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ABSTRACT 

Chinmaya U. Joisa: Towards Leveraging Inhibition State of the Kinome for Precision Oncology 
(Under the direction of Shawn M. Gomez) 

 
 

Protein phosphorylation forms the most common method of regulation in eukaryotes, 

and kinases are enzymes that chiefly enable its application. Due to their central role in 

physiology, dysregulation of the kinome is implicated in a myriad of diseases, particularly cancer. 

This dissertation demonstrates that the measured inhibition of the kinome (the kinome 

inhibition state) by cancer targeted therapies can be predictive of cell line and patient-derived 

xenograft (PDX) tumor responses to treatment by that therapy using interpretable machine 

learning models. The predictive capability of kinome inhibition states with currently used 

baseline genomics for monotherapy cancer cell line responses across diverse cancer types is 

demonstrated first using multi-dose kinome inhibition states, and second using multi-assay 

single-dose data. Then, the predictive value of kinome inhibition states is extended to kinase 

inhibitor combination therapies, demonstrating that combined kinome inhibition states can 

accurately predict cancer cell line sensitivity and synergy to combination treatments, providing 

the basis for rational kinome-informed drug combination selection. Finally, the predictive 

capacity of kinome inhibition states is demonstrated for PDX tumor responses in five common 

solid tumor types, confirming the  

generalizability of kinome inhibition-based prediction models in a preclinical setting, and 

emphasizing their potential for clinical translation and application in precision oncology. Overall, 

this dissertation provides compelling evidence that integrating kinome inhibition states in 
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machine learning models can enhance the prediction of cancer cell line and PDX tumor 

responses. This work shows that kinome inhibition data has potential to be included in precision 

oncology platforms alongside baseline genomic profiling, aiding in the identification of effective 

therapeutic strategies and ultimately improving patient outcomes. 
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CHAPTER 1: INTRODUCTION 

 

PROTEIN KINASES IN CANCER 

The cover of the May 2001 TIME magazine read “There is new ammunition in the war 

against cancer, and these are the bullets”[1], stirring up the same hope that had been relentlessly 

fanned since President Nixon officially declared his “war” on the disease[2]. The drug in 

question, imatinib (Gleevec ©) was titled “A New Hope for Cancer”, and was rationally 

designed against the BCR-ABL1 fusion protein, a result of the infamous “Philadelphia 

Chromosome”[3] mutation.  This drug as a first / second line treatment for Philadelphia 

chromosome-positive chronic myelogenous leukemia (CML) was a transformative discovery for 

“targeted” cancer therapies, differing from traditional chemotherapies which were generally 

broadly toxic in contrast to being designed against a particular target. Gleevec drastically 

increased patient survival from being nearly always lethal to not significantly different from 

survival of the average population, the first of its kind for leukemia[4]. The target of this drug, 

BCR-ABL1 was a mutant protein kinase, kicking off a frenzy of drug discovery surrounding this 

protein family that lasts to this day[5]. Today, drugs that inhibit the activity of kinases or “Kinase 

Inhibitors” (KIs) are a central drug class in cancer, with ~40+ approved for clinical oncological 

use worldwide[6], and have transformed the standard of clinical care for multiple cancer types[5].  
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Kinases Are the Primary Mode of Cellular Information Transfer 

The transfer of a phosphate group from ATP onto proteins forms one of the 

fundamental methods of regulation for nearly all aspects of cell life in eukaryotes[7]. This simple 

modification can alter the function of a protein in almost every conceivable way, including 

activating, deactivating, stabilizing, marking for degradation, or controlling protein-protein 

interactions. Kinases are a protein enzyme family that catalyze this transfer of phosphate groups 

for nearly all organisms, numbering around 500 in humans[8].  Originally discovered for their 

control of metabolism, it is no surprise that kinases now find themselves in the center of all cell 

physiology, as the primary mediator of information transfer from extracellular stimuli to 

intracellular events[9]. This mediation is largely achieved through large chains of successive 

phosphorylation events by individual kinases, often called a “kinase cascade”(Fig 1), and usually 

ending by altering the activity of a transcription factor. These pathways are further parts of large 

complex interconnected networks that respond dynamically to perturbation[10], activating 

compensatory pathways in response to single nodes being deactivated. Altogether, this 

interaction network of kinases that transmit extracellular stimuli intracellularly is commonly 

referred to as the “Kinome''[11], and it is estimated that about a third of all expressed proteins 

are phosphorylated by this network at any given time[12].  Phosphorylation also plays a pivotal 

role in regulating the enzyme activity of kinases, with their activation state (on or off) generally 

dependent on upstream kinase activities(Fig 2A). The collective activation state of all kinases 

within a cell, referred to as the "Kinome State"[13], is determined by the degree of activation of 

each individual kinase(Fig 2B). As such, phosphorylation acts as a crucial molecular switch in 

regulating kinase activity and orchestrating cellular signaling pathways.  
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Kinase Targeting in Cancer 

Given the central role of kinases in cell physiology, aberrant kinase activity or 

“dysregulation” has major implications in immunity, diabetes, neurological disorders, and most 

cancers[14]. Specifically relevant to cancer, kinases have important roles in the cell cycle, 

differentiation, motility, apoptosis, DNA repair, and proliferation. For example, mutations in 

receptor tyrosine kinases (RTK’s) that transmit extracellular signals by starting phosphorylation 

cascades like EGFR, FGFR, ERBB2, and VEGF are biomarkers for various cancer types[15], 

while dysregulation in intracellular kinase families like the cell cycle and proliferation regulators 

MAPK, CDK[16], and PI3K are all frequent drivers in tumorigenesis[17].  

Drug targeting strategies for these dysregulated kinases have improved steadily over the past two 

decades since the approval of Imatinib in 2001[5]. While kinases are known to be “highly 

druggable” through the ATP-binding site[18], structure-guided discovery has led to 

improvements in drug design, such as the FDA approval of the extremely selective allosteric 

MEK1/2 inhibitor trametinib[19]. Despite the broad clinical impact of kinase inhibitors, high 

rates of eventual resistance acquisition continue to prevent robust patient response, even in 

those who initially respond to treatment[20]. This is in part due to the dynamic nature of the 

kinome network[10], which is able to respond to perturbation through epigenetic upregulation 

of alternate pathways that drive cell proliferation. From a kinome network view, this necessitates 

rational targeting of the kinome to prevent resistance, For example, designing ideal inhibitors or 

combinations that target complimentary kinases either in the same pathway (“vertical 

inhibition”) or alternate pathways (“horizontal inhibition”)[21]. This idea of rational kinome 

targeting first requires a detailed understanding of the target landscape of kinase targeting drugs, 

and a kinome-wide view of the effect of each drug.  
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KINOME STATE PROFILING 

The clinical kinase drug crizotinib is a potent inhibitor of ALK, forming the first-line 

treatment for Non-Small Cell Lung Cancer (NSCLC) that expresses the kinase[22]. However, 

this drug was originally designed for c-MET, and the optimal mechanism of action, off-target 

inhibition of ALK, was discovered a year after clinical trials, allowing pre-screening of patients 

and increased response rates. Similar discoveries were made for the drugs Imatinib for 

unexpected efficacy in Gastrointestinal Stromal Tumors (GIST) through off-target inhibition of 

KIT, and midostaurin in lung cancer through off-target EGFR inhibition[23]. Along with off-

target induced toxicity[24],  These examples illustrate the inherent promiscuity in kinase inhibitor 

design, since conservation of the ATP-binding site across most kinases will almost always causes 

large off-target effect effects in designed inhibitors[25]. As a result, there has been increasing 

interest recently in the profiling of all targets of known kinase inhibitors, both for repurposing 

potential and general understanding of mechanisms. This en masse view of all kinases and the 

interaction of drugs with the kinome network is termed “Kinomics”, and has been spearheaded 

by technological improvements in high-throughput measurement of proteomics and 

phosphoproteomics[26].     

Kinome State Measurement 

Recent advances in drug profiling technologies have made high-throughput kinome 

profiling practically feasible through multiple assay types. A landmark paper in 2017 used a mass 

spectrometry-based assay that used promiscuous kinase-binding compounds immobilized on 

beads to measure the binding competition between any given inhibitor and any given kinase 

(henceforth called the “kinobeads” assay)[27](Fig 3). Using this assay, the kinome-wide binding 

profiles for ~230 clinical kinase inhibitors at eight doses each were elucidated using cancer cell 

lysates, forming the largest in-cell drug-target binding database collected. Similarly, the 
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“KINOMEscan©” (DiscoverX) assay is a commercially available alternative that performs the 

same bead-based competition kinome profiling in vitro, using recombinantly expressed kinases 

with a qPCR readout[28]. The data generated from these assays allow interrogation of how 

clinical and investigational drugs interact with the entire kinome on an unprecedented scale. By 

analyzing the degree of inhibition of all kinases simultaneously for a given inhibitor, we can treat 

this as a departure from the “baseline kinome state”, thus moving through drug-induced 

alteration of multiple kinase activities to a “kinome inhibition state”. Since we know that the 

central role of the kinome directs cell behavior on almost all levels, these baseline kinome states 

and kinome inhibition states can be directly connected to various measured cellular 

phenotypes[13], and potentially even disease phenotypes. 

