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ABSTRACT

John Belton O’Neall Caughman III: DATA ANALYSIS AND MATERIAL
PROPERTY INFERENCES FROM PASSIVE MICROSCOPIC PROBE
EXPERIMENTS IN HETEROGENEOUS BIOLOGICAL SYSTEMS

(Under the direction of M. Gregory Forest)

Passive particle-tracking microrheology (PPTM) exploits thermal fluctuations of passive microscale

probes dispersed in soft matter. The probes are tracked using microscopy; then application of the generalized

Stokes-Einstein relation determines the equilibrium dynamic moduli of the sample material. The methodology

was designed and applied since the 1990s for presumed homogeneous soft matter materials. The standard

PPTM data analysis calculates the ensemble-averaged mean-squared displacement (MSD) of the position

time series of tracked particles to determine dynamic moduli of the source material, assuming a faithful

random particle sampling of the material. In this dissertation, we confront the challenge of using PPTM

to probe heterogeneous materials. Our motivation and the primary application of the tools we develop is

the pathology of human airway mucus induced by cystic fibrosis (CF). Normal human bronchial epithelial

(HBE) mucus is comprised of a mixture of two large molecular weight mucin polymers, MUC5B and

MUC5AC. The mucin ratio of MUC5B:MUC5AC progressively drops during progression of CF, coincident

with progressively more extreme heterogeneity in structure whereby the mucin polymers aggregate and phase

separate into insoluble, dense flakes within otherwise dilute solutions. These structure properties and the

associated heterogeneous rheology are the focus of our analysis. We develop a classifier method based on

fractional Brownian motion applied to 200 nm and 1 micron diameter beads that: 1. coarse-grains the particle

tracking data into beads within versus outside of flakes; 2. separates within-flake data into increment time

series that are distinguishable or not from the noise floor; makes inferences subject to data availability of 3.

the heterogeneity in flake structure, 4. the dynamic moduli of flakes and of the dilute solution as inferred

from both probe diameters.
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CHAPTER 1

Introduction

In the human body, mucus is an intrinsic part of many organ systems, including the gastrointestinal[Allen

(1993)], respiratory [Silberberg (1982), and reproductive [Katz (1982)] tracts. All of these types of mucus are

made up of a mucin polymer network at the molecular level, with the make-up differing in chemical makeup

between organ systems allowing for a difference in barrier and flow properties. With disease conditions, such

as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and stomach ulcers, a breakdown in

the normal functional behavior of mucus develops. We do not focus on the cause of this functional disruption,

rather we focus on the detection of departure from normal structure and rheology, and heterogeneity in

particular.

Typical healthy mucus is composed of 90-98% (by mass) of water, 2-5% mucins, 1-2% lipids, 1% salts,

and a very small % of DNA fragments and other molecular species [Thornton (1982)]. In Hill (2014),

the mucus solids concentration from sputum, a mixture of saliva and mucus from the respiratory tract, is

measured, revealing weight percents of 1-2% for normal sputum, 2-6% for COPD sputum, and 5-9% for

cystic fibrosis sputum. The physical properties of the mucus are generally defined by the entanglement of

mucins with one another and other molecules to form a three-dimensional network or gel-matrix. This creates

a medium that exhibits viscoelastic properties, i.e., they have both the viscous properties of a liquid as well

as the elastic properties of a solid. Mucus both traps and transports all inhaled insults, and the viscoelastic

properties are tuned to achieve both functionalities. Due to low volume and yield thresholds, particle-tracking

microrheology (PPTM) allows for the most viable and robust assessment of rheological properties. In PPTM,

[Mason (1995, 1997, 2000)], microbeads are embedded in a sample and their positions recorded without any

external forces being applied. This results in a position times series,

{Xn = X(n · τ), n = 0, 1, ...N}

being recorded using particle-tracking microscopy, where τ = ∆t is the experimental lag time between
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recorded positions of the microscope, and τ ·N is the total tracking time; τ and N are uniform across tracked

beads for statistical robustness of data inference. From the time series data, one then calculates increment

statistics, specifically the time-averaged mean-squared-displacement of each tracked bead, MSDX , computed

for all lag times nτ :

MSDX (nτ) =
1

N − n− 1

N−n∑
j=0

||Xn+j −Xn||2 (1.1)

PositionsXj have dimension d, where typically d = 2 with beads tracked in the focal plane of the microscope.

The pure, medium-induced, increments and MSD statistics, i.e. free from experimental noise and tracking

error, are inserted into the Generalized Stokes-Einstein Relation (GSER), mapping from experimental lag

times to frequency, nτ = 1
ω . The GSER can be applied to data of individual tracked beads of radius r,

Equation (1.2) below, or for ensemble-averaged MSD statistics, Equation (1.3). The elastic, G′(ω), and

viscous, G”(ω), dynamic moduli of the medium surrounding individual beads (1.2) or a randomly sampled

medium (1.3) are given by:

G∗(ω) = G′(ω) + iG”(ω) =
kBT

πriωF(MSDX (nτ))
(1.2)

G∗(ω) = G′(ω) + iG”(ω) =
kBT

πriωF(〈MSDX (nτ)〉)
(1.3)

where F(·) is the Fourier transform. Equation (1.3) is the standard formula employed for presumed homo-

geneous materials, where 〈·〉 denotes the ensemble average over all tracked beads. This methodology has

been indispensable for soft complex fluids with extremely low yield thresholds and low volume availability.

Human bronchial epithelial (HBE) mucus meets both of these criteria (cf. Fahy (2000); Bansil (2018); Wagner

(2018); Boucher (2019)), and passive particle-tracking microbead rheology has emerged as the method of

choice Crater (2010); Hill (2014); Lysy (2016); Wagner (2017); Hill (2018); Newby (2018).

As noted, we focus on challenges in PPTM with pathological mucus, marked by extreme heterogeneity,

that develops during progression of cystic fibrosis [Hill (2018), Esther (2019), Ford (2021)]. In addition

to previously documented increases in mucus concentration [Hill (2014)], CF HBE mucus undergoes a

heterogeneous phase transition [Markovetz (2019), Markovetz (2022)]: dense, raft-like, structures, referred to

as flakes, self-assemble and phase separate from the remaining more dilute solution. In advanced stages of

CF, up to 50% of the mucin polymers (MUC5B and MUC5AC) in HBE mucus phase-separate into highly
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concentrated flakes that do not swell nor dissolve in airway surface salt-water solvent. Advanced CF HBE

mucus is thereby, at a coarse scale, a two-phase mixture: a dense phase of mucin flakes, and a more dilute

phase consisting of the remaining mucins in dilute solution. Additional scales of spatial heterogeneity

potentially exist within the two coarse phases for any given sample: the dilute phase may vary in mucin

concentration; flake lateral dimensions range from 1-100 microns, with unknown free-volume pore-size

distributions that govern admissibility of passive probes added to samples. The goals are to infer heterogeneity

of progressive CF mucus, first at the coarse scale of two phases (flakes, not flakes), second to explore evidence

of heterogeneity especially within flakes, and third to use the appropriate GSER to link dynamic moduli with

structure heterogeneity. A secondary goal is to determine if these layers of heterogeneity are statistically

distinct at 200 nm and 1 micron probe diameters. Care is taken in experiments to limit the number of beads

in HBE samples to avoid creation of a complex colloid.

PPTM data of flake-prevalent samples poses new data-analysis challenges that must be resolved and

implemented. A statistically robust and accurate method is presented that does the following: (1) separates

beads for each sample into within-flakes versus outside-flakes; (2) for within-flake beads, determines which

data are distinguishable from immobilized or stuck bead data of the same microscope system; (3) for

within-flake beads distinguishable from the noise floor, disentangles the pure entropic medium signal from

experimental error and noise. For all measured time series data distinguishable from the noise floor, a

2-parameter classifier of the pure entropic mean-squared displacements (MSD) is developed, described below.

Heterogeneity, low bead sample sizes, and unknown sampling efficacy of the heterogeneous domains

combine to impose hard constraints on the form of the Generalized Stokes-Einstein Relation (GSER) one

should use, and limit what one is capable of inferring with respect to rheology. In particular, ensemble

averaging of bead MSDs in the GSER is justified by an ergodicity assumption for homogeneous materials,

such that ensemble averaging of bead MSDs in the time domain is equivalent to frequency-domain averaging

of the Fourier-transformed MSDs, and that the beads give a random and sufficient sampling of the material.

These assumptions are egregiously violated for flake-prevalent mucus [Markovetz (2019), Markovetz (2022)].

We begin with the following assertion: any characterization of heterogeneity, i.e., some metric to cluster

the total ensemble of tracked bead position time series, should be implemented on the primitive data, namely

the measured position increment time series. Clustering of the data should not be performed in the frequency

domain of viscoelastic moduli, which involves a nonlinear mapping of the primitive data: a Fourier transform

of the increment time series data to the frequency domain and then the reciprocal of the transform inserted into

3



the GSER formula (2) or (3). The heterogeneity method presented here is implemented on the 2-parameter

MSD classifier per bead time series and then the ensemble of tracked bead classifier data per mucus sample.

In the 2-parameter MSD classifier space for each mucus sample and for each bead diameter, 3 clusters are

identified: (1) beads outside of flakes in relatively dilute mucus with water-like signals; (2) beads within

flakes whose entropic fluctuations are indistinguishable from the noise floor; and (3) beads within flakes

whose pure entropic fluctuation signal are distinguishable from the noise floor. The GSER is then applied

to the individual bead MSD classifier data, and the cluster results are leveraged to reveal the distribution of

dynamic moduli from available beads within and outside of flakes. Furthermore, while no moduli inferences

of within-flake beads inside the noise floor are made, inferences about flake pore sizes based on total bead

numbers within flakes for 200 nm versus 1 micron diameter beads relative to the expected numbers on the

basis of relative bead mobility and flake encounter frequency are done.

One final issue is efficacy of the MSD classifier, which is independently tested from the experimental

truth data. Each video is analyzed and the spatial proximity of beads within versus outside of individual

flakes are attached. In doing so, we confirm quite high success rates; for apparently misclassified beads, we

find those beads appear to be weakly within the focal plane. In the absence of such experimental truth sets,

such errors could be lessened by filtering tracked beads with low signal to noise ratio, SNR, below a threshold

set by the imaging system.

