0.48 0.93 0.59 0.25
MatchSumm 15.42 0.99 0.00 0.48 0.94 0.58 0.22
HeterGraph 14.05 1.00 0.00 0.50 0.94 0.53 0.24
Histruct+ 14.43 0.99 0.00 0.63 0.94 0.54 0.30

Lead3 13.03 1.00 0.00 0.49 0.95 0.28 0.05
Textrank 11.06 0.96 0.00 0.46 0.93 0.91 0.46
Textrank (ST) 8.92 0.93 0.02 0.44 0.93 1.07 0.58
PacSum (tfidf) 12.89 0.99 0.01 0.49 0.94 0.59 0.33
PacSum (bert) 13.98 1.00 0.00 0.49 0.95 0.31 0.13
MI-unsup 10.62 0.99 0.00 0.46 0.92 1.05 0.38

Table 5.1: All metric scores and the human Overall score for the 16 extractive systems on the
100 CNN/DM testing examples. The score of a system is the average score of 100 examples. Ó

means the scores are the lower the better.

5.4.3 A New Metric: ExtEval

We introduce ExtEval that is designed for detecting unfaithful extractive summaries. Corre-

sponding to the faithfulness problems defined in Section 5.2, ExtEval is composed of four sub-

metrics described as follows. We refer the readers to Section 5.6.2 for more details.

IncorCorefEval focuses on detecting incorrect coreferences. Taking advantage of the model-

predicted coreference clusters by SpanBERT described in Section 5.3.2, we consider the different

cluster mapping of the same mention in the document and summary as incorrect coreference.

IncomCorefEval detects incomplete coreferences. We also make use of the model-predicted

coreference clusters. If the first appeared mention in a summary cluster is a pronoun or ‘deter-

miner + noun’ phrase, and it is not the first mention in the corresponding document cluster, then

the summary is considered to have an incomplete coreference.

IncomDiscoEval is primarily designed to detect incomplete discourse. Concretely, we check

for sentences with discourse linking terms and incomplete discourse units. We consider the sum-

mary to have a problem if a discourse linking term is present but its necessary context (the previ-

ous or next sentence) is missing or a discourse unit misses its previous unit in the same sentence.
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Incor. Coref. Incom. Coref. Incor. Disco. Incom. Disco. Mislead. Overall

Metrics r ρ r ρ r ρ r ρ r ρ r ρ

-ROUGE-2-F1 0.05 0.06 0.03 0.08 -0.07 -0.07 -0.14 -0.10 0.03 0.03 -0.04 0.02
-FactCC -0.04 -0.04 0.05 0.02 0.24 0.17 0.10 0.03 -0.00 0.01 0.11 0.05
DAE 0.01 0.04 0.04 0.08 0.02 0.04 -0.01 0.02 0.06 0.03 0.05 0.07
-QuestEval 0.09 0.12 0.14 0.15 -0.01 0.01 0.05 0.06 0.08 0.09 0.17 0.19
-BERTScore Pre. 0.08 0.09 0.21 0.20 0.18 0.15 0.29 0.25 0.11 0.12 0.37 0.35

IncorCorefEval 0.25 0.25 0.04 0.04 -0.01 -0.01 -0.00 -0.00 0.04 0.04 0.11 0.08
IncomCorefEval 0.11 0.11 0.48 0.48 0.06 0.06 0.16 0.16 0.01 0.01 0.42 0.42
IncomDiscoEval 0.03 0.03 0.11 0.11 0.20 0.20 0.61 0.61 -0.02 -0.02 0.42 0.38
SentiBias -0.02 -0.03 0.07 0.05 -0.01 -0.00 0.09 0.08 0.14 0.11 0.13 0.11
ExtEval 0.17 0.13 0.37 0.34 0.14 0.11 0.43 0.36 0.04 0.05 0.54 0.46

Table 5.2: Human-metric correlations. The negative sign (-) before metrics means that their
scores are negated to retain the feature that the higher the scores are the more unfaithful the sum-
maries are.

It is important to note that the detected errors also include incorrect discourse. However, we can-

not distinguish between these two errors.

SentiBias evaluates how different the summary sentiment is from the document sentiment.

Sentiment bias is easier to be quantified than other misleading problems. We use the RoBERTa-

based (Liu et al., 2019b) sentiment analysis model from AllenNLP (Gardner et al., 2018)14 to

get the sentiments of each sentence. We take the average of sentence sentiments as the overall

sentiment of the document or the summary. Then, sentiment bias is measured by the absolute

difference between summary sentiment and document sentiment.

ExtEval is simply the summation of the above sub-metrics, i.e., ExtEval = IncorCorefE-

val + IncomCorefEval + IncomDiscoEval + SentiBias. Same as human scores, we make Incor-

CorefEval, IncomCorefEval, and IncomDiscoEval as binary (0 or 1) scores, while SentiBias is a

continuous number between 0 and 1. ExtEval corresponds to the Overall human judgment intro-

duced in Section 5.4.1. Note that when one TiTAN V 12G GPU is available, it takes 0.43 seconds

per example to compute ExtEval on average.

14We also test sentiment analysis tools from Stanza (Qi et al., 2020) and Google Cloud API, but they do not work
better.
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5.4.4 Meta-Evaluation Results

Table 5.2 shows the human-metric correlations. First, out of the five existing metrics, BERTScore

in general works best and has small to moderate (Cohen, 1988) correlations with human judg-

ment, FactCC has a small correlation with incorrect discourse, and other metrics have small or no

correlations with human labels. Considering the fact that all these five errors can also happen in

abstractive summarization, existing faithfulness evaluation metrics apparently leave these errors

behind. Second, the four sub-metrics of ExtEval (IncorCorefEval, IncomCorefEval, IncomDis-

coEval, and SentiBias) in general demonstrate better performance than other metrics at detecting

their corresponding problems. Lastly, our ExtEval has moderate to large (Cohen, 1988) correla-

tions with the Overall judgment, which is greatly better than all other metrics.

Table 5.3 illustrates the system-level and summary-level correlations of different metrics with

human judgment. Note that, for both system-level and summary-level correlations, their correla-

tions are computed between two vectors of length 16 (16 systems), whereas the meta-evaluation

method we used in the main paper computes the correlations between two vectors of length 1600

(1600 examples). A smaller sample size will cause a larger variance. This is especially true for

system-level correlations, because, following the definitions above, the summary-level correla-

tion (Ksum
m,h ) averages across N (in our case, N=100) which can help reduce the variance. Never-

theless, as shown in Table 5.3, our ExtEval achieves the best Pearson and Spearman correlations

with the Overall human judgment on both the system level and the summary level. It means Ex-

tEval can rank extractive systems well based on how unfaithful they are. The three sub-metrics

(IncorCorefEval, IncomCorefEval, and IncomDiscoEval) perform best at judging which system

produces more errors of their corresponding error types. But for detecting misleading informa-

tion, DAE works best. Out of the 5 existing metrics, BERTScore Precision is the best in general,

and on the system level, FactCC also works decently well.

We mainly evaluate ExtEval on the dataset we collected because ExtEval is designed for de-

tecting problematic extractive summaries and is not applicable to abstractive summaries. Nonethe-

less, we find a subset of SummEval (Fabbri et al., 2021) that contains 4 extractive systems. We
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System-level Correlations

Incor. Coref. Incom. Coref. Incor. Disco. Incom. Disco. Mislead. Overall

Metrics r ρ r ρ r ρ r ρ r ρ r ρ

-ROUGE-2-F1 0.28 0.59 -0.39 0.08 -0.78 -0.01 -0.88 -0.26 0.01 0.12 -0.71 0.14
-FactCC 0.29 0.34 0.44 0.39 0.81 0.51 0.81 0.60 -0.13 -0.22 0.75 0.54
DAE 0.23 0.26 0.66 0.39 0.11 0.41 0.23 0.74 0.64 0.44 0.50 0.58
-QuestEval 0.27 0.35 0.16 0.40 -0.26 0.33 -0.25 0.36 0.18 0.19 -0.06 0.43
-BERTScore Pre. 0.29 0.30 0.50 0.57 0.70 0.58 0.73 0.58 0.09 0.10 0.74 0.68

IncorCorefEval 0.43 0.12 0.32 0.31 -0.03 0.19 -0.16 -0.02 0.25 0.12 0.11 0.22
IncomCorefEval 0.38 0.34 0.96 0.87 0.52 0.72 0.59 0.56 0.20 0.13 0.85 0.85
IncomDiscoEval 0.30 0.46 0.58 0.76 0.96 0.76 0.92 0.71 -0.06 0.10 0.90 0.88
SentiBias -0.37 -0.48 0.37 0.18 0.57 0.19 0.69 0.32 0.00 0.01 0.56 0.09
ExtEval 0.37 0.33 0.83 0.84 0.83 0.76 0.84 0.67 0.08 0.09 0.96 0.88

Summary-level Correlations

Incor. Coref. Incom. Coref. Incor. Disco. Incom. Disco. Mislead. Overall

Metrics r ρ r ρ r ρ r ρ r ρ r ρ

-ROUGE-2-F1 0.09 0.06 -0.05 -0.01 -0.47 -0.28 -0.37 -0.28 -0.00 0.02 -0.22 -0.13
-FactCC -0.07 -0.07 0.05 0.04 0.46 0.42 0.13 0.10 0.03 0.03 0.12 0.09
DAE 0.03 0.03 0.16 0.23 0.01 0.11 0.00 0.03 0.20 0.17 0.10 0.14
-QuestEval 0.10 0.13 0.17 0.20 -0.13 -0.06 -0.03 -0.02 0.06 0.08 0.08 0.13
-BERTScore Pre. 0.11 0.12 0.24 0.23 0.48 0.37 0.36 0.30 0.10 0.09 0.36 0.32

IncorCorefEval 0.44 0.44 0.07 0.07 -0.07 -0.07 -0.06 -0.06 0.13 0.13 0.13 0.12
IncomCorefEval 0.13 0.13 0.52 0.52 0.09 0.09 0.23 0.23 0.04 0.04 0.43 0.43
IncomDiscoEval 0.06 0.06 0.15 0.15 0.65 0.65 0.67 0.67 -0.04 -0.04 0.43 0.41
SentiBias -0.06 -0.06 0.07 0.07 -0.01 0.01 0.06 0.07 0.11 0.11 0.09 0.10
ExtEval 0.23 0.16 0.42 0.37 0.36 0.28 0.48 0.37 0.04 0.07 0.52 0.43

Table 5.3: System-level and summary-level correlations. The negative sign (-) before metrics
means that their scores are negated to retain the feature that the higher the scores are the unfaith-
ful the summaries are.

use the average of their consistency (=faithfulness) scores annotated by experts as the gold hu-

man scores and compute its correlation with ExtEval. We apply two meta-evaluation methods:

(1) Method 1, the same meta-evaluation method as Table 5.2, and (2) Method 2, the system-level

evaluation, which is also used by Fabbri et al. (2021), though here we only have 4 systems. The

results can be found in Table 5.4. As we can observe, under both methods, our ExtEval achieves

the best Spearman correlations and competitive Pearson correlations, which demonstrates the

good generalizability of ExtEval.

In summary, our ExtEval is better at identifying unfaithful extractive summaries than the 5

existing metrics we compare to. Its four sub-metrics can be used independently to examine the

corresponding unfaithfulness problems.
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Method 1 Method 2

Metrics r ρ r ρ

FactCC -0.04 -0.11 0.68 0.40
QuestEval -0.04 0.02 -0.46 -0.68
BERTScore Pre. 0.13 0.14 -0.30 0.0
-ExtEval 0.10 0.16 0.31 0.60

Table 5.4: Meta-evaluation results on SummEval (Fabbri et al., 2021). Method 1 refers to the
meta-evaluation method used in Section 5.4.1, while Method 2 refers to the system-level correla-
tion used by Fabbri et al. (2021). We negate ExtEval to make higher scores mean more faithful.

5.5 Generalizability

One future direction for resolving these unfaithfulness problems is to use the errors automat-

ically detected by ExtEval as hints for humans or programs to fix the summary by doing neces-

sary yet minimal edits. Here we illustrate the possibility for incorrect coreference. We manually

examined the automatically detected incorrect coreferences by ExtEval. 28 out of 32 detected

incorrect coreferences are true incorrect coreferences15, which we attempt to fix by developing

a simple post-edit program, similar to the revision system proposed by Nanba and Okumura

(2000). The program replaces the problematic mention in the summary with the first mention

in the correct coreference cluster of the document. We manually checked the corrected examples

and found that 16 out of 28 were fixed correctly (see an example in Figure 5.7). We leave the

improvement and the extension of post-edit systems for future work.

It is worth noting that all of the five error types we define in Section 5.2 can also happen in

abstractive summarization, though they are less studied and measured in the literature. To our

best knowledge, FRANK (Pagnoni et al., 2021) and SNaC (Goyal et al., 2022) have discussed the

coreference and discourse errors in the abstractive summaries. Gabriel et al. (2021) define a sen-

timent error as an adjective or adverb appearing in the summary that contradicts the source, while

our misleading information has a more general definition. We hope that our taxonomy can shed

some light for future works to explore the broad unfaithfulness of all summarization methods.

15It shows that ExtEval has high precision of 87.5%. However, we have 60 human-labeled incorrect coreferences, so
the recall is only 46.7% (28 out of 60).
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5.6 Implementation Details

5.6.1 Human Evaluation Details

We did not choose to label the data on Amazon Mechanical Turk because we think that un-

derstanding the concepts of coreference and discourse requires some background knowledge of

linguistics and NLP.

Figure 5.8 shows the annotation interface and an example annotation. We ask the expert an-

notators to justify when they think there exists an unfaithful problem. Specifically, if they think

the summary has incorrect coreferences, they need to further specify the sentence indices and

the mentions. For example, “s2-he” means “he” in the second summary sentence is problematic.

Meanwhile, they need to justify their answer by explaining why “s2-he” is an incorrect coref-

erence. For incomplete coreference, annotators also need to specify the sentence indices plus

mentions, but no explanation is required because it can always be “the mention has no clear an-

tecedent.” For incorrect discourse, they need to specify sentence indices and justify their choice.

For incomplete discourse, they only need to specify sentence indices. We find that many sum-

maries have multiple incomplete coreference or discourse issues. Annotators need to label all of

them, separated by “,”, e.g., “s2-he, s3-the man”. Lastly, besides these four errors, if they think

the summary can still mislead the audience, we ask them to provide an explanation to support it.

To avoid one issue in the summary being identified as multiple types of errors, we give the

following priorities: incorrect coreference = incorrect discourse ą incomplete coreference =

incomplete discourse ą other misleading information. If an issue is labeled as one type, it will

not be labeled for other equal- or lower-priority types.

5.6.2 ExtEval Details

For IncomCorefEval, the list of pronouns we use includes they, she, he, it, this, that, those,

these, them, her, him, their, her, his, and the list of determiners includes the, that, this, these,
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those, both. This list only contains frequent terms that appear in our dataset, which is not exhaus-

tive.

The list of linking terms for IncomDiscoEval includes and, so, still, also, however, but,

clearly, meanwhile, not only, not just, on one side, on another, then, moreover. Similarly, the

list is not exhaustive, and we only keep frequent terms.

5.7 Conclusion

We conducted a systematic analysis of broad unfaithfulness problems in extractive summa-

rization. We proposed 5 error types and produced a human-labeled evaluation set of 1600 ex-

amples. We found that (i) 30.3% of the summaries have at least one of the 5 issues, (ii) existing

metrics correlate poorly with human judgment, and (iii) our new faithfulness evaluation metric

ExtEval performs the best at identifying these problems. Through this work, we want to raise the

awareness of unfaithfulness issues in extractive summarization and stress that extractive is not

equal to faithful.
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Document:
(CNN) The California Public Utilities Commission on Thursday said it is ordering Pacific Gas & Electric
Co. to pay a record $1.6 billion penalty for unsafe operation of its gas transmission system, including the
pipeline rupture that killed eight people in San Bruno in September 2010.
Most of the penalty amounts to forced spending on improving pipeline safety. Of the 1.6billion,850
million will go to ”gas transmission pipeline safety infrastructure improvements,” the commission said.
Another $50 million will go toward ”other remedies to enhance pipeline safety,” according to the com-
mission. ”PG&E failed to uphold the public’s trust,” commission President Michael Picker said.
”The CPUC failed to keep vigilant. Lives were lost. Numerous people were injured. Homes were de-
stroyed.
We must do everything we can to ensure that nothing like this happens again.” The company’s chief ex-
ecutive officer said in a written statement that PG&E is working to become the safest energy company
in the United States.
”Since the 2010 explosion of our natural gas transmission pipeline in San Bruno, we have worked hard
to do the right thing for the victims, their families and the community of San Bruno,” Tony Earley said.
”We are deeply sorry for this tragic event, and we have dedicated ourselves to re-earning the trust of our
customers and the communities we serve. The lessons of this tragic event will not be forgotten.”
On September 9, 2010, a section of PG&E pipeline exploded in San Bruno, killing eight people and
injuring more than 50 others.
The blast destroyed 37 homes. PG&E said it has paid more than $500 million in claims to the victims
and victims’ families in San Bruno, which is just south of San Francisco.
The company also said it has already replaced more than 800 miles of pipe, installed new gas leak tech-
nology and implemented nine of 12 recommendations from the National Transportation Safety Board.
According to its website, PG&E has 5.4 million electric customers and 4.3 million natural gas customers.
The Los Angeles Times reported the previous record penalty was a $146 million penalty against South-
ern California Edison Company in 2008 for falsifying customer and worker safety data. CNN’s Jason
Hanna contributed to this report.

Summary (incomplete coreference):
(CNN) The California Public Utilities Commission on Thursday said it is ordering Pacific Gas &
Electric Co. to pay a record $1.6 billion penalty for unsafe operation of its gas transmission system,
including the pipeline rupture that killed eight people in San Bruno in September 2010. According to its
website, PG&E has 5.4 million electric customers and 4.3 million natural gas customers.

Figure 5.4: An example from CNN/DM (Hermann et al., 2015) testing set showing an incom-
plete coreference error. The summary is generated by BERT+LSTM+PN+RL (Zhong et al.,
2019). All extracted sentences are underlined in the document. The word its in the summary is
ambiguous. It can refer to PG&E or California Public Utilities Commission. The correct corefer-
ence should be PG&E in the document.
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Document:
(CNN) It’s been a busy few weeks for multiples.
The first set of female quintuplets in the world since 1969 was born in Houston on April 8, and the par-
ents are blogging about their unique experience.
Danielle Busby delivered all five girls at the Woman’s Hospital of Texas via C-section at 28 weeks and
two days, according to CNN affiliate KPRC. Parents Danielle and Adam and big sister Blayke are now
a family of eight.
The babies are named Ava Lane, Hazel Grace, Olivia Marie, Parker Kate and Riley Paige. ”We are so
thankful and blessed,” said Danielle Busby, who had intrauterine insemination to get pregnant.
”I honestly give all the credit to my God. I am so thankful for this wonderful hospital and team of peo-
ple here. They truly all are amazing.” You can learn all about their journey at their blog, ”It’s a Buzz
World.”
Early news reports said the Busby girls were the first all-female quintuplets born in the U.S.
But a user alerted CNN to news clippings that show quintuplet girls were born in 1959 to Charles and
Cecilia Hannan in San Antonio.
All of the girls died within 24 hours. Like the Busby family, Sharon and Korey Rademacher were hop-
ing for a second child.
When they found out what they were having, they decided to keep it a secret from family and friends.
That’s why they didn’t tell their family the gender of baby No. 2 – or that Sharon was actually expect-
ing not one but two girls, according to CNN affiliate WEAR.
And when everyone arrived at West Florida Hospital in Pensacola, Florida, after Sharon gave birth
March 11, they recorded everyone’s reactions to meeting twins Mary Ann Grace and Brianna Faith.
The video was uploaded to YouTube on Saturday and has been viewed more than 700,000 times. Could
you keep it a secret?