TOWARDS PRECISION ONCOLOGY 

Cancer Heterogeneity Demands Precision Medicine 

Cancer is a highly complex disease that displays molecular heterogeneity on two main 

levels: intratumoral heterogeneity (difference within individual tumors in a patient), and 

intertumoral heterogeneity(difference between patients with the same tumor type)[29]. Both 

types result in frequent treatment response failure  for chemotherapies, and resistance 

development for targeted therapies[30]. To increase long-term response rates, recent advances 

have incorporated patient-specific genomic signatures derived from DNA sequencing or 

microarrays[31] to prescribe individualized treatment regimens. With technological 

improvements in tumor molecular profiling, it is now possible to simultaneously profile a given 

tumor’s genome, transcriptome, proteome, gene copy number variation, single-cell 

genomics[32], and use these global measurements to inform a given patient's treatment plan. 

This strategy of data-driven, patient-specific treatment is termed “precision medicine”, and has 

been described as moving cancer medicine into a new “Precision Oncology Era''[33]. The 
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success of BCR-ABL1 mutant based Imatinib treatment in transforming CML into a manageable 

chronic disease is frequently cited as an early success of this strategy, but only considers a 

singular genetic mutation that was common knowledge for ~40 years[34]. The exponential 

increase in data available for each patient, going from considering single genes to now 

considering multiple layers of measurement across the entire genome, demands the use of 

cutting-edge computational tools, much like the heterogeneity in cancer demands precision 

medicine.  

Predicting Cancer Treatment Responses 

Various computational modeling strategies have been used to predict cancer treatment 

responses, with most commercially available tools using simple univariate statistical methods that 

rely on specific biomarkers to predict responses to treatment. With recent advancements in 

machine learning and AI, many studies have used large public datasets of cancer drug responses 

to fit complex multivariate models, ranging from linear regression to deep neural networks, 

attempting to predict the responses of cancer cell lines, organoids, patient-derived 

xenografts(PDX), and patients themselves. The majority of these approaches use cancer-specific 

genomic modalities such as baseline gene expression, mutation, and copy number variation to 

predict treatment responses.  

To consolidate the landscape of drug response prediction strategies, the National Cancer 

Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) 

project held a challenge to accurately predict drug responses for 60 breast cancer cell lines[35]. 

All participating teams used a combination of genomic, epigenetic, and proteomic data to fit 

various non-linear regression models, along with pre-filtering the ~100k possible model 

variables or “features'' using “feature selection” techniques to only include informative features, 

or dimensionality reduction to condense the high-dimensional space[36]. This trimming of all 
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available features to remove noise is necessary to ensure feasibility of any modeling effort, and 

has been shown to increase performance of drug response models[37]. The methods employed 

by the challenge participants achieved reasonable prediction accuracy (modified concordance 

index ~0.5) but did not include any experimental validation to test if the model predictions 

could extend into real-world experiments, emphasizing another limitation of current prediction 

efforts that lack rigorous testing of models on new real-world experiments. Further, these 

modeling strategies of multi omics-based response prediction have not been restricted to cancer 

cell lines, as demonstrated in predicting patient-derived organoid (PDO) responses[38], PDX 

responses[39], and patient survival[40].   

Drug-Target Interactions for Response Prediction  

More recent attempts to predict drug response have relied on complex neural network 

architectures to predict responses to both monotherapies and combination therapies, along with 

increased diversity in data types considered. Notably, newer strategies place increasing emphasis 

on drug-specific features like molecular fingerprints and drug-target interactions, which serves to 

add the most relevant layer of information, since drug interactions with proteins are 

fundamentally what change phenotypes in cells; but on the informatics level it serves an 

additional function to increase the ratio of measurement to samples, improving the performance 

of the predictive models[41]. For example, an integrated multi comics approach including 

compound molecular fingerprints and target protein-protein interaction networks performed 

relatively well in predicting monotherapy response data[42] (Overall R2 ~ 0.75),  while a high-

dimensional tensor-based modeling strategy used similar data and achieved impressive accuracy 

(Overall R2 ~ 0.8) in predicting response to combination therapies, validated experimentally[43]. 

Despite increasing data diversity for drug response prediction, drug-specific data has been largely 

limited to chemical structure-based descriptors. Incorporating drug-target information has the 
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potential to further advance prediction by providing insights into the complex interactions 

between drugs and their targets, particularly if the biological relevance of the targets is well 

known, like with the 500-member protein kinome. In part, the minimal amount of drug-target 

information leveraged in current response prediction efforts is because of the sheer amount of 

data generated by genomics and molecular fingerprinting, generating thousands of features for 

each measurement, while drug target data has been generally sparse with only a few annotated 

targets per drug. However, recent advances in technology to profile the interactions of clinical 

drugs with all the members of the kinome represent an unprecedented ability to measure drug-

target information across ~500 proteins simultaneously in a quantitative manner[44]. The 

breadth, density, and ease of acquisition of this data, often measured at multiple dose points, is 

ideal for integration into machine learning models that can leverage diverse data types for drug 

response prediction.  

Model Explainability 

The ability to explain how and why machine learning models arrive at predictions from 

the features they consider is termed “Explainability”. For linear regression, the importance of a 

given feature in predicting the outcome is simply its coefficient in the equation[45], and similar 

metrics exist for tree-based models (decision trees, random forest, gradient boosting). It is 

important to note that as precision oncology seeks to affect actual clinical decision making, 

explainability to clinicians  is critical for successful integration into medical systems[46]. As the 

complexity of computational models increases due to efforts to include larger amounts of data, 

model explainability decreases drastically. As such, traditional regression and tree-based models 

are still preferred by commercial clinical analysis[47], unlike the most cutting edge neural 

network and transformer-based models which still suffer from a lack of interpretability, where 
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potentially predictive features in data are subject to multiple layers of abstraction, earning the 

“black box” label.  

CONCLUSION 

The kinome is at the center of human physiology and disease, working as the primary 

method of information transfer from stimulus to cell response. As cancer therapy is forced into 

a new era of patient-specific precision by heterogeneity, treatments that target kinases based on 

cancer-specific genotypes have been some of the key successes in targeted therapeutics. Recent 

complementary advances in cancer multiomics and machine learning have enabled robust 

prediction of responses to specific cancer therapeutics, but mostly rely on baseline genomics and 

molecular fingerprints to make predictions. As the primary means of drug action, protein-drug 

interactions have clear biological relevance but are underutilized in response prediction efforts 

partly due to the lack of high-throughput assays that generate data of sufficient breadth. Kinome 

profiling assays like kinobeads and kinomescan offer an opportunity to measure the effect of a 

given drug simultaneously on all 500 members of the kinome quantitatively for each dose of a 

potential drug, generating rich drug-target interactions. The research presented in this 

dissertation bridges the gap in bioinformatics between cancer-specific multiomics and drug-

specific interactions by using the kinome to build machine learning models that predict cancer 

responses to kinase inhibitor monotherapies and combination therapies. Together, these 

chapters support the development of kinome-informed computational drug screening platforms 

in cancer cell lines, and precision oncology platforms in PDX tumors.   
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FIGURES 

 

 

Figure 1.1: Schematic of Example Kinase Cascades. Illustration showing the information 

transfer chain from extracellular stimuli to a kinase cascade beginning with PI3K, RAF, and PLC 

respectively, via the mediator RAS. Each arrow thereafter represents a phosphorylation event 

until reaching the final cellular phenotype. 
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Figure 1.2: Schematic of Single Kinase Activation and Kinome Inhibition  A) Simplified 

illustration showing a single kinase and its two possible states (“ON” or “OFF”), connected to a 

related downstream phenotype. B) Illustration showing the kinome network at its baseline state 

(upper) and inhibited state (lower) in response to drug treatment. Each node in the network 

represents a kinase, and each kinase has an activation state (1 = ON, 0 = OFF). After drug 

treatment, kinases A, B, C are shown to be inhibited, resulting in the “Inhibited Phenotype” 

shown downstream. 
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Figure 1.3: Kinome Profiling Through the Kinobeads Assay. A) Illustration of the 

kinobeads assay: binding strength is measured through competition of assayed inhibitor and 

kinase binding probes. B) Visualization of the actual kinome profile of RAF inhibitor 

Dabrafenib, measured through the kinobeads assay. Kinases inhibited are represented on the x 

axis, with color representing the degree of inhibition (values in % Inhibition). 
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CHAPTER 2: KINOME INHIBITION STATES AND MULTIOMICS DATA 
ENABLE PREDICTION OF CELL VIABILITY IN DIVERSE CANCER TYPES  

 
 
INTRODUCTION 

While chemotherapy remains a mainstay in cancer treatment, the use of targeted 

therapies clearly holds significant promise, with their use leading to improved outcomes in a 

variety of cancers [1,2]. Examples include the use of imatinib (Gleevec) for chronic myelogenous 

leukemia, crizotinib and other anaplastic lymphoma kinase (ALK) inhibitors for non-small-cell 

lung cancers, and trastuzumab and lapatinib for ERBB2/HER2 amplified breast cancers [3–8]. 

Together with the potential to reduce toxicity and associated side effects, the development of 

targeted therapies has gained increasing momentum over the last two decades [9,10].  