For all data distinguishable from the noise floor, a predictor-corrector method is introduced to extract the

pure entropic fluctuation signal. The predictor step is a least-squares fit to the drift-subtracted MSD on a

restricted range of lag times that mitigates high frequency error (dynamic and static) and drift-subtracted

distortion at large lag times. The corrector step is the fractional autoregressive moving average (fARMA)

method of high-frequency noise removal developed in [Lysy (2016)]. The predictor step was formulated

precisely for these heterogeneous HBE mucus samples to avoid instability of fARMA from initial guesses

outside the range of convergence to the true MSD. The predictor-corrector method yields the 2-parameter

classifier of the purely entropic, medium-induced, sub-diffusive MSD over measured timescales. Later

in this work, the method is applied on synthetic, simulated data, revealing estimators and standard errors

across ranges of truth datasets over a range of Brownian and sub-diffusive processes, with superposition of

various combinations of experimental error. The results show potentially major errors arise for low-mobility

increment time series by using a least-squares fit to the MSD, even if one restricts the window to avoid low

and high frequency noise. The take-home message here is that one cannot avoid the pollution of the MSD at
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intermediate timescales due to noise outside the restricted window.

1.1 Particle position time series data and statistical analysis of the data

Recall equation (1.1) that describes the MSD per lag time, nτ . For a spherical particle of radius r diffusing

in a purely viscous medium, e.g., water or glycerol of viscosity η, the position time series is described by

Brownian motion, for which the MSD scales linearly for all lag times:

MSDX (nτ) = 2dDnτ (1.4)

where d is the dimension of the trajectory and D is the diffusivity of the medium given by the Stokes-Einstein

relation,

D =
kBT

6πrη
(1.5)

Soft biological materials like mucus are both viscous and elastic, with different responses at different

frequencies of forcing. In viscoelastic materials, the MSD of passive beads is sub-linear over the timescales

for which the medium exhibits memory due to elastic recoil of the polymeric network. For 200 nm to 1

micron diameter passive beads in respiratory mucus, and for our microscope system, the memory timescales

encompass the camera shutter timescale (1/60 sec) and the total bead observation time (30 sec). Furthermore,

over experimental timescales, each individual tracked bead not in pure salt-water exhibits a sub-diffusive

MSD power law,

MSDX (nτ) = 2dDα(nτ)α (1.6)

for 0 < α < 1. The only Gaussian continuous stationary increments (CSI) process having this power law

MSD at all time scales is fractional Brownian motion Bα(t), of which the auto-correlation function is

E[Bα(t), Bα(s)] =
1

2
(|t|α + |s|α − |t− s|α)

It is important to emphasize that the statistical classifier for Brownian motion is one-dimensional, the

diffusivity D, whereas for sub-diffusive fractional Brownian motion, the classifier is two-dimensional, (α,Dα).

The power law α reflects the degree of sub-diffusivity of the medium surrounding each tracked particle, where

an α around 1 is close to pure diffusion while an α value near 0 corresponds to almost complete immobility.

The pre-factor Dα, however, has α-dependent units, so that one cannot compare numerical values of different
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beads unless they miraculously have identical α, nor can one perform arithmetic operations (e.g., averaging)

over ensembles of tracked particles. In particular, one cannot employ clustering metrics, and therefore we are

unable to assess heterogeneity. This issue will be resolved in a later discussion. For now, it can be noted that

∆ = 2dDα(nτ)α = MSDX(nτ sec), (1.7)

for any lagtime nτ , e.g. nτ = .1 or 1 seconds, has units µm2 and therefore can be readily compared across

multiple beads and used for averaging or cluster analysis. Alternatively, one can also use the GSER per bead

and compare the dynamic moduli G’ and G” of different tracked beads at any frequency, e.g., 10 or 1 sec−1,

or perform other statistical analyses. The problem with any of these single lagtime or frequency projections

onto a scalar quantity arises when the bead time series data has not been denoised first – the potential for

error is exaggerated for the highly sub-diffusive time series of beads inside flakes.

If one assumes that the MSD classifier (α,Dα) is a denoised projection onto fractional Brownian motion

(fBm), the classifier further provides an analytical formula for the dynamic modulus by virtue of the exact

Fourier transform of the power-law MSD (1.6), avoiding numerical error:

iωF(2dDα(nτ)α) = Γ(1 + α)6Dα

(
1

ω

)α
i−α (1.8)

Using this exact formula in the GSER, equation (1.2), for each individual bead:

G∗(ω) = ωα
[

kBT cos(απ2 )

πrΓ(1 + α)6Dα

]
+ iωα

[
kBT sin(απ2 )

πrΓ(1 + α)6Dα

]
= G′(ω) + iG”(ω) (1.9)

where Γ(·) is the Gamma function. From the ensemble of bead classifiers per sample per experiment, after

appropriate rescaling of Dα to perform clustering, beads are filtered into two stages: tracked beads outside

flakes with a water-like signal and tracked beads within flakes with a highly sub-diffusive signal. Then within

flake beads are filtered into time series distinguishable from the noise floor determined by tracking of stuck

beads and those inseparable from the noise floor. We find that the successfully denoised coarse clusters,

outside and within flakes, are sufficiently separated to be robust. This point is illustrated with synthetic data

in Figure 1.1.

Figure 1.1, left and middle panels, illustrate equivalence of using forms (2) and (3) of the GSER for

homogeneous clusters. The left panel data mimics water-like signals in dilute HBE mucus and the middle
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Figure 1.1: Comparison between G’ and G” computed three ways: (1) GSER applied to denoised MSD
classifier (α,Dα) per bead, eqn 1.2, then averaging G and G in frequency space; (2) ensemble averaging over
all denoised bead MSDs, then apply GSER, eqn 1.3 ; (3) ensemble averaging of the denoised MSD classifiers,
giving a mean (α,Dα), therefore a denoised power law ensemble-average MSD, inserted into either eqn 1.2
or eqn 1.3. These approaches are implemented for two separate homogeneous clusters: a water-like cluster on
the left, cluster 1, and a flake-like cluster in the middle, cluster 2, illustrating consistency in the approaches
for homogeneous clusters. The mean dynamic moduli of the mixture of these two clusters are computed with
each approach on the right, showing inconsistency in the approaches for heterogeneous clusters.

panel mimics flake-like signals, both drawn from a normally distributed mean MSD classifier (α,Dα). (To do

this, a consistent dimensional or non-dimensional scalar for all tracked beads, e.g., equation (1.7) is extracted

from Dα, then draw from a normal distribution, and then pass back to Dα.) For the water-like signal the

chosen mean and standard deviation for (α, D̃α) are, µ = (0.85, 0.35) & σ = (0.03, 0.02), while for the

flake-like signal µ = (.3, .15) & σ = (0.07, 0.02). While these clusters are not homogeneous in the strict

sense, having identical (α,Dα) values for every particle in the cluster, but rather in the broader sense of

having some variation of these parameters that is consistent with that observed in empirical data we deem to

be homogeneous from a practical standpoint. The standard deviation for the α value in the water-like signal

is smaller to ensure that all α remain less than one, i.e., are sub-diffusive, since α > 1 causes anomalous G <

0 and a misleading ensemble average. These (α, D̃α) distributions were chosen independently due to lack of

knowledge of their correlations. The right-most panel shows the non-equivalence of the three methods for

averaging of tracked bead data in a heterogeneous mixture of these two normally distributed water-like and

7



bead-like clusters. In both homogeneous clusters all three approaches recover a power-law rheology scaling,

i.e., approximately linear in log-log space, whereas only approach (3) is guaranteed to give power-law scaling.

For the heterogeneous mixture in the right panel, methods (1) and (2) produce a non-power law scaling of

G’, G”, distinct from method (3). Neither of the methods for the heterogeneous mixture on the right-most

panel has meaningful physical relevance: they average over the underlying heterogeneity without knowledge

of volume fractions of flakes and dilute solution and proper weighting of each in the average, and evidence

exists that the transport properties of the mixture are nonuniform between the flakes and dilute solution.
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CHAPTER 2

Estimating Diffusion Parameters

2.1 Semiparametric Least-Squares Estimator

Least squares is the most common method for estimating the diffusion parameters α and Dα. Recall the

definition of the MSD for a drift subtracted particle trajectory, X:

MSDX (nτ) =
1

N − n− 1

N−n∑
j=0

||Xn+j −Xn||2

When a logarithm is applied to the MSD equation(1.6):

log(MSDX (t)) = log(2dDα) + α · log(t) (2.1)

By writing the power law equation in this form, a linear regression can then be fitted with yn = log(MSDX (t))

and xn = log(nτ), and the diffusion parameters can thus be estimated using linear least squares:

α̂ =

∑N
n=0(yn − ȳ)(xn − x̄)∑N

n=0(xn − x̄)2
, D̂α =

1

2d
exp(ȳ − α̂x̄) (2.2)

where α̂ is the regression line slope and D̂α is the intercept.

LS is easy to implement and cheap to calculate, making it the popular choice when estimating the diffusion

parameters, however it can have trouble with accuracy if the MSD is not an exact power law. Experimentally

this comes from low and high frequency error. High frequency noise, an effect of camera error, is caused

by two things: inaccurately recording the true position of a bead at a given time, and the fact that these

beads are in continuous motion but the time series to represent them is discrete. Figure 2.2 shows how

high-frequency error can affect the MSD. Until recently, the only way was to account for high-frequency error

was by restricting the lag times used to compute LS; discarding those lag times of the MSD most polluted by

high frequency noise. This discards the smallest lag times but does not wholly solve the problem as high

frequency error is embedded at all lag times and can still cause incorrect parameter estimation, particularly
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for low mobility particles. Low frequency noise is caused by the drifting of the particles with respect to the

focal plane. This has the effect of raising the MSD at the highest lag times as drift causes an increase in the

displacement of beads as time increases, as shown in Figure 2.1. It is common practice to account for drift by

computing the MSD from the drift subtracted increments. There are two such ways to do so: subtracting the

mean increment, and subtracting the linear regression line; both methods assume the underlying drift is linear

and independent in X and Y.

The mean increment method is computed by first calculating the average increment in both X and Y

and then subtracting the average from each individual increment: ∆X = ∆X −∆X . Subtracting the mean

increment from every increment in the particle trajectory then forces the mean of the resulting trajectory to be

zero, i.e. it has a global effect of forcing the path to close - initial and terminal position are identical, thus

distorting the MSD. This causes the a ”waterfall” effect in the MSD at the highest lag times, as evidenced in

Figure 2.1.

The regression method first fits a regression line to the X & Y components of the trajectory,X(t) ∼ a·t+b,

where a and b are 1×2 dimensional matrices. The slope component of the regression line, a, is then subtracted

for all the increments X = X − a · τ . One upside of using this method is that it limits the ”waterfall” effect

of the mean increment method.

From Figure 2.1 it is evident that drift subtraction is needed as well as how effective it can be. In the

first panel, without any drift added, both methods accurately follow the empirical MSD across all lag times.