Summary (incomplete discourse):
The first set of female quintuplets in the world since 1969
was born in Houston on April 8,
Danielle Busby delivered all five girls at the Woman’s Hospital of Texas via C-section at 28 weeks and
two days,
the Busby girls were the first all-female quintuplets

Figure 5.5: An example from CNN/DM (Hermann et al., 2015) testing set showing an incom-
plete discourse error. The summary is generated by the Oracle (disco) (Xu et al., 2020a) extrac-
tive system. All extracted elementary discourse units are underlined in the document. The last
summary sentence missed the “born in the u.s” part which may make people think the Busby
girls is the first all-female quintuplets not only in US.
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Document:
(CNN) It didn’t seem like a fair fight.
On one side were hulking football players and pro wrestlers, competing as teams of two to eat as many
pounds of steak as they could, combined, in one hour.
On another was a lone 124-pound mother of four.
And sure enough, in the end, Sunday’s contest at Big Texan Steak Ranch in Amarillo, Texas,
wasn’t even close.
Molly Schuyler scarfed down three 72-ounce steaks, three baked potatoes, three side salads, three rolls
and three shrimp cocktails – far outpacing her heftier rivals.
That’s more than 13 pounds of steak, not counting the sides.
And she did it all in 20 minutes, setting a record in the process.
”We’ve been doing this contest since 1960, and in all that time we’ve never had anybody come in to
actually eat that many steaks at one time,” Bobby Lee, who co-owns the Big Texan, told CNN affiliate
KVII. ”So this is a first for us, and after 55 years of it, it’s a big deal.”
In fairness, Schuyler isn’t your typical 124-pound person. The Nebraska native, 35, is a professional on
the competitive-eating circuit and once gobbled 363 chicken wings in 30 minutes.
Wearing shades and a black hoodie, Schuyler beat four other teams on Sunday, including pairs of foot-
ball players and pro wrestlers and two married competitive eaters.
She also broke her own Big Texan record of two 72-ounce steaks and sides, set last year, when she
bested previous record-holder Joey ”Jaws” Chestnut.
...

Summary (other misleading information):
On one side were hulking football players and pro wrestlers, competing as teams of two to eat as many
pounds of steak as they could, combined, in one hour.
And sure enough, in the end, Sunday’s contest at Big Texan Steak Ranch in Amarillo, Texas, wasn’t
even close.
That’s more than 13 pounds of steak, not counting the sides.

Figure 5.6: An example from CNN/DM (Hermann et al., 2015) testing set showing a other mis-
leading information error. The summary is generated by the HeterGraph (Wang et al., 2020b)
extractive system. All extracted sentences are underlined in the document. If readers only read
the summary, they may think the football players and pro wrestlers won the contest and ate 13
pounds of steak.
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Document:
(CNN) North Korea accused Mexico of illegally holding one of its cargo ships Wednesday and demanded
the release of the vessel and crew.
The ship, the Mu Du Bong, was detained after it ran aground off the coast of Mexico in July.
Mexico defended the move Wednesday, saying it followed proper protocol because the company that
owns the ship, North Korea’s Ocean Maritime Management company, has skirted United Nations sanc-
tions.
...
But An Myong Hun, North Korea’s deputy ambassador to the United Nations, said there was no reason
to hold the Mu Du Bong and accused Mexico of violating the crew members’ human rights by keeping
them from their families.
”Mu Du Bong is a peaceful, merchant ship and it has not shipped any items prohibited by international
laws or regulations,” An told reporters at the United Nations headquarters Wednesday. ”And we have
already paid full compensation to Mexican authorities according to its domestic laws.”
According to Mexico’s U.N. mission, the 33 North Korean nationals who make up the vessel’s crew are
free, staying at a hotel in the port city of Tuxpan and regularly visiting the ship to check on it.
They will soon be sent back to North Korea with help from the country’s embassy,
Mexican authorities said.
In the case of the Chong Chon Gang, Panamanian authorities found it was carrying undeclared
weaponry from Cuba – including MiG fighter jets, anti-aircraft systems and explosives – buried un-
der thousands of bags of sugar.
Panama seized the cargo and held onto the ship and its crew for months. North Korea eventually agreed
to pay a fine of $666,666 for the vessel’s release. CNN’s Jethro Mullen contributed to this report.

Original Summary (incorrect coreference):
(CNN) North Korea accused Mexico of illegally holding one of its cargo ships Wednesday and de-
manded the release of the vessel and crew.
The ship, the Mu Du Bong, was detained after it ran aground off the coast of Mexico in July.
They will soon be sent back to North Korea with help from the country’s embassy, Mexican authorities
said.

Automatically Corrected Summary:
(CNN) North Korea accused Mexico of illegally holding one of its cargo ships Wednesday and de-
manded the release of the vessel and crew.
The ship, the Mu Du Bong, was detained after it ran aground off the coast of Mexico in July.
the crew members’ will soon be sent back to North Korea with help from the country’s embassy, Mexi-
can authorities said.

Figure 5.7: An example of post-correction with ExtEval. In the original summary, they refers
to the vessel and crew in the summary, but it only refers to the crew in the document. In the
corrected summary, the automated program successfully replaces they with the crew members’
though with a minor grammar issue.
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Figure 5.8: The interface for human annotation.
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CHAPTER 6: CHEROKEE-ENGLISH MACHINE TRANSLATION AND BEYOND

6.1 Introduction

The Cherokee people are one of the indigenous peoples of the United States. Before the

1600s, they lived in what is now the southeastern United States (Peake Raymond, 2008). Today,

there are three federally recognized nations of Cherokee people: the Eastern Band of Cherokee

Indians (EBCI), the United Keetoowah Band of Cherokee Indians (UKB), and the Cherokee Na-

tion (CN). The Cherokee language, the language spoken by the Cherokee people, contributed

to the survival of the Cherokee people and was historically the basic medium of transmission of

arts, literature, traditions, and values (Nation, 2001; Peake Raymond, 2008). However, according

to the Tri-Council Res. No. 02-2019, there are only 2,000 fluent first language Cherokee speak-

ers left, and each Cherokee tribe is losing fluent speakers at faster rates than new speakers are

developed. UNESCO has identified the dialect of Cherokee in Oklahoma is “definitely endan-

gered”, and the one in North Carolina is “severely endangered”. Language loss is memory loss,

identity loss, culture loss, and knowledge loss, and it even affects the health of indigenous people

(Whalen et al., 2016). CN started a 10-year language revitalization plan (Nation, 2001) in 2008,

and the Tri-Council of Cherokee tribes declared a state of emergency in 2019 to save this dying

Src. ᎥᏝ ᎡᎶᎯ ᎠᏁᎯ ᏱᎩ, ᎾᏍᎩᏯ ᎠᏴ ᎡᎶᎯ ᎨᎢ ᏂᎨᏒᎾ ᏥᎩ.
Ref. They are not of the world, even as I am not of the

world.
SMT It was not the things upon the earth, even as I am not

of the world.
NMT I am not the world, even as I am not of the world.

Table 6.1: An example from the development set of ChrEn. NMT denotes our RNN-NMT
model.
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language. As linguists and NLP researchers, we have the responsibility to address these power

imbalances and create a society where space exists for indigenous languages.

To revitalize Cherokee, language immersion programs are provided in elementary schools,

and second language programs are offered in universities. However, students have difficulty find-

ing exposure to this language beyond school hours (Albee, 2017). This motivates us to build up

English (En) to Cherokee (Chr) machine translation systems so that we could automatically trans-

late or aid human translators to translate English materials to Cherokee. Chr-to-En is also highly

meaningful in helping spread Cherokee history and culture.

Therefore, first, we contribute our effort to Cherokee revitalization by constructing a clean

Cherokee-English parallel dataset, ChrEn, which results in 14,151 pairs of sentences with around

313K English tokens and 206K Cherokee tokens. We also collect 5,210 Cherokee monolingual

sentences with 93K Cherokee tokens. Both datasets are derived from bilingual or monolingual

materials that are translated or written by first-language Cherokee speakers, then we manually

aligned and cleaned the raw data. Our co-author, Prof. Benjamin Frey, is a proficient second-

language Cherokee speaker and a citizen of the Eastern Band of Cherokee Indians. Our datasets

contain texts of two Cherokee dialects (Oklahoma and North Carolina), and diverse text types

(e.g., sacred text, news). To facilitate the development of machine translation systems, we split

our parallel data into five subsets: Train/Dev/Test/Out-dev/Out-test, in which Dev/Test and Out-

dev/Out-test are for in-domain and out-of-domain evaluation respectively. See an example from

ChrEn in Table 6.1 and the detailed dataset description in Section 6.3.1. Recently, we have ex-

tended this dataset to containing 17K pairs of sentences. Our data can be found at https://

github.com/ZhangShiyue/ChrEn.

The translation between Cherokee and English is not easy because the two languages are

genealogically disparate. As shown in Figure 6.1, Cherokee is the sole member of the southern

branch of the Iroquoian language family and is unintelligible to other Iroquoian languages, while

English is from the West Germanic branch of the Indo-European language family. Cherokee uses

a unique 85-character syllabary invented by Sequoyah in the early 1820s, which is highly differ-
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Figure 6.1: Language family trees.

ent from English’s alphabetic writing system. Cherokee is a polysynthetic language, meaning that

words are composed of many morphemes that each have independent meanings. A single Chero-

kee word can express the meaning of several English words, e.g., ᏫᏓᏥᏁᎩᏏ (widatsinegisi), or I

am going off at a distance to get a liquid object. Since the semantics are often conveyed by the

rich morphology, the word orders of Cherokee sentences are variable. There is no “basic word

order” in Cherokee, and most word orders are possible (Montgomery-Anderson, 2008), while En-

glish generally follows the Subject-Verb-Object (SVO) word order. Plus, verbs comprise 75% of

Cherokee, which is only 25% for English (Feeling, 1975, 1994). See more of Cherokee linguis-

tics in Section 6.2.2.

Hence, to develop translation systems for this low-resource and distant language pair, we in-

vestigate various machine translation paradigms and propose phrase-based (Koehn et al., 2003)

Statistical Machine Translation (SMT) and RNN-based (Luong et al., 2015) or Transformer-

based (Vaswani et al., 2017) Neural Machine Translation (NMT) systems for both Chr-En and

En-Chr translations, as important starting points for future works. We apply three semi-supervised

methods: using additional monolingual data to train the language model for SMT (Koehn and

Knowles, 2017); incorporating BERT (or Multilingual-BERT) (Devlin et al., 2019) representa-

tions for NMT (Zhu et al., 2020), where we introduce four different ways to use BERT; and the

back-translation method for both SMT and NMT (Bertoldi and Federico, 2009; Lambert et al.,

2011; Sennrich et al., 2016b). Moreover, we explore the use of existing X-En parallel datasets of
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4 other languages (X = Czech/German/Russian/Chinese) to improve Chr-En/En-Chr performance

via transfer learning (Kocmi and Bojar, 2018) or multilingual joint training (Johnson et al., 2017).

Empirically, NMT is better than SMT for in-domain evaluation, while SMT is significantly

better under the out-of-domain condition. RNN-NMT consistently performs better than Transformer-

NMT. Semi-supervised learning improves supervised baselines in some cases (e.g., back-translation

improves out-of-domain Chr-En NMT by 0.9 BLEU). Even though Cherokee is not related to

any of the 4 languages (Czech/German/Russian/Chinese) in terms of their language family trees,

surprisingly, we find that both transfer learning and multilingual joint training can improve Chr-

En/En-Chr performance in most cases. Especially, transferring from Chinese-English achieves

the best in-domain Chr-En performance, and joint learning with English-German obtains the best

in-domain En-Chr performance. The best results are 15.8/12.7 BLEU for in-domain Chr-En/En-

Chr translations; and 6.5/5.0 BLEU for out-of-domain Chr-En/En-Chr translations. Finally, we

conduct a 50-example human (expert) evaluation; however, the human judgment does not corre-

late with BLEU for the En-Chr translation, indicating that BLEU is possibly not very suitable for

Cherokee evaluation.

Based on these findings, we develop the first online Cherokee-English machine translation

demonstration system: ChrEnTranslate. In addition, our system also supports quality estimation

(QE) for both SMT and NMT. QE is an important (missing) component of machine translation

systems, which is used to inform users of the reliability of machine-translated content (Specia

et al., 2010). Since our models are trained on a very limited number of parallel sentences, it is ex-

pected that the translations will be poor in most cases when used by Internet users. Therefore, QE

is essential for avoiding misuse and warning users of potential risks. Existing best-performance

QE models are usually trained under supervision with quality ratings from professional transla-

tors (Fomicheva et al., 2020a). However, we are unable to easily collect a lot of human ratings

for Cherokee, due to its state of endangerment. Nonetheless, we test both supervised and unsu-

pervised QE methods: (1) Supervised: we use BLEU (Papineni et al., 2002) as the quality rating

proxy and train a BLEU regressor; (2) Unsupervised: following the uncertain estimation liter-
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ature (Lakshminarayanan et al., 2017), we use the ensemble model’s output probability as the

estimation of quality. Furthermore, to evaluate how well the QE models perform, we collect 200

human quality ratings (50 ratings for SMT Chr-En, SMT En-Chr, NMT Chr-En, and NMT En-

Chr, respectively). We show that our methods obtain moderate to strong correlations with human

judgment (Pearson correlation coefficient γ ě 0.44).

One main purpose of our system is to allow human-in-the-loop learning. Since limited par-

allel texts are available, it is important to involve humans, especially experts, in the loop to give

feedback and then improve the models accordingly. We develop two different user feedback in-

terfaces for experts and common users, respectively (shown in Figure 6.7). We ask experts to pro-

vide quality ratings, correct the model-translated content, and leave open-ended comments; for

common users, we allow them to rate how helpful the translation is and to provide open-ended

comments. Upon submission, we collected 216 pieces of feedback from 4 experts. We find that

experts favor NMT more than SMT because SMT excessively copies from source sentences; ac-

cording to their ratings and comments, current translation systems can translate fragments of

the source sentence but make major mistakes. Our naive human-in-the-loop learning, by adding

these 216 expert-corrected parallel texts back to the training set, obtains equal or slightly bet-

ter translation results. Plus, the expert comments shine a light on where the model often makes

mistakes. Besides, our demo allows users to input text or choose an example input to translate

(shown in Figure 6.6). These examples are from our monolingual databases so that experts will

annotate them by providing translation corrections. Finally, to support an intermediate interpreta-

tion of the model translations, we visualize the word alignment learned by the translation model

and link to cherokeedictionary to provide relevant terms from the dictionary.

Our code is hosted at https://github.com/ZhangShiyue/ChrEnTranslate and our on-

line website is at https://chren.cs.unc.edu. Common users need to accept agreement terms

before using our service to avoid misuse; access the expert page https://chren.cs.unc.edu/

exprt requires authorization. We encourage fluent Cherokee speakers to contact us and con-

tribute to our human-in-the-loop learning procedure. A demonstration video of our website is
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at https://youtu.be/-0K8xynDfuE. In summary, our demo is featured by (1) offering the

first online machine translation system for translation between Cherokee and English, which can

assist both professional translators and Cherokee learners; (2) documenting human feedback,

which, in the long run, expands Cherokee data corpus and allows human-in-the-loop model devel-

opment.

We then “zoom out” from machine translation and address three important steps on the roadmap

of NLP for language revitalization: starting from “before NLP” to “NLP for language educa-

tion” to “language-specific NLP research”. Before diving into NLP research, we first suggest

that NLP practitioners, who are often “outsiders” of indigenous communities, become aware of

three important principles: understand and respect first, decolonize research, and build a com-

munity. We especially want to promote building a community. Since few people are speaking,

learning, or studying an endangered language, the knowledge of each individual, the collected

resources, and the developed models should be shared as widely and sustainably as possible.

Hence, we need a community to support this (see Section 6.5.1). Moreover, anguage revitaliza-

tion is an attempt to reverse the decline of a language (Tsunoda, 2013). Fundamentally, this re-

quires an increase in the number of active speakers to bring the language back to day-to-day use

(Austin and Sallabank, 2011). Due to the lack of inter-generation transmission, language edu-

cation in school or online is important. We introduce three approaches for applying NLP tech-

niques in assisting language education (Section 6.5.2): automated quiz generation, automated

assessment, and community-based language learning. The last approach connects to our pre-

vious point about building a community. Lastly, based on conversations with some Cherokee

speakers and researchers, we dive deep into several NLP tools that seem advantageous for com-

munity members and may be able to create new usage domains for the language, and we point

out the key challenges of their development (Section 6.5.3). Our data and code are available at

https://github.com/ZhangShiyue/RevitalizeCherokee.

Last but not least, the authors of this line of work come from both the Cherokee community

(Benjamin E. Frey) and the NLP community (Shiyue Zhang and Mohit Bansal). Prof. Benjamin
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E. Frey is a proficient second-language Cherokee speaker and a citizen of the Eastern Band of

Cherokee Indians. He has been teaching Cherokee and contributing to Cherokee revitalization

for more than 10 years. He initiated our collaboration and continues bridging the gap between

the Cherokee language and language technologies. In addition, we have been talking with some

other Cherokee community members, including David Montgomery and Eva Marie Garroutte.

Prof. Eva Marie Garroutte from Boston College said: “As a citizen of the Cherokee Nation, I am

very concerned for the preservation of my tribe’s endangered language and I am convinced that

Dr. Frey’s work represents the most promising project known to me for advancing this goal.”

Though by no means the views of our work can represent the whole Cherokee community, our

proposals are strongly initiated and motivated by Cherokee community members and grounded

by NLP practitioners, and we hope that our work can increase awareness of Cherokee and encour-

age more work on minority languages

6.2 The Cherokee Language

Starting from this section, we illustrate the situation of endangered languages through the

example of Cherokee. We first review its history and linguistics. In the NLP area, we hardly get

to know the languages and often let the model learn statistical patterns automatically from the

data. However, it is critical to have basic knowledge of the language when contributing to its

revitalization.

6.2.1 History of the Cherokee People and Their Language

Tribal Sovereignty. Before encountering Europeans, American Indians were already govern-

ing themselves. By drafting treaties with indigenous nations, the colonial powers implicitly rec-

ognized their sovereignty. Those treaties are still valid today, and tribal peoples are very much

operating as sovereign nations, separate from the US (NCAI, 2020). There are three federally rec-

ognized nations of Cherokee people: Cherokee Nation of Oklahoma (CN), United Keetoowah
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Band of Cherokee Indians (UKB), and Eastern Band of Cherokee Indians (EBCI). Traditional

Cherokee homeland covered parts of what are now eight US states.1 EBCI is composed of those

Cherokees who were able to remain in their homeland. CN is largely comprised of the descen-

dants of those who were forcibly removed to Indian Territory along the infamous Trail of Tears

in 1838 (Perdue and Green, 2007), while the UKB is composed largely of those whose ancestors

chose to remove themselves west of the Mississippi. Although the three nations are politically

independent, they all descend from the same Cherokee people, and maintain common interests,

cultural elements, and language.

The Language and its Dialects. Cherokee is the only surviving member of the Southern Iro-

quoian language family, which have separated from the Northern Iroquoian languages about

4,000 years ago (Julian, 2010). James Mooney identified three main dialects of Cherokee: the

Overhill dialect, the Underhill dialect (has died out), and the Middle, or Kituwah dialect. The

Overhill dialect is primarily spoken in Oklahoma, and the Middle dialect is predominantly spo-

ken in North Carolina today. Although according to UNESCO, both dialects are endangered,

Cherokee is comparatively well-reported among American Indian languages. This is partially due

to its writing system known as the 85-character Cherokee syllabary. It was invented in the early

1820s by Sequoyah (Britannica, 2021). The Cherokees have a newspaper written in their own

language: the Cherokee Phoenix. The Phoenix, alongside the Cherokee New Testament, formed

cornerstones of the Cherokee language in the 1800s on which many current language preserva-

tions and archiving projects rest.

Language Endangerment. Cherokee was robustly spoken until around the 1930s. The primary

factor being responsible is the US government’s “civilization” policy, which aimed to remove

American Indians’ cultural distinctions (Spring, 2016). Federal boarding schools were created

on the model of military institutions by Richard H. Pratt under the philosophy of “kill the Indian,

save the man” (Pratt, 2013). American Indian children were sent to residential schools to be ed-

ucated in how to live in ways more similar to their white contemporaries. School overseers cut

1North Carolina, South Carolina, Georgia, Kentucky, Tennessee, Alabama, Virginia, and West Virginia.
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their hair, forced them to abandon their traditional dress, and punished them for speaking their

traditional languages. Beyond the trauma, when they returned to communities, banks, post of-

fices, factories, and grocery stores were all controlled non-locally. People working in them ei-

ther no longer spoke Cherokee because they were not from Cherokee communities or because

their employers were not Cherokee speakers. This transition contributed to the decline of the lan-

guage in daily use, until the first generation grew up with only English as the language of the

home around 1950s (Gulick, 1958; Frey, 2013). Recently, the larger project of language revital-

ization, of which this paper is a part, endeavors to return the language to regular day-to-day use

in the Cherokee communities.