Since the development of imatinib, protein kinases have emerged as a primary focus for targeted 

therapy development [11–14]. Kinases are a ~500-member enzyme family that catalyzes the 

transfer of phosphate groups from ATP to specific substrates. Integrated into a complex 

network of interactions defined as the kinome, kinases regulate information transfer across a 

myriad of cellular processes including growth, proliferation, differentiation, motility, and 

apoptosis [15]. Linked to its role in this wide array of functions, dysregulation of one or more 

members of the kinome is directly implicated in numerous pathologies, especially cancer [16]. 

Modulation of kinase activity through targeted inhibition has been the primary therapeutic 

approach to date and as of 2021, over 85 kinase inhibitors have been clinically approved 

worldwide, though only targeting 42 kinases from the 21 kinase families[17], highlighting the 

opportunity for further advancement of this large family of druggable targets.  
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Recent work characterizing kinome behavior in response to targeted kinase inhibitor 

therapies has established that the kinome is a highly dynamic system, with significant 

ramifications in our understanding of drug resistance, adaptive reprogramming and the broader 

design of effective therapies [18–23]. Underlying these investigations of kinome dynamics are 

the advancement of proteomic approaches that enable the characterization of protein kinome 

behavior in response to perturbation en masse, allowing characterization of changes not just to 

the kinase to which the inhibitor was designed, but also across the entire kinome [24,25]. 

However, while providing transformative insight into how these targeted therapies interact with 

and modify cellular systems, our understanding of kinome changes and the resulting downstream 

cellular changes is still lacking.  

Given the potential of targeted therapies and the potential to quantitatively assess their 

effect on the protein kinome, in this work we sought to establish a predictive framework that 

links the behavior of the kinome as defined by “kinase inhibition states'' with a downstream 

phenotype - in this instance, cell viability. Enabling this effort is recent work by Klaeger et al., 

who conducted a comprehensive investigation using a proteomic kinobead approach, 

establishing a target landscape for 229 kinase inhibitors across a wide range of compound 

concentrations [26]. This work was conducted using a lysate mixture derived from four cell lines 

which provided a broad representation of the kinome. The results from Klaeger et al. show that 

many kinase inhibitors have broad target promiscuity and that the kinases targeted by each 

inhibitor also varies on the basis of the specific compound concentration. Throughout the rest 

of this paper, we will use the phrase kinase inhibition state to indicate the specific set of kinases 

targeted by a given compound and to what degree each kinase is inhibited at each concentration. 

In addition, we utilized the extensive data available via the Broad Institute’s Cancer Cell Line 

Encyclopedia (CCLE) [27], including the PRISM (Profiling Relative Inhibition Simultaneously in 
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Mixtures) highly multiplexed cell viability assay, along with accompanying multi-omics data (gene 

expression, copy number variation, proteomics and gene essentiality) from the Cancer 

Dependency Map. These data consist of cell viability measurements for 499 cell lines across 

1448 drugs, transcriptomic profiles for 1389 cell lines, whole proteomic profiles for 375 cell 

lines, whole genome copy number variation for 1750 cell lines and CRISPR-KO genetic 

dependency scores for 1054 cell lines. While predictive models for drug-induced cell viability 

have been built using various strategies [28–31], most have focused on using baseline and drug-

perturbed transcriptomic data to make predictions on the sensitivity of cancer cell lines to drugs. 

Drug-target interaction data like kinome profiles are relatively underutilized in these approaches, 

but have been shown to have predictive power in smaller datasets[32].  

Here, we describe a framework that integrates kinome profiling data with general multi-

omics and build tree-based regression models to predict cell viability for 480 cancer cell lines 

across 230 kinase inhibitors with high accuracy (R2 = 0.79). Integrating nearly half a million data 

points, we find that kinome inhibition profiles have by far the greatest predictive power of any 

single data set. While not highly predictive on its own, baseline transcriptomic data does 

significantly enhance prediction accuracy, “tuning” the model to individual cell lines. 

Remarkably, adding in other multi-omics data does not significantly increase the quality of 

predictions. As the model enables prediction of complete dose-response curves, we 

experimentally validate predictions for over two dozen compounds on two breast cancer cell 

lines and find strong agreement for most compounds tested. These results suggest that the link 

between kinotype and phenotype is significant, with sufficient power to enable the prediction of 

cell viability and likely other cellular phenotypes as well. Along with integration of transcriptional 

data, these predictive models can greatly enhance our understanding of adaptive kinome 
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reprogramming and drug resistance while facilitating the development of future targeted therapy 

regimes. 

 
RESULTS 

This work is divided into three parts. We start by describing how we processed and 

organized the data sets used to build predictive models of cell viability related to a set of kinase 

inhibitors. Next, we describe the methods we used to select which features and data sets to 

include in these models and apply a set of modeling methods to the organized data. Finally, we 

make a set of cell viability predictions and then experimentally test these predictions in a panel of 

breast cancer cell lines. 

Linking Kinome Inhibiton States with Cancer Cell Viability 

There are two primary data sources that we needed to process and combine in order to 

link kinotype with phenotype and build a model to predict the cell viability effects of kinase 

inhibitors. The first of these data sources is the large-scale PRISM cell viability screening effort. 

The PRISM data collection consists of a set of cell line viability measurements following 

exposure to a wide range of compounds[33] (Figure 1A). These compounds span multiple 

different target classes, but in this work we have focused on a specific subset of kinase inhibitors 

that have been independently assayed using the kinobead/MS-based method. This approach 

determines the precise kinase targets as well as the magnitude of their inhibition in response to 

different concentrations of the inhibitors[26]. Given that the compounds used in Klaeger et al. 

are all well known kinase inhibitors, most of the proteins that appear in the assay results are 

either known kinases or closely associated proteins. As such, we’ll refer to the data originating 

from the Klaeger et al. result as “kinase inhibition states.” 

The primary challenge with combining these data sets is a lack of overlap between some 

of the concentrations used in the PRISM assay and those used by Klaeger et al. To overcome 
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this problem, we used the viability curve fits provided by the PRISM database and imputed cell 

viability values for all of the concentrations used by Klaeger et al (Figure 1B). These cell viability 

results are represented as a value from 0-1, with 0 indicating complete cell death and 1 indicating 

no effect on cell viability. As expected, a majority of the treatments yielded little change in cell 

viability (Figure 1C). The distribution of cell viability values within each individual compound 

shows that while many of the compounds have minimal effects on cell viability, some 

compounds show a much wider range of viability effects (Figure 1D). 
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Figure 2.1: Study Design Overview and Imputation of Cell Viability from PRISM. (A) 

Flow chart showing data source collection, integration and modeling strategy.  (B) Sample 

imputed cell viability curves for all assayed cell lines (gray underlying lines) and corresponding 

average imputed cell viability response (blue line) for three compounds showing low changes  

(motesanib), medium level changes (AZD-2014) and high changes (SB-1317) in cell viability. (C) 

Overall distribution of cell viability values imputed at Klaeger et al compound concentrations. 

(D) Distribution of imputed cell viability across all concentrations for a selection (60 out of 168) 

sampled evenly across the average imputed cell viability effect of the compounds present in both 

PRISM and the Klaeger et al set. The blue and green color scheme does not indicate anything 

about the underlying data and is meant to act as a visual aid for differentiating between adjacent 

curves. (Panel A was created with BioRender.com) 

 

After combining the PRISM and Klaeger et al. data sets, we have 168 compounds which 

have been assayed across 480 cell lines. We imputed the cell viabilities at each of the 8 

concentrations used in the Klaeger et al. work, yielding about half a million treatment 

combinations across combinations of cell line, compound and concentration. With this data set, 

we also integrated the gene expression data available through the Cancer Cell Line 

Encyclopedia[34]. These gene expression values (log2 TPM values with a pseudocount of 1) 

were available in all but four of the 480 lines used in the PRISM compound screens. Following 

the integration of gene expression, we next examined how well single kinase inhibition and gene 

expression values were correlated with cell viability. 
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Cell Viability After Treatment with Kinase Inhibitors Shows Mild Correlation with 

Kinase Inhibition State 

We investigated the relationship between kinase inhibition states (~520 proteins) and 

gene expression values with inhibitor-induced cell viability. To do this, we took each individual 

kinase inhibition state and gene expression value (~21,000 TPM values) and calculated the 

Pearson’s correlation coefficient with the imputed cell viabilities (Figure 2A,B). The kinase 

inhibition states from Klaeger et al. are represented as a value lying mostly between zero and 

one, where zero indicates a fully inhibited kinase and values of one or above indicate that a 

kinase isn’t inhibited. These correlations were in general significantly lower for the gene 

expression values, while the kinase inhibition state values showed both a higher average 

correlation and greater variance (Figure 2C). This was not unexpected as the gene expression 

values are all characterized in unperturbed cell lines. Thus, as cell viability changes the gene 

expression values remain fixed, and any variation across gene expression must be correlated with 

broad changes in drug response between the cell lines. The examination of single correlation 

values gives a picture of how well single expression or inhibition states are related to the cell 

viability phenotype. 
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Figure 2.2: Single Feature Correlations Across Kinase inhibition and Gene Expression. 