The second panel shows the empirical MSD blowing up at large lag times while both methods are extremely

similar to the MSD without any drift added. Both panels show the range that each of the drift subtraction

method has: they only minimally affect the MSD when there is no drift while accurately bring the MSD

down in the presence of large drift. Now comparing the methods themselves, it is evident that both give

near identical results at the low and middle lag times while diverging at the highest lag times. Due to the

mean increment method causing a waterfall effect where the MSD is pulled down to zero, whenever LS is

discussed, the regression method is technique used to subtract drift.

To avoid high-frequency camera error at low lag times as well as low frequency drift at larger lag times,

as even with drift subtraction the MSD is still distorted at the highest lag times, the LS regression line is

traditionally fit within a time window based on domain knowledge and visual inspection of the empirical

MSD to assess where it looks straight, in our case between 0.1 and 1 or 2 seconds. This trimming of the MSD

for estimation of the diffusion parameters, α̂ and D̂α, only works if the retained MSD window is free of noise.
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Figure 2.1: Comparing two linear drift subtraction methods on a simulated fractional Brownian motion
trajectory. First trajectory has no linear drift added, while the second trajectory has constant linear drift added
at each increment.

This can be difficult to assess when the mobility of the particle is close to the noise floor, at which point the

particle’s movement cannot be separated from the fluctuations of an immobile particle, further discussed in

chapter 2.6.

2.2 Full Parametric Model

A location-scale model Ling (2021) is used to model the particle trajectory:

X(t) = µt+ Σ
1
2Z(t) (2.3)

Where µ = (µ1, ..., µd) is a d-dimensional vector of linear drift, Σd×d is a symmetric positive definite

scaling matrix, and Z(t) = (Z1(t), ..., Zd(t)) are independent and identically distributed, iid copies of a

continuous stationary increment, CSI, Gaussian process with mean zero and MSD defined as

MSDZ(t) = η(t|ϕ)
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such that the MSD of the drift subtracted process X̃(t) = X(t)− µt is given by

MSDX̃(t) =
1

d
tr(Σ) · η(t|ϕ)

For the purposes of this research Zi(t) = Bα(t), that is fractional Brownian motion, in which case the

diffusivity coefficient, Dα is determined by

Dα =
1

d
· tr(Σ) (2.4)

A fully parameterized model has the benefit of being able to use the MSD for all lag-times while also

performing sophisticated denoising to more accurately capture the underlying signal. This is in contrast to LS

which is only able to fit to the MSD in a lag-time window in order to minimize the effect of noise, causing

the majority of the MSD to be discarded from analysis. In addition, LS does not have any method to account

for high-frequency error, while each of the parametric models has had lease one parameter to account for

noise, thus allowing for the model to capture the true signal of the bead through the noise while LS can only

fit to signal + noise.

As mentioned, a great advantage of using a fully parameterized model as compared to semi-parametric

model like least squares is that the model can determine localization errors by distinguishing between the true

particle position, Xn, and the recorded value, Yn for any time at time t = n · τ . The following sections will

go over two different models for estimating high frequency localization error; the first being the Savin-Doyle

error model put forth in Savin (2005) which seeks to have physical parameters to describe the noise and the

auto-regressive moving average (ARMA) model as described in Ling (2021) where the noise parameters are

non-physical.

2.3 Savin-Doyle Error Model

In the Savin and Doyle error model the high-frequency noise is decomposed into two sources: static and

dynamic. Static noise is caused by measurement error from the recording of the position of the particle at a

given time. Savin and Doyle represent the static error in terms of an additive model with the form:

Yn = Xn + εn
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where εn is a d-dimensional stationary process independent of X(t). For a wide range of signal-to-noise

ratios, Savin and Doyle report that εn is effectively white noise, Savin (2005) which has the effect of raising

the MSD at the shortest lag-timess.

While Savin and Doyle define static noise to be from measurement error from the recording and subsequent

tracking of the particle trajectory, the dynamic noise is defined as the error caused by the movement of the

particle during the camera exposure time, i.e. for each frame a singular position of the particle is recorded

however in reality the particle is always in continuous motion. Thus if the camera exposure time, τ is τ < ∆t

(as exposure time has to be less than the frame rate) the recorded position of the particle at time t = n ·∆t is

given by:

Yn =
1

τ

∫ τ

0
X(n ·∆t− s)ds

Larger values of τ have the effect of lowering the MSD at the smallest lag-times, as shown in in Figure 2.2.

Combining the static and dynamic models, the full Savin-Doyle error model, fSD, is then:

Yn =
1

τ

∫ τ

0
X(n ·∆t− s) ds+ εn (2.5)

The fSD model has two significant limitations. Firstly, as Figure 2.2b shows that the Savin-Doyle model

can only bend slightly to correct for negatively biased MSDs at the lowest lag times. The model has a greater

bend the closer the camera aperture time, τ , is to the frame-rate. However, this is usually not the case in most

experimental setups where τ is typically an order of magnitude smaller than ∆t, which causes the effect of

the dynamic error to be very small and oftentimes insufficient to fit to larger negative MSD biases. Secondly,

the fSD model has one parameter, εn, that raises the MSD and another parameter, τ , that lowers it. This

can lead to identifiability issues when fitting the model which then affects the estimation of the diffusion

parameters. However, as shown in Figure 2.2, the fSD model is more adept than other models at fitting to a

larger rise in the MSD at the lowest lag times.

2.4 ARMA model

The ARMA model Ling (2021) uses non-physical parameters to model the high-frequency camera error

rather than the physical parameters of the fSD model. This is done in an attempt to provide enough flexibility

to accommodate a wide range of MSD behavior. This is accomplished by using an autoregressive/moving

average ARMA(p,q) type to model the position of the particle, again where Yn is the recorded position and
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Xn is the true position:

Yn =

p∑
i=1

θiYn−i +

q∑
j=0

ρjXn−j , n ≥ r = max(p, q) (2.6)

For the initial cases where 0 ≤ n < r, Yn is then defined via stationary increment process ∆X = {∆Xn, n ∈

Z}. The increment process ∆Y = {∆Yn, n ∈ Z} defined by

∆Yn =

p∑
i=1

θi∆Yn−i +

q∑
j=0

ρj∆Xn−j (2.7)

is a well-defined stationary process which can be causally derived from ∆X . In addition, setting Yn =∑n−1
i=0 ∆Yi obtains the ARMA relation 2.6 for n ≥ r. It is shown in Ling (2021) that Y accurately models

the high frequency error of X if and only if

ρ0 = 1−
p∑
i=1

θi −
q∑
j=1

ρj (2.8)

The fractional moving-average, fMA, noise model is the simplest of the ARMA(p,q) models with p = 0

and q = 1, from (2.6) and (2.8) the model is given by:

Yn = (1− ρ)Xn + ρXn−1 (2.9)

Figure 2.2a shows the MSD of fMA, for ranges of ρ ∈ (−1, 1
2), compared to that of fSD. the fMA model

is comparable to the fSD model in its ability to affect the MSD at low lag times. When ρ > 0 the MSD is

lowered at the lowest lag-times and when ρ < 0 the MSD is raised. Both noise models have a similar ability

to raise the MSD at the smallest lag times, while the fMA model has a much higher capacity to lower it. This

highlights the strength of the ARMA noise model as it able to do this using a single noise parameter while

the Savin-Doyle model requires two.

A more flexible two-parameter ARMA model, and the one focused on for the duration of this work, is

with p = 1, q = 1, the first order auto-regressive moving average, fARMA, model given by (2.6) and (2.8) is:

Yn = θYn−1 + (1− θ − ρ)Xn + ρXn−1 (2.10)
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Figure 2.2: (a) MSD of the fMA model for different values of ρ. (b) MSD of the fSD model for different
values of τ and SNR.

2.5 Parameter Estimation

To estimate the parameters of the fBM location scale model, 2.3, it is convenient to transform to an

unconstrained basis; this is done in order to improve model convergence around the parameter endpoints in

the standard basis. Since α ∈ (0, 2) an intuitive unconstrained transformation is:

φ1 = logit(α, 0, 2),

where the generalized logit transformation is given by:

logit(x, L, U) = log

(
z

1− z

)
, z =

x− L
U − L

(2.11)

Similarly, the noise parameters are transformed using the logit transform (2.11): for the fARMA model

φ2 = logit(ρ,−1, 1) and φ3 = logit(θ,−1, 1). The drift coefficients, µ, are inherently unrestrained, so the

last parameter to transform is the scaling matrix Σ. The unconstrained parametrization for Σ is:

λ = (log(tr(Σ)), log(Σ11/Σ22), logit(κ,−1, 1)), κ =
Σ12√

Σ11Σ22
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Optimization is then done using maximum likelihood estimation and parameters are converted back to the

real basis from the computational basis. For φ1, φ2, and φ3 this is done using the ilogit function:

ilogit(x, L, U) = L+
U − L

1 + e−x
(2.12)

Thus the calculation for the diffusion parameters (α,Dα) is α = ilogit(φ1, 0, 2) and Dα = 1
d e

λ1 . Only

λ1 is needed to calculated Dα as Equation 2.4 shows only the trace of the scaling matrix, Σ is used which

corresponds to the computational parameter λ1.

2.6 Advances in the classifier for beads entangled in the noise floor

Beads that become embedded in mucosal flakes exhibit low mobility, with α < 0.3. At the lowest levels

of mobility, α < 0.1 fARMA can become unstable in its estimation, most notably in the estimation of the

diffusion parameter Dα.
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Figure 2.3: Plot of (α, D̃α) values for stuck beads, i.e. beads whose signals should only be noise. Notice
the broad range of D̃α estimates: almost 10 orders of magnitude between them, while the α estimation is
relatively consistent. The dashed red line corresponds to the α cutoff we use when determining whether a
bead is in the noise floor.

In addition to instability of the estimation of Dα, beads with a small estimated α value are likely to be

indistinguishable from beads that are physically glued to a stationary plate - they are so entrapped in the

mucin flakes that their signal is essentially all noise. Figure 2.3 shows the (α, D̃α) estimates for purely stuck

beads whose signal is entirely caused by noise. α = 0.1 is thus chosen as the cutoff for beads declared in

the noise floor. For such cases, we say that the true signal and the noise are too intertwined for an accurate
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estimation of the diffusion parameters and any estimates are recorded as being in the noise floor and then

discarded from further analysis.

In certain situations, typically when α is small, i.e. 0.1 < α < 0.3, there can be slow convergence, or no

convergence once the optimization time has elapsed. This happens because the default initial values for the

optimization are 0 in the computational basis, corresponding to α = 1 in the real basis. This type of situation

is of particular interest because such low mobility is common for beads in mucosal flakes.

To improve the chances of successful termination, a predictor-corrector method is used with the MLE

models: diffusion parameters, α and Dα, are first estimated using LS and then these estimates are used as the

initial point for the numerical optimization. All other parameters to be optimized are still initialized at 0 in

the computational basis as LS has no capability to estimate them.
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Figure 2.4: Convergence plots on the same trajectory with no initial guess versus initial guess for α supplied
from LS. Notice change in estimate for all ψ and λ values.