6.2.2 Cherokee Linguistics

Polysynthetic. Cherokee, like most American Indian languages, is polysynthetic. This means

that words are primarily composed of a root whose meaning is modified by multiple prefixes

and suffixes. The word ᎨᎦ, gega, can be divided up: g-, -e-, -ga. The g- prefix indicates that the

subject of the verb is 1st person singular while the -ga suffix indicates that the action happens

in the present tense and the aspect is progressive. The verb root -e- conveys the idea of motion.

The simplest verb form in Cherokee will contain at minimum a root, a pronominal prefix, and

a tense/aspect suffix. One oft-noted aspect of Cherokee grammar is its classificatory system,

wherein verbs with direct objects must conjugate to indicate the physical shape of the direct ob-

ject. The verb “I have,” for instance, could appear in any of the following ways: Agiha (I have

(solid)), Agineha (I have (liquid)), Agwvya (I have (long & rigid)), Agina’a (I have (flexible)),

Agikaha (I have (animate)). Cherokee also has pre-pronominal prefixes that can specify the geo-

graphical location of particular events, such as wi- (translocative), which indicates that the action

will happen at a distance away from the speaker, and di- (cislocative), which indicates the action

will happen at a distance approaching the speaker.

Word Order. Word order in Cherokee is dependent on the larger pragmatic context in which the

sentence appears, with new information or timeframes occurring before the verb and old or estab-
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lished information occurring post-verbally. Subject-object agreement is handled largely via the

dual-argument pronominal prefixes. E.g., in “I see it,” ᏥᎪᏩᏘᎭ (tsigowatiha), the pronominal

prefix tsi- indicates 1st person singular (“I”) acting on 3rd person singular (“it”). In ᎠᎩᎪᏩᏘᎭ

(agigowatiha), we change tsi- to agi-, which means 3rd person singular acting on 1st person sin-

gular.

Person & Number. Although English has only two categories of number: singular and plural,

Cherokee has a third, dual category. Therefore, a verb in Cherokee can be conjugated in first,

second, or third person and specified for either singular, dual, or plural subjects. Dual and plural

prefixes in the first person must then be further subdivided by clusivity, yielding 1st-person dual

inclusive (you & I) or exclusive (she/he & I), 1st-person plural inclusive (all of us) or exclusive

(they & I). The second person can inflect for dual (you two) or plural (you all). Cherokee does

not have a third-person dual form, and speakers usually use the plural form when referring to two

third persons.

Verb-centric. Cherokee is very verb-centric, and verbs comprise 75% of Cherokee (Feeling,

1975). Cherokee nouns are divided into root nouns (have no verbal inflection attached to them)

and derived nouns (carry verbal morphology). Similarly, Cherokee adjectives can be distinguished

from verbs in that their forms cannot carry the tense/aspect morphology typical of actual verbs.

Thus, to say someone is skinny, ᎤᎴᏐᏓ (ulesoda) carries the pronominal prefix u-, indicating 3rd

person singular, while ᎤᎴᏐᏓ ᎨᏒᎢ (ulesoda gesv’i) marks past tense by adding a separate copula

(“to be”) that carries the tense/aspect suffix -v’i.

Evidentiality. Cherokee is also marked by a system of evidentiality (indicating whether one

has firsthand knowledge of past events, or if one is reporting on hearsay). E.g., one might say

ᎠᎦᏍᎬᎢ (agasgv’i), “it was raining (and I have firsthand knowledge of this)” vs. ᎠᎦᏍᎨᎢ (agasge’i),

“it was raining (from what I understand).” Interestingly, this phenomenon applies regardless of

the assumed truth of the statement in question.
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Phoneme. Cherokee’s phoneme inventory is, like other Iroquoian languages, almost com-

pletely bereft of bilabial sounds. It entirely lacks the p or b phonemes, along with f /v, θ/ð, and

any r sound. It has six vowels: a, e, i, o, u, and v, and are generally pronounced with continental

values, as in Spanish, except for v. Consonant inventory is small, at only 13, and most will be fa-

miliar to English speakers. The main exception is the voiceless alveolar fricative ì, likely more

familiar to Icelandic speakers.

6.3 ChrEn Dataset

6.3.1 Data Collection

It is not easy to collect substantial data for endangered Cherokee. We obtain our data from

bilingual or monolingual books and newspaper articles that are translated or written by first-

language Cherokee speakers. In the following, we will introduce the data sources and the clean-

ing procedure and give detailed descriptions of our data statistics.

Parallel Data

Fifty-six percent of our parallel data is derived from the Cherokee New Testament. Other texts

are novels, children’s books, newspaper articles, etc. These texts vary widely in dates of publica-

tion, the oldest being dated to 1860. Additionally, our data encompasses both existing dialects of

Cherokee: the Overhill dialect, mostly spoken in Oklahoma (OK), and the Middle dialect, mostly

used in North Carolina (NC). These two dialects are mainly phonologically different and only

have a few lexical differences (Uchihara, 2016). In this work, we do not explicitly distinguish

them during translation. The left pie chart of Figure 6.2 shows the parallel data distributions over

text types and dialects, and the complete information is in Table 6.3. Many of these texts were

translations of English materials, which means that the Cherokee structures may not be 100%

natural in terms of what a speaker might spontaneously produce. But each text was translated

by people who speak Cherokee as the first language, which means there is a high probability of
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Figure 6.2: The distributions of our parallel (Para.) and monolingual (Mono.) data over text
types and dialects.

Statistics Parallel Monolingual
Train Dev Test Out-dev Out-test Total Total

Sentences (or Sentence pairs) 11,639 1,000 1,000 256 256 14,151 5,210

English tokens 257,460 21,686 22,154 5,867 6,020 313,187 -
Unique English tokens 11,606 3,322 3,322 1,605 1,665 13,621 -
% Unseen unique English tokens - 13.3 13.2 42.1 43.3 - -
Average English sentence length 22.1 21.7 22.2 22.9 23.5 22.1 -

Cherokee tokens 168,389 14,367 14,373 4,324 4,370 205,823 92,897
Unique Cherokee tokens 32,419 5,182 5,244 1,857 1,881 38,494 19,597
% Unseen unique Cherokee tokens - 37.7 37.3 67.5 68.0 - 73.7
Average Cherokee sentence length 14.5 14.4 14.3 16.9 17.1 14.5 17.8

Table 6.2: The key statistics of our parallel and monolingual data. Note that “% Unseen unique
English tokens” is in terms of the Train split, for example, 13.3% of unique English tokens in
Dev are unseen in Train.

grammaticality. These data were originally available in PDF version. We apply the Optical Char-

acter Recognition (OCR) via Tesseract OCR engine2 to extract the Cherokee and English text.

Then our co-author, a proficient second-language speaker of Cherokee, manually aligned the sen-

tences and fixed the errors introduced by OCR. This process is time-consuming and took several

months.

2https://github.com/tesseract-ocr/
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The resulting dataset consists of 14,151 sentence pairs. After tokenization,3 there are around

313K English tokens and 206K Cherokee tokens in total with 14K unique English tokens and

38K unique Cherokee tokens. Notably, the Cherokee vocabulary is much larger than English be-

cause of its morphological complexity. This casts a big challenge to machine translation systems

because a lot of Cherokee tokens are infrequent. To facilitate machine translation system develop-

ment, we split this data into training, development, and testing sets. As our data stems from lim-

ited sources, we find that if we randomly split the data, some phrases/sub-sentences are repeated

in training and evaluation sets, so the trained models will overfit to these frequent patterns. Con-

sidering that low-resource translation is usually accompanied by out-of-domain generalization in

real-world applications, we provide two groups of development/testing sets. We separate all the

sentence pairs from newspaper articles, 512 pairs in total, and randomly split them in half as out-

of-domain development and testing sets, denoted by Out-dev and Out-test. The remaining sen-

tence pairs are randomly split into in-domain Train, Dev, and Test. About 13.3% of unique En-

glish tokens and 37.7% of unique Cherokee tokens in Dev have not appeared in Train, while the

percentages are 42.1% and 67.5% for Out-dev, which shows the difficulty of the out-of-domain

generalization. Table 6.2 contains more detailed statistics; notably, the average sentence length

of Cherokee is much shorter than English, which demonstrates that the semantics are morphologi-

cally conveyed in Cherokee.

Note that Cherokee-English parallel data is also available on OPUS (Tiedemann, 2012),

which has 7.9K unique sentence pairs, 99% of which are the Cherokee New Testament that are

also included in our parallel data, i.e., our data is bigger and has 6K more sentence pairs that are

not sacred texts (novels, news, etc.).

3We tokenize both English and Cherokee by Moses tokenizer (Koehn et al., 2007). For Cherokee, it is equivalent to
tokenize by whitespace and punctuation, confirmed to be good enough by our Cherokee-speaker coauthor.
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Monolingual Data

In addition to the parallel data, we also collect a small amount of Cherokee monolingual data,

5,210 sentences in total. This data is also mostly derived from Cherokee monolingual books.4

As depicted by the right pie chart in Figure 6.2, the majority of monolingual data are also sacred

text, which is Cherokee Old Testament, and it also contains two-dialect Cherokee texts. Complete

information is in Table 6.4. Similarly, we applied OCR to extract these texts. However, we only

manually corrected the major errors introduced by OCR. Thus our monolingual data is noisy and

contains some lexical errors. As shown in Table 6.2, there are around 93K Cherokee tokens in

total with 20K unique Cherokee tokens. This monolingual data has a very small overlap with the

parallel data; about 72% of the unique Cherokee tokens are unseen in the whole parallel data.

Note that most of our monolingual data have English translations, i.e., it could be converted to

parallel data. But it requires more effort from Cherokee speakers and will be part of our future

work. For now, we show how to effectively use this monolingual data for semi-supervised gains.

6.3.2 Models

In this section, we will introduce our Cherokee-English and English-Cherokee translation

systems. Adopting best practices from low-resource machine translation works, we propose

both Statistical Machine Translation (SMT) and Neural Machine Translation (NMT) systems,

and for NMT, we test both RNN-based and Transformer-based models. We apply three semi-

supervised methods: training language model with additional monolingual data for SMT (Koehn

and Knowles, 2017), incorporating BERT or Multilingual-BERT representations into NMT (Zhu

et al., 2020), and back-translation for both SMT and NMT (Bertoldi and Federico, 2009; Sen-

nrich et al., 2016b). Further, we explore transfer learning (Kocmi and Bojar, 2018) from and mul-

tilingual joint training (Johnson et al., 2017) with 4 other languages (Czech, German, Russian,

and Chinese) for NMT.

4We considered parsing Cherokee Wikipedia. But, according to our coauthor, who is a Cherokee speaker, its content
is mostly low-quality.
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Title Speaker/Translator Date Type Dialect Examples

Cherokee New Testament Elias Boudinot & Samuel
Worcester

1860 Sacred Text OK 7,957

Charlotte’s Web Myrtle Driver Johnson 2015 Novel NC 3,029

Thirteen Moons Myrtle Driver Johnson 2007 Novel NC 1,927

A Walk in the Woods Marie Junaluska 2011 Children’s nonfiction NC 104

Wolf Wears Shoes (from: Cherokee Stories of the
Turtle Island Liars’ Club)

Sequoyah Guess 2012 Traditional narrative OK 97

The Big Journey of Little Fish Myrtle Driver Johnson &
Abel Catolster

2010 Children’s fiction NC 97

NSU to host 2017 Inter-Tribal Language Summit David Crawler 2017 News article OK 69

Bobby the Bluebird - The Blizzard Blunder Myrtle Driver Johnson 2016 Children’s fiction NC 66

A Very Windy Day Myrtle Driver Johnson 2011 Children’s fiction NC 59

Sequoyah: The Cherokee Man Who Gave His People
Writing

Anna Sixkiller Huckaby 2004 Children’s nonfiction OK 56

Spearfinger Nannie Taylor 2008 Traditional narrative NC 50

Tom Belt Meets Horse Tom Belt 2008 Personal Narrative OK 45

The Beast Marie Junaluska 2012 Children’s fiction NC 45

Jackson waiting for lung, heart transplants Anna Sixkiller Huckaby 2017 News article OK 42

Hannah creates competitive softball league Anna Sixkiller Huckaby 2017 News article OK 39

CN re-opens Sequoyah’s Cabin Museum Anna Sixkiller Huckaby 2017 News article OK 36

Chance finds passion in creating soap Anna Sixkiller Huckaby 2016 News article OK 36

Ice passes on loom weaving knowledge David Crawler 2017 News article OK 35

Cherokee National Holiday sees first-ever chunkey
game

Anna Sixkiller Huckaby 2017 News article OK 34

Gonzales showcases interpretive Cherokee art David Crawler 2017 News article OK 33

Eating healthy on a budget David Crawler 2017 News article OK 31

Team Josiah fundraises for diabetes awareness Anna Sixkiller Huckaby 2017 News article OK 30

Cherokee Gates scholars reflect on program’s influ-
ence

Anna Sixkiller Huckaby 2017 News article OK 28

‘Mankiller’premieres June 19 at LA Film Festival Anna Sixkiller Huckaby 2017 News article OK 26

Hummingbird, Dart named Cherokee National Trea-
sures

Dennis Sixkiller 2017 News article OK 25

CNF scholarship applications open Nov. 1 Anna Sixkiller Huckaby 2017 News article OK 22

Chunestudy feels at home as CHC curator Anna Sixkiller 2016 News article OK 20

One Time in Chapel Hill⋯ Tom Belt 2008 Personal Narrative OK 20

Ball of Fire (From: Cherokee Narratives: A Linguis-
tic Study)

Durbin Feeling 2018 Personal Narrative OK 20

Cat Meowing (From: Cherokee Narratives: A Lin-
guistic Study)

Durbin Feeling 2018 Personal Narrative OK 19

Peas –Our Garden, Our Life Marie Junaluska 2013 Children’s nonfiction NC 18

Stopping by Woods on a Snowy Evening Marie Junaluska 2017 Poetry NC 16

The Invisible Companion Fox (From: Cherokee Nar-
ratives: A Linguistic Study)

Durbin Feeling 2018 Personal Narrative OK 14

Cherokee Speakers Bureau set for April 12 Anna Sixkiller Huckaby 2018 News article OK 6

Table 6.3: Parallel Data Sources.
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Title Speaker/Translator Date Type Dialect Examples

Cherokee Old Testament Samuel Worcester 1860 Sacred Text OK 3802

Encyclopedia Brown Marie Junaluska 2016 Novel NC 537

Charlie Brown Christmas Wiggins Blackfox 2020 Children’s fiction NC 146

Interview with Wilbur Sequoyah Durbin Feeling 2018 Dialogue OK 96

One Fish Two Fish Red Fish Blue
Fish

Marie Junaluska 2019 Children’s Fiction NC 91

Climbing The Apple Tree Marie Junaluska 2020 Children’s Nonfiction NC 59

How Jack Went to Seek His Fortune Wiggins Blackfox 2019 Children’s Fiction NC 50

Trick Or Treat Danny Wiggins Blackfox 2019 Children’s Fiction NC 49

Kathy’s Change Myrtle Driver John-
son

2016 Children’s Fiction NC 45

Crane And Hummingbird Race Dennis Sixkiller 2007 Traditional Narrative OK 44

Ten Apples On Top Myrtle Driver John-
son

2017 Children’s Fiction NC 37

Transformation Durbin Feeling 2018 Personal Narrative OK 35

Halloween Wiggins Blackfox 2019 Children’s Fiction NC 26

Throw It Home Mose Killer 2018 Personal Narrative OK 21

Little People Durbin Feeling 2018 Personal Narrative OK 19

Hunting Dialogue Durbin Feeling 2018 Dialogue OK 18

Two Dogs in On Durbin Feeling 2018 Personal Narrative OK 18

Reminiscence Mose Killer 2018 Personal Narrative OK 17

The Origin of Evil Magic Homer Snell 2018 Personal Narrative OK 17

Water Beast Sam Hair 2018 Personal Narrative OK 16

Legal Document John Littlebones 2018 Personal Narrative OK 14

The Good Samaritan Samuel Worcester 1860 Sacred Text OK 12

My Grandma Wiggins Blackfox 2018 Children’s Nonfiction NC 9

Rabbit and Buzzard Charley Campbell 2018 Personal Narrative OK 7

Hello Beach Marie Junaluska 2020 Children’s Nonfiction NC 7

This Is My Little Brother Marie Junaluska 2017 Children’s Fiction NC 7

Diary Author Unknown 2018 Personal Narrative OK 6

How to Make Chestnut Bread Annie Jessan 2018 Personal Narrative OK 5

Table 6.4: Monolingual Data Sources.
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Figure 6.3: A simple illustration of SMT and NMT.

Supervised SMT. SMT was the mainstream of machine translation research before neural mod-

els came out. Even if NMT has achieved state-of-the-art performance on many translation tasks,

SMT is still very competitive under low-resource and out-of-domain conditions (Koehn and

Knowles, 2017). Phrase-based SMT is a dominant paradigm of SMT (Koehn et al., 2003). It first

learns a phrase table from the parallel data that translates source phrases to target. Then, a re-

ordering model learns to reorder the translated phrases. During decoding, a scoring model scores

candidate translations by combining the weights from translation, reordering, and language mod-

els, and it is tuned by maximizing the translation performance on the development set. A simple

illustration of SMT is shown in Figure 6.3. Note that, as Cherokee and English have different

word orders (English follows SVO; Cherokee has variable word orders), one Cherokee phrase

could be translated into two English words that are far apart in the sentence. This increases the

difficulty of SMT that relies on phrase correspondence and is not good at distant word reordering

(Zhang et al., 2017). We implement our SMT systems by Moses (Koehn et al., 2007).

Semi-Supervised SMT. Previous works have shown that SMT can be improved by two semi-

supervised methods: (1) A big language model (Koehn and Knowles, 2017), i.e., a language

model trained with big target-side monolingual data; (2) Synthesizing bilingual data by back-

translating monolingual data (Bertoldi and Federico, 2009; Lambert et al., 2011). Using our

Cherokee monolingual data and the publicly available English monolingual data, we test these
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two methods. For the first method, we use both parallel and monolingual data to train the lan-

guage model; for the second method, we back-translate target-language monolingual data into

the source language and then combine them with the training set to retrain a source-target SMT

model.

Supervised NMT. NMT has mostly dominated recent machine translation research. Especially

when a large amount of parallel data is available, NMT surpasses SMT by a large margin; more-

over, NMT is good at generating fluent translations because of its auto-regressive generation na-

ture. Koehn and Knowles (2017) pointed out the poor performance of NMT under low-resource

and out-of-domain conditions; however, recent work from Sennrich and Zhang (2019) showed

that low-resource NMT can be better than SMT by using proper training techniques and hyper-

parameters. NMT models usually follow encoder-decoder architecture. The encoder encodes

the source sentence into hidden representations, then the decoder generates the target sentence

word by word by “reading” these representations, as shown in Figure 6.3. We investigate two

paradigms of NMT implementations: RNN-based model (Bahdanau et al., 2015) and Transformer-

based model (Vaswani et al., 2017). We implement both of them via OpenNMT (Klein et al.,

2017). For RNN-NMT, we follow the global attentional model with general attention proposed

by Luong et al. (2015). For Transformer-NMT, we mainly follow the architecture proposed by

Vaswani et al. (2017) except applying layer normalization before the self-attention and FFN

blocks instead of after, which is more robust (Baevski and Auli, 2019).