(A) Sample kinase inhibition state versus imputed viability heatmap plots showing inhibition 

states with high (STK10), medium (FGR) and low (TUFM) correlation values. (B) Sample gene 

expression versus imputed viability heatmap plots showing genes with high (HAGH), medium 

(LRFN5) and low (DKC1) correlation values. (C) Overall distribution of correlations between 

kinase inhibition states and gene expression levels. (D) Plots showing what order classes of 

features are selected from the inhibition and expression correlations. The number of features 

from each class (left) selected at a given rank value and the percentage of the possible features 

(right) selected at a given feature selection rank cutoff. 
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While single features with correlation coefficient values in the ~0.3 range (the highest 

value observed in the kinase inhibition state data) will not produce sufficiently predictive models, 

the integration of multiple features may provide greater power. As such, we next sought to use 

the correlation values for feature selection. The most obvious way to use the correlation values is 

to put all the potential features (in this case, kinase inhibition state and gene expression) in 

correlation rank order and then select the top-X number of features for model inclusion. This 

produces differing sets of feature class counts and ratios depending on the number of features 

selected (Figure 2D right). Interestingly, the top ~350 features all come from the kinase 

inhibition states, with gene expression then starting to be included into the list after the first 350 

features. As an alternative method to visualize the same selection process, we plotted what 

percent of a given feature class is included in the top list for the top 2000 features (Figure 2D 

left). This alternative view of the feature selection process shows that ~80% of the inhibition 

states are included in the model before gene expression starts to be included. This indicates that 

nearly all of the inhibition states are more highly correlated than the gene inhibition states and 

will thus be the sole factor utilized in lower feature count models. Extending the feature list 

visualization to include lists greater than 2000 show that remaining inhibition states are slowly 

included as the top feature list expands (Figure S1A). This analysis of the structure of the single 

feature correlation results lays the groundwork for working with more sophisticated 

computational models to predict cell viability. 
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Computational Models Can Predict Cell Viability from a Combination of Kinase 

Inhibition State and Gene Expression 

With our initial analysis of the predictive power of single features from the Klaeger and 

gene expression data sets completed, we next moved to the development of models that 

integrated more than one feature with the end goal of predicting cell viability. To do this, we 

tested four types of models: linear regression, random forest, TabNet and XGBoost. For our 

initial tests with these models, we used the default settings for all four model types and varied 

the number of features (either kinase inhibition states or gene expression values) provided to the 

model. Our cross-validation strategy sought to balance our eventual goals of using the resulting 

models to make predictions about the cell viability effects in new cell lines and in untested 

compounds. As such, we choose a 10-fold cross validation strategy that randomized fold 

exclusion across the cell line-compound treatments (63767 total combinations) to improve the 

likelihood that our model testing results would be similar to downstream experiments. After 

producing the cross-validation splits, we selected a specific number of features and built 

corresponding models (Figure 3A).  

For benchmarking model performance, we built a naive model that simply used the 

average cell viability at each of the tested concentrations as a baseline prediction that can be used 

for comparison (gray dotted lines in Figure 3A), and also compared results to previously run 

models on similar datasets[31]. Initially, we tested each model type with 100, 200, 300, 400, 500, 

1000, 1500 and 2000 features. These preliminary tests showed that the random forest method 

performed the best at all of these feature counts and that performance (R2 and RMSE) peaked at 

500 features and out-performed our baseline dose-concentration-only model. To ensure that we 

had indeed found the peak in feature performance, we then tested 600, 700, 800 and 900 feature 

models and found that the 500-feature model was the peak (although all of these models 
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performed very similarly). To better understand this model, we also looked more closely at the 

predicted versus actual imputed viability of the 500-feature random forest model (Figure 3B). 

This examination of the cross-validation model results showed that the average model 

performance was best at higher imputed viability values, while the predictions at lower imputed 

viabilities were not as accurate. In addition to examining the global model performance we also 

subsetted the results along compound and cell line results and re-calculated R2 and RMSE 

(Figure S2A). This result showed that the compound results showed greater variability in R2 as 

compared to the cell line results, but the RMSE values were similarly distributed. 
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Figure 2.3: Development of a Regression Model to Predict Cell Viability and Assessment 

of Which Features Contribute to Model Predictions. (A) Comparison of R2 and RMSE 

values from linear regression, random forest, XGBoost and TabNet models. The gray dotted 

line shows the performance level of a dose-only model performance. (B) Actual imputed 

viability versus cross validated model predictions for the random forest model. The dashed line 

indicates where a perfect set of predictions would appear, while the red line shows a loess fit 

through the actual results. (C) Variable importance plot for the top 25 features in the final 

regression model. Each feature is prefixed with act or exp representing either kinase inhibition 

or gene expression respectively. (D) The top 25 most important expression features in the final 

model. (E) The overall distributions of feature importance values for the inhibition and 

expression features. 

 

With random forest using 500 features selected as our best modeling strategy, we moved 

on to examining feature selection in the cross-validation models as well as parameter tuning. 

One concern with doing feature selection in each cross-validation set was that there would be a 

large amount of volatility in feature selection between each cross-validation model run. We 

found that in each of the cross validation runs, at least 75% of the features are included in all of 

the feature selection sets (Figure S2B). To ensure that the default random forest parameter 

models were near the optimal tuning, we also tested cross-validated models with 1000, 1500 and 

2000 trees (500 trees is the default value). Increasing the tree count had little effect on model 

quality (Figure S2C), so we opted to use the default value of 500 trees. In addition, we also tested 

the effect of modifying the minimal leaf node size and the number of predictors selected at each 

branch (Figure S2D) and found minimal effects on R2 and RMSE, so we once again decided to 

keep the default parameter values. 
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Our first step in building the final kinase inhibition and gene expression model was to 

first select the 500 features that would be included in the model. Using the same correlation 

ranking scheme used in our cross validated models, 390 out of 520 kinase inhibition states and 

110 out 19177 gene expression features were selected for model inclusion. We next built the 

final random forest model with the full data set and collected variable importance metrics for 

each of the included features. In order to understand the kinase and non-kinases included in the 

selected inhibition states, we classified each protein as either a non-kinase or as a well-studied 

(Light) or understudied (Dark) kinase (Figure 3C)[35]. Several of these genes have well-known 

roles in cell viability and cancer, including MAP2K1 (MEK1), AURKB and CDK7. Interestingly, 

the model also identifies several understudied kinases, CSNK2A2, PIP4K2C, CAMKK2 and 

DYRK1B, as being influential in the model’s cell viability predictions. To better contextualize 

the expression values included in the model, we used the STRING database to see how many of 

the selected genes interacted with the proteins included in the inhibition features (Figure 4D). Of 

the 110 genes included in the expression values, 40 interact with at least one protein in the 

inhibition set and the average expression gene interacts with 1.7 inhibition state genes. In 

comparison to 10,000 randomly drawn expression gene sets of size 110, 84% interact with fewer 

than 40 inhibition states and 80% have a lower average inhibition gene interactor count below 

1.7. The global view of the variable importance metrics also shows that nearly all of the 

expression features have similar importance values in the final random forest model (Figure 3E). 

We next attempted to better understand how the interaction between inhibition states and gene 

expression levels affected model performance. 
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The Combination of Kinase Inhibition States and Baseline Gene Expression Produces 

the Best Predictions 

After thoroughly examining the results of the inhibition state and gene expression 

combined model, we next wanted to investigate how the model would perform when we 

excluded certain parts of the full data set. Using the same 10-fold feature selection cross 

validation strategy and the same cross validation fold splits described above, we rebuilt the 

model using only inhibition state or only gene expression (Figure 4A). The gene-expression-only 

models performed very poorly (R2 of ~0.01 and RMSE of 0.33), which was expected due to the 

fact that the gene expression values are fixed and do not vary with the compound 

concentrations. These model performance differences were also reflected in direct comparisons 

between individual cell line and compounds, where none of the expression-only models 

outperformed the inhibition state only models. When we built models using the inhibition states 

alone, we observed identical performance for feature counts 300 and below. This was also 

expected as the correlational feature selection methods always select inhibition features for the 

first ~350 features. With feature counts of 400 and 500, we observed that the additional 

information provided by the gene expression features began to improve the model (0.05 

improvement in R2 and a 0.02 decrease in RMSE). Thus, while the expression features alone are 

not sufficient to predict cell viability, they do provide an appreciable improvement in the model 

performance in combination with inhibition features. 
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Figure 2.4: Model Performance is Best with Access to All Inhibition States and Gene 

Expression Values. (A) Comparison of R2 and RMSE performance for models using only 

expression, only inhibition or inhibition and expression features. (B) Comparison of R2 and 

RMSE performance for models using gene expression and all inhibition data or only the kinase 

subset. (C) Plots showing the order of feature selection for the single dose model. (D) Single 

dose model performance comparison across a range of feature count and with either kinase 

inhibition state and expression or expression alone. 
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Having established that both inhibition and expression data are needed for the best 

model performance, we next investigated how the non-kinases in the inhibition data set affected 

model performance. This question is an interesting avenue to explore as, while the Klaeger et al. 

study was confined to kinase inhibitors, the presence of ~50% non-kinase proteins inspired us 

to assess how the model would perform without the non-kinases. We rebuilt the inhibition data 

set and ran the same modeling methodology including the gene expression values to allow us to 

compare to our previous models (Figure 4B). The optimum kinase-only inhibition data model 

had a maximum R2 of 0.76 and a RMSE of 0.17 (compared to R2 of 0.79 and RMSE of 0.15 for 

the full set). These results indicate that the non-kinases are providing some additional 

information that the model is able to use, which is in agreement with the presence of non-

kinases in the top 25 of the variable importance metrics (Figure 3C).  