Figure 2.4 shows the improvement in convergence when the LS predictor to fARMA corrector is

implemented. Initially φ1, corresponding to α in the real basis has not converged after the computational time

has been reached, but with the predictor-corrector all eight of the parameters converge. This implementation

improves the MLE model’s ability to converge to an estimation without a significant increase in run-time as

LS is a cheap computation. The improvement in convergence to the φ1 parameter also significantly changes
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to the other parameters, notably those corresponding to noise and the scaling matrix.

2.7 Parameter Recovery

Now that the fARMAs model has been created and appears to accurately improve upon fARMA in cases

of high static noise, as evidenced by Figure 2.8, fARMAs is now tested to see how well it can recover both the

diffusion and noise parameters. Parameter recovery is applied to both fARMA and fARMAs, with fARMA

acting as a comparison as it is the most similar model to fARMAs. Diffusion and noise parameters are chosen

to reflect experimental data at all levels, from water-like signals, to flake-like signals, to entangled in the

noise floor.

Figure 2.5: Plot of the parameter recovery for noise and diffusion variables for both the fARMA and fARMAs
mode. The black dot represents the true value of each parameter, the red dot is the mean over the 100
trajectories with bars representing two times the standard deviation.

fARMA and fARMAs are simulated with the same ρ, θ, α, and Dα values while fARMAs also has a Σ2

parameter that represents white noise. Once a trajectory as been simulated and each of the parameters have

been recovered, Dα is then converted to D̃α in order to make comparisons between simulations; the noise

parameters and α can already be compared across beads and thus do not need to be transformed. For each

set of parameters, 100 trajectories are simulated and the parameters are recovered and then compared to the
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true value, as shown in Figure 2.5. The predictor-corrector method is used for both models, with α being

initialized using lease squares; all other parameters are still set to be zero in the computational basis.

Figure 2.5 shows how well both the fARMA and fARMAs models are at recovering the parameters used

to simulate a particle trajectory. Both models are able to accurately recover the diffusion parameters, relative

error less than 10%, for trajectories outside of the noise floor. Both models are less accurate at recovering

the noise parameters. This is evident from both the difference between mean and true value as well as the

larger standard deviation for both the θ and ρ parameters. One reason why fARMAs is performing worse

than fARMA with regards to noise parameter recovery is that both θ and ρ can raise and lower the MSD,

which allows for a better fitting to the empirical MSD and thus recovery of the diffusion parameters (Figure

2.8), Σ2, used to calculate ε in Equation 2.13, can only raise the MSD at the lowest time scales (Figure 2.2).

Therefore if the dominant high-frequency error is from the static component, fARMAs would be the better

model, but when the dynamic component dominates, then fARMA could be the better model. In order to deal

with this, when analyzing experimental datasets, both the fARMA and fARMAs models are used to estimate

parameters. For each individual experimental trajectory, the selected model is whichever model MSD is

closest to the empirical MSD.

2.8 Comparing LS and fARMA

In order to compare the accuracy of LS and fARMA to each other, a set of synthetic truth sets are

used. The values of the diffusion parameters used to generate truth sets were selected in order to sample the

range of values that appears in experimental data. The six (α,D̃α) pairs used are: (0.999, .43), (0.75, 0.108,

(0.5, 0.0108),(0.25, 0.0027), (0.15, 0.001396), and (0.05, 0.0009587).

For each pair two different error models are applied: one with just low frequency drift added and the

other which is a combination of the same low frequency drift but high frequency camera error is also added.

In order to not bias the results, as simulating and estimating with the same model should return high accuracy,

the Savin and Doyle error model, equation 2.5 is used which includes both static and dynamic error. Drift is

assumed to be constant and linear.

Of the six (α,D̃α) pairs, one corresponds to pure diffusion, i.e. α = 1 and D̃α = 1, one to a particles in

the noise floor, two corresponding to beads embedded in mucosal flakes, and two giving signals between

those embedded in flakes and those in a pure water solution, corresponding to beads on the periphery of the

flake and more dilute mucin and water mixture. For each combination of (α, D̃α) and error model, 12 in

total, one hundred trajectories are simulated using the Savin-Doyle noise model, allowing for physical noise
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parameters. The dynamic noise parameter, τ , corresponding to camera exposure time is held constant for

each of the (α,D̃α) pairs, defining a consistent camera setup for all simulations, while the signal-to-noise

ratio lessens as α and D̃α both decrease, representing the true signal of the particle becoming more entangled

with the noise as it exhibits less mobility. The two diffusion parameters are then estimated, as well as their

standard errors, using both LS and fARMA with a predictor-corrector. Standard errors for LS were calculated

using the equation from Zhang (2018). It should be noted that when only estimating the diffusion parameters

that LS is significantly faster than fARMA, or any of the MLE based models, but when accounting for the

standard error calculation LS is in fact slower than fARMA. Figure 2.6 shows the mean estimate as well as

error bars corresponding to twice the mean standard error for each.
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Figure 2.6: (α, D̃α) estimates for each of the six bead pairs for the two error models: only low frequency and
low and high frequency. The right panel is the same as the left panel but with bars representing two times the
standard error in both α and D̃α.

Figure 2.6 shows that without the presence of high-frequency noise, i.e. the only source of error coming

from low-frequency drift, both LS and fARMA are both accurate across all six (α, D̃α) pairs. For five of the

six pairs the error bars are similar for LS and fARMA, however we see that for the truth set in the noise floor

fARMA has a significantly larger error for the D̃α estimation than LS. This result should be expected as both

methods have similar ways to deal with drift and thus get alike estimates when fitting to the ”pure” signal

(once drift has been accounted for).

More can be gleaned in the comparison between LS and fARMA when examining the six truth sets

that had both the drift and camera error. Table 2.1 shows the relative errors for the two estimation methods
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Pair True (α,Dα) Method α Error D̃α Error
1 (0.999, .43) LS 0.049 0.099
1 (0.999, .43) fARMA 0.038 0.088
2 (0.75, 0.108) LS 0.025 0.048
2 (0.75, 0.108) fARMA 0.053 0.070
3 (0.5, 0.0108) LS 0.030 0.051
3 (0.5, 0.0108) fARMA 0.070 0.048
4 (0.25, 0.0027) LS 0.233 0.149
4 (0.25, 0.0027) fARMA 0.025 0.036
5 (0.15, 0.001396) LS 0.600 0.318
5 (0.15, 0.001396) fARMA 0.246 0.145
6 (0.05, 0.0009587) LS 2.385 0.664
6 (0.05, 0.0009587) fARMA 1.479 0.524

Table 2.1: Table showing the relative error between the mean values of α and D̃α for each set of diffusion
parameters estimated using both LS and fARMA. Due to physical relevance, only the errors from the
simulations using Savin and Doyle error model are included.

visualized in Figure 2.6. There is little change between the drift and drift plus camera error results for the

truth sets with the three largest (α, D̃α) pairs, those that correspond to being in pure water and the periphery

of the flake. This should not be unexpected, as effect of camera error will be lessened when the mobility

of the particle is larger and thus the true signal dominates relative to the noise which allows for LS to get

an accurate estimate. However, for the pairs corresponding to beads embedded in flakes there is a drop in

accuracy.

Table 2.1 backs up what is seen visually in Figure 2.6. For this table, only those results from the

simulations generated using the Savin and Doyle error model are included as real experiments always have

both low-frequency drift and high-frequency camera error.

But there is a shift, first in the LS estimates as (α, D̃α) decreases. With the α = 0.25 truth set, fARMA’s

estimation of both parameters is still close to the true value while LS’s α estimate is starting to be less

accurate. This is further extended for the α = 0.15 and α = 0.05 truth sets, where both LS and fARMA lose

accuracy with fARMA being the more accurate of the two. This shows the benefit of using a model that

incorporates noise parameters when analyzing flake data.

That last comparison between LS and fARMA is done using the elastic and viscous dynamic moduli,

G’ and G” respectively, shown in Figure 2.7. This figure shows again that in the absence of high-frequency

camera error, not LS and fARMA are able to accurately recover the diffusion parameters as the moduli

curves are roughly indistinguishable between the two methods and the true value. This accuracy again carries
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Figure 2.7: The G’ and G” moduli curves compared between the true values used to simulate the trajectories
and the moduli curves from the average values estimated using LS and fARMAs. Trajectories simulated with
and without high-frequency camera error are included.

through for high-mobility trajectories when camera error is added. However the moduli curves begin to break

apart starting at the α = 0.25, Dα = 0.0027 pair. Here, LS is over-estimating α and underestimating Dα

which leads to higher G’ & G” values at the smallest frequency which increases as ω increases, causing the

error be greater at the highest frequency values. This is true for fARMA as well but to a lesser degree for

both of the ”in-flake” pairs.

In the presence of high levels of static noise, the εn term in the physical fSD model is larger, both LS and

fARMA can fail to accurately estimate both α and Dα, as shown in the second plot of Figure 2.8. While

both fitted MSDs are able to accurately fit to the empirical MSD, outside of LS severely underestimating the

MSD at the lowest lag-times, they are in fact both fitting to the signal + noise instead of only the underlying

true signal. This fitting to both the signal and the noise causes both models to over-estimate the value of

Dα, as shown in the intercepts of Figure 2.8b. To combat this issue, I created the fARMA + static noise

model, fARMAs. The fARMAs model is defined as the same as the fARMA order 1 model (2.10) but with the
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addition of the static noise term from the fSD model. The position of the particle is thus:

Yn = X̃n + εn

X̃n = θX̃n−1 + (1− θ − ρ)Xn + ρXn−1

(2.13)
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Figure 2.8: (a) plot of a simulated empirical MSD with low noise with three fitted MSDs. (b) The pure fBM
MSDs for the three models as well as the true MSD. (c) simulated empirical MSD with high noise with three
fitted MSDs: LS, fARMA, and fARMAs. (d) The pure fBM MSDs for the three models as well as the true
MSD.Note how all four models visually match up with the high noise empirical MSD, but separate when
comparing pure fBM curves.

From Figure 2.8c we can see that both the fARMA and fARMAs models fit reasonably well to the

empirical MSD of the simulated trajectory, being able to match the raised values at the highest frequencies,

while LS, fit between 0.1 and 2 seconds, does not match up at the highest frequencies but does fit well at the

middle and large lag-times. However this accurate fitting does not necessarily correspond to an accurate

estimation of the diffusion parameters. Figure 2.8d shows that while all three models match up to the MSD

of the simulated trajectory, which is determined by the true signal plus high and low frequency error, when

compared against pure fBM of the signal, i.e. MSDX (t) ∼ Dαt
α, this no longer holds true. The fARMAs

model is able to almost perfectly recover both α and Dα; LS and fARMA both give the approximately the
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same estimate of α, with fARMA slightly more accurate, and fARMA is more accurate in its estimation

of Dα than LS. Plots (a) and (b) of Figure 2.8 show that when there is minimal noise fARMAs is able to

fit to the empirical MSD as well as accurately estimate the diffusion parameters. It is evident that all three

of the models are accurate when the true signal is less intertwined with noise. These results demonstrate

that fARMAs is able to maintain the accuracy of fARMA for low noise trajectories, i.e. the εn term does not

dominate with respect to the other noise parameters, but is a necessary improvement for those with a smaller

signal-to-noise ratio.