Semi-Supervised NMT. NMT models can often be improved when more training data is avail-

able; therefore, a lot of works have studied semi-supervised approaches that utilize monolin-

gual data to improve translation performance. Similar to SMT, we mainly investigate two semi-

supervised methods. The first is to leverage pre-trained language models. Early works proposed

shallow or deep fusion methods to rerank NMT outputs or add the language model’s hidden

states to NMT decoder (Jean et al., 2015; Gulcehre et al., 2015). Recently, the large-scale pre-

trained language model, BERT (Devlin et al., 2019), has achieved impressive success in many

NLP tasks. Zhu et al. (2020) showed that incorporating the contextualized BERT representations
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Figure 6.4: The four different ways we proposed to incorporate BERT representations into NMT
models.

can significantly improve translation performances. Following but different from this work, we

explore four different ways to incorporate BERT representations into NMT models for English-

Cherokee translation only.5 As depicted in Figure 6.4, we apply BERT representations by: 1⃝ Ini-

tializing NMT models’ word embedding matrix with BERT’s pre-trained word embedding matrix

IB; 2⃝ Concatenating NMT encoder’s input IE with BERT’s output HB; 3⃝ Concatenating NMT

encoder’s output HE with BERT’s output HB; 4⃝ Using another attention to leverage BERT’s

output HB into decoder. Note that 3⃝ and 4⃝ will not be applied simultaneously, and all the com-

bination of these four methods are treated as hyper-parameters, details are in Section 6.3.4. In

general, we hope BERT representations can help encoder understand English sentences better and

thus improve translation performance. We also test Multilingual-BERT (Devlin et al., 2019) to

see if a multilingual pre-trained model can generalize better to a newly encountered language.

The second semi-supervised method we try is again the back-translation method. Sennrich et al.

(2016b) has shown that applying this method on NMT obtains larger improvement than applying

it on SMT, and it works better than the shallow or deep fusion methods.

5Because there is no Cherokee BERT. We tried to initialize the decoder embeddings with BERT pre-trained embed-
dings for Chr-En translation; however, it does not work well.
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Transferring & Multilingual NMT. Another important line of research is to improve low-

resource translation performance by incorporating knowledge from other language pairs. As

mentioned in Section 6.1, Cherokee is the sole member of the southern branch of the Iroquoian

language family, so it seems that Cherokee is not “genealogically” related to any high-resource

languages in terms of their language family trees. However, it is still interesting to see whether

the translation knowledge between other languages and English can help with the translation be-

tween Cherokee and English. Hence, in this paper, we will explore two ways of leveraging other

language pairs: Transfer learning and Multilingual joint training. Kocmi and Bojar (2018) pro-

posed a simple and effective continual training strategy for the transfer learning of translation

models. This method will first train a “parent” model using one language pair until convergence;

then continue the training using another language pair, so as to transfer the translation knowl-

edge of the first language pair to the second pair. Johnson et al. (2017) introduced the “many-to-

one” and “one-to-many” methods for multilingual joint training of X-En and En-X systems. They

achieve this by simply combining training data, except for the “one-to-many” method, every En-

glish sentence needs to start with a special token to specify the language to be translated into. We

test both the transferring and multilingual methods for Chr-En/En-Chr translations with 4 other

X-En/En-X language pairs (X is Czech or German or Russian or Chinese).

6.3.3 Results

Experimental Details

We randomly sample 5K-100K sentences (about 0.5-10 times the size of the parallel train-

ing set) from News Crawl 20176 as our English monolingual data. We randomly sample 12K-

58K examples (about 1-5 times the size of parallel training set) for each of the 4 language pairs

(Czech/German/Russian/Chinese-English) from News Commentary v13 of WMT20187 and

6http://data.statmt.org/news-crawl/en/
7http://www.statmt.org/wmt18/index.html
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ID System Cherokee-English English-Cherokee
Dev Test Out-dev Out-test Dev Test Out-dev Out-test

S1 SMT 15.0 14.5 6.7 6.4 11.1 9.8 5.4 4.7
S2 + bigLM 15.3 14.5 6.8 6.5 (˘1.4) 11.3 10.1 5.4 4.7
S3 + BT 15.4 14.5 6.5 5.9 11.4 9.9 5.7 5.0 (˘1.2)

N4 RNN-NMT 15.7 15.1 2.7 1.8 12.4 11.7 1.1 1.8
N5 + BERT - - - - 12.8 12.2 0.7 0.5
N6 + mBERT - - - - 12.4 12.0 0.5 0.4
N7 + BT 16.0 14.9 3.6 2.7 11.4 11.0 1.2 1.5

N8 Transformer-NMT 9.6 9.1 1.1 0.7 7.9 7.4 0.4 0.3
N9 + BERT - - - - 8.0 7.2 0.4 0.2
N10 + mBERT - - - - 6.8 6.3 0.4 0.2
N11 + BT 9.9 9.4 1.3 0.5 6.6 5.8 0.4 0.1

Table 6.5: Performance of our supervised/semi-supervised SMT/NMT systems. Bold numbers
are our best out-of-domain systems together with Table 6.6, selected by performance on Out-dev.
(˘x) shows 95% confidence interval.

Bible-uedin (Christodouloupoulos and Steedman, 2015) on OPUS8. We apply tokenizer and

truecaser from Moses (Koehn et al., 2007). We also apply the BPE tokonization (Sennrich et al.,

2016c), but instead of using it as default, we treat it as hyper-parameter. For systems with BERT,

we apply the WordPiece tokenizer (Devlin et al., 2019). We compute detokenized and case-sensitive

BLEU score (Papineni et al., 2002) using SacreBLEU (Post, 2018).9

We implement our SMT systems via Moses (Koehn et al., 2007). SMT denotes the base sys-

tem; SMT+bigLM represents the SMT system that uses additional monolingual data to train

its language model; SMT with back-translation is denoted by SMT+BT. Our NMT systems

are implemented by OpenNMT toolkit (Klein et al., 2017). Two baselines are RNN-NMT and

Transformer-NMT. For En-Chr, we also test adding BERT or Multilingual-BERT representa-

tions (Devlin et al., 2019), NMT+BERT or NMT+mBERT, and with back-translation, NMT+BT.

For Chr-En, we only test NMT+BT, treating the English monolingual data size as hyper-parameter.

For both En-Chr and Chr-En, we test Transfer learning from andMultilingual joint training with

4 other languages denoted by NMT+X (T) and NMT+X (M) respectively, where X is Czech/Ger-

8http://opus.nlpl.eu/bible-uedin.php
9BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.4
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man/Russian/Chinese. We treat the X-En data size as hyper-parameter. All other detailed model

designs and hyper-parameters are introduced in Section 6.3.4.

Quantitative Results

Our main experimental results are shown in Table 6.5 and Table 6.6.10 Overall, the transla-

tion performance is poor compared with the results of some high-resource translations (Sennrich

et al., 2016a), which means that current popular SMT and NMT techniques still struggle to trans-

late well between Cherokee and English especially for the out-of-domain generalization.

Chr-En vs. En-Chr. Overall, the Cherokee-English translation gets higher BLEU scores than

the English-Cherokee translation. It is reasonable because English has a smaller vocabulary and

simpler morphology; thus, it is easier to generate.

SMT vs. NMT. For in-domain evaluation, the best NMT systems surpass SMT for both trans-

lation directions. It could result from our extensive architecture hyper-parameter search; or, it

supports our conjecture that SMT is not necessarily better than NMT because of the different

word orders. But, SMT is dominantly better than NMT for out-of-domain evaluation, which is

consistent with the results in Koehn and Knowles (2017).

RNN vs. Transformer. Transformer-NMT performs worse than RNN-NMT, which contradicts

the trends of some high-resource translations (Vaswani et al., 2017). We conjecture that Trans-

former architecture is more complex than RNN and thus requires larger-scale data to train prop-

erly. We also notice that Transformer models are very sensitive to hyper-parameters, so it can be

possibly improved after a more extensive hyper-parameter search. The best Transformer-NMT

has a 5-layer encoder/decoder and 2-head attention, which is smaller-scale than the model used

for high-resource translations (Vaswani et al., 2017). Another interesting observation is that pre-

vious works have shown applying BPE and using a small vocabulary by setting minimum word

frequency are beneficial for low-resource translation (Sennrich et al., 2016c; Sennrich and Zhang,

10The confidence intervals in Table 6.5 and Table 6.6 are computed by the bootstrap method (Efron and Tibshirani,
1994).
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ID System Cherokee-English English-Cherokee
Dev Test Out-dev Out-test Dev Test Out-dev Out-test

N4 RNN-NMT 15.7 15.1 2.7 1.8 12.4 11.7 1.1 1.8

N12 + Czech (T) 15.8 14.7 2.3 1.8 12.7 12,6 1.8 2.4
N13 + German (T) 15.9 14.8 2.3 1.1 12.9 12.1 1.8 1.4
N14 + Russian (T) 16.5 15.8 1.9 1.9 12.6 11.8 1.8 2.3
N15 + Chinese (T) 16.9 15.8 (˘1.2) 2.0 1.5 12.9 12.9 1.2 0.8

N16 + Czech (M) 16.6 15.7 2.4 2.0 13.2 12.4 1.1 2.1
N17 + German (M) 16.6 15.4 2.3 1.4 13.4 12.7 (˘1.0) 0.8 2.0
N18 + Russian (M) 16.5 15.9 1.9 1.6 13.2 13.1 1.2 1.8
N19 + Chinese (M) 16.8 16.1 2.2 1.8 13.0 13.0 1.1 1.4

Table 6.6: Performance of our transfer and multilingual learning systems. Bold numbers are our
best in-domain systems together with Table 6.5, selected by the performance on Dev. (˘x) shows
the 95% confidence interval.

2019); however, these techniques are not always being favored during our model selection proce-

dure, as shown in Section 6.3.4.

Supervised vs. Semi-supervised. As shown in Table 6.5, using a big language model and back-

translation both only slightly improve SMT baselines on both directions. For English-Cherokee

translation, leveraging BERT representations improves RNN-NMT by 0.4/0.5 BLEU points

on Dev/Test. Multilingual-BERT does not work better than BERT. Back-translation with our

Cherokee monolingual data barely improves performance for both in-domain and out-of-domain

evaluations, probably because the monolingual data is also out-of-domain, 72% of the unique

Cherokee tokens are unseen in the whole parallel data. For Cherokee-English translation, back-

translation improves the out-of-domain evaluation of RNN-NMT by 0.9/0.9 BLEU points on Out-

dev/Out-test, while it does not obviously improve in-domain evaluation. A possible reason is that

the English monolingual data we used is news data that is not of the same domain as Dev/Test

but closer to Out-dev/Out-test so that it helps the model to do domain adaptation. We also investi-

gate the influence of the English monolingual data size. We find that all of the NMT+BT systems

perform best when only using 5K English monolingual data, see Figure 6.5 in Section 6.3.4.

Transferring vs. Multilingual. Table 6.6 shows the transfer learning and multilingual joint

training results. It can be observed that, in most cases, the in-domain RNN-NMT baseline (N4)

can be improved by both methods, which demonstrates that even though the 4 languages are
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not related to Cherokee, their translation knowledge can still be helpful. Transferring from the

Chinese-English model and joint training with English-German data achieve our best in-domain

Cherokee-English and English-Cherokee performance, respectively. However, there is barely

an improvement on the out-of-domain evaluation sets, even though the X-En/En-X data is mostly

news (same domain as Out-dev/Out-test). On average, multilingual joint training performs slightly

better than transfer learning and usually prefers a larger X-En/En-X data size (see details in Sec-

tion 6.3.4).

Qualitative Results

Automatic metrics are not always ideal for natural language generation (Wieting et al., 2019).

As a new language to the NLP community, we are also not sure if BLEU is a good metric for

Cherokee evaluation. Therefore, we conduct a small-scale human (expert) pairwise comparison

by our coauthor between the translations generated by our NMT and SMT systems. We randomly

sample 50 examples from Test or Out-test, anonymously shuffle the translations from two sys-

tems, and ask our coauthor to choose which one they think is better.11 As shown in Table 6.7, hu-

man preference does not always follow the trends of BLEU scores. For English-Cherokee trans-

lation, though the RNN-NMT+BERT (N5) has a better BLEU score than SMT+BT (S3) (12.2

vs. 9.9), it is liked less by humans (21 vs. 29), indicating that BLEU is possibly not a suitable

for Cherokee evaluation. A detailed study is beyond the scope of this paper but is an interesting

future work direction.

11The author, who conducted this human study, was not involved in the development of MT systems.
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Condition | System IDs Win Lose

Chr-En Test N7 vs. S3 43 7
Out-test N7 vs. S2 16 34

En-Chr Test N5 vs. S3 21 29
Out-test N7 vs. S3 2 48

Table 6.7: Human comparison between the translations generated from our NMT and SMT
systems. If A vs. B, “Win” or “lose” means that the evaluator favors A or B. Systems IDs corre-
spond to the IDs in Table 6.5.

6.3.4 Implementation Details

Data and Preprocessing

For semi-supervised learning, we sample additional English monolingual data from News

Crawl 2017.12 We randomly sample 5K, 10K, 20K, 50K, and 100K sentences, which are about

half, equal, double, 5-times, 10-times the size of the parallel training set. For transfer and multi-

lingual training experiments, we use 12K, 23K, or 58K X-En (X=Czech/German/Russian/Chinese)

parallel examples, which are equal, double, and 5-times the size of Chr-En training set. We sam-

ple these examples either only from News Commentary v13 of WMT201813 or from both News

Commentary and Bible-uedin (Christodouloupoulos and Steedman, 2015) on OPUS14, because

half of in-domain Chr-En data is the Bible. Whenever we sample from Bible-uedin, we keep the

sample size as 6K and sample the rest from News Commentary.

For all the data we used, the same tokenizer and truecaser from Moses (Koehn et al., 2007)

are applied. For some NMT systems, we also apply the BPE subword tokenization (Sennrich

et al., 2016c) with 20,000 merge operations for Cherokee and English separately. For NMT sys-

tems with BERT, we apply the WordPiece tokenizer from BERT (Devlin et al., 2019) for English.

12http://data.statmt.org/news-crawl/en/
13http://www.statmt.org/wmt18/index.html
14http://opus.nlpl.eu/bible-uedin.php
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Before evaluation, the translation outputs are detokenized and detruecased. We use SacreBLEU

(Post, 2018)15 to compute the BLEU (Papineni et al., 2002) scores of all translation systems.

SMT Systems

We implement SMT systems via Moses (Koehn et al., 2007). We train a 3-gram langauge

model (LM) by KenLM (Heafield et al., 2013) and conduct word alignment by GIZA++ (Och

and Ney, 2003). Model weights are tuned on the Dev or Our-dev by MERT (Och, 2003).

NMT Systems

Our NMT systems are all implemented by OpenNMT (Klein et al., 2017). As shown in Ta-

ble 6.5 and Table 6.6, there are 16 NMT systems in total (N4-N19). For each of these systems,

We conduct a limited amount of hyper-parameter grid search on Dev or Out-dev. The search

space includes applying BPE or not, minimum word frequency threshold, number of encoder/de-

coder layers, hidden size, dropout, etc. The detailed hyper-parameter tuning procedure will be

discussed in the next subsection. During decoding, all systems use beam search with beam size 5

and replace unknown words with source words that have the highest attention weight.

Hyper-parameters

We observed the NMT models, especially the Transformer-NMT models, are sensitive to

hyper-parameters. Thus, we did a limited amount of hyper-parameter grid search when devel-

oping NMT models. For building vocabulary, we take BPE (Sennrich et al., 2016c) (use or not)

and the minimum word frequency (0, 5, 10) as two hyper-parameters. For the model architecture,

we explore different number of encoder/decoder layers (1, 2, 3 for RNN; 4, 5, 6 for Transformer),

hidden size (512, 1024), embedding size (equals to hidden size, except 768 for BERT), tied de-

coder embeddings (Press and Wolf, 2017) (use or not), and number of attention heads (2, 4, 8).

15BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.4
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For training techniques, we tune dropout (0.1, 0.2, 0.3), label smoothing (Szegedy et al., 2016)

(0.1, 0.2), average decay (1e-4 or not use), batch type (tokens or sentences), batch size (1000,

4000 for tokens; 32, 64 for sents), and warmup steps (3000, 4000). We take the English monolin-

gual data size (5K, 10K, 20K, 50K, 100K) as hyper-parameter when we do back-translation for

Cherokee-English translation. We take the size of Czech/German/Russian/Chinese-English paral-

lel data (12K, 23K, 58K) and whether sampling from Bible-uedin (yes or no) as hyper-parameter

when we do transfer or multilingual training. Besides, we take how we incorporate BERT as

hyper-parameter, and it is chosen from the following five settings and their combinations:

BERT embedding: Initializing NMT models’ word embedding matrix with BERT’s pre-

trained word embedding matrix IB, corresponding to 1⃝ in Figure 6.4;

BERT embedding (fix): The same as “BERT embedding” except we fix the word embed-

ding during training;

BERT input: Concatenate NMT encoder’s input IE with BERT’s output HB, corresponding

to 2⃝ in Figure 6.4;

BERT output: Concatenate NMT encoder’s output HE with BERT’s output HB, correspond-

ing to 3⃝ in Figure 6.4;

BERT output (attention): Use another attention to leverage BERT’s output HB into de-

coder, corresponding to 4⃝ in Figure 6.4;

“BERT embedding” and “BERT embedding (fix)” will not be applied simultaneously, and

“BERT output” and “BERT output (attention)” will not be applied simultaneously. Multilingual-

BERT is used in the same ways. At most, there are 576 searches per model, but oftentimes, we

did less than that because we early cut off unpromising settings. All hyper-parameters are tuned

on Dev or Out-dev for in-domain or out-of-domain evaluation, and the model selection is based

on translation accuracy on Dev or Out-dev. Table 6.8, Table 6.9, Table 6.10, Table 6.11, Table 6.12,

Table 6.13, and Table 6.14 list the hyper-parameters of all the systems shown in the Table 6.5 and

Table 6.6. Since our parallel dataset is small (14K sentence pairs), even the slowest experiment,

Transformer-NMT+mBERT, only takes 2 minutes per epoch using one Tesla V100 GPU. We
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Dev Out-dev

Hyper-parameter N4 N7 N8 N11 N4 N7 N8 N11

BPE yes -
word min frequency 10 0 10

encoder layer 2 5 2 5
decoder layer 2 5 2 5
hidden size 1024 512 1024
embedding size 1024 512 1024
tied decoder embeddings yes - yes - yes
head - 2 - 2

dropout 0.3 0.5 0.1 0.3 0.1
label smoothing 0.2 0.1 0.2 0.1
average decay 1e-4 - 1e-4
batch type tokens sents tokens sents tokens
batch size 1000 32 4000 32 4000
optimizer adam
learning rate (lr) 5e-4
lr decay method - rsqrt - rsqrt
warmup steps - 4000 - 4000
early stopping 10

mono. data size - 5000 - 5000 - 5000 - 5000

Table 6.8: The hyper-parameter settings of Supervised and Semi-supervised Cherokee-
English NMT systems in Table 6.5. Empty fields indicate that hyper-parameter is the same
as the previous (left) system.

train 100 epochs at most and using early stop when the translation accuracy on Dev or Out-dev

does not improve for 10 epochs.

English Monolingual Data Size Influence

In the semi-supervised experiments of Cherokee-English, we investigate the influence of the

English monolingual data size. As mentioned above, we use 5K, 10K, 20K, 50K, and 100K En-

glish monolingual sentences. Figure 6.5 shows its influence on translation performance. It can

be observed that increasing English monolingual data size does not lead to higher performance,

especially, all NMT+BT systems achieve the best performance when only use 5K English sen-

tences.
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Figure 6.5: The influence of the English monolingual data size on semi-supervised learning
performance. The results are on Dev or Out-dev.