To further investigate whether the kinase inhibition states are more informative than 

gene expression values alone, we subset our data to only include the dose for each compound 

with the highest variation in viability. This is following from a previous publication [36] which 

built a wide range of models covering chemical and genetic perturbations. By subsetting the data 

in this fashion, we can more easily compare the relative contributions of kinase inhibition state 

and gene expression without the variation induced by multiple doses. We used the same feature 

selection methodology as in the previous section and the shift to only a single dose for each 

compound generally decreased the kinase inhibition correlations. This allowed more expression 

values to be included in the model (Figure 4C). After conducting feature selection, we built a set 

of random forest models with differing numbers of features and found that the kinase inhibition 

state and expression models outperformed models built with expression data alone. This result 

demonstrates that even in a more constrained modeling environment, the availability of 

proteomic based inhibition profiles improves model quality for kinase inhibitors and that the 



   

 

  33 

additional information provided by multiple doses can improve modeling results. This is also a 

limitation though as data comparable to kinase inhibition state does not exist for many classes of 

compounds, so we view this work as complementary to the broader modeling efforts of 

Dempster et al. Having fully examined the kinase inhibition state and expression model, we next 

investigated if any of the other multiomics data sets available could improve upon these models. 

Models Only Show Mild Improvement from Inclusion of a Broad Spectrum of Omics 

Data 

Gene expression is only one of several different types of comprehensive data that has 

been collected for many of the cell lines used in the PRISM assay. These additional data sets 

include: 

 

● DepMap CRISPR-KO screening: genome-wide gene knockout viability measurements 

(DepMap Score) 

● Copy-number-variation: gene level copy number variation (CNV) 

● Whole Genome Proteomics: mass spectroscopy-based measurement of relative protein 

abundance (proteomics) 

 

Given the broad and complementary nature of these data sets, we investigated whether 

we could integrate these data sets to improve upon the kinase inhibition and gene expression 

models we described above. The Depmap, CNV and proteomics data sets all overlap with a 

different number of cell lines present in the PRISM data set (Figure S3A). All of the data sets are 

available for 212 cell lines (gene expression is available for 476 cell lines represented in PRISM). 

We focused our modeling efforts on these 212 cell lines to ensure that a complete collection of 

data was available. We followed the same strategy as in the above modeling effort where we first 
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investigated the correlation between single features and cell viability. The 212 cell line subset 

showed very similar correlation distributions between kinase inhibition and gene expression 

(Figure S3B). The newly added feature (CNV, DepMap scores and proteomics) correlations, had 

correlation distributions very similar to gene expression (Figure S3B). Using the correlation 

feature ranking, we also determined which features would be included in models of various sizes 

(Figure 5A and Figure S3C). With these data sets organized and our feature selection techniques 

specified, we tested how inclusion of these data sets affected model quality. 

 

Figure 2.5: Regression Models using Additional Data Sets Don’t Dramatically 

Outperform inhibition and Expression Models. (A) Plot showing the order features are 

selected for model inclusion (left) and the percentile rank within each feature class as features are 

selected for inclusion in the model (right). (B) Comparison between models built with inhibition 

data and expression or all available data sets by R2 (left) and by RMSE (right). 

 

Based on our previous experience with building the kinase inhibition and expression 

models, we decided to only test the best-performing random forest method. We also used the 

same 10-fold cross validation across the cell line/compound combinations. This resulted in 

higher instability in feature inclusion across the cross-validation folds (Figure S3D). As shown in 

Figure 5B, integration of these other data sets led to performance that was nearly identical to the 

model with only kinase inhibition and gene expression. The peak performance was achieved at 
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500 features in both model variants with R2 values of 0.794 (0.153 RMSE) and 0.793 (0.154 

RMSE) for the all data and inhibition/expression models respectively. This indicates that gene 

expression values alone contain substantially similar information as the remaining set of 

multiomics data. Given our desire to build a model which uses the most easily reproducible data 

sets and only minor improvements were observed with the full data collection, we decided to 

move forward with the integrated model combining kinase inhibition states and gene expression 

values. 

Validating the Models was Successful within Our Ability to Replicate Previous PRISM 

Results 

With the model production decisions finalized, we then applied this model to the 

untested cell line and compound combinations. The final model was produced using the 63189 

cell line and compound combinations with interpolated viability values (Figure 6A). Of the data 

that went into model production, 476 cell lines and 168 compounds were represented. This left 

903 cell lines in the CCLE gene expression data set and 61 Kleager kinase inhibitors that have 

not been tested in the PRISM viability assays (in addition to a few other untested combinations) 

where we were able to apply our model to predict cell viability at each of the compound 

concentrations used in the Klaeger assay. Ultimately, this resulted in us producing predictions 

for about 250,000 cell line and compound combinations (Sup Data 1). We hope that providing 

these prediction results will enable other researchers to find interesting or unexpected 

compounds that target specific cancer types. For the work presented here, we focused our 

validation efforts on a subset of breast cancer cell lines. 
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Figure 6: Validating a Subset of Compound Predictions in Breast Cancer Cell Lines. (A) 

Visualization of the space of compound (Y-axis) and cell line (X-axis) combinations that have 

been tested (white) and non tested (black) with a blue box surrounding the entire visualization. 

(B) Cell viability results from testing a set of compounds (labeled above each curve) and a cell 

line (HCC1806) already tested in the PRISM collection. (C) Scatterplot summarizing all the 

results from part B into a single plot with a linear best fit line showing in blue. (D) Cell viability 

results and corresponding predictions or PRISM results from a set of cell lines included in 

PRISM (BT-474 and HCC1806) and a selection of compounds which were mostly not included 

in PRISM. (E) Scatterplot summarizing all the prediction results from part D into a single plot. 

(F) Cell viability results and corresponding predictions for a set of cell lines and compounds not 

included in PRISM. (G) Scatterplot summarizing all the results from part F into a single plot. 

 

Our first goal when beginning to validate a subset of model predictions was to see how 

well we could replicate the results from the PRISM assay. We selected the well characterized 

triple negative breast cancer (TNBC) cell line HCC1806 and a set of compounds that displayed a 

range of viability effects from the 134 Klaeger kinase inhibitors that had been used in the 

PRISM assay with the HCC1806 cell line (Figure 6B). Several of these compounds performed 

very similarly in our assay as compared with the imputed viability PRISM values, notably 

cobimetinib, UCN-01, AT-9283, lestauritinib and dinaciclib. However, several of the 

compounds that showed high viability effects at high concentrations were not reflected in the 

imputed viability results, which lowered the replication R2 to 0.492 and the RMSE to 0.299 

(Figure 6C). To put these replication efforts in context, we looked for experimental cell viability 

results from the NCI-60 [37]and PRISM results where the same compound and cell line were 

assayed. In order to gain a broader understanding of cell line viability replicability, we included 
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every compound match we could find between the two data sets. We found 172 compounds and 

32 cell line matches between these data sets and found an overall R2 of 0.444 and an RMSE of 

0.296 (Figure S4). These results were in agreement with our much smaller PRISM replication 

effort, indicating that the variance between model predictions and experiments is no worse than 

the variance observed between experiments replicated by different groups. With the inherent 

limitations identified by the replication effort acknowledged, we next moved into testing new cell 

line and compound combinations. 

We started testing new cell line and compound combinations by continuing with the 

HCC1806 line and adding in the HER2 positive breast cancer cell line BT-474. We selected a set 

of compounds predicted to have a range of effects on the two cell lines and then conducted a 

viability screen with each of these compounds (Figure 6D). Much like the replication attempt, 

we observed several compounds where the predicted viabilities were close to the measured 

viability (K-252a, UCN-01, PF-3758309 and lesauritinib). Overall, the R2 (0.518) and RMSE 

(0.239) values were comparable with replication effort, indicating that the model was performing 

well on new compounds (Figure 6E). As our most challenging final test, we decided to test two 

cell lines that are not present in the PRISM data set (HER2+ line SKBR3 and TNBC line 

SUM159PT) against a set of compounds that weren’t included in the PRISM compound set. 

Once again, with this “double-untested” experiment, we selected a set of compounds predicted 

to have varying effects across concentrations and observed a combination of compounds with 

strong and weak correlation between predictions and results (Figure 6F). Notable among the 

better results were JANEX-1, losmapimod and K-252a, while the model struggled with CC-401 

and parts of the RGB-286638, ACTB-1003 and ceritinib curves. The overall performance of the 

model (R2 of 0.588 and RMSE of 0.246) were comparable to the other model validation results 
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(Figure 6G). These independent validation efforts demonstrate that the model predictions are 

able to generalize into previously untested cell lines and compounds. 

DISCUSSION 

Given the potential of targeted kinase inhibitor therapies, the ability to predict how a 

given treatment may alter kinome state and lead to a given phenotype is fundamentally enabling. 