2.9 Comparing LS and fARMA on Experimental Data

When analyzing experimental data, each trajectory can be categorized into three different groups based

on the type of high-frequency noise: absence of noise floor, presence of noise floor, reverse(negative) noise

floor. Presence of noise floor is distinguished by a flattened raised MSD at the lowest time scale, as shown

in Figures 2.2 & 2.9, the reverse noise floor is the opposite of the regular noise floor with the MSD being

flattened at the higher lag times, while the absence of noise floor has the standard linear MSD across all lag

times. Figure 2.9 shows the fitted MSDs of LS and fARMAs being compared to the empirical MSD for each

of the three categories of noise.
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Figure 2.9: (The fitted MSDs of LS and fARMAs compared to the empirical MSD for the three types of
noise: standard noise floor, reverse noise floor, and no noise floor.

LS does exactly what it is supposed to - it provides a good fit between tmin and tmax, in this case
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tmin = 0.1 and tmax = 2, while the rest of the MSD values are discarded. In cases where there is no noise,

LS performs well as there is no bending at the highest and lowest lag-times and thus the MSD is linear.

However, when in the presence of standard noise or negative noise, LS is unable to bend with the MSD which

can cause inaccuracies at extreme lag times. For the reverse noise floor example in Figure 2.9, only part of the

bending is contained within tmin and tmax, causing LS to be inaccurate at both the high and low lag-times.

In contrast, LS is only incorrect at low lag-times for the noise floor MSD example.

Comparatively, fARMAs is able to handle all three of the types of noise, being able to handle both the

raised MSD caused by the noise floor and the lowered MSD from the negative noise floor. Contrasted to the

fSD model which fits accurately to the no noise and positive noise MSDs but is incapable of the bending

required to fit to the reverse noise floor, being the least accurate of the three models. This further highlights

how the non-physical noise parameters of the ARMA model (2.6) have a greater ability to affect the behavior

of the MSD and thus are more likely to get an accurate estimation of the diffusion parameters.
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CHAPTER 3

Clustering Methods

3.1 Particle Trajectory Classifiers

A natural choice for the classifier of subdiffusive particle trajectories, to compare between particles,

is θ = (α, logDα), where use of logDα reflects the empirical finding that Dα tends to vary by an order

of magnitude within a given experimental setting. I.e., errors in fitting the slope are amplified when one

extrapolates to fitting the y-intercept. However, the units of Dα are α-dependent, which precludes direct

comparisons across beads. There are multiple ways to address this, e.g., one can simply evaluate the MSD

at a chosen lagtime nτ , recall the discussion surrounding equation 1.7 above, which gives units of µm2

for all beads, and thus admits inter-bead comparisons. A downside of this classifier is that the choice of

MSD lag-time nτ is arbitrary, and one could have chosen any nτ to evaluate the MSD. Any ng based on

these arbitrary choices would have to be tested for robustness of the chosen timescale. We note, however,

that if the ensemble data (α, logDα) has been estimated by the LS-fARMA method, then it has already

used all of the denoised experimental data to produce the denoised classifier (α,Dα) for each bead, which

produces a denoised power-law MSD estimate, and therefore the clustering outcome will be relatively robust

for all choices MSD (nτ). This is not the case for standard LS-estimates of (α,Dα), illustrated in Figure 2.8;

namely, the LS estimates of MSD has different errors from the true signal MSD at every lag-time nτ ! An

alternative approach to evaluation of MSD at lag-time nτ for some n is to non-dimensionalize Dα, labeled

D̃α. Once again, we emphasize that we use the LS-fARMA method on the experimental data to produce the

denoised classifier (α, Dα) for each bead. Using only experimental scales and a reference fluid relevant

to mucus, we define a power law α-, spatial dimension d-, and bead radius r-dependent rescaling of Dα

normalized with respect to the diffusivity of a bead of the same radius in water,

D̃α =
d2(α−1)Dα

(Dw)α
(3.1)

where Dw is the viscous diffusivity of water for particles of radius r. Note that algebraic manipulations
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reveal

D̃α =
1

(4r)2
·MSD(t = t∗) (3.2)

where t∗ = (2r)2

Dw
. In other words, D̃α can be interpreted as a multiple of the MSD at a time t∗ which

depends on the particle radius r, which may not equal an experimental lagtime nτ . For one-micron beads

t∗ = 2.33s and for 200 nm beads t∗ = 0.018s. As noted, the clustering algorithm is relatively robust to the

lagtime, so any of these choices of MSD give similar clustering results to data that has been denoised by the

LS-fARMA method.
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Figure 3.1: Plot of |G∗(ω = 1)| values over a range of α and Dα pairs. We see that Dα has greater effect
over |G ∗ | values than α.

Another possible choice of classifier is any of G’, G”, or G∗ for a chosen ω value. The major strength

of using G’, G” or G∗ as a classifier is that units are consistent, regardless of the α and Dα values as well

as comparisons can be made across beads with different radii. Similar to the discussion about the MSD

as a classifier, the choice of ω for any of the moduli functions is again arbitrary. moreover, differentiation

between elasticity and viscosity can be difficult without comparison of multiple values, i.e. G’ and G” for a

given ω value. An easy workaround to this issue is to use a classifier pair with α and then one of the moduli

classifiers. To minimize the influence of α over the second term in the classifier, an intuitive choice for ω is

ω = 1 as the ωα term is then one. Furthermore, the α dependence is further reduced by taking the norm of

G∗, |G∗| = kBT
πrΓ(1+α)6Dα

. As Figure 3.1 shows, |G∗| is most affected by Dα with minimal impact from α.

Therefore |G∗| is a suitable substitute for either ∆ or D̃α as a classifier pair with α, as all three have the same
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or no units and |G∗| has the added benefit of being able to be compared across different bead sizes. All three

particle trajectory classifiers, (α,∆), (α, D̃α), and (α, |G∗|) are used in the analysis of beads.

3.2 Clustering Analysis

Let θ̂i denote the estimate for bead trajectory i of its true classifier value θi. A simple choice of classifier

is θ = (α, logDα), with an in-depth discussion of various classifiers to follow. Given the classifiers of N

trajectories, clustering is performed using the R package mclust [Scrucca (2016)] using finite normal mixture

models. That is, the classifier estimates θ̂1, ..., θ̂N are clustered, in the most general case, according to the

multivariate normal mixture model

Ji
iid∼ Categorical(π1, ..., πK)

θi|Ji
iid∼ Normal(µi,Σi)

where K is the number of clusters and Ji ∈ 1, ...,K is the cluster to which particle i belongs. mclust

estimates the posterior membership probability

Ĵi = arg max1≤k≤KPr(Ji = k | θ̂̂θ̂θi, Ω̂̂Ω̂Ω)

where Ω̂ is the maximum likelihood estimate (MLE) of the clustering model parameters

Ω = (πk, µk,Σk) : k = 1, ...,K. mclust chooses K by fitting all models with K ∈ 1, ...,Kmax, and

selects the one with the lowest value of the Bayesian information criterion (BIC). It can also impose various

constraints on the variance matrices, e.g., proportional variances Σk = τk · Σ0 or diagonal variances

diag(σ2
k,1, ..., σ

2
k,K) (there are 14 possible variance restrictions in total, see [Scrucca (2016)]).

This is particularly useful when some of the clusters are expected to consist of only a handful of particles,

in which case the corresponding unconstrained variance matrices can be very poorly estimated. Once

again, mclust estimates the posterior membership probabilities Ĵi, i = 1, ... , N from the best-fitting

model (in terms of BIC) among all combinations of cluster sizes K and variance matrix constraints. For the

unconstrained variance model, mclust returns identical results when applied to (α, log ∆) and(α, log D̃α),

since they are linear combinations of each other. The same is approximately true for (α, log |G∗|), to the

extent that Γ(1 + α) ≈ c1α
c2 for 0 < α < 2. However, clustering results are in principle different for many

of the restricted variance functions.
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3.3 Homogeneity Testing

Now suppose that in addition to θ̂i, for each trajectory i we have an estimate of the variance of its

classifier, Vi ≈ var(θ̂i). Such a variance estimator is obtained as a direct by-product of the fARMA

denoising procedure. In order to test whether the θ̂1, ..., θ̂N are obtained from a homogeneous cluster, let

Zi = V
−1/2
i θ̂̂θ̂θi and Z̄ = 1

N

∑N
i = 1 Zi. Then under the null hypothesis of homogeneity

H0 : θθθ1 = ... = θθθN

The so-called Cochran’s Q statistic [Zhang (2018), Cochran (1937), Cochran (1954)]

Q =

N∑
i = 1

(Zi − Z̄)′(Zi − Z̄)

has a χ2
p(N−1) distribution under H0, where p is the common number of elements of each θi, i.e., in our

case we have p = 2. The assumption of homogeneity is then rejected at the ε level when Q > Cε, and Cε

is such that Pr(χ2
p(N−1) > Cε) = ε. Again, we should note that the results of the homogeneity test are

identical for (α, log ∆) and (α, log D̃α), and almost identical to those with (α, log |G∗|), to the extent of that

Γ(1 + α) can be well approximated by a power function of α on the range of 0 < α < 2. This is due to

invariance of the test to linear transformations of the Zi.
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CHAPTER 4

Experimental and Analytical Methods

HBE mucus is reconstituted to match the MUC5B:MUC5AC ratio during three progressive stages of

CF, the mixture being a combination of HBE (predominantly MUC5B) plus CaLu3 MUC5AC. The three

different combinations of mucin used are: 60% HBE 40% MUC5AC, 80% HBE 20% MUC5AC, and 90%

HBE 10% MUC5AC. For all three mucin combinations the weight percent in the solution is constant. Both 1

micron and 200 nm beads are separately implanted into the mucin mixture. These beads are embedded within

flakes and then recorded to a video file. These videos are then transcribed into X and Y increments either by

hand or via technology. Trajectories are initially recorded in pixels and must converted to measurable units,

in this case microns. Every recording setup can have a different pixel to micron conversion ratio, ptm, that

must be applied to all coordinate values.