Dev Out-dev

Hyper-parameter N12 N13 N14 N15 N12 N13 N14 N15

BPE -
word min frequency 0 5

encoder layer 2
decoder layer 2
hidden size 1024 512
embedding size 1024 512
tied decoder embeddings yes
head

dropout 0.3
label smoothing 0.2
average decay 1e-4
batch type tokens sents
batch size 1000 32
optimizer adam
learning rate (lr) 5e-4
lr decay method -
warmup steps -
early stopping 10

X-En data size 11,639 23,278 11,639 23,278
with Bible no yes no yes

Table 6.9: The hyper-parameter settings of Transferring Cherokee-English NMT systems in Ta-
ble 6.6. Empty fields indicate that hyper-parameter is the same as the previous (left) system.
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Dev Out-dev

Hyper-parameter N16 N17 N18 N19 N16 N17 N18 N19

BPE -
word min frequency 5 5

encoder layer 2
decoder layer 2
hidden size 1024 512
embedding size 1024 512
tied decoder embeddings yes
head

dropout 0.3
label smoothing 0.2
average decay 1e-4
batch type tokens sents
batch size 1000 32
optimizer adam
learning rate (lr) 5e-4
lr decay method -
warmup steps -
early stopping 10

X-En data size 58,195 23,278
with Bible yes no

Table 6.10: The hyper-parameter settings of Multilingual Cherokee-English NMT systems in
Table 6.6. Empty fields indicate that hyper-parameter is the same as the previous (left) system.

Dev

Hyper-parameter N4 N7 N5 N6 N8 N11 N9 N10

BPE - - yes -
WordPiece - yes - yes
word min frequency 0 5 0

encoder layer 2 5
decoder layer 2 5
hidden size 1024
embedding size 1024 768 1024 768
tied decoder embeddings yes -
head - 2

dropout 0.5 0.1
label smoothing 0.2 0.1 0.2 0.1
average decay 1e-4 -
batch type tokens
batch size 1000 4000
optimizer adam
learning rate (lr) 5e-4
lr decay method - rsqrt
warmup steps - 4000
early stopping 10

mono. data size - 5210 - 5210 -
BERT embedding - yes
BERT embedding (fix) - yes - -
BERT input - yes - yes
BERT output - yes - - yes
BERT output (attention) - -

Table 6.11: The hyper-parameter settings of in-domain Supervised and Semi-supervised English-
Cherokee NMT systems in Table 6.5. Empty fields indicate that hyper-parameter is the same as
the previous (left) system.
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Out-dev

Hyper-parameter N4 N7 N5 N6 N8 N11 N9 N10

BPE -
WordPiece - yes - yes
word min frequency 10 0 0

encoder layer 2 5
decoder layer 2 5
hidden size 512 1024
embedding size 512 768 1024 768
tied decoder embeddings yes - yes -
head - 2

dropout 0.3 0.5 0.3 0.1
label smoothing 0.2 0.1 0.2 0.2
average decay 1e-4 - 1e-4 -
batch type sents tokens
batch size 32 4000
optimizer adam
learning rate (lr) 5e-4
lr decay method - rsqrt
warmup steps - 4000
early stopping 10

mono. data size - 5210 - 5210 -
BERT embedding - yes -
BERT embedding (fix) - yes -
BERT input - yes -
BERT output - yes -
BERT output (attention) -

Table 6.12: The hyper-parameter settings of out-of-domain Supervised and Semi-supervised
English-Cherokee NMT systems in Table 6.5. Empty fields indicate that hyper-parameter is the
same as previous (left) system.

Dev Out-dev

Hyper-parameter N12 N13 N14 N15 N12 N13 N14 N15

BPE -
word min frequency 0 10 5 10

encoder layer 2
decoder layer 2
hidden size 1024 512
embedding size 1024 512
tied decoder embeddings yes
head

dropout 0.3
label smoothing 0.2
average decay 1e-4
batch type tokens sents
batch size 1000 32
optimizer adam
learning rate (lr) 5e-4
lr decay method -
warmup steps -
early stopping 10

En-X data size 23,278 11,639 23,278 11,639 23,278 11,639
with Bible yes no yes no

Table 6.13: The hyper-parameter settings of Transferring English-Cherokee NMT systems in
Table 6.6. Empty fields indicate that hyper-parameter is the same as the previous (left) system.

139



Dev Out-dev

Hyper-parameter N16 N17 N18 N19 N16 N17 N18 N19

BPE -
word min frequency 5 5

encoder layer 2
decoder layer 2
hidden size 1024 512
embedding size 1024 512
tied decoder embeddings yes
head

dropout 0.3
label smoothing 0.2
average decay 1e-4
batch type tokens sents
batch size 1000 32
optimizer adam
learning rate (lr) 5e-4
lr decay method -
warmup steps -
early stopping 10

En-X data size 58,195 23,278 11,639
with Bible yes no yes no

Table 6.14: The hyper-parameter settings of Multilingual English-Cherokee NMT systems in
Table 6.6. Empty fields indicate that hyper-parameter is the same as the previous (left) system.

6.4 ChrEnTranslation System

6.4.1 System Description

Translation Models

As shown in Figure 6.6, our system allows users to choose the statistical or neural model

(SMT or NMT).

SMT is more effective for out-of-domain translation between Cherokee and English (Zhang

et al., 2020b). We implement phrase-based SMT model via Moses (Koehn et al., 2007), where

we train a 3-gram KenLM (Heafield et al., 2013) and learn word alignment by GIZA++ (Och and

Ney, 2003). Model weights are tuned on a development set by MERT (Och, 2003).

NMT has better in-domain performance and can generate more fluent texts. We implement

the global attentional model proposed by Luong et al. (2015). Detailed hyper-parameters can be

found in Section 6.4.2. Note that we do not use Transformer because it empirically works worse
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(Zhang et al., 2020b). And we find that the multilingual techniques we explored only signifi-

cantly improve in-domain performance when using multilingual Bible texts, so we suspect that

it biases to Bible-style texts. Hence, we also do not apply multilingual techniques and just train

the backbone models with our Cherokee-English parallel texts. We use a 3-model ensemble as

our final working model.

Quality Estimation

Supervised QE. The QE (Specia et al., 2010) task in WMT campaign provides thousands of

model-translated texts plus corresponding human ratings, which allow participants to train su-

pervised QE models. Fomicheva et al. (2020a) show that supervised models work significantly

better than unsupervised ones. Since we are unable to collect thousands of human ratings, we

use BLEU (Papineni et al., 2002) as the quality rating. We use 17-fold cross-validation to obtain

training data, i.e., we split our 17K parallel texts into 17 folds, use 16 folds to train a translation

model, get the translation features plus BLEU scores of examples in the left one fold, repeat this

for 17 times, and finally, we get the features plus BLEU scores of 17K examples. Then, we sepa-

rate 16K examples as a training set to train a BLEU score regressor and evaluate the performance

on the left 1K examples. Fomicheva et al. (2020a,b) define three sets of features. However, we

need to compute features online, so some features (e.g., dropout features) that require multiple

forward computations will greatly increase latency. W use features that will not cause too much

speed lag.

For SMT, we use:

1. output length Lt, i.e., the number of words in the translated text;

2. total score;

3. scores of distortion, language model, lexical reordering, phrases penalty, translation model,

and word penalty;

4. length normalized (b) and (c) features (i.e., divide each feature from (b) and (c) by (a)).

For NMT, we use:
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Figure 6.6: Translation interface of our demonstration system. Note that “Ꮎ ᎠᏍᎦᏯ ᎠᎢ.” is not a
correct translation. See Figure 6.7 for the corrected translation by an expert.

1. output length;

2. log probability and length normalized log probability;

3. probability and length normalized probability;

4. attention entropy (Fomicheva et al., 2020a,b): ´ 1
Lt

řLt

i=1

řLs

j=1 αij logαij , where Ls is the

length of source text, and αij is the attention weight between target token i and source token j.

Finally, we use XGBoost (Chen and Guestrin, 2016) as the BLEU regressor.16 As shown in

Figure 6.6, we use 5 stars to show QE, therefore, we rescale the estimated quality to 0-5 by divid-

ing the predicted BLEU score (0-100) by 20.

Unsupervised QE. Even though supervised QE works better (Fomicheva et al., 2020a), we

suspect that the advantage cannot generalize to open domain scenarios unless we have a large

amount of human-rated data to learn from. Hence, we also explore unsupervised QE methods.

Unsupervised QE is closely related to uncertainty estimation. We can use how uncertain the

model is to quantify how low-quality the model output is. Though it is intuitive to use the output

probability as the model’s confidence, Guo et al. (2017) point out that the output probability is of-

ten poorly calibrated, so that they propose to re-calibrate the probability on the development set.

However, this method is designed for classification tasks and is not applicable for language gen-

16We also tested GradientBoost (Friedman, 2002) and MLP, but XGBoost empirically works better.
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(a) Common User Feedback

(b) Expert Feedback

Figure 6.7: Two user feedback interfaces of our demonstration system. (b) shows the feedback
given by an expert.

eration. Gal and Ghahramani (2016) show that “dropout” can be a good uncertainty estimator,

inspired by which Fomicheva et al. (2020b) propose the dropout features. However, the multiple

forward passes are not preferable for an online system. Lakshminarayanan et al. (2017) demon-

strate that the ensemble model’s output probability can better estimate the model’s uncertainty

than dropout. We find that this method is simple yet effective for NMT. Note that we normalize

the output probability by the sentence length. Similarly, we rescale the normalized probability

(0-1) to 0-5 by multiplying it by 5.
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Figure 6.8: Word alignment visualization and link to Cherokee-English Dictionary.

Human Quality Rating. So far, our QE development and evaluation are all based on BLEU.

To better evaluate QE performance, we collect 200 human ratings (all rated by Prof. Benjamin

Frey, 50 ratings for Chr-En SMT, En-Chr SMT, Chr-En NMT, and En-Chr NMT, respectively.

We follow the direct assessment setup used by FLoRes (Guzmán et al., 2019),17 and thus each

translated sentence receives a 0-100 quality rating.

User Feedback & Example Inputs

Enlarging the parallel texts is a fundamental approach to improve the translation model’s

performance. Besides compiling existing translated texts, it is important to newly translate En-

glish texts to Cherokee by translators. Our system is designed to not only assist these translators

but also document their feedback and post-edited correct translation, so that model can be im-

170–10: represents a translation that is completely incorrect and inaccurate; 11–29 represents a translation with a few
correct keywords, but the overall meaning is different from the source; 30–50 represents a translation that contains
translated fragments of the source string, with major mistakes; 51–69 represents a translation that is understand-
able and conveys the overall meaning of source string but contains typos or grammatical errors; 70–90 represents a
translation that closely preserves the semantics of the source sentence; 90–100 range represents a perfect translation.
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proved by using this feedback, i.e., human-in-the-loop learning. To achieve this goal, we design

two kinds of user feedback interfaces. One is for common users, in which users can rate how

helpful the translation is (in 5-point Likert scale) and leave open-ended comments, as shown in

Figure 6.7 (a). The other is for experts, in which authorized users can rate the quality, correct

the translated text, and leave open-ended comments, as shown in Figure 6.7 (b). Upon submis-

sion, we collect 216 pieces of feedback from 4 experts and detailed analysis can be found in

Section 6.4.2. Meanwhile, as shown in Figure 6.6, besides inputting text, users can also choose

an example input to translate. These examples are from our Cherokee or English monolingual

databases. On the one hand, this provides users with more convenience; on the other hand, when-

ever experts submit translation corrections of an example, we will update its status as “labeled”.

Hence, we can gradually collect human translations for the monolingual data.

Other Features

As shown in Figure 6.8, to make model prediction more interpretable to users, we visualize

the word alignment learned by the translation model. For SMT, we visualize the hard word-to-

word alignment; for NMT, we visualize the soft attention map between source and target tokens.

Additionally, to provide users with some oracle and handy references from the dictionary, we

link to cherokeedictionary. We use each of the source and target tokens as a query and list up to

15 relevant terms on our web page.

6.4.2 Evaluation

Implementation Details

Data. To train translation models, we use the 14K parallel data collected by our previous work

(Zhang et al., 2020b) plus 3K newly complied parallel texts. We randomly sample 1K as our de-

velopment set and treat the rest as the training set. The data is open-sourced at ChrEn/data/demo.

To collect human quality ratings, we randomly sample 50 examples from the development set,
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BLEU Human Rating

Model QE Chr-En En-Chr Chr-En En-Chr

SMT

Supervised XGBoost 0.75 0.71 0.63 0.44

Unsupervised
TranslationModel / length 0.36 0.46 0.07 -0.09
LM / length 0.34 0.43 -0.11 0.11
PhrasePenalty / length -0.33 -0.52 0.06 0.03

NMT (ensemble)
Supervised XGBoost 0.79 0.68 0.53 0.38

Unsupervised Exp(LogProbability / length) 0.75 0.63 0.59 0.44
LogProbability / length 0.45 0.50 0.37 0.52

Table 6.15: Pearson correlation coefficients between QE and BLEU or between QE and human
rating. “/ length” represents the normalization by output sentence length.

Model Chr-En En-Chr

SMT 17.0 12.9

NMT (single) 18.1 13.8
NMT (ensemble) 19.9 14.8

Table 6.16: The performance of translation models.

and for each of them, we collect 4 ratings for Chr-En/En-Chr SMT and Chr-En/En-Chr NMT,

respectively.

Setup. We implement SMT models via Moses (Koehn et al., 2007). After training and tuning,

we run it as a server process.18 We develop our NMT models via OpenNMT (Klein et al., 2017).

For both Chr-En and En-Chr NMT models , we use 2-layer LSTM encoder and decoder, general

attention (Luong et al., 2015), hidden size=1024, label smoothing (Szegedy et al., 2016) equals to

0.2, dynamic batching with 1000 tokens. Differently, the Chr-En NMT model uses dropout=0.3,

BPE tokenizer (Sennrich et al., 2016c), and minimum word frequency=10; the En-Chr NMT

model uses dropout=0.5, Moses tokenizer, and minimum word frequency=0. We train each NMT

model with three random seeds (7, 77, 777) and use the 3-model ensemble as the final translation

model, and we use beam search (beam size=5) to generate translations. We implement the super-

18http://www.statmt.org/moses/?n=Advanced.Moses
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vised QE model with XGBoost.19 XGBoost has three important hyperparameters: max depth,

eta, the number of rounds. Tuned on the development set, we set them as (5, 0.1, 100) for Chr-

En SMT, (3, 0.1, 80) for En-Chr SMT, (4, 0.5, 40) for Chr-En NMT, and (5, 0.1, 40) for En-Chr

NMT. Lastly, the backend of our demonstration website is based on the Flask framework.

Metrics. We evaluate translation systems by BLEU (Papineni et al., 2002) calculated via Sacre-

BLEU20 (Post, 2018). Supervised QE models are developed by minimizing the mean square error

of predicting BLEU, but all QE models are evaluated by the correlation with BLEU on devel-

opment set and the correlation with human ratings. We use Pearson correlation (Benesty et al.,

2009).

Quantitative Results

Translation. Table 6.16 shows the translation performance on our 1K development set, which

is significantly better than the single-model in-domain translation performance reported in our

previous work (Zhang et al., 2020b) and thus achieves the state-of-the-art results. In addition, the

3-model NMT ensemble further boosts the performance.

QE. Table 6.15 illustrates the performance of quality estimation models. In our experiments,

we take every feature used in supervised QE as an unsupervised quality estimator. Here, we only

present those having a high correlation with BLEU and human rating. It can be observed that, for

SMT, supervised QE consistently works better, whereas, for NMT, unsupervised QE has a better

correlation with human rating. The obtained correlations with human judgement are moderate

(γ ě 0.3) to strong (γ ě 0.5) (Cohen, 1988). Therefore, we use the trained XGBoost for SMT

model’s QE and use the length normalized probability (i.e., Exp(LogProbability / length)) for

NMT model’s QE in our online demonstration system.

19https://xgboost.readthedocs.io/en/latest/python/index.html
20BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.0
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Qualitative Results

Expert Feedback. Upon submission, we received 216 pieces of feedback from 4 experts (in-

cluding Prof. Benjamin Frey and 3 other fluent Cherokee speakers). The results are shown in

Table 6.17. It can be observed that we received a lot more feedback to NMT than SMT because

SMT excessively copies words from source sentences when translating open-domain texts whereas

NMT can mostly translate into the target language. On average, there are only 2.3 tokens in the

input or translated Cherokee sentence; however, the average translation quality rating is only 2.45

out of 5, which is close to the average rating (43.8 out of 100) of the 200 human ratings we col-

lected. Therefore, according to FLoRes’s rating standard (Guzmán et al., 2019) (see footnote 2),

our translation systems can translate fragments of the source string but make major mistakes in

general. Besides ratings, we received 36 open-ended comments that shine a light on common

mistakes made by the models. The most frequent comments are (1) model gets some parts cor-

rect but others wrong. For example, “it got the subject but not the verb”, “it got the stem right but

used 3rd person prefix”, “it missed the part about going to town, but got ‘today’ correct”, etc. (2)

model uses archaic English terms, like “thy”, “thou”, “speaketh”, etc. because the majority of

our training set is the Cherokee Old Testament and the Cherokee New Testament.

Human-in-the-Loop Learning. To improve models based on expert feedback, we propose to

simply add the 216 expert-corrected parallel texts back to our training set and retrain the transla-

tion models.21 The new BLEU results on our development set are 17.3, 13.0, 20.0, 14.8 for Chr-

En SMT, En-Chr SMT, Chr-En NMT (ensemble), and En-Chr NMT (ensemble), respectively,

which are equal or slightly better than the results in Table 6.16. To tackle the archaic English is-

sue, we simply replace archaic English terms (“thy”, “thou”) with new English terms (“your”,

“you”).

21We also tried to up-weight these examples by repeating them by 5 or 10 times but did not see better performance.
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Model Chr-En En-Chr

SMT 12 / 1.92 / 0.39 6 / 2.0 / 0.66

NMT 166 / 2.58 / 0.43 32 / 2.13 / 0.21

Table 6.17: Expert feedback. In each cell, the 3 numbers are the number of feedback received /
average quality rating / Pearson correlation coefficient between quality rating and quality estima-
tion.

6.5 Using NLP to Assist in Language Revitalization

6.5.1 Before Diving into NLP Research

We suggest NLP practitioners, who are often “outsiders” of the indigenous communities,

three general principles to follow before conducting NLP research on endangered indigenous

languages.

Understand and Respect First. Meaningful advances in building speech and language technolo-

gies for under-resourced languages hinge upon being able to understand those languages’speaker

communities and their needs. Although the initial temptation among NLP researchers might be to

dive in with questions about particular computational tools, that conversation cannot unfold un-

til the speaker communities’more basic needs are met: the need for respect, reciprocity, and

understanding. It may be tempting to say “this is outside the scope of our current research,” yet

these kinds of behaviors and assumptions are the very behaviors that led to the disenfranchise-

ment of these groups. When we ignore someone’s common humanity and assume that our need

for control over the narrative and the situation is greater than their need to be seen and respected,

we participate in the same marginalizing and dehumanizing behaviors that led to the problem we

are purporting to address. Therefore, it is instrumental that we address the cultural practices and

social norms of endangered language communities before assuming we know how to position

ourselves, them, and our research within their communities.

Decolonize Research. Decolonizing research is to place indigenous voices and needs in the cen-

ter of the research process (Smith, 1999; Datta, 2018; Bird, 2020a). As NLP researchers, we are

used to certain methodologies. When it comes to questions about endangered languages, it is
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tempting for us to formulate the new problems we encounter as what we are familiar with. How-

ever, we should always question ourselves: Is the formulation suitable for the language we con-

duct research on? Are the methodologies we familiar with the only true ways to solve the prob-

lems? Unquestioned focus on typical methodologies can make us treat languages as commodi-

ties and start to play a “number game” (e.g., the size of the data) and forget the real problem,

language revitalization, we intend to solve in the first place (Dobrin et al., 2007). At every re-

search step, it is critical to weigh the burden we put upon the speakers against the benefit that the

research can bring back to their community. If the research outcome conveys no new knowledge,

information, or benefit to the community, it is no different from “taking” indigenous knowledge

that has occurred over the centuries. That is exactly why the word “research” is sometimes the

direst (i.e., conjuring up bad memories) word in indigenous world’s vocabulary (Smith, 1999).

Finally, it is important to carefully deal with copyright and data governance; meanwhile, we ad-

vocate open-sourced and community-contributed works.