In this work, we developed a set of computational models that predict cell viability after 

treatment with a set of small molecule kinase inhibitors. To accomplish this, we used several 

publicly available data sets that provided information concerning the untreated gene expression 

of the cell lines used in the viability screen and another that gave detailed information about the 

proteins targeted by small molecule kinase inhibitors. We examined how single gene expression 

and kinome state values were related to cell viability and how models with various numbers of 

gene expression and kinome state values varied in quality. In addition to gene expression, we 

also tested a set of models which included a broader range of baseline measurements (CNV, 

proteomics and gene essentiality) and concluded that these additional data sets were not able to 

significantly improve model performance. Finally, we tested some of the model predictions in 

several triple negative and HER2 positive breast cancer lines and found acceptable agreement 

between the model predictions and experimental results. 

This work demonstrates how knowledge of the inhibition state of the kinome, derived 

from a proteomic assay based on a four-cell lysate mixture, can predict a cellular process as 

fundamental as viability.  Importantly, the models achieved these surprising results by using a 

"generic" or "general" kinase inhibition profile measured with proteomic kinobead profiling of a 

four cell line lysate exposed to an extensive library of kinase inhibitors at multiple doses[26]. 

Thus, the models learned by linking non-cell line specific kinome inhibition state information 

with that of specific drug-cell line relationships. 
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We acknowledge several limitations of this work. First, all of the results in this paper rest 

on the availability of kinome profiling data specific to a given kinase inhibitor, so the methods 

here are not applicable to prediction of cell viability effects in any other class of compound. We 

believe that a similar strategy could be used to build models in compound classes where the 

spectrum of targets were as comprehensively identified. The universe of small molecule kinase 

inhibitors is substantially larger than those that were surveyed by Klaeger et al., but since our 

modeling methodology depends on the comprehensive nature of their work, we’re limited in the 

number of compounds where we can make predictions. One of our next goals is to attempt to 

broaden the scope of compounds through integration of other high-content kinome profiling 

techniques such as KINOMEscan and Nano-BRET. In addition, while the models described in 

this paper do make somewhat accurate predictions, these results point to a degree of missing 

predictability in cell viability for which new methods and data will need to be developed and 

collected. Also, since this work has targeted building a single comprehensive model, it is likely 

that subtle cancer type specific relationships are not captured such as the relationship between 

RXRG expression and melanoma [36]. This can be addressed by subsetting the model  to make 

predictions about specific cancer types/subtypes. There is also an extensive set of alternative 

hyperparameter settings and potential modeling methodologies that we did not explore in this 

work. We also hope that by providing a full set of viability predictions for the broad range of 

cancer cell lines covered by the CCLE that this work can act as a resource for other researchers 

to find unexpected or interesting kinase inhibitors that affect their most used cell line model 

systems. 

This work also suggests several extensions that would broaden or improve the model. 

Given recent interest in finding new compound combinations computationally, we are beginning 

to examine how best to combine the information from multiple compound kinome inhibition 



   

 

  41 

states to predict the resulting cell viability effects. This would allow us to run computational drug 

combination screens. In addition, the methods outlined here will also likely work for any 

phenotype that can be measured after treatment with small molecule inhibitors and with 

sufficient throughput to gather a large enough data set. Finally, while we have made all of the 

code and data necessary to reuse our models available to the public on github, we also 

acknowledge that this is not the most user-friendly method for allowing non-computationally 

minded users to access the model. Thus, we also plan on developing a web-based system for 

allowing non-computationally minded users to submit a gene expression profile and receive a set 

of predictions concerning how their cellular system is expected to respond to the Klaeger set of 

kinase inhibitors. 
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Overall, we hope that this chapter  makes a contribution to our understanding of how 

the overall state of kinome in response to small molecule inhibitors contributes to cell viability 

phenotypes. Our findings demonstrate that while individual kinase inhibition states and other 

single gene or protein readings are not very predictive of cell viability, machine learning 

approaches are able to combine sets of measurements related to the small molecule kinase 

inhibitors and gene expression data to make cell viability predictions. The results presented here 

show how a thorough understanding of kinase activity levels in conjunction with baseline omics 

data can be used to gain a better understanding of phenotypes such as cell viability. 

 

METHODS 

Our methods can be divided into two parts describing the computational aspects of this 

work and the experimental methods used to test the output of the computational components. 

Data Sources 

We used two primary data sources for this paper: the supplemental data section from 

Klaeger et al.[26] and the cell viability screening results from the PRISM lab. Specifically, we 

collected and organized the kinase inhibition states from supplemental table 2 of Klaeger et al, 

focusing on the Kinobeads subsheet. As for the PRISM data, we used the data from 2019 Q4 

(labeled 19Q4 in the depmap portal), specifically the secondary screening data. In addition to 

these two data sets, we used supplemental data sets from the CCLE[34] and DepMap[38]. These 

data included results from baseline RNAseq (CCLE_expression.csv), copy number variation 

(CNV, CCLE_gene_cn.csv) and CRISPR-KO viability screening (CRISPR_gene_effect.csv). 

The 2021Q3 versions of these files were used. The proteomics data was downloaded from the 

Gygi lab website (https://gygi.hms.harvard.edu/publications/ccle.html), specifically Table S2 
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[39]. We also used version 11.5 of the STRING [40] protein network database 

(9606.protein.links.v11.5.txt.gz). 

Data Preprocessing 

The scripts implementing these descriptions are all available through github. 

Klaeger et al. Kinase Inhibition Profiles: We read the values from the supplemental data table 

into R and produced a list of all proteins observed in any of the kinase inhibitor treatments. 

Since this table only contains the proteins affected by each compound, we filled in the relative 

intensity values for genes not associated with a given inhibitor with the default value of 1. There 

was a small (1.8%) number of single concentration values missing from the listed affected 

proteins, so we filled these values as the average of two nearest concentrations. Finally, a smaller 

set (0.01%) of likely outlier relative intensity readings were truncated to the 99.99 percentile 

(3.43). 

PRISM Cell Viability: Since relatively few of the concentrations used in the PRISM assay 

match those used by Klaeger et al., we opted to use the response curve parameters provided 

through the depmap portal to interpolate the cell viability values. We interpolated these values at 

30 μM, 3 μM, 1 μM, 300 nM, 100 nM, 30 nM, 10 nM and 3 nM to match those used by Klaeger 

et al. We applied a filter to remove any response curve parameter set that indicated that a given 

cell line and compound combination produced enhanced cell growth with increasing compound 

concentration. To perform the viability extrapolation, we used the four-parameter log-logistic 

formula described in the drc R package[41]. 

Gene Expression, CNV, CRISPR-KO and Proteomics: The files provided by the depmap 

portal for gene expression, CNV and CRISPR-KO values required very little modification to 

work in our machine learning pipelines. The primary modification was to add identifiers to each 

gene label, to ensure that omics data related to the same gene weren’t accidentally combined. 
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 The CRISPR-KO data also required an additional filter to remove 10 cell lines with 

missing data. The proteomics data processing was slightly more complicated, as there were 

substantially more protein readings missing from many more lines. In the cases of missing 

protein readings, we imputed these values to the minimum value for the overall distribution of 

that protein minus one standard deviation. 

String: The STRING database[40] also required only mild preprocessing to extract the 

proteins that interacted with the components of our models. We filtered the interaction list to 

the high confidence (above 0.7) set and used bioMart[42] to convert the Ensembl protein 

identifiers to HGNC identifiers for matching with the other data sets. 

Modeling Techniques and Types 

To assess our models, we used a 10-fold cross validation strategy which randomized 

training and test set inclusion across the cell line and compound combinations. Thus, for any 

given viability curve resulting from treatment of a cell line with a compound, all of the results 

from the assay were considered as one unit for cross validation purposes. All steps of feature 

selection were also conducted under this cross-validation framework as well. For every fold of 

our data, we recalculated the correlation coefficient between cell viability and the features 

available to the model (kinase inhibition state, gene expression, etc) using only the data in the 

training set. The number of features was varied as specified in the results section. We used the 

entire data set to build the final model used to make the predictions in Supplemental Data File 1 

and the results displayed in Figure 6. 

We used random forest, XGBoost, TabNet and linear regression for all of our modeling 

efforts. All of our models are implemented using the tidymodels framework in R. We used the 

ranger random forest engine[43], the default XGBoost engine[44] and the default ordinary least 

squares linear regression engine. For all of our initial testing of these models we used the default 
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single set of hyperparameter settings to narrow our search for an acceptable model. This search 

indicated that the random forest model performed the best, so we attempted to further tune 

three additional parameters, the number of trees, the number of selected predictors and the 

minimal node size across the following ranges: 

● Number of Trees: 500 (default), 1000, 1500 and 2000 

● Number of Predictors: 11, 22 (default for 500 tree model), 33 and 44 

● Minimal Node Size: 3, 5 (default) and 10 

Compound Testing 

BT-474, HCC1806, SUM-159 and SKBR-3 cells were grown in ATCC recommended 

media and seeded at 4000, 2000, 4000 and 500 cells per well respectively, in white flat-bottom 

96-well plates (Corning). 24 hours after seeding, cells were treated with the respective drugs 

prepared in DMSO. All drugs were dosed at the same eight concentrations used in the Klaeger 

study: 30 μM, 3 μM, 1 μM, 300 nM, 100 nM, 30 nM, 10 nM and 3 nM. Seventy-two hours post-

treatment, cells were lysed with CellTiter-Glo (Promega) per the manufacturer’s protocol. 