Before any trajectories can be analyzed using any of the methods discussed above, they must first be

filtered to ensure all estimated values are accurate. A bead proximity filter is first applied and then a trajectory

length filter. The bead proximity filter removes any beads that fall within five diameters of another bead

in their initial positions. This filter is necessary as every model previously discussed has the underlying

assumption that the beads are undergoing single bead microrheology, i.e. the only forces acting on the beads

is from the medium itself, and if any beads are within a sphere of interaction, they could affect the particle’s

trajectory. Next a simple length filter is applied to ensure that every trajectory analyzed with fARMA and

fARMAs is for the full time series. This is done to allow for a more accurate estimation of the diffusion

parameters when applying any of the MLE models. This filter only discards a minimal number of beads, as

covered in Table 4.1 below. The proximity filter is a per-video filter: each bead is compared to every other in

its own video. While the length filter is simply per-bead. It is imperative that the proximity filter is the first

one applied to make sure that a bead’s potential pair, being within 5 diameters of it, is not discarded prior to

proximity filter’s use. This is done to insure that a bead pair is not misclassified as an isolated bead.

Beads that appear inside flakes are often in close proximity, within five diameters of one another, an

inherent side effect of the flake size relative to the beads. The generalized Stokes-Einstein relation assumes
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Sample Total Beads Proximity Filter Length Filter Total Left
1µm HBE + CaLu3 60% 154 29 0 125
1µm HBE + CaLu3 80% 137 2 0 135
1µm HBE + CaLu3 90% 36 11 0 25

200nm HBE + CaLu3 60% 17 0 0 17
200nm HBE + CaLu3 60% 31 0 0 31
200nm HBE + CaLu3 60% 32 0 0 32

Table 4.1: Table showing the total number of beads removed for each of the pre-estimate filters.

the only forces acting on the bead are from the medium itself, while beads in close proximity propagate forces

between one another. This coupling of bead fluctuations is the basis for two-bead microrheology (cf. [Mason

(1995), Mason (2000), Levine (2000), Crocker (2000), Valentine (2004), Hohenegger (2008)]), which are

not analyze here since that data is even more rare than the isolated bead data. Thus, any beads within five

diameters are filtered from analysis. The remaining beads, based on the classifier (α, D̃α), are then analyzed

to first filter all beads indistinguishable from the noise floor (stuck, therefore immobile) for this particular

experimental setup. Those that can be distinguished from the noise floor, ranging from just above it to more

mobile but not close to mobility in water, are then further analyzed.

Once these filters have been applied, the remaining trajectories have their diffusion parameters estimated

using the MLE models. For this research, both fARMA and fARMAs were used: for each bead, both the

fARMA and fARMAs models are fit; from there, all of the model parameters are used to construct a fitted

MSD curve; the mean squared error, MSE, is calculated with respect to the empirical MSD, and the model

with the largest MSE is discarded. fARMA is included as variation of fARMAs where the ε term is held at

zero, as it is impossible for the ε parameter to converge to identically zero in the fARMAs model.

After the model has estimated the diffusion parameters, α and Dα, there is a final filter applied to the

data to remove trajectories that are indistinguishable from the noise floor. The noise floor is quantified by any

α below 0.1, as determined by analysis on stuck bead data. Another reason to discard these beads is that for a

low α value, there is instability in estimating the pre-factor parameter, Dα.
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CHAPTER 5

Results

The fitted MSDs of the fARMAs model are compared to the corresponding empirical MSDs across nine

different trajectories. This is done as a first pass to verify with the eye test that the model is accurately fitting

to the empirical data. A wide range of mobilities are chosen to cover entire experimental spectrum of pure

water to flake, to highly entangled in the noise floor; notice the wide range values on the y-axis of Figure 5.1

to illustrate this point.

Figure 5.1: Empirical MSDs(black) plotted against fitted MSDs (red) from the fARMAs model for nine
different trajectories. Trajectories were chosen so as to sample the entirety of the experimental spectrum of
mobility.

As can be seen from Figure 5.1, the fARMAs model does a good job of fitting to the MSD, and thus

having an accurate estimation of α and Dα. For those trajectories displaying low mobility, with MSD values

on the order of 0.01µm there are clear signs of the standard noise raising the MSD at the smallest lag-times.
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Here the fARMAs fitted MSD is able to accurately bend with the empirical, further highlighting the point

made in Figure 2.9. As expected, all of the MSD corresponding to higher mobility trajectories do not have

such signs of noise, as the true signal is orders of magnitude larger than the noise and thus any effects are

minimal. There are signs however of the drift subtraction applied, with many of the MSDs having a constant

or falling signal at the largest lag-times.

Figure 5.2 gives the (α, D̃α) estimates for 1 micron and 200 nm diameter beads in HBE mucus samples

from three different treatments of the same HBE sample: HBE + CaLu3 60, 80 and 90 as described in the

chapter 4. All datasets support a tri-modal distribution: one cluster reflects a water-like signal; a second

cluster is indistinguishable from and buried in the noise floor; and, a third cluster separated from both the

water-like and noise floor data, which we call flake-like. The flake-like data exhibits sub-diffusive behavior

of beads either within or at the periphery of flakes or in a sufficiently concentrated mucin environment.

Figure 5.2: (α, D̃α) and (α,∆) classifier data for individual, one micron (top) and 200 nm (bottom) diameter
beads in three different mucin mixtures. Classifier data is clustered into: water-like (red), flake-like (blue),
and noise floor (black) signals.

We draw further consequences from the comparison of 1 micron and 200 nm diameter probes in all three

samples.

1. 70% of 1 micron diameter beads exhibit water-like signals versus 4% of 200 nm diameter beads
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(0/47 in the 60 and 90 samples and 3/25 in the 80 sample). These statistics of entry into flakes far outweigh

the 5:1 expected flake encounter frequency of 200 nm vs. 1 micron diameter beads, supporting several flake

structure properties: (i) flake encounters of 200 nm beads almost always lead to entry, implying a high

percentage of pores at the boundary of flakes is above 200 nm; (ii) flake encounters of 1 micron beads have a

high ( 70%) failure rate of entry, even though each freely diffusing bead likely has many flake encounters,

suggesting at most 30% of boundary pores of flakes are 1 micron or larger, and at least 70% of boundary

pores are at or below 1 micron. Together, these datasets are consistent with heterogeneous pores at flake

boundaries with 70% between 200 nm and 1 micron and 30% above 1 micron.

2. The total within-flake data gives further insights into internal flake pore morphology. The 200 nm data

across the three different samples suggests a non-monotone pore structure transition from the 60 to 80 to 90

samples: in the 60 sample, 11/17 beads enter flakes and become sterically trapped, with SNR buried in the

noise floor; in the 80 sample, only 1/25 beads enter a flake and become sterically trapped (i.e., with SNR in

the noise floor); in the 90 sample, all 30 beads enter and become sterically trapped in pores comparable to

their size so that they are indistinguishable from being immobile. We have no insights into how to explain

this behavior, but below in Figure 5.2 we see a similar non-monotonicity in rheology.

3. The 1-micron bead data for 60, 80 samples are consistent with a broad pore size distribution so that

beads randomly sample outside and within flakes, with some within-flake beads in pores larger than 1 micron

and others entering and being trapped in pores slightly larger than a micron, the latter reflected by beads in

the noise floor. The 1 micron, 90 sample dataset is smaller, yet suggestive that the pore-size distribution is

broader with many multi-micron pores, so that beads freely enter and escape flakes. This would be consistent

with a less dense flake formation at the smallest, 10%, CaLu3 MUC5AC consistent with early CF progression.

The top panel of Figure 5.3 presents clustering results with each of the (α, log ∆), (α, log D̃α), and

(α, log |G∗|) classifiers for which the maximum number of clusters is set to Kmax = 2. The classifiers are

all in general agreement in distinguishing the water-like beads in the top right corner from the flake-like

beads in the bottom left for the experiments with 1µm beads at 60% and 80% concentration. There are,

however, a few particles in the top right corner that are flagged as flake-like, e.g., at 80% with the (α, log ∆)

and (α, log D̃α) classifiers. This is because mclust requires each cluster to have an elliptical shape. The

misclassified points in the top-right corner are very far from the otherwise small elliptical shape of the bulk,

and thus get grouped with the flake-like beads, for which the elliptical cluster shape is much larger.

The experiments at 1µm diameter with 90% concentration and those at 200nm with 60% concentration
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Figure 5.3: Clustering results for classifiers: (α, log∆), (α, logD̃α), and (α, log |G∗|). The five samples
with data above the noise floor are classified into clusters using mclust, where the maximum number of
clusters is first set to two, and then to four. While the samples are clustered using each of the specific
classifiers, for a one-to-one comparison they are plotted using the same units on the x-axis.

contain too few beads above the noise floor to draw any meaningful conclusions. At 200nm diameter and

80% concentration, all classifiers divide the beads roughly along the vertical line at ∆̂ = 0.02µm2. Neither

method singles out the two clearly water-like beads in the top-right corner; this is the downside of the elliptical

cluster restriction imposed by mclust. An alternative might be to define a sub-rectangle in the top right

corner of the classifier range that confidently corresponds to pure signals from 200 nm, respectively 1 micron,

diameter beads in very dilute mucin solutions. Then all beads outside this water-like corner would be subject

to additional clustering and homogeneity tests.

The bottom panel of Figure 5.3 presents results for which the maximum number of clusters is set to

Kmax = 4, the hope being that the additional clusters will serve to capture the beads outside the two main

elliptical clusters of flake-like and water-like beads. This is the case to some extent, notably for the 1µm

beads at 80% concentration with the (α, log D̃α) classifier, and for most of the classifiers on 200nm beads at

80% concentration.
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Overall, the various classifiers are once again in rough agreement with each other. Two notable exceptions

are the (α, logD̃α) classifier for 1µm at 60% concentration, and the (α, log ∆) classifier for 200nm at 80%

concentration: the former divides the flake-like cluster into three groups whereas the other classifier keeps

it as one, and the latter divides the beads into two clusters whereas the other divides them into a consistent

set of four. However, a closer inspection reveals in the first scenario that the difference in BIC between the

four clusters selected by mclust and the two clusters which would have been consistent with all the other

classifiers is just under 2.5 units – a difference generally considered to be ”barely worth mentioning” [Kass

(1995)]. In other words, a slight shift/addition/removal of one or two particles could have easily made mclust

choose four clusters in this setting as it did for the other classifiers.

The full Bayesian Information Criterion, BIC, results for all clusters are displayed in Figure 5.4, revealing

that the same reasoning applies to the second scenario. In other words, mclust could have easily chosen four

clusters instead of two.
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Figure 5.4: BIC for various two-dimensional classifiers. Plotted in red are those for which the difference
between the highest and second highest BIC is negligible, i.e., both are above the dashed horizontal line.