Build a Community. Fundamentally, we want to work together with people from the indige-

nous communities (Bird, 2020a, 2021). It is the most effective way to foster mutual understand-

ing. We should communicate with the indigenous people and get to know their priorities. Com-

mon attitudes need to be fostered, common interests need to be found, and common goals need to

be set up, before performing the research. These all lead to a community. We would imagine that

there is an online community (a website) where native speakers can share their knowledge and

language learners can find resources and learn the language together. People can share resources

and participant in machine-in-the-loop resource collection projects. NLP researchers can evaluate

and share their models in this community. Entertaining language learning or resource collection

games can be launched. We hope the community can support wide and sustainable collaborations

between indigenous speakers, language learners, and NLP practitioners. Compared to local com-

munities of the speakers, this community will be greatly supported by technologies. A few NLP

communities, e.g., MasakhaneNLP (focusing on African languages) and SIGEL (special inter-

est group endangered languages), have been built. Differently, the community we promote here
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will support both NLP research and language learning. Lastly, compared to Telegram groups (we

are in a few different Telegram groups with Cherokee community members), we want to build a

more open community that everyone can have access to.

6.5.2 NLP-Assisted Language Education

Since little inter-generation language transmission is happening, language education is an

essential requirement of language revitalization. Computer-assisted language learning has a long-

standing history (Higgins, 1983) and two workshops, BEA22 and NLP4CALL23, are held for re-

search on applying NLP for language education. Here, we discuss three ways in which NLP can

potentially assist language education of endangered languages.

Automated Quiz Generation. The most direct way, in which NLP can help, is automatically

generating quizzes for language learners. Practicing and producing the language in questions are

critical to language acquisition (Gass and Mackey, 2013). Usually, language instructors manu-

ally design the quizzes, which is tedious and time-consuming; not to mention, there are not a lot

of instructors for endangered languages. However, given the available text of endangered lan-

guages, NLP can easily and automatically generate cloze questions. It can also help find distract-

ing wrong answers that happen in a similar context and thus form multi-choice questions (Hill

and Simha, 2016; Susanti et al., 2018). To increase playfulness, language learning games, e.g.,

crossword puzzles and flashcards, can also be automatically generated (Rigutini et al., 2012; Xu

and Ingason, 2021). Since these applications involve very basic language processing steps, NLP

techniques can be reliably and easily applied.

Automated Assessment. Another widely studied topic is NLP-supported automatic assessment.

Though a lot of advanced assessments, e.g., grammar error correction (Bryant et al., 2019), es-

say grading (Chen et al., 2016), are difficult to be applied for endangered languages, we argue

22https://aclanthology.org/venues/bea/
23https://aclanthology.org/venues/nlp4call/
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that some easier assessments are feasible. For example, automatic error analysis and template-

based feedback can be provided for language learning quizzes. Another challenging but feasible

assessment is to assess the readability or difficulty of language learning materials to provide suit-

able learning plans for learners of different levels. Using statistic and linguistic features, such

as word frequency, morphology or syntactic complexity, etc., readability and difficulty can be

automatically predicted (Schwarm and Ostendorf, 2005; Vajjala and Meurers, 2012). However,

basic NLP tools, like POS tagger, dependency parser, morphology analyzer, need to be devel-

oped before these applications can be realized. The development of these tools requires small but

highly-curated data (Blasi et al., 2022).

Community-based Language Learning. Free online language learning platforms that integrate

automated quiz generation and assessment have been developed, e.g., Oahpa (Uibo et al., 2015).

Taking one step further, we believe that a more effective approach of supporting endangered lan-

guage education is to build an online and collaborative language learning platform, following the

human computation technique (Von Ahn, 2008). When using technologies to assist in language

revitalization, we often face a dilemma. On the one hand, due to the endangerment, there is not

a lot of resources available and it is very expensive (in terms of time, effort, and cost) to collect

resources from speakers. On the other hand, machines struggle to reach “useable” and “helpful”

performances without a decent amount of training data. Human computation aims at combin-

ing human and computer to solve problems neither of them could solve alone (Von Ahn, 2008;

Garcia, 2013). The most famous example is Wikipedia where Internet users contribute their

knowledge together, and incredibly high-quality content has been created. Other successful cases

are Duolingo and Tatoeba. Both are for language learners to translate web text and rate each

other’s translations. Then, the translated text can serve as learning materials and training data

for NLP models. However, Tatoeba only has an English interface, and mixes languages on the

same site, making it hard to find peer learners of under-resourced languages. Though Duolingo

has language-specific sites, it supports 23 languages so far. Therefore, how to make use of collab-

orative language learning platforms for endangered languages is a big challenge. Nonetheless, we
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believe that it is a promising path to take for teaching endangered languages to the young genera-

tion in this information age.

6.5.3 NLP Tools for Cherokee Language Processing

Based on our conversation with a few Cherokee speakers, they agree that some NLP tools are

good to have and hold the potentials to be useful in Cherokee language revitalization. Thus, some

initial attempts have been made by the Cherokee Language Github group and us (Zhang et al.,

2020b, 2021b). Hence, we dive deep into several specific NLP tools for Cherokee language pro-

cessing in this section. And for any NLP tool we develop, we want to evaluate it by the Cherokee

speakers, and we suggest open-sourcing it for free usage. Connecting to our “build a community”

proposal, we hope that NLP models can also be shared and used widely and sustainably in the

community.

Machine Translation

Ideally, a good machine translation (MT) system can automatically translate the big amount

of English text to Cherokee; or it can assist human translators. Dr. David Montgomery, a citizen

of Cherokee Nation and a Cherokee language learner, commented on MT: “It would be a great

service to Cherokee language learners to have a translation tool as well as an ability to draft a

translation of documents for first-language Cherokee speakers to edit as part of their translation

tasks. If these tools can be made to work accurately, they would be transformative for the Chero-

kee language.” Previously, we collected parallel text and developed an MT online translation

demo between Cherokee and English (Zhang et al., 2020b, 2021b). However, our system can

translate fragments of the source sentence but make major mistakes, which is far from being prac-

tically useful. The first challenge of MT development is the lack of data. Automatic data mining

can help enrich MT training data. But we still need high-quality and diverse evaluation data be-

cause existing evaluation sets (Zhang et al., 2020b) are from limited domains (the majority is the

Bible). Recently, Flores101, an MT evaluation benchmark covering 101 languages, has been cre-
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OCR tools Original Screenshot
WER CER WER CER

Tesseract 0.355 0.230 0.151 0.063
Google Vision 0.533 0.199 0.468 0.074

Table 6.18: OCR performance of two OCR tools on our evaluation sets. WER: word error rate,
CER: character error rates. For both WER and CER, lower is better.

ated (Goyal et al., 2021). Though it has not yet covered Cherokee, we hope it can happen in the

future.

The second challenge is processing and producing Cherokee text. Cherokee has rich mor-

phology (see Section 6.2.2). One Cherokee word can be translated into one English sentence.

Intuitively, we would think subword tokenization (Sennrich et al., 2016c; Kudo, 2018) is helpful.

However, previously, we (Zhang et al., 2020b) showed that applying subword tokenization for

English to Cherokee translation is harmful. We argue that it is because we processed Cherokee

text in its syllabary rather than in transliterated Latin script, however, morphemes are easier to

be learned from the latter. E.g., in ᏣᏆᏛᏏᏗᏒ, tsaquadvsidisv (when I was growing up), the pre-

fix ts- marks relative clauses, but Ꮳ is tsa. We suspect that character-level generation (in Latin

script) would work better for Cherokee. Additionally, Cherokee has flexible word order that is

often determined by whether the information is new or old in relation to the larger discourse (Sec-

tion 6.2.2). Thus, document-level translations are more reasonable than typical sentence-level

translations.

Optical Character Recognition

The majority of Cherokee text is in the format of manuscripts or books, so as many other

endangered languages (Joshi et al., 2020b; Bustamante et al., 2020). Though humans can read

them, they are not machine-readable, which restricts the flexibility of their use, e.g., automat-

ically creating language learning quizzes. Optical character recognition (OCR) (Smith, 2007)

can help extract plain text from PDFs or images. Fortunately, existing OCR tools, like Tesseract-
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audio to phonetic text audio to syllabic text

WER 0.64 0.21

Table 6.19: The ASR results of finetuned XLSR-53 (Conneau et al., 2020) models. WER: word
error rate.

OCR24 and Google Vision OCR API25, support Cherokee and have decent accuracy. However,

OCR accuracy is highly influenced by image quality. If the image has a noisy background or the

text is surrounded by colorful pictures (which often happens in children books), the OCR accu-

racy will drop significantly.

To prove this, we create two evaluation sets from Cherokee books (including Cherokee New

Testament, children books, Cherokee narratives): (1) Original has 20 images, and each image is

one complete page from a book; (2) Screenshot is obtained by manually conducting screenshots

and cutting out text from the 20 images, i.e., removing background noises. For each image in

two sets, we manually annotate the corresponding text. Table 6.18 shows the results of Tesseract-

OCR and Google Vision OCR API. Both OCR tools achieve significantly lower error rates on the

Screenshot set than on the Original set, which demonstrates the importance of cleaning the im-

ages. Tesseract-OCR shows better performance than Google Vision OCR, especially it is better at

detecting word boundaries. Although ways to improve image quality are available,26 an easy-to-

use tool need to be developed. OCR post-correction methods can also be applied (Rijhwani et al.,

2020).

Speech Recognition and Synthesis

Automatic speech recognition (ASR) (Povey et al., 2011) can help language documentation,

though indigenous community members may prefer unassisted transcription (Prud’hommeaux

et al., 2021). Moreover, ASR holds the potential to automatically transcript audio data and thus

24https://github.com/tesseract-ocr/
25https://cloud.google.com/vision/docs/ocr
26https://tinyurl.com/29xnewu9
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Precision Recall F1

Unigram LM 16.6 19.6 17.9
BPE 14.4 16.5 15.4
Morfessor 16.6 16.3 16.5

Table 6.20: The alignment between subwords and gold morphemes.

enrich text corpus. A good amount of Cherokee audio data can be found from the “Cherokee

Voices, Cherokee Sounds” radio, Cherokee Phoenix, and recorded meetings. ASR can automat-

ically transcript these audios to produce valuable Cherokee text data. Recently, models that are

first pre-trained on audio data and then finetuned on audio-text data have shown great advantages

in performing ASR (Baevski et al., 2020). Especially, Conneau et al. (2020) pretrain and finetune

a model on 53 languages and release XLSR-53 (supports ASR for 53 languages). It shows rea-

sonable generalizability to unseen and low-resource languages. This sheds light on developing

ASR for endangered languages.

Hence, we test its performance for Cherokee ASR. Using the audio-text data open-sourced27

or shared privately by Michael Conrad, we build two ASR models: (1) audio to phonetic text, (2)

audio to syllabic text. As shown in Table 6.19, we get surprisingly good performances, especially

for the audio-to-syllabic-text model.28 This is very promising, especially when knowing the fact

that more self-training strategies can be applied, e.g., pretrain the speech encoder with Cherokee

audio data, and more audio-text training data can be compiled. Text-to-speech synthesis (TTS) is

more difficult to develop than ASR; nevertheless, following the pretrain-then-finetune paradigm,

TTS models for extremely low-resource languages have been introduced (Xu et al., 2020b).

Tokenization and Morphology Parsing

Tokenization is an essential pre-processing step of most NLP models, and it is related to

morphology parsing. Subword tokenization has become de facto (Sennrich et al., 2016c; Kudo,

27https://github.com/CherokeeLanguage/cherokee-audio-data
28The same model finetuned on CommonVoice’s Turkish data gets WER=0.35. https://tinyurl.com/62eykh9m
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2018). It segments a word into frequent subwords, and subwords are supposed to align with mor-

phemes. Better alignment with morphemes can lead to better downstream performance (Bostrom

and Durrett, 2020), while current subword tokenization methods struggle to perform well in mor-

phologically rich languages (Amrhein and Sennrich, 2021).

Here, we evaluate how well subword tokenization can learn real morphemes for Cherokee.

We train two subword tokenizers,29 Unigram LM (Kudo, 2018) and BPE (Sennrich et al., 2016c),

and one morphology parser, Morfessor (Smit et al., 2014), on our previous MT training set (Zhang

et al., 2020b). Instead of using the original syllabic text, we transliterate text into Latin script to

make it easier to learn morphemes. We collect gold (expert-labeled) morphemes of 372 Chero-

kee words from Cherokee Narratives (Feeling, 2018). Then, we use the pretrained tokenizers or

parser to tokenize these 372 words and evaluate the alignment between subwords and gold mor-

phemes. As shown in Table 6.20, subwords are poorly aligned with gold morphemes. Nonethe-

less, Unigram LM (Kudo, 2018) demonstrates better ability of inducing morphemes, which is

consistent with the observation made by Bostrom and Durrett (2020). We think better represen-

tation methods need to be introduced for Cherokee, and the labeled data from Feeling (2018) can

provide supervision.

POS-Tagging and Dependency Parsing

More basic NLP tools like POS tagger and dependency parser are under-developed for Chero-

kee. These tools can not only support the development of other NLP tools but also be used to

predict the readability of language learning materials (Section 6.5.2). Moreover, data for these

tasks can serve as language learning materials for understanding Cherokee linguistics. Though

unsupervised methods have been proposed (Stratos et al., 2016; Kim et al., 2019), usually small

but high-quality labeled data, like Universal Dependencies (Nivre et al., 2016), is needed (Blasi

et al., 2022). Therefore, data annotation by experts is required and community-based data collec-

tion strategies can be applied. Moreover, the parallel English data and English tagger/parser can

29We use SentencePiece (Kudo and Richardson, 2018).
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assist the annotation on the Cherokee side, which will also produce English-Cherokee word/phrase-

level alignments as by-products. These alignments are valuable Cherokee language education re-

sources, e.g., asking students when you have “structure X” in English, what is the corresponding

“structure Y” in Cherokee?

6.6 Conclusion

In this line of research work, we first collected a Cherokee-English translation dataset and

investigated various translation systems to support the translation between Cherokee and En-

glish. Then, we developed the first online Cherokee-English machine translation demo, which

supports not only translation but also quality estimation and collecting human feedback. Finally,

we “zoomed out“ from the translation task, reviewed the big picture of using NLP to assist in lan-

guage revitalization, and discussed other valuable NLP tools for Cherokee and the challenges

of developing them. We hope our work can encourage future work to think and plan the path

forward for Cherokee language processing as well as language processing for other underrepre-

sented languages.
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CHAPTER 7: LANGUAGE IMBALANCE IN MULTILINGUAL TOKENIZER
TRAINING

7.1 Introduction

Tokenization is an essential pre-processing step for most natural language processing (NLP)

models. Out of different tokenization methods, subword tokenization (Schuster and Nakajima,

2012; Sennrich et al., 2016c; Kudo, 2018) has become de facto. The creation of each subword is

mainly based on frequency, i.e., if two characters often appear together, they will be merged into

a subword. When more than one language is involved, instead of learning independent tokeniz-

ers for each language, people usually train a joint tokenizer from a multilingual training corpus

(Sennrich et al., 2016c; Devlin et al., 2019). In this case, the data percentage of each language di-

rectly affects how it will be represented. If one language dominates the training corpus, its words

will mostly stay intact and hardly be split into subwords. In contrast, if the language gets starved,

it will be excessively tokenized into characters, thus, the sentence length will be dramatically

longer, and some tokens will be considered as unknown (UNK). Moreover, Neural machine trans-

lation (NMT) is known to be bad at dealing with long sentences and UNKs (Koehn and Knowles,

2017).

Recently, there is an increasing interest in building multilingual neural models that can pro-

cess multiple languages (Devlin et al., 2019; Liu et al., 2020; Xue et al., 2021b). A challenge that

comes with this important task is to balance languages with different amounts of training data

to avoid low-resource languages being under-represented, e.g., being excessively tokenized and

being less seen by the neural models. Existing works usually adopt the temperature sampling

strategy (Devlin et al., 2019; Arivazhagan et al., 2019; Conneau and Lample, 2019; Xue et al.,

2021b) (see detailed descriptions in Section 7.2.2). However, very few investigations of how lan-
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guage imbalance affects downstream performance have been conducted. Additionally, whenever

previous works apply a certain language balancing strategy, they apply it for both tokenizer train-

ing (balancing the data sizes of different languages in the tokenizer training corpus) and model

training (balancing the frequencies of sampling training mini-batches from different languages).

Until now, it is unclear how each of them separately affects the downstream performance.

In this work, we specifically investigate how robust NMT is to language imbalance in tok-

enizer training. We propose to vary the data ratio among languages in the tokenizer training cor-

pus while keeping other settings (e.g., language sampling for model training, hyperparameters)

fixed, and then check how translation results change (Section 7.3.1). However, finding the best

data ratio through performing the downstream task is highly expensive. To provide an easy indi-

cation of tokenizer quality (or early prediction of downstream performance), we examine two

intermediate features (Section 7.3.2): UNK rate – the average percentage of unknown words

(marked with the UNK token) in each sentence, and closeness to the character level – the aver-

age sentence length in subwords divided by sentence length in characters.

Through comprehensive bilingual and multilingual experiments among 8 languages (English,

Tagalog, Icelandic, Danish, Indonesian, Tamil, Greek, and Chinese), we make the following five

main observations: (1) NMT performance is more robust to language imbalance than we usually

expected: especially when languages share scripts, performance drops only happen when the data

ratio of two languages is as disparate as 1:105. (2) Better performance is often achieved when lan-

guages are more balanced: we observe moderate Pearson correlations between translation perfor-

mance and the degree of language balance. (3) English can “never” be starved because English

tokens often appear in the “monolingual” data of other languages. (4) In most cases, the two fea-

tures (UNK rate and closeness to the character level) can hint at poor translation performances

before performing the task. (5) NMT is more sensitive to language imbalance in model training

than in tokenizer training. See more observations and discussions in Section 7.3 and Section 7.4.

Based on these observations, we provide the following two practical suggestions: (1) In-

stead of using temperature sampling, we want to keep the involved languages as balanced as pos-
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sible when training a new multilingual tokenizer; (2) Before applying a pretrained tokenizer for

new experiments or languages, we suggest evaluating it on a development set to make sure every

language’s UNK rate is low (lower than around 3.7%, according to our experiments) and every

language’s closeness to the character level is also low (lower than around 0.87, according to our

experiments).1

7.2 Background and Related Work

7.2.1 Tokenization Methods

Over the years, many tokenization methods have been proposed. Early works tokenize texts

into “words”, e.g., MosesTokenizer (Koehn et al., 2007). However, language-specific tokeniz-

ers are needed and it often ends up with many rare tokens or UNKs. Subword tokenization meth-

ods were introduced to tackle this problem: the idea is to keep frequent words intact and split

rare words into frequent subwords. Subword tokenization has become de facto. Schuster and

Nakajima (2012) introduce WordPiece that starts from all characters and gradually merges two

units that improve language model (LM) likelihood the most. Sennrich et al. (2016c) propose

to learn subwords via Byte-Pair Encoding (BPE) that merges the most frequent pairs first. Kudo

(2018) propose a unigram LM method. It starts with a large vocabulary and gradually prunes it

down to the desired size by removing tokens that are less likely to reduce the unigram LM likeli-

hood. Subword tokenization methods usually assume the existence of pre-tokenization (e.g., split

by whitespaces), which can cause de-tokenization ambiguity. To address this, SentencePiece

(Kudo and Richardson, 2018) treats whitespace as a special symbol, _ (U+2581), to achieve loss-

less tokenization. This toolkit supports both BPE and unigram LM tokenization. Despite the suc-

cess of subword tokenization, it is no panacea, e.g., it is out-of-the-box and agnostic to the down-

stream tasks, it has no guarantee that subwords are meaningful, and it is vulnerable to typos (Sun

1The exact threshold numbers (3.7% and 0.87) are based our experiments and may not always hold. But we believe
that the concept of checking the two features (UNK rate and the closeness to the character level) to make sure they
are low enough should generalize to other situations.
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et al., 2020). Thus, “tokenization-free” models that directly encode characters or bytes or visuals

have been introduced (Chung et al., 2016; Lee et al., 2017; Salesky et al., 2021) and are gaining

more interest recently (Clark et al., 2022; Xue et al., 2021a; Tay et al., 2021).

7.2.2 Multilingual Tokenization

Along with the development of multilingual models, people start to deal with multilingual to-

kenization. Firat et al. (2016) learn a 30K subword vocabulary for each language. Johnson et al.