Luminescence was read using the PHERAstar FS microplate reader (BMG Labtech) and gain 

adjustments were conducted for each cell line. Data were normalized row-wise to the DMSO-

only (0.5% on cells) control samples on each plate to calculate relative viability. Quality checks 

were performed to look at the data distribution and the presence of spatial bias on a plate. A 

quality control metric of <120% of DMSO was applied to all rows analyzed. Across all >150 

rows analyzed, only one row of XL-228 treated SKBR-3 cells failed to meet this criteria and was 

removed from analysis. 
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Software and Data Availability 

All of the code written to support this paper is available through github 

(https://github.com/gomezlab/kinotype_viability) along with a walkthrough explaining where 

to find the code relevant to each part of the paper. We have also made all of the model 

validation results available through zenodo (https://doi.org/10.5281/zenodo.6323686).  
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SUPPLEMENTARY MATERIAL 

 

 

Supplemental Figure 2.1: Expanded Correlation Rankings. (Associated with Figure 2). 

Extended version of Figure 2D covering all correlation ranks. 
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Supplemental Figure 2.2:  Feature Selection with Cross Validation and Assessment of 

Increasing Random Forest Trees. (Associated with Figure 3). (A) The effect of cross 

validation data division on which features are selected for model inclusion. (B) The effect on R2 

and RMSE of increasing the number of trees used in the random forest algorithm. (C) The 

effect on R2 and RMSE of modifying the selected predictor count and the minimal node size 

used in the random forest algorithm. (D) The distribution of R2 and RMSE for single compound 

or cell line cross validation results. 
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Supplemental Figure 2.3: Expanded Correlation Rankings and Effect of Cross Validation 

Subsetting on Feature Selection. (Associated with Figure 5) (A) Upset plot showing the 

overlap between data sets across cell lines in the PRISM assay. (B) Small multiples plot showing 

the correlation of individual features to imputed cell viability for each of the feature types 

considered in this model. (C) Full feature correlation rankings for all data set types considered 

for Figure 5. (D) Effect of random 10-fold cross validation subsetting on which features are 

included in what percentage of the cross-validation data sets. 
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Supplementary Figure 2.4: Comparison of Cell Line and Compound Matched PRISM 

and NCI-60 Viability Results. The red line shows a loess fit through the data set. 
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CHAPTER 3: INTEGRATED SINGLE-DOSE KINOME PROFILING DATA IS 
PREDICTIVE OF CANCER CELL LINE SENSITIVITY TO KINASE INHIBITORS   
 
 
INTRODUCTION 

Computational drug screening has recently emerged as a powerful approach to integrate 

vast amounts of cancer cell line multi-omics data into predictive models, with the goal of 

predicting downstream phenotypic responses such as growth and viability. Advancing rapidly 

with recent developments in machine learning, these methods have the potential to predict 

outcomes for large drug libraries with minimal experimental cost, reducing the number of drug 

candidates fed into downstream validation efforts. Most current approaches to the prediction of 

drug response use baseline cell-line multi-omics data (e.g., mutation status, gene expression, copy 

number variation, etc.) and Quantitative Structure-Activity Relationships (QSAR) to map drug 

structure characteristics onto their biological phenotypes, but information describing drug-target 

interactions, especially at the protein level, remain underutilized because of the unique nature of 

associated data acquisition methods. For example, the recent DREAM challenge[1] hosted by 

the National Cancer Institute (NCI) for drug-response predictions saw the winning team utilize 

high throughput drug screening data along with baseline gene expression features[2] and 

achieved at most 80% accuracy in predicting cell line responses in a binary fashion. 

As one of the foundations of cellular information transfer, protein kinases are enzymes 

that have also shown promise as therapeutic targets, with initial success being found through the 

development of Imatinib (Gleevec). Drugs that inhibit kinases (“kinase inhibitors”) are now one 

of the fastest growing clinical drug classes (74 FDA approved as of 2022), but around 1/3rd of 
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all known kinases still have relatively unknown functions and few chemical tools exist to 

interrogate and expand this knowledge. To explore the potential of the kinome as a therapeutic 

target, recent work has focused on profiling the full breadth of targets for kinase inhibitors, 

especially since many inhibitors have significant off target effects as a result of targeting the 

conserved ATP-binding pocket. Continued improvements in high-throughput assays such as 

Kinobead/MS[3], KINOMEscan( © DiscoverX), and KiNativ[4] now enable measurement of a 

given inhibitor’s interactions across 250-500 kinases, providing a snapshot of its effect on the 

physiological kinome. We refer to this kinome-wide profiling data as the “kinome inhibition 

state” of a given inhibitor. This ability to generate drug-target interaction data on a large scale for 

a compound class is relatively unique, providing a novel means to leverage knowledge of off-

target effects for drug response prediction. 

The DepMap portal database[5] contains thorough multi-omic characterization of ~1000 

cancer cell lines of all types, and cell viability measurements for about ~1500 repurposed 

compounds, ~250 of which are kinase inhibitors. Using this data, we can connect kinase 

inhibitor phenotypes of cell viability to their “kinome inhibition states” and build models to 

predict the cellular responses to treatment with different kinase inhibitors. We have previously 

shown that these kinome states obtained through the Kinobeads assay for clinical inhibitors are 

predictive of cancer cell viability, and also validated these predictions experimentally[6]. 

However, the kinobeads assay is unique and requires dedicated lab personnel to run, restricting 

its use to relatively few labs. In contrast, the KINOMEscan assay is a popular and easily 

accessible commercial alternative that assays a panel of ~500 native and mutant kinases 

recombinantly. Large amounts of KINOMEscan data have been deposited online by various 

groups[7,8], including data for inhibitors developed against understudied kinases. These 

altogether account for four times as many inhibitors profiled (~800) when compared to the data 
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available from the kinobeads assay, representing a massive expansion of publicly available 

inhibitor state data. However, due to the uncharacterized nature of the inhibitors in the large 

KINOMEscan data set, only a small number of them (~40) have been tested in the DepMap 

screening database, compared to ~200 inhibitors from the kinobeads set.  

In this work, we describe a framework to create an integrated kinome inhibition state 

data set by combining kinobeads and KINOMEscan data, and then leverage the breadth of this 

data into predictive models. This combined set contains single-dose inhibitor profiling data for a 

total of ~800 kinases and kinase interacting proteins, spanning almost 1000 kinase inhibitors that 

target a diverse section of the overall kinome space. When leveraged within a machine learning 

framework, and supplemented with baseline gene expression data, we are able to predict the 

sensitivity of ~450 cancer cell lines in the DepMap screening dataset, with a reasonable R2 of 

~0.7. Using this model, we were able to generate sensitivity predictions for 1.2 million inhibitor-

cell line combinations, many of them targeted towards understudied kinases. We then 

experimentally validated these predictions in well characterized breast cancer cell lines seen by 

the model, as well as primary derived pancreatic cancer cell lines. We find reasonable agreement 

between predicted and observed outcomes in most compounds, seeing an expected drop in 

performance for understudied compounds and unique patient-derived cell lines. Together, these 

results show that there is a strong and predictive relationship between the state of the kinome 

(its “kinotype”) and downstream cellular phenotypes, while further suggesting potential 

opportunities for leveraging computational models in inhibitor therapy design. 
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RESULTS 

Creating an Integrated Set of Kinome Profiling Data Across a Wide Chemical Space 

Kinase inhibitors have been profiled using a number of assays, but for this study we have 

focused on a specific subset of kinase inhibitors that have been assayed using the kinobead/MS-

based method [9] or the KINOMEscan® (DiscoverX) method. These methods assess their 

specific kinase targets as well as the magnitude of inhibition of each kinase in response to 

different inhibitor concentrations[9]. We combined kinome profiling datasets from Klaeger et al 

(Kinobeads), LINCS[7] (KINOMEscan), and UNC[10] (KINOMEscan), filtering down to 

profiles measured only at 1uM.  For the small amount of overlap between datasets, the mean 

inhibition value was taken across drug-kinase combinations. Given that both assays measure the 

engagement of inhibitors to kinases, most of the proteins that appear in assay results are either 

known kinases or closely associated proteins. Specifically, kinase inhibitor profiles include 

measurements on all wild-type and phosphorylated kinases (~500), along with a set of associated 

proteins (~300). As such, we will  refer to this data as “kinase inhibition states”, and the profile 

of each individual drug as its “kinome inhibition state” (fig 1a). 