Therefore, all classifiers essentially group the 200nm 80% concentration beads into four distinct clusters,

two of which have at least half a dozen beads (leftmost and bottom clusters). The classifiers include a bead

from the bottom cluster relatively far from the top-right corner. Again, we surmise this is due to mclust

penalizing heavily against the non-elliptical cluster which would result from grouping the misclassified bead

with the rest in the bottom group.

While the five classifiers considered generally agree, none clearly emerges as most consistent with

our visual classification into water-like and flake-like clusters. We surmise that the optimal classifier is
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experiment-specific, with a much larger number of beads needed to determine which it is. That being said,

taking all of the visual and algorithmic clustering results into account, we select a single clustering per

experiment from the two panels of Figure 5.3 summarized in Table 5.1.

Diameter HBE (%) Kmax K Classifier
1µm 60 4 2 α : log ∆

1µm 80 4 3 α : logD̃α

1µm 90 2 2 α : log ∆
200nm 60 4 3 α : log ∆

200nm 80 4 4 α : log D̃α

Table 5.1: Selected cluster assignment based on visual clustering and the algorithmic clustering results of
Figure 5.3. Kmax refers to the max number of clusters and K refers to the optimal number of clusters.

In order to assess within-cluster homogeneity, Table 5.2 presents the results of Cochran’s Q test applied

to each of the clusters of each experiment described in Table 5.1.

Diameter HBE (%) K Group Num. Beads Q P-value

1µm

60
2 1 38 676.3 4.6e-98
2 2 15 2771.5 0.0e+00

80
3 1 49 172.9 2.5e-06
3 2 10 2372.4 0.0e+00
3 3 5 358.6 1.3e-72

90
2 1 1 - -
2 2 7 144.7 6.7e-25

200nm

60
3 1 2 24.9 3.9e-06
3 2 1 - -
3 3 1 - -

80

4 1 3 49.2 5.3e-10
4 2 13 1023.7 8.2e-201
4 3 8 158.7 1.3e-26
4 4 3 116.5 3.0e-24

Table 5.2: Cochran’s homogeneity test results for the clusters reported in Table 5.1

All of the resulting p-values are extremely small, indicating that Cochran’s Q test overwhelmingly

indicates that the clusters are not homogeneous. This observed lack of homogeneity is expected for the

flake-like clusters as these clusters represent beads that were in different flakes and experiencing different

pore structures within each flake, and the phase separation process of flake formation is inherently stochastic.

Furthermore, none of the water-like clusters pass a homogeneity test. This too is not surprising: the dilution

process outside flakes is as stochastic as the flake formation; beads outsides of flakes are in dilute phases
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that vary with relative proximity to nearby flakes and degree of dilution, with signals ranging from a pure

water-like signal to low mucin concentrations.

This determination of heterogeneity, both between and within the coarse within-flake and outside-flake

bead signals, strongly favors the following data-analysis protocol: (1) for each of the 3 MUC5B:MUC5AC

reconstituted batch samples, and separately for sub-samples with 200 nm and 1 micron beads, use the coarse

clustering results to identify beads within and outside of flakes; (2) because nearly all clusters with more than

one bead fail the homogeneity test, apply the GSER with the denoised MSD for each single bead; (3) then

average the dynamic moduli within each cluster.

These steps yield the within-flake and outside-flake dynamic moduli as revealed by 200 nm and 1 micron

diameter probes, for each of the 3 reconstituted HBE samples. For comparison, we also show results using

the two alternative applications of the GSER, always applying the methods post clustering, namely averaging

within-cluster MSDs and then applying GSER, and averaging within-cluster classifiers and then applying

GSER. As shown in the synthetic datasets above, the latter two methods yield equivalent results for normal

clusters, and likewise agree with within-cluster averaging in moduli space. These equivalences will not persist

even within clusters for the experimental data.

While the clustering results displayed in Figure 5.3 are generally effective at discerning between the

water-like and flake-like signal, there are limitations when attempting to determine clusters for those beads

with a flake-like signal. This is most apparent in the (α, log ∆) classifier, as when Kmax = 4 all of the

experiments with ”significant” flake-like samples, i.e. 1µm beads at 60% and 80% concentrations and 200

nm beads at 80% concentration, have the same clusters as with Kmax = 2. However the (α, logD̃α) breaks

up the flake-like beads into separate clusters for two out of thee three high yield flake samples. Thus, mclust

is then only applied to the beads with a flake-like signal to further examine potential clusters.

Similarly to Figure 5.3 the top panel of Figure 5.5 presents results for which the maximum number of

clusters is set to Kmax = 2. For this Kmax value, both the (α, log ∆) and (α, log D̃α) classifiers return the

same clusters. The classifiers are all in general agreement in distinguishing clusters within beads giving a

flake-like signal. The results for the 1µm beads at 60% concentration and 200nm beads at 80% concentration

may seem unexpected, but it is an effect the fact that mclust requires each cluster to have an elliptical shape.

For both of these samples, mclust identifies one population within a small elliptical cluster and thus all other

beads are grouped into the second.

The experiments at 1µm diameter with 90% concentration and those at 200nm with 60% concentration
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Figure 5.5: Clustering results for classifiers: (α, log∆), (α, logD̃α), and (α, log |G∗|) for beads giving a
flake-like signal. The four samples with data above the noise floor, and more than one bead, are classified
into clusters using mclust, where the maximum number of clusters is first set to two, and then to four. While
the samples are clustered using each of the specific classifiers, for a one-to-one comparison they are plotted
using the same units on the x-axis.

contain too few beads above the noise floor to draw any meaningful conclusions. In fact, the experiment at

1µm diameter with 90% concentration only have one bead and is thus discarded from this analysis.

The bottom panel of Figure 5.5 presents results for which the maximum number of clusters is set to

Kmax = 4, the idea being that there are more than one or two different signals for flake-like beads. This

appears to be the case as for the samples outside of the 200nm beads at 60% concentration all four clusters

are used.

Overall, the two classifiers are once again in rough agreement with each other. Two notable exceptions

are the 1µm at 60% and 80% concentrations; both occur when grouping beads with middle values of each

classifier.

For the 80% concentration, both classifiers agree that there distinct higher and lower mobility clusters

but fitting the data into two different clusters in between. There are no consensus clusters for the 60%
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concentration certain beads are grouped into the same cluster but no cluster across both classifiers has the

same beads in it. The 60% concentration sample is also the only sample where the primary cluster, i.e., the

one with the tightest elliptical fit, is not conserved.
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Figure 5.6: BIC for various two-dimensional classifiers on beads giving a flake-like signal. Plotted in red are
those for which the difference between the highest and second highest BIC is negligible, i.e., both are above
the dashed horizontal line.

The full Bayesian Information Criterion, BIC, results for all clusters are displayed in Figure 5.5. While

the classifiers considered generally agree, none clearly emerges as most consistent with a visual classification.

We surmise that the optimal classifier is experiment-specific, with a much larger number of beads needed to

determine which it is. That being said, taking all of the visual and algorithmic clustering results into account,

we select a single clustering per experiment from the two panels of Figure 5.5 summarized in Table 5.3.

As in Table 5.1 the selected single clustering for in-flake beads represented in Figure 5.5 are summarized

in Table 5.3

Diameter HBE (%) Kmax K Classifier
1µm 60 2 2 α : log ∆
1µm 80 4 4 α : log ∆

200nm 60 2 2 α : log ∆
200nm 80 4 4 α : log ∆

Table 5.3: Selected cluster assignment based on visual clustering and the algorithmic clustering results of
Figure 5.5. Kmax refers to the max number of clusters and K refers to the optimal number of clusters

It should be noted that while (α, log ∆) is the chosen classifier for each of the five samples, for 4 out of
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the five samples the (α, log D̃α) classifier returns the same clusters.

Diameter HBE (%) K Group Num. Beads Q P-value

1µm

60
2 1 38 676.3 4.6e-98
2 2 15 2771.5 0.0e+00

Water Water 15 2771.5 0.0e+00

80

4 1 49 172.9 2.5e-06
4 2 10 2372.4 0.0e+00
4 3 5 358.6 1.3e-72
4 4 5 358.6 1.3e-72

Water Water 10 2372.4 0.0e+00

90
2 1 1 - -

Water Water 7 144.7 6.7e-25

200nm

60
3 1 2 24.9 3.9e-06
3 2 1 - -
3 3 1 - -

80

4 1 3 49.2 5.3e-10
4 2 13 1023.7 8.2e-201
4 3 8 158.7 1.3e-26
4 4 3 116.5 3.0e-24

Water Water 3 116.5 3.0e-24

Table 5.4: Cochran’s homogeneity test results for the clusters reported in Table 5.3

As Table 5.2 shows, the flake-like cluster for each experiment is not homogeneous. This result should not

be unexpected as these clusters are an amalgamation of many different flakes whose underlying structures will

differ from one flake to the next. One question to answer is whether the beads embedded in an individual flake

have any sort of underlying homogeneity, i.e. is there inter-flake heterogeneity but intra-flake homogeneity

. To determine this, again only the flake-like signal beads are filtered out from the those with a water-like

signal and in the noise floor. A first ”test” to quantify potential homogeneity is simply a visual comparison.

Figure 5.7 shows all of the beads color coded by which movie in the experiment they appear.

Much analysis is difficult as most samples only have ∼2 videos with more than one or two beads in

them. However we see generally that beads within flakes clustered together with respect to other beads in

the sample. This is most notable in the 1 µm 60% with the pink, blue, and green videos having a defined

distribution. While in the 1 µm 80% sample, the yellow and blue videos are consistent in one variable, α and

D̃α respectively, while purple has a core cluster but then a few outliers. The 200 nm 80% sample is the last

one with more than one cluster. Here we see the gray and pink video being a bit spread, but having a general

cluster shape.
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Figure 5.7: (α, D̃α) estimates for all of the flake-like beads from Figure 5.2. Then per sample, each video is
assigned a unique color.

Diameter HBE (%) Video Num. Beads Q P-value

1 2 65.6 5.7e-15
2 2 441.0 1.7e-96
3 4 124.7 1.7e-24

60

4 5 102.8 1.1e-18

1 2 6.1 4.7e-02
2 2 30.2 2.8e-07
3 2 4.2 1.2e-01

1µm

80

4 2 0.1 9.3e-01

60 1 4 279.4 2.1e-57

1 2 94.1 3.6e-21
2 2 774.7 5.9e-169
3 11 2550.0 0.0e+00
4 5 1222.6 1.3e-258

200nm
80

5 4 182.8 8.5e-37

Table 5.5: Cochran’s homogeneity test results for the clusters shown in Figure 5.7. Any movie that has only
one in-flake bead was discarded for better readability.