(2017) oversample languages to the same size and train a joint WordPiece vocabulary. Recent

multilingual works adopt this joint-vocabulary method, but instead of oversampling languages to

the same size, they use temperature sampling which was first introduced by multilingual BERT

(mBERT) (Devlin et al., 2019). Given the original data distribution tpiu
N
i=1, where pi is the per-

centage of the ith language out of the total N languages, they exponentiate each pi by a factor S

(0 ď S ď 1), i.e., pSi . Then, they re-normalize them to get the new percentage of each language

p̂i = pSi /
ř

i p
S
i , and they sample data according to the new percentages. Essentially, it down-

samples high-resource languages and up-samples low-resource ones. Arivazhagan et al. (2019)

redefine S as 1
T
(T stands for temperature). S is usually set around 0.2 to 0.7, i.e., flattening the

data distribution to some degree but not to uniform distribution (Arivazhagan et al., 2019; Con-

neau and Lample, 2019; Conneau et al., 2020; Xue et al., 2021b). Chung et al. (2020) challenge

this joint vocabulary recipe and propose to learn separate vocabularies for each language cluster.

7.2.3 Analysis and Assessment of Tokenization

Since the choice of tokenization algorithm and training parameters affects downstream per-

formances, previous works try to analyze or assess tokenization. Some works focus on the choice

of vocabulary size. Gowda and May (2020) show that the near-optimal vocabulary size is when

95% of tokens appear more than 100 times in the training set. Ding et al. (2019) find that low-

resource language pairs usually require fewer than 4K BPE merge-operations. Xu et al. (2021)

evaluate vocabularies by Marginal Utility of Vocabularization and propose to tokenize as well as
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find the optimal vocabulary size via the Optimal Transport method. Some other works compare

different tokenization algorithms. Domingo et al. (2018) compare 5 tokenizers and the best tok-

enizer varies across language pairs. Bostrom and Durrett (2020) compare BPE to unigram LM

for LM pretraining and show that unigram LM learns subwords that align better with morphology

and leads to better performance.

When multiple languages are involved, Gerz et al. (2018) show that language typology is cor-

related with LM performance. Ács (2019) find that mBERT (Devlin et al., 2019) vocabulary are

dominated by subwords of European languages, and the tokenizer keeps English mostly intact

while generating different distributions for morphologically rich languages. Rust et al. (2021)

observe that mBERT usually performs worse than its monolingual counterparts because language-

specific tokenizers keep the language from being excessively tokenized. Some works compare

different temperature sampling factors (S or T). Arivazhagan et al. (2019) compare multilingual

translation results of using temperature T=1, 5, 100, and find that T=5 works best. Xue et al.

(2021b) compare multilingual LM performances for sampling factor S=0.2-0.7 and find that

S = 0.3 is the best. However, note that the performance difference is a joint effect of both tok-

enizer and model training because the sampling is applied for both. Differently, in this paper, we

analyze how language imbalance specifically in multilingual tokenizer training affects the down-

stream translation performance.

7.3 Bilingual Experiments

To examine how language imbalance in tokenizer training affects downstream translation

performance, we first conduct English-centric bilingual experiments in which imbalance only

happens for one single pair of languages (i.e., English and anther language). This gives us a more

controlled setting compared to when multiple languages are involved. Nonetheless, we conduct

multilingual experiments in Section 7.4. Our main methodology is to keep the total tokenizer

training data size fixed, gradually “starve” English, i.e., reduce English data percentage and in-

crease the percentage of the other language, and then check the downstream translation perfor-
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Language Code Script En-* bitext Mono. text

English en Latin - 2B
Tagalog tl Latin 71K 107M
Icelandic is Latin 1M 37M
Danish da Latin 11M 343M
Indonesian id Latin 39M 1B
Tamil ta Tamil 97K 68M
Greek el Greek 24M 200M
Chinese zh Han 38M 293M

Table 7.1: 8 languages in our experiments. K/M/B stands for thousand/million/billion. Mono.
stands for monolingual. Numbers are the number of sentences (pairs).

mance. It is important to note that, to separate the influences of tokenizer and model, we use dif-

ferent data for tokenizer training and model training, and the model training data are always the

same.

7.3.1 Experimental Setup

Languages. We experiment with 8 languages: English (en), Tagalog (tl), Icelandic (is), Dan-

ish (da), Indonesian (id), Tamil (ta), Greek (el), Chinese (zh). The data statistics are shown in

Table 7.1. According to Flores101 (Goyal et al., 2021), Icelandic, Tamil, and Tagalog are low-

resource (ď 1M bitext), while Danish, Greek, Chinese, and Indonesian are mid-resource (ď

100M bitext). Tagalog, Icelandic, Danish, and Indonesian are Latin languages and thus share

scripts with English; while Tamil, Greek, and Chinese are non-Latin.

Translations. We conduct English-centric bilingual translations in 14 directions: en-tl, tl-en,

en-is, is-en, en-da, da-en, en-id, id-en, en-ta, ta-en, en-el, el-en, en-zh, zh-en. We train one transla-

tion model for each direction.

Variables. For each translation direction, we have the following controlled, independent, and

dependent variables:

Controlled variables:
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Tokenizer training data: We use the same monolingual data as Flores101 (Goyal et al., 2021).

The total monolingual data sizes of each language are listed in Table 7.1. We sample from these

monolingual datasets to get the desired tokenizer training data size.2 We keep the total tokenizer

training data size as 2M, which contains x% English data and 1 ´ x% data of the other language.

Tokenizer parameters: We use SentencePiece model (SPM) with unigram LM algorithm

(Kudo, 2018; Kudo and Richardson, 2018). We set vocabulary size as 5K,3 total training data size

as 2M, and character coverage as 0.99995 (or 0.995 when Chinese is involved because Chinese

has a richer character set).

Translation training data: We also use the same parallel data as Flores101 (Goyal et al.,

2021) (data sizes are in Table 7.1). As mentioned above, we do not change this model training

data across different experiments. And following previous works (Section 7.2.2), we always use

temperature sampling with S = 0.2 for model training.

Translation evaluation data: We evaluate on Flores101 (Goyal et al., 2021) dev sets and re-

port results on its devtest sets.

Translation model: Transformer (Vaswani et al., 2017) with 12-layer encoder and 12-layer

decoder (Transformer 12-12).

Model training and testing hyper-parameters: Adam optimizer (Kingma and Ba, 2015), learn-

ing rate = 0.001, and beam size = 5. See more implementation details in Section 7.5.

Independent variable:

English data percentage in 2M tokenizer training data4: we experiment with 9 different per-

centages (0%, 0.001%, 0.1%, 10%, 50%, 90%, 99.9%, 99.999%, 100%). E.g., if we conduct en-

zh/zh-en translations with English percentage=0.001%, there are 20 English sentences and 2M -

2To minimize sampling influence, we shuffle each monolingual dataset once and then always sample the first X
sentences.
3We set vocabulary size as 5K because (1) a small vocab size makes the “competition” between languages more
“fierce” and thus makes it easier to show the problem of language imbalance, and (2) it resembles a multilingual
setting: Flores101 uses a 256K vocabulary for 101 languages – 2.5K tokens per language on average.
4We choose to directly vary the data percentage rather than sampling temperature because it grants us the flexibility
of making high-resource languages hypothetically low-resource and experimenting with extreme data ratios (100%:
0%).
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20 Chinese sentences in SPM tokenizer training data. Hence, for each translation direction, we

have 9 experiments with 9 different vocabularies. See examples of how sentences are tokenized

at different English percentages in Table 7.4.

Dependent variable:

Translation performance: we evaluate it by sentence-piece BLEU (spBLEU) (Goyal et al.,

2021)5 and chrF (Popović, 2015). Metrics are computed by SacreBLEU (Post, 2018).6 We report

the 3-seed average for each experiment.

7.3.2 Intermediate Features

Previous works have shown that without training downstream models, some intermediate

features can be good indicators of the tokenizer’s quality (Gowda and May, 2020; Chung et al.,

2020; Xu et al., 2021). In this work, as the English data percentage varies, either English or the

other language will get starved – sentence lengths will become longer and unknown words (UNKs)

will appear. Hence, we examine the following two features:

Closeness to the character level, defined as the average sentence length in subwords
sentence length in characters

. Some lan-

guages may intrinsically have longer sentence lengths than others. To be comparable across lan-

guages, we normalize it by the upper bound – sentence length in characters.

UNK rate, which is defined as the average number of UNKs
sentence length in subwords

. Note that when the UNK

rate increases, long unknown tokens will not get split into subwords, and thus the sentence length

will be shorter and the closeness to the character level will decrease.

The first two columns of Figure 7.1 illustrate how the intermediate features change as the

English data percentage changes. The first row (a) shows features of the 4 Latin languages, while

the second row (b) is those of the 3 non-Latin languages. Note that both features are computed on

Flores101 (Goyal et al., 2021) devtest sets.

5Computing BLEU (Papineni et al., 2002) requires a tokenizer. However, not all languages have language-specific
tokenizers available. spBLEU (Goyal et al., 2021) unifies the evaluation across languages by first tokenizing lan-
guages via a 256K multilingual SPM and then computing BLEU.
6https://github.com/ngoyal2707/sacrebleu/tree/adding_spm_tokenized_bleu
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Closeness to the character level. In Figure 7.1 (a), as the English percentage increases, the

closeness to the character level of English (gray markers) decreases while that of other languages

(makers with other colors) increases. It is because when the English percentage gets larger, the

other language’s tokens will become rarer and be excessively tokenized into subwords. Differ-

ently, in Figure 7.1 (b), though the trend of English stays the same, the trend of other languages

first increases close to 1.0 and then decreases because UNKs start to appear. Even when English

occupies 100%, Latin languages still have sentence lengths much shorter than the sentence length

in characters because they share scripts with English. In contrast, each of the 3 non-Latin lan-

guages reaches close to the character level at a certain point. English never have very long sen-

tence lengths.

UNK rate. In Figure 7.1 (a), most UNK rates are trivial (close to 0), except that Icelandic (is)

and Danish (da) have non-trivial UNK rates when English percentage ě 99.999%. In Figure 7.1

(b), all three non-Latin languages have very high UNK rates after the English percentage in-

creases to a certain point. For example, Chinese (zh) has a 45.7% UNK rate at English=99.9%,

and it is when its closeness to the character level drops dramatically. English always has trivial

UNK rates.

7.3.3 Translation Results

The second two columns of Figure 7.1 shows how the translation results change as the En-

glish data percentage changes. The first row (a) shows spBLEU and chrF scores of the 4 Latin

languages, while the second row (b) are those of the 3 non-Latin languages. We obtain the fol-

lowing takeaways.

NMT performance is quite robust to language imbalance especially when languages share

scripts. It can be observed from Figure 7.1 (a) that the performance stays quite stable across all

English percentages for Latin languages. Performance drops only happen for English to Icelandic

(en-is) and English to Danish (en-da) at extremely high English percentages (ě99.999%), i.e.,

only 20 Icelandic or Danish sentences are in the 2M tokenizer training data. And it still does not
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(a) Latin Languages

(b) Non-Latin Languages

en-tl
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Figure 7.1: Results of our main bilingual experiments. Marker shapes denote the language pairs;
dash or solid lines represents out-of-English or into-English directions; colors are for each target
language. E.g., --▲- (en-ta) denotes Tamil features (Closeness to the character level or UNK
rate) or English to Tamil translation results (spBLEU or chrF scores); -▲ (ta-en) represents En-
glish features or Tamil to English translation results. X axes are in log10 scale.

affect the translation performances of is-en and da-en. Differently, in Figure 7.1 (b), the perfor-

mance is less stable for non-Latin languages, but drops still happen when the English percentage

is ě90%. English to Chinese (en-zh) drops at English=90%. English to Tamil (en-ta)7 and En-

glish to Greek (en-el) both drop at English=99.9%. Similarly, into-English directions are more

stable and get worse later (at higher English percentages). Surprisingly, in both (a) and (b), the

translation performance usually stays stable or drops less significantly as the English percentage

decreases to 0%.

Better performance is often achieved when languages are more balanced. Out of the 14

translation directions, 12 directions get the best spBLEU scores between English=10% to En-

glish=90%. We evaluate the Pearson correlation between spBLEU scores and data ratios of two

languages. The data ratio is 1 when English=50%, and it is 0 when English=0% or 100%, i.e.,

7Note that at English=99.9%, Tamil’s chrF scores only drop slightly while its spBLEU scores drop more signifi-
cantly (en-ta drops from 1.9 to 0.4 and ta-en drops from 1.1 to 0.1).
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the more balanced the two languages are, the higher the data ratio is. The average correlation

across 14 directions is 0.38 (moderate correlation (Cohen, 1988)). Thus, we are more likely to

get a good performance when languages are more equally sampled.

English can “never” be starved. Initially, we were expecting a symmetric trend, i.e., if the

performance drops as the English percentage increases, it should also drop when the percent-

age decreases. However, as shown in Figure 7.1, for both Latin and non-Latin languages, the

performance stays relatively stable as the English percentage decreases to 0%. We suspect that

other languages’ monolingual data contains many English words. First, we find that about 3.6%

and 2.6% characters in Tamil and Chinese monolingual data are English characters (a-zA-Z) re-

spectively. Then, we remove all English characters from Tamil or Chinese monolingual data and

re-conduct the experiments of English=0.001%. English-Tamil/Tamil-English spBLEU scores

reduce from 1.0/0.8 to 0.0/0.3. Similarly, English-Chinese/Chinese-English spBLEU scores drop

from 17.7/25.5 to 0.2/0.1. Hence, the results support our hypothesis.

Closeness to the character level and UNK rate can warn of poor downstream performance.

We find that the translation performance usually drops greatly when the two features surpass

some thresholds. As shown in Figure 7.1 (a), both English to Icelandic (en-is) and English to

Danish (en-da) get noticeably worse at English=99.999%, and it is exactly when Icelandic and

Danish have non-trivial UNK rates (3.9% for is and 4.3% for da). Similarly, in Figure 7.1 (b),

English to Chinese (en-zh) deteriorates at English=90% when Chinese UNK rate is 10.2%. En-

glish to Tamil (en-ta) and English to Greek (en-el) both drop at English=99.9% when they have

trivial UNK rates but their closeness to the character level are 0.91 and 0.89 respectively. Addi-

tionally, we examine whether the same pattern can still be observed when getting the features on

a different evaluation set. We get features from the dev set and a subset of our training set (5000

sentence pairs). As Figure 7.2, despite the slightly lower thresholds (3.7% UNK rate and 0.87

closeness to the character level), the same trends are observed. Hence, we suggest checking these

two features on an evaluation set before performing the task. Poor translation performances are
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Figure 7.2: In each row, the first two subplots are features computed on the Flores101 dev set;
the second two subplots are features computed on a subset of our training set. Markers share the
same meanings as Figure 7.1. X axes are in log10 scale.

likely to be obtained when any language’s UNK rate is larger than around 3.7% or its closeness to

the character level is larger than around 0.87.

7.3.4 Ablations

Here, we want to verify our takeaways under several different experimental settings.

Reducing the translation model size or using BPE does not affect the robustness to language

imbalance. Model capacity can affect its robustness. Hence, we replace our default Transformer

12-12 (Vaswani et al., 2017) model with a smaller model, Transformer 6-6 (6-layer encoder and

6-layer decoder). The intermediate features are the same as Figure 7.1, and the translation results

are illustrated in Figure 7.3. It has exactly the same trends as for the larger model (Figure 7.1).

In addition, we verify if our takeaways can generalize to a different tokenization algorithm, BPE

(Sennrich et al., 2016c). Figure 7.4 shows that BPE gets very similar performances to unigram
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Figure 7.3: Translation results of bilingual experiments with a smaller model (Transformer 6-6).
Markers share the same meanings as Figure 7.1. X axes are in log10 scale.
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Figure 7.4: Intermediate features and translation results of bilingual experiments with a BPE
tokenizer. Markers share the same meanings as Figure 7.1. X axes are in log10 scale.
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Figure 7.5: Intermediate features and translation results of bilingual experiments with a 32K
vocabulary. Markers share the same meanings as Figure 7.1. X axes are in log10 scale.

LM across all translation pairs. The same trends are also observed as Figure 7.1 but with slightly

higher thresholds.

Increasing the vocabulary size can improve the robustness when languages do not share

scripts. Our default vocabulary size is 5K because it simulates a multilingual setting (see foot-

note2). However, earlier works used a larger vocabulary for bilingual experiments (Firat et al.,

2016). Intuitively, a larger vocabulary can be more robust to language imbalance because it has

a larger capacity to include more infrequent words. Hence, we test a 32K vocabulary, and results

are shown in Figure 7.5. Compared to Figure 7.1, it has two distinctions: (1) For non-Latin lan-

guages, performance drops happen later: English to Chinese drops at 99.9% (instead of 90%)

when Chinese UNK rate is 7.8%; English to Tamil and English to Greek both deteriorate greatly

at 99.99% (instead of 99.9%) when Tamil and Greek UNK rates are 42.3% and 32.5% respec-

tively; (2) Surprisingly, translations between English and Tagalog perform obviously worse when

Englishě99.999%, despite Tagalog’s trivial UNK rate and short sentence length. Overall, increas-
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Figure 7.6: Intermediate features and translation results of bilingual experiments with byte-
fallback. Note that here the UNK rates are all 0, and closeness to the character level can be larger
than 1 because one character can be represented by multiple bytes. Markers share the same mean-
ings as Figure 7.1. X axes are in log10 scale.

ing the vocabulary size improves the robustness to language imbalance for translations between

English and non-Latin languages but not for that between English and Latin languages.

Applying byte-fallback does not improve the robustness. Here, we apply the “byte-fallback”

feature of SentencePiece (Kudo and Richardson, 2018) which uses 256 UTF-8 bytes to rep-

resent unknown characters and thus eliminates UNKs. Figure 7.6 illustrates the results. As ex-

pected, UNK rates are all 0, while closeness to the character level can be larger than 1 because

one character can be represented by multiple bytes. For Latin languages, noticeable drops still

only happen for Icelandic and Danish starting from 99.999%, but differently, they have 0 UNK

rates and not high closeness to the character level (0.65 and 0.53). Moreover, performance drops

are surprisingly more dramatic compared to Figure 7.1. The performances of all 3 non-Latin

languages get worse at the same percentages as Figure 7.1, and the drop is more significant for

Greek to English while less significant for Chinese to English. Overall, applying byte-fallback

does not improve the robustness reliably.
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100% 100%+char best

en-ta 0.0 0.1 1.9
ta-en 0.2 0.1 1.1

en-el 0.3 18.6 35.1
el-en 2.7 18.5 36.7

en-zh 0.6 20.0 19.2
zh-en 1.5 31.2 30.9

Table 7.2: Translation results (spBLEU scores) of adding the non-Latin language’s characters to
the vocabulary at English=100% (100%+char). For comparison, the 100% column shows the
results before adding characters and the best column shows the best results out of all percentages.

When English=100%, adding characters of the non-Latin language to the vocabulary can

improve the performance. When English occupies 100% of the tokenizer’s training data, the

tokenizer only “knows” English. Other Latin languages share scripts with English, so it shows

surprisingly good generalizability. However, for non-Latin languages, near all tokens are UNKs,

and thus translation performances are very poor. We wonder how much the performance will in-

crease by simply adding the characters of the non-Latin language to the vocabulary. We conduct

this experiment for each of the 3 non-Latin languages, and the results are shown in Table 7.2.

Compared to the original setting (100%), adding characters (100%+char) dramatically improves

the performance except for ta-en. Despite that, for Tamil or Greek, it works greatly worse than

the best we can achieve when Tamil or Greek data involves in tokenizer training. But, for Chi-

nese, it outperforms the best results probably because one Chinese character is usually one “word”.

Examples. Table 7.4 are examples of how sentences in English, Indonesian, and Chinese are

tokenized at different English percentages.

7.4 Multilingual Experiments

Here, we move to a more complex multilingual setting. Similarly, we want to understand how

the data percentages of the involved languages affect their downstream translation performance.
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Figure 7.7: Translation results (spBLEU) of our main multilingual experiments. Marker shapes
denote the language pairs (though all pairs share the same NMT model); dash or solid lines rep-
resents out-of-English or into-English directions; colors are for each language. E.g., --▲- (en-ta)
denotes English to Tamil translation results; -▲ (ta-en) represents Tamil to English translation
results. X axes are in log10 scale.

7.4.1 Experiment Setup & Features

We still experiment with the 8 languages and the 14 translation directions, as introduced in

Section 7.3.1. Differently, we use one model (Transformer 12-12) to conduct all the 14 transla-

tions at the same time. As a result, the model capacity for each translation direction is dramat-

ically reduced. Most of the controlled variables stay the same as Section 7.3.1, except that we

increase the vocabulary size to 20K (maintaining around 2.5K per language) and increase the to-

tal tokenizer training data size to 10M. Since here we have 8-language data to train the tokenizer,

we can not use the old independent variable. Instead, we propose to first choose one language

and then vary its percentage (0.001%, 0.1%, 1%, 12.5%, 25%, 90%) while keeping the other 7

languages equally weighted. So, if the selected language’s percentage is 12.5%, all 8 languages

are equally weighted. We only use 4 languages (Tamil, Chinese, Icelandic, and English) as our se-

lected languages and change the percentage of each of them. The dependent variable is the same

as before – translation performance (spBLEU/chrF) on Flores101 (Goyal et al., 2021) devtest

sets. We also examine the two intermediate features: closeness to the character level and UNK

rate.
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Figure 7.8: Translation results (chrF) of our main multilingual experiments. Markers have the
same meanings as Figure 7.7. X axes are in log10 scale.
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Figure 7.9: Intermediate features of our main multilingual experiments. Different from Fig-
ure 7.7, here, marker shapes and colors both denote the language. E.g., -▲ (ta) denotes Tamil
features. X axes are in log10 scale.
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7.4.2 Results & Ablations

Figure 7.7 illustrates the translation performance evaluated by spBLEU (chrF in Figure 7.8

shares the same trends). Figure 7.9 shows the features.

NMT performance is still quite robust to language imbalance especially when languages

share scripts. As shown in Figure 7.7, for the two Latin languages (Icelandic and English),

varying their percentages almost does not affect the performances. It is expectable for English

because it can “never” be starved. But Icelandic’s performance drops at Icelandic=0.001% (En-

glish=99.999%) in bilingual experiments. We think it is because the involvement of multiple lan-

guages makes every language relatively less frequent, so the data ratio between Icelandic and any

other language is not as disparate as 0.001:99.999 (« 1:105). This is also reflected by the trivial

UNKs of all languages in Figure 7.9. For the two non-Latin languages (Tamil and Chinese), first,

varying their percentages affects their own performances greatly while the performances of other

languages still stay stable. And, their own performances drop quickly below 12.5% while drop-

ping slower when percentagesě12.5%.

Better performance is also often observed when languages are more balanced. In Figure 7.7,

if we only consider the translation directions with great performance changes, i.e., Tamil and Chi-

nese, they have relatively better performances around 12.5% when languages are balanced. We

define data ratio as the lowest percentage of any language versus the highest percentage. So,

the data ratio is 1 when the selected language’s percentage is 12.5%; while the data ratio is 0.07

when the selected language’s percentage is 1% ( 0.01
(1´0.01)/7

= 0.07). Then, we compute the corre-

lation between spBLEU scores and data ratios for each of the 4 selected languages. The average

correlation is 0.49 (moderate correlation (Cohen, 1988)), which is consistent with what we ob-

serve in bilingual experiments.

Performance can drop without surpassing the thresholds of the two features. For Chinese, a

more obvious performance drop happens at 0.1% following the indication of two features (UNK

rate=5.4% and closeness to the character level=0.97). However, for Tamil, though its perfor-
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Figure 7.10: Intermediate features and translation results of the multilingual experiments with
byte-fallback. Markers of the first two subplots have the same meanings as Figure 7.9, and mark-
ers of the second two subplots have the same meanings as Figure 7.7. X axes are in log10 scale.

mance drops at 1%, it has a trivial UNK rate and not long sentence length. This is probably due

to the greatly compressed model capacity for each language pair, compared to bilingual experi-

ments. Hence, though surpassing the thresholds can often hint at poor performances, it is neither

a sufficient nor necessary condition.

Using byte-fallback still does not improve the robustness We apply byte-fallback under the

setting of using Chinese as the selected language, and results are shown in Figure 7.10. Com-

pared to Figure 7.7, though we observe slightly more stable performance when Chineseě1%, the

translation result drops more dramatically when Chineseď0.1%.

NMT is more sensitive to language imbalance in model training. In both bilingual or mul-

tilingual settings, we find that the performance is quite robust to language imbalance and rela-

tively better performance is often observed when languages are more balanced. In other words,

we want to set sampling factor S = 0, following the temperature sampling paradigm (Devlin

et al., 2019). However, many existing works show significantly different performances of differ-

ent S, and the best S is around 0.2 to 0.7 (Arivazhagan et al., 2019; Conneau and Lample, 2019;

Xue et al., 2021b). We think this inconsistency has resulted from the fact that we fix S = 0.2 for

model training while only varying it (via changing data percentages) for tokenizer training. We

conjecture that NMT is more sensitive to language imbalance in model training. To verify this,
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S *-en en-* overall

tl is da id ta el zh avg. tl is da id ta el zh avg. avg.

tokenizer
0 29.6 33.1 48.5 44.6 4.0 36.1 29.1 32.1 27.9 27.4 47.0 49.1 8.7 34.6 18.5 30.5 31.3
0.3 28.6 33.6 49.0 44.0 3.4 36.6 28.5 32.0 26.6 27.5 46.2 48.7 7.6 34.2 18.4 29.9 30.9
1 29.0 32.4 48.4 44.1 3.4 35.6 28.8 31.7 27.5 29.0 47.8 49.7 7.6 34.6 19.1 30.8 31.2

model
0 28.2 32.6 47.4 41.6 3.6 34.2 26.7 30.6 26.9 27.8 45.9 47.3 6.9 33.1 17.1 28.3 29.9
0.2 29.6 33.1 48.5 44.6 4.0 36.1 29.1 32.1 27.9 27.4 47.0 49.1 8.7 34.6 18.5 30.5 31.3
1 27.2 33.3 49.7 46.2 4.0 37.6 31.7 32.9 16.9 25.7 47.8 50.1 3.4 35.7 19.8 28.5 30.7

Table 7.3: Comparison of language sampling factors used in tokenizer or model training.
All numbers are spBLEU. S is the exponential factor used in temperature sampling (see Sec-
tion 7.2.2).

first, we fix model training sampling S = 0.2 and compare 3 tokenizer training sampling factors

(S = 0, 0.3, 1.0). Results are shown in the second row (starting with “tokenizer”) in Table 7.3.

Though with small differences (0.4, 0.1 points), S = 0 overall works best. Second, we fix tok-

enizer training sampling S = 0 and compare 3 model training sampling factors (S = 0, 0.2, 1.0).

As shown in Table 7.3, the differences are more prominent (1.4, 0.6 points), and S = 0.2 overall

works best. Hence, for tokenizer training, we want languages to be balanced, whereas, for model

training, we want to flatten the original distribution to some degree but not to uniform distribu-

tion. And we want to pay more attention to sampling for model training because NMT is more

sensitive to it.

7.5 Implementation Details

We implement translation models using fairseq.8 During training, we use Adam optimizer

(Kingma and Ba, 2015), learning rate=0.001, and warmup for 2 epochs. We use batch size=4K

tokens and gradient accumulation=4. For bilingual experiments, we use 8 NVIDIA Tesla V100

Volta GPUs for each experiment, and we run 3 seeds (2, 7, 42) for each experiment and report

the average. For multilingual experiments, we use 64 GPUs and only run seed=2 for each ex-

periment. We apply early stop with patience of 20 epochs. During testing, we use batch size=32

sentences and beam size=5.

8https://github.com/pytorch/fairseq
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7.6 Conclusion

We systematically analyze how language imbalance in multilingual tokenizer training affects

translation performances. Overall, we find that NMT performance is quite robust to language

imbalance especially when languages share scripts. Better performance is often achieved when

languages are more balanced. We suggest keeping the involved languages as balanced as possible

in the tokenizer training corpus and evaluating pretrained tokenizers on an evaluation set to make

sure no language’s UNK rate ě around 3.7% and no language’s closeness to the character level

ě around 0.87. We hope our work can provide some guidance for future multilingual tokenizer

training and usage.
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_bulan _non dia bet es _yang _dulu nya
_diabetes ,”_tambah nya .

50 _” We _now _have _4 - mon th - old _mi ce
_that _are _non - dia be tic _that _used _to
_be _dia be tic ,” _he _added .

_“S a at _ini _ada _men ci t _umur _4
_bulan _non dia bet es _yang _dulu nya
_diabetes ,”_tambah nya .

99.9 _” We _now _have _4 - mon th - old _mi ce
_that _are _non - d ia be tic _that _used _to
_be _di a be tic ,” _he _added .

_“S a at _in i _a da _men ci t _ um ur _4
_bu lan _non di ab et es _ya ng _du lu nya
_diabetes ,”_ta mb ah nya .

100 _” We _now _have _4 - mon th - old _mi ce
_that _are _non - d ia be tic _that _used _to
_be _di a be tic ,” _he _added .

_“S a at _in i _a da _men ci t _ um ur _4
_b ul an _non di ab et es _ya ng _du lu ny a
_diabetes ,”_ta mb ah ny a .

x% English English Chinese

0 _ ” W e _ n o w _ h a v e _ 4 - m on t h - o l
d _ m ic e _ t h at _ ar e _ n on - d i a b et ic
_ t h at _ u s e d _ t o _ b e _ d i a b et ic , ” _
h e _ ad d e d .

_他补充道:“我们现在有 _ 4 _个月大没
有糖尿病的老鼠,但它们曾经得过该病。”

0.1 _ ” W e _ n o w _ h a v e _ 4 - m on th - o l
d _ m ic e _ th at _ ar e _ n on - d i a b et ic _
th at _ u s ed _ t o _ b e _ d i a b et ic , ” _ h
e _ ad d ed .

_他补充道:“我们现在有 _ 4 _个月大没
有糖尿病的老鼠,但它们曾经得过该病。”

50 _” We _now _have _4 - mon th - old _mi ce
_that _are _no n - dia be tic _that _used _to
_be _ dia be tic , ” _he _add ed .

_他补充道:“我们现在有 _4 _个月大没有
糖尿病的老鼠,但它们曾经得过该病。”

99.9 _” We _now _have _4 - mon th - old _ m ice
_that _are _non - dia be tic _that _used _to
_be _ dia be tic ,” _he _added .

_ <unk> : “<unk> _4 _ <unk> , <unk>”

100 _” We _now _have _ 4 - mon th - old _ m
ice _that _are _non - dia be tic _that _used
_to _be _ dia be tic ,” _he _added .

_ <unk> : “<unk> _ 4 _ <unk> , <unk>”

Table 7.4: Examples of how sentences in English, Indonesian, and Chinese are tokenized at dif-
ferent English percentages under our main bilingual setting (Section 7.3.1). The sentence is the
first sentence of Flores101 devtest set. Subwords are separated by whitespaces, and unknown
tokens are replaced by ‘<unk>’.
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CHAPTER 8: SUMMARY, LIMITATIONS, ETHICS, AND FUTUREWORK

8.1 Summary of Contributions

This thesis focuses on improving the reliability or inclusiveness of natural language genera-

tion (NLG). The main contributions can be summarized into the following three aspects.

Alternative learning objective for training more reliable NLG models. We point out that

the typical learning objective, maximum likelihood estimation (MLE), used for training NLG

models is not always sufficient for training a reliable model. For example, in Question Genera-

tion (QG), MLE does not explicitly reflect the requirement that generated questions should be

answerable by the given answer. Therefore, the output questions are often unanswerable by the

answer. In (Zhang and Bansal, 2019) (Chapter 2), we proposed to use an external pretrained QA

model to verify the answerability of the generated question and use it as a reward to train the QG

model. We showed that our method greatly improved question generation performance and the

answerability of questions. For language modeling, we found that MLE-trained LMs tend to over-

generalize, in the sense of having larger support than human LM distribution and thus producing

non-human-like text when random sampling from the model. In our recent work (Zhang et al.,

2023b) introduced in Chapter 3, we proposed a novel MixCE training objective that minimizes a

mixture of forward cross-entropy (CE) (which is equivalent to MLE) and reverse CE. We demon-

strated that MixCE effectively alleviates the over-generalization problem of MLE and leads to

better LM performance.

More reliable summary evaluation methods. How to reliably evaluate model-generated text

is a long-standing problem in the NLG literature. Different NLG tasks have different evaluation

methodologies, though they are usually based on similar ideas. In this thesis, we particularly fo-
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cus on one of the NLG tasks, text summarization, and propose metrics, benchmarks, and proto-

cols to improve the reliability of the summary evaluation. Usually, human evaluation is viewed

as the gold standard evaluation method of NLG. However, it is expensive, time-consuming, and

non-reproducible. In contrast, automatic evaluation metrics are low-cost, fast, and reproducible,

yet it is often poorly correlated with human judgment. Therefore, in (Zhang and Bansal, 2021)

(Chapter 4), we proposed a method to combine human and automatic evaluations to achieve semi-

automatic summary evaluation. We showed that our approach can find a good trade-off between

both worlds: being cheap, fast, and reproducible while being more correlated with human judg-

ment than other existing automatic metrics. Recently, an increasing number of works have been

studying the faithfulness (or factually consistency) issues of text summarization because models

frequently hallucinate new information or change the meaning of the source (Cao et al., 2018;

Maynez et al., 2020). However, these works have only focused on abstractive summarization

(generating novel sentences) rather than extractive summarization (extracting sentences from the

source). Even though extractive models are more reliable in terms of faithfulness, in our recent

work (Zhang et al., 2023a) (Chapter 5), we showed that there are a non-trivial number of unfaith-

fulness problems existing in extracted summaries produced by state-of-the-art extractive systems,

and we proposed a new metric to better detect these unfaithful extractive summaries.

NLG for endangered or low-resource languages. There are over 6,500 languages spoken or

signed in the world today. How≠ever, only a handful of languages are systematically represented

in NLG (or in general NLP) technologies (Joshi et al., 2020b). To support as many languages as

possible is an important and meaningful mission of the whole NLP community. This thesis has

worked on the language processing of an endangered Native American Language, Cherokee. As

discussed in Chapter 6, we collected a Cherokee-English parallel dataset (Zhang et al., 2020b)

and developed the first set of Cherokee-English translation systems and an online demo (Zhang

et al., 2021b) (https://chren.cs.unc.edu/). This demo has been tested and used by Chero-

kee speakers and learners. The dataset is used by the machine translation assignment of the Stan-

ford CS224n NLP course, and the demo was featured by UNC Research in a news article. Be-
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sides machine translation, we also introduced a more complete roadmap for using NLP to help

revitalize endangered languages like Cherokee (Zhang et al., 2022b), in which we proposed sug-

gestions to NLP practitioners, approaches of NLP-assisted language education, and directions for

Cherokee language processing. On the other hand, tokenization is a necessary processing step of

most NLG models. When multiple languages are involved, usually one multilingual tokenizer is

trained. However, due to the different amounts of data from different languages, low-resource

languages may not be well represented in the learned vocabulary. In our work discussed in Chap-

ter 7 (Zhang et al., 2022a), we studied how language imbalance in tokenization affects the per-

formance of multilingual translation. We found that translation models are surprisingly robust to

language imbalance, nonetheless, better performance is often observed when languages are more

balanced. We provided best practices for training and using multilingual tokenizers.

8.2 Limitations and Future Work

In an idealized setting, with unlimited training data and model capacity, as well as a perfect

optimizer, fitting Qθ with MLE will learn a distribution as close to P as we like. In other words,

when a large amount of clean data is used, the over-generalization problem caused by MLE is

less noticeable, just like how we see models trained with large-scale data usually have better per-

formance. And thus, alternative learning objectives will become less useful in these settings. The

novel learning objective components we introduced, QAP reward for QG and reverse CE for LM,

can be easily “gamed” by the model, e.g., copying the answer to the generated question, always

outputting one single piece of human-like text. Therefore, it is critical to mix them with MLE.

However, we found that the best mixing ratio is different across different settings. Our current

best practice is to tune the mixing ratio on a development set, but it is less obvious how to use

these learning objectives during pretraining when it is too expensive to tune hyperparameters.

Therefore, how to find a universal mixing ratio or how to determine it automatically is an impor-

tant problem to resolve in the future.
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Our semi-automatic summary evaluation is based on the reference-based evaluation protocol,

Pyramid (Nenkova and Passonneau, 2004) and LitePyramid (Shapira et al., 2019). However, a

lot of people criticize the low quality of reference summaries in summarization datasets (Bom-

masani and Cardie, 2020). In general, reference-based evaluations have more controllability and

reproducibility while their evaluation capacity is upper bounded by the references. In contrast,

reference-free evaluations are more difficult to control and less reproducible but more flexible.

How to resolve this dilemma is an interesting future work.

The conclusions of our “extractive is not faithful” work will be more useful for summariza-

tion tasks where extractive methods perform decently well compared to extremely abstractive

summarization tasks. Experts conducted our data annotations; hence, to scale up data annotation

by working with crowdsourcing workers may require additional training for the workers. Our

ExtEval metric is designed for extractive summarization, which is currently not directly appli-

cable for abstractive summaries except for SentiBias. As our data is collected on CNN/DM, the

percentages of each error type may change when evaluating a different summarization dataset,

though we believe that the conclusion, extractive is not faithful, will not change.

In the series of Cherokee-related works, we are inspired by the practice of Cherokee Lan-

guage Revitalization. Our conclusions and suggestions may or may not generalize to other endan-

gered languages. For example, since Cherokee has its own syllabary and can be written down,

we are interested in speech recognition for audio transcription. However, some oral languages

may want to prioritize translation over transcription to tackle the transcription bottleneck (Bird,

2020b). In addition, our position is influenced by Crystal (2014), who thinks using electronic

technology is important for language revitalization. Therefore, a lot of our proposals may have an

assumption that computers and the Internet have been or can be widely accepted and used in the

indigenous community. However, it may not be true in every indigenous community.

Lastly, our analysis of language imbalance in multilingual tokenization is an empirical study.

Our observations and conclusions are made based on our experiments, which may or may not be

generalizable to other settings. We tried our best to include diverse languages, but still, our exper-
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iments are English-centric and at most have 8 languages involved. We tended to believe that our

main observations are generalizable to other experimental settings, while the exact thresholds of

the two features (UNK rate and closeness to the character level) for indicating poor downstream

performance may not always hold.

8.3 Ethical Considerations

Despite the impressive progress of NLG and the effort made by this thesis, NLG models of-

ten do not distinguish fact from fiction, so they can not support use cases that require the gener-

ated text to be true. Additionally, models reflect the biases inherent to the data they were trained

on, so they can not be deployed into systems that interact with humans unless the deployers first

carry out a study of biases relevant to the intended use case.

Automatic and semi-automatic NLG evaluation metrics are inherently biased by how they

are designed and thus can not replace human evaluation. Nonetheless, human evaluation is also

not always trustworthy because it is also biased or limited by its evaluation protocol and how

human evaluators are instructed. Therefore, multiple and diverse evaluations should be applied

in quality-sensitive scenarios and evaluations should be carried out according to the intended use

case.

The ethical foundation of working with indigenous people, e.g., native speakers from the

Cherokee community, has been addressed in Section 6.5.1. To summarize, as NLP practition-

ers, who are usually “outsiders” of indigenous communities, we need to keep in mind their basic

need: the need for respect, reciprocity, and understanding. We need to weigh the burden we put

upon the native speakers against the benefit that the research can bring back to their community.

And lastly, we need to decolonize our research and form a sustainable collaboration community

with them.

The main ethical concern of the multilingual tokenization work is that we have many experi-

ments and it is s not very easy to finish them without a decent number of computation resources.

In total, we have 1890 bilingual experiments. Each experiment takes from less than 1 hour to
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about 2 days (based on the training data size) using 8 NVIDIA Tesla V100 Volta GPUs. And, we

have 31 multilingual experiments in total, and each experiment takes 1.5 days using 64 GPUs.

However, we expect that our empirical results can help guide the training and usage of multilin-

gual tokenizers, so future works do not have to re-conduct these expensive investigations.
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