As Table 5.5 shows, most of the individual videos, i.e. individual flakes, the p-values indicate that the

clusters are not homogeneous. Only a few of them have a p-value above the standard p = 0.05 threshold; and

those that do, or are very close, only have two beads in them. Any individual flake that had at least four beads
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embedded in it, still a small sample size, returned an extremely small Cochran Q test value. The results in

Tables 5.2 and 5.5 show that there is only minimal evidence for both inter- and intra-flake homogeneity, with

the majority of the data pointing to a lack of homogeneity with very small Cochran Q test values.

5.1 A scalar metric for power-law viscoelastic fluids: the loss tangent

A fundamental property of viscoelastic media is that, instead of a scalar metric (viscosity for purely

viscous, elasticity for purely solid, materials) the viscous and elastic moduli are functions of frequency. So

it is appealing to ask if there is a reasonable and informative simpler metric for viscoelastic materials. A

standard coarse metric is the loss tangent: tan(δ(ω)) = G′(ω)/G”(ω), in general frequency-dependent.

When δ > π/4 : tan(δ) > 1 and the material is sol-like (i.e., loss or viscosity dominated), whereas when

δ < π/4 : tan(δ) < 1, and the material is gel-like (i.e., storage or elasticity dominated).

For pure power-law viscoelastic materials, tan(δ) collapses to a scalar function of the MSD power law

exponent α, independent of both frequency ω and the MSD pre-factor Dα. From the GSER equation 1.2 and

the power-law moduli formulae 1.9,

tan(δ) =
G”(ω)

G′(ω)
= tan

(πα
2

)
(5.1)

Thus, gel-like phases correspond to 0 < α < 0.5 and sol-like phases correspond to .5 < α ≤ 1. For

improved graphical visibility, we plot log10(tan (δ)), shifting the gel/sol cutoff from 1 to 0 in log space, so

that positive values of log10(tan (δ)) correlated to a sol-like phase while negative values correlate to gel-like

phase. All water-like data should be sol-like, as all data is above the α = 0.5 line in Figure 5.2, all noise-floor

data is gel-like, by the choice of α = 0.1 to be the noise floor cut off, while all flake-like data lies between

these extremes. We are interested especially in the percentage of sol-like and gel-like signals in flake-like

data as a coarse scalar metric of heterogeneity.

Figure 5.8 gives a visual equivalent of looking at the α = 0.5 cutoff in Figure 5.2 as the separation

between sol-like (above the cutoff) and gel-like (below the cutoff) local sample properties surrounding each

bead. The formula 5.1 simply justifies using α as a scalar metric and equivalent to the loss tangent for

power law fluids. Furthermore, the predictor-corrector method is most robust in estimation of α faithfully

distinguishing local sol-like versus gel-like behavior. Nonetheless, using only α as a classifier does a

remarkably good job of predicting the clusters of beads within each sample, whereas D̃α basically plays the

role of a corrector in singling out the few flake-like beads with values of α that could have been classified as
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Figure 5.8: log10(tan(δ)) = log10(tan(α/2)) plots for 1um (left) and 200 nm (right) beads in HBE + CaLu3
mucus samples 60, 80, 90. Dots correspond to the scalar loss tangent metric per bead, the thin black curve is
a plot of the function log10(tan(α/2)), the black dashed horizontal line signals the sol-gel boundary. Blue,
red, black dots are from flake-like, water-like, noise floor clusters.

water-like. This coarse scalar metric does not, of course, convey the moduli surrounding each bead.

Next, having used the classifier (α, D̃α) to identify beads within flakes and distinguishable from the noise

floor, the GSER can be used to infer the dynamic moduli of the local properties surrounding within-flake

beads of both 200 nm and 1 micron diameter.

5.2 Inferences of flake rheological properties

The storage and loss moduli of within-flake beads not in the noise floor are computed per bead for all

three samples and for both bead diameters. We then average G’ and G” for each dataset, shown in Figure

5.9. The noise floor and outside-flake beads are discarded since we are only interested in properties of flakes.

Averaging over beads with both above and below 0.5, and therefore weighted averages over power law

functions ωα, leads to potential sol-gel frequency transitions.

The 90% HBE, 10% MUC5AC sample only has 1 micron bead data within flakes. These data, consistent

with Figures 1 and 2, indicate a clear gel rheology (almost all beads with α < 0.5), with the storage modulus

a half-decade above the loss modulus at all frequencies. We then find an expected rise in the moduli of 80%

HBE, 20% MUC5AC. However, consistent with Figures 5.2 and 5.8 showing a balance of beads with α
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Figure 5.9: Plots showing the average storage and loss moduli for the within-flake and outside the noise
floor clusters for one micron and 200 nm beads for each of the three samples, the same clusters identified in
Figures 5.2, 5.8

above and below 0.5, the 80% HBE mucus is gel-like at low frequencies and sol-like at higher frequencies,

in both the 200 nm and 1 micron data, with the gel-sol transition at approximately the same intermediate

frequency. Then surprisingly, the data reveals a non-monotone behavior, consistent with the non-monotone

pore structure deduced from Figure 5.2: a slight drop in the moduli of 60% HBE, 40% MUC5AC, falling to

values between the 80% and 90% HBE mucus, with both the 200 nm and 1 micron data; furthermore, the 60%

HBE returns to a gel rheology from both probe diameters, but not as strong of a gel as the 90% HBE sample.

5.3 fARMAs classifier’s ability to coarse-grain location of beads

The diffusion parameters, (α, D̃α), are then used to determine how accurate they are in determining

whether a bead is in flake vs out of flake. To do this, the beads are visually categorized as in or out of the

flake at their initial positions, and this is compared to the signals from Figure 5.2. (Note only labels for half

of the samples were available, hence the difference in the two figures)

Examining Figure 5.10, all but three of the beads appear to be accurately categorized: one in the 80% one

micron sample has a flake-like signal but is visually out of a flake, one in the 90% one micron sample has a

water-like signal but appears to be in a flake, and one in the 80% 200nm sample has a flake-like signal but is
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Figure 5.10: Plots of the same (α, D̃α) values but with color coming from visual classification of in or out of
flake and signal from figure 5.2. All but three of the beads appear to have the same signal as their in/out of
flake classification.

visually out of the flake.

On closer examination, the misclassified bead for the 1µm 80% sample appears to be on or near a black

dot. This likely is another bead that was never declared and labeled; meaning that this bead is experiencing

dual-particle interactions and should have been discarded in the proximity filter. In the 1µm 90% there are

three beads in what appear to be an out of focus flake. The likely explanation for the bead being classified as

in the flake instead of out is the bead being at a focal length different than the flake but appearing within it in

two dimensions. There does appear to be a clear explanation for the 200 nm bead giving a flake-like signal.

Figure 5.11: Images of the three incorrectly categorized beads in Figure 5.10
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There are no other bodies in the vicinity to affect it like in the 1µm 80% sample.
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CHAPTER 6

Conclusion

Analysis of the rheological and structural properties of mucosal flakes is forced to deal with two

fundamental challenges: heterogeneity and entangling of the signal and noise.. Thus data analytics tools

of passive particle tracking experimental data must be extended from standard homogeneous soft complex

materials. The methods presented were developed to analyze PPTM data from reconstituted samples of

pathological human bronchial epithelial (HBE) mucus. Specifically, tools were developed to assess two

levels of heterogeneity: a coarse scale of dense, phase-separated, mucus flakes within a dilute solution of the

remaining mucin polymers; then within flakes, beads for which the measured time series signal can versus

cannot be confidently disentangled from the experimental noise floor.

For each tracked bead, a two-parameter classifier metric (α,Dα) was developed by projecting the

denoised signal onto fractional Brownian motion (fBm) using the entire experimental time series. The fBm

classifier has been shown to be a robust statistical metric for passive particle tracking in HBE mucus [Wagner

(2018), Hill (2014)]. For beads in flakes, however, previous statistical metrics for fitting fBm to time series

data are inaccurate, as illustrated herein with synthetic data of noisy bead time series representative of tracked

beads in dense flakes. The standard method for estimating diffusion parameters, least squares (LS), has no

method to model or account for this signal-noise entanglement. Thus parametric models, with at least one

parameter included to model noise, have been developed [Savin (2005), Lysy (2016)].

The classifier metric involves two steps, each utilizing bead time series: a predictor step based on a least

squares fit to the mean-squared-displacement (MSD) of fBm, MSDX(nτ) = 2dDα(nτ)α, giving an initial

(α,Dα) estimate which stabilizes the corrector step based on the fARMA method developed in [Ling (2021)].

To further improve the accuracy of the fARMA method for trajectories with significant levels the static noise,

the fARMAs model, a hybrid of the fSD and fARMA models, was developed. The method is shown here to

accurately recover the truth in the same synthetic data for which previous metrics fail.

Next, cluster analysis was performed in order to assess the two levels of heterogeneity in each of the

three reconstituted samples of flake-burdened mucus. While the power law α is dimensionless, the MSD
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pre-factor Dα has fractional, α-dependent time units. Therefore in order to compare across beads or perform

any clustering analysis the Dα parameter for each bead must be transformed to have either the same physical

units, ∆ (eq 1.7), or a common nondimensionalization, D̃α (eq 3.1). It should be emphasized that clustering

is implemented on the denoised time series data, not on the complex moduli in frequency space after applying

the generalized Stokes-Einstein relation (GSER). Once clustering is performed, the normality of the clusters

is tested to justify either the single bead or ensemble-averaged GSER. Experimental clusters are invariably

non-normal, strongly suggesting within-cluster averaging post single-bead application of GSER. Once the

optimal GSER equation is determined, the dynamic moduli of flakes and dilute solution for each of the three

samples that mimic progression of flake-prevalent mucus in cystic fibrosis are then computed.

The fBm classifier (α,Dα) has another advantage. When applied to each tracked bead or the ensemble

averaged classifier of approximately normal clusters, the fBm classifier has an exact power law mean-

squared-displacement (MSD). Furthermore, the Fourier transform of a power law function is also exact

and a power law function, so the GSER applied either to individual bead classifiers, or to the ensemble

average of classifiers, yields an exact power-law formula for the complex modulus, G∗(ω). However, since

all within-flake and outside-flake experimental clusters fail the test for homogeneity, within-cluster averaging

of the power law moduli yields a non-power law cluster rheology. The phase-separated mucus flakes clearly

exhibit gel-dominated rheology over broad frequency ranges, whereas the dilute solution clearly exhibits

sol-like rheology. The within-flake data with both 200 nm and 1 micron diameter beads in samples from the

same reconstituted batch also reveals probe-diameter dependent heterogeneity. This result is followed up with

further analysis of flake structure within flakes, given the available data. By comparing the disparity between

1 µm and 200 nm diameter beads within flakes, it can be inferred that the flake pore size is predominantly

between 1 µm and 200 nm with some percentage of pores greater than 1 µm.
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