After integration, we were left with a final set of ~1000 compounds with corresponding 

information on their inhibitor-induced kinome states, describing changes in ~800 kinases and 

kinase interactors. We then performed a UMAP dimensionality reduction [11] on the dataset for 

visualization(fig 1b). The UMAP coordinates represent the aggregate effect of each inhibitor on 

the kinome, i.e. it is a representation of the uniqueness of its kinome inhibition state. Inhibitors 

that have similar effects on the kinome will have similar coordinates, while disparate inhibitors 

will have coordinates that are far apart. Using this, we can examine the diversity of kinome space 

targeting in our dataset, based on the origin of kinome profiling data. Our analysis shows that 
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integrating KINOMEscan data for 800 inhibitors vastly increases the kinome space targeted (fig 

1b), compared to just kinobeads alone. 
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Figure 3.1. Modeling Pipeline and Target Variable Overview. (a) Schematic of 

Kinobead/MS (upper) and KINOMEscan assay data integration into machine learning models 

predicting IC50 and AUC. (b) Visualization of UMAP dimensionality reduction on the 

combined kinome profiling data set, each point represents a single compound’s position in the 

target space, and colors representing the origin of kinome profiling data. Target Variables for 

Modeling: (c) Extraction of IC50 and AUC from a drug’s dose response curve in a given cell 

line. (d) Correlation and Scales of IC50 vs AUC values. Blue line indicates a linear model fit 

through the data.   

Connecting Inhibited Kinome States to Cancer Cell Line Sensitivities from the DepMap 

Repurposing Screen 

To connect these kinase inhibitors and their induced inhibition states with their 

corresponding phenotypes in cancer cell lines, we make use of the DepMap repurposing screen, 

which uses the PRISM assay[12] to run highly multiplexed cell viability assays. This dataset 

contains cell viability measurements for over 1500 drugs profiled in 450 cell lines. From within 

this data, we found ~200 drugs for which we also have corresponding profiling data as described 

above. 

The DepMap repurposing dataset provides cell viability measurements across multiple 

drug doses, but since our dataset of kinome states is restricted to single-dose measurements, we 

extracted two single summary statistics for describing cell line sensitivity to kinase inhibitors: 

Dose-response Area Under the Curve (AUC) and half-maximal Inhibitory Concentration (IC50). 

These properties are highly correlated with each other, having a Pearson’s correlation coefficient 

~ 0.9 (fig 1d). We extracted these properties from DepMap and matched them to our kinome 

states (fig 1c). The final integrated dataset has ~250 drugs tested across ~450 cell lines, 

representing ~70,000 inhibitor-cell line combinations representing nearly all cancer types. 
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Examining Bivariate Association of Features to Cell Line Sensitivities Provides a Means 

for Feature Selection 

The 450 cell lines tested in the DepMap dataset also have accompanying baseline 

RNAseq gene expression data, so we integrated the ~20,000 TPM values for each cell line into 

the kinome-state and cell line sensitivity dataset. This adds baseline cell line-specific gene 

expression information to our cell line agnostic inhibitor-induced kinome states. 

We examined bivariate associations of each of the ~21000 features against the outcome 

variables (dose response AUC and IC50) using Pearson's correlation coefficient, and ranked 

them from largest to smallest absolute value of association. We found that the most correlated 

feature is the drug-induced kinase inhibition state of TP53RK (fig 2a) with a correlation 

coefficient R ~0.3, while the most correlated baseline gene expression value was OGFRL1  with 

a correlation coefficient R ~ 0.05. Overall, inhibitor-induced kinome states showed stronger 

correlation with cell line sensitivity metrics (Fig 2c) despite there being 40x more baseline gene 

expression features than kinome states.  

After exploring the relationship between each feature and cell line sensitivity, we sought 

to use machine learning models  to combine these features to predict cell line sensitivities to 

kinase inhibitor treatment. Using the ranked list of feature associations, we utilized a feature 

selection scheme where we tested discrete increments of the ranked features included in each 

model to find the best performers (fig 2d). 
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Figure 3.2. Feature Selection by Bivariate Association with Cancer Cell Line Sensitivity. 

(a) Sample kinase inhibition state versus LogIC50 heatmap plots showing inhibition states with 

high (TP53RK), medium (PIK3R1) and low (MAPK14) correlation values. (b) Sample gene 

expression versus LogIC50 heatmap plots showing genes with high (OGFRL1), medium 

(B3GNTL1) and low (CKAP5) correlation values. (c) Ridgeline Plot showing distributions of 

correlations with drug IC50s and AUC values across the data types included in analysis. (d) Plots 

showing what order classes of features are selected from the ranked set of inhibition states and 

baseline gene expression values. The dotted lines indicate the discrete increments of feature rank 

cutoffs at which model performance was tested. Kinase inhibition states were the most 

informative feature within the first ~300, after which gene expression features started to show 

predictive value. 
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Machine Learning Models Can Predict Cancer Cell Line Sensitivity from a Combination 

of Kinome Inhibition States and Baseline Transcriptomics 

To build machine learning models to predict cancer cell line AUC and IC50 in response 

to treatment with kinase inhibitors, the highest ranked 100-5000 features were selected from the 

dataset linking drug-induced kinome states to cancer cell line responses (fig 2d).  

We compared three model types: LASSO regression, random forest and XGBoost. All 

models were trained with 10-fold cross validation to minimize overfitting on the training data, 

ensuring comparable accuracy of the model predictions on new kinase inhibitors and cell lines. 

For each feature number from 100-5000 we tuned sets of 30 hyperparameters for all model 

types (fig 3a). The R-squared value between predicted and actual value was utilized as the metric 

for model comparison. Overall, the 5000 feature XGBoost model performed the best with a 

cross-validation R-squared of ~0.7 (fig 3b). 

Since tree-based machine learning models like XGBoost offer in-built explainability, it is 

possible to interrogate and explain which features were most important in predicting the 

outcome of cell line sensitivities. These importances generated via shapley values[13] show 

kinase inhibition states to be overwhelmingly more important for predicting cell line responses 

when compared to baseline gene expression. Kinases involved in cell cycle and proliferation are 

overrepresented in the top 25 features (MAP2K, MEK2, CDKL5 etc.), but interestingly six 

kinase interactor proteins are included as well, suggesting that interactions between inhibitors 

and non-kinases (off-target effects) have important consequences for cell viability. Baseline gene 

expression features show much lower model importances, but 40% of the top 25 genes have 

known interactions with kinases whose inhibition states are used in the model. 
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Figure 3.3.  Development of Models to Predict Cancer Cell Line Sensitivities to Kinase 

Inhibitors by Integrating Single-Dose Kinome Profiling Data  (a) Model performance 

metrics (R-squared) for LASSO (orange dot), Random Forest (green triangle) and XGBoost 

(blue square). (b) Scatterplot of predicted IC50 values from the best-performing model vs actual 

IC50 values. The red line indicated a smooth fit through the data points. (c) Horizontal bar plot 

showing model importance of individual kinase inhibition states by shapley values. (d) 

Horizontal bar plot showing model importance of individual baseline gene expression by shapley 

values. 

 

Inclusion of Various Multi-Omics Data with Kinome Inhibition States and Gene 

Expression Did Not Improve Model Predictive Performance 

In addition to the baseline gene expression data, all the cell lines in the DepMap database 

have three other profiling data types available: copy number variation, gene essentiality from 

CRISPR/KO, and baseline proteomics. To see if inclusion of these data into models would 

improve predictions, we integrated these with the modeling dataset of kinome inhibition states 

and gene expression, and used identical modeling strategies described above to select correlated 

features, build, and evaluate LASSO, random forest, and XGBoost models (Supp. Fig 1). We 

found that adding in the various multi-omic data types did not significantly outperform the 

models limited to kinase inhibition states and baseline gene expression (R-squared of ~0.69 for 

predicting IC50).   
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Experimental Validation of Model Predictions were Successful in Characterized and 

Novel Cell Lines 

After fitting the model on 70,000 cell line-drug combinations, predictions were made on 

1.2 million unseen (not seen by the model) drug-cell line combinations. Approximately 90% of 

the untested inhibitors were associated with  KINOMEscan datasets. As an initial validation, we 

tested a subset of the predictions in well-characterized breast cancer cell lines (HER2 positive: 

SK-BR-3, BT-474 and two triple negative: SUM159, HCC1806). We analyzed the performance 

of the model on experimental data for unseen drug-cell line combinations, arriving at an R value 

~ 0.6 for all but one (SKBR3) breast cancer cell line(fig 4b). Notably, all the drugs tested had 

kinome profiling data from the Kinobeads assay. 

We then further validated the model by predicting inhibitor effects from collected 

RNAseq data in tumor (two) and stroma (one) derived cell lines from PDAC patients [14,15]. 

Importantly, these patient-derived cell lines were profiled for baseline gene expression in-house, 

and represent a novel and highly heterogeneous transcriptional landscape which the model has 

not seen before. Dose-response AUC predictions were made by the model for 58 drugs with 

kinome profiling data from the Kinobeads assay and 18 drugs with kinome profiling data from 

the KINOMEscan assay. The model predicted AUC was compared to experimentally generated 

AUC, revealing an average R ~ 0.5 for drugs with kinome profiling data from the Kinobeads 

assay tested in patient stroma-derived cell lines (fig 4c), and R ~ 0.4 for drugs with kinome 

profiling data from the KINOMEscan assay. On the other hand, in patient tumor-derived cell 

lines, drugs from kinobeads had model accuracy R ~0.49, and drugs from KINOMEscan had R 

~ 0.3 (fig. 4c). 
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Figure 3.4.  Experimental Validation of Model in Breast Cancer Cell and Patient-Derived 

PDAC Cell Lines (a)  Visualization of the space of compound (Y-axis) and cell line (X-axis) 

combinations that have been tested (white) and not tested (black) with colors denoting the origin 

of the drug kinome profiling data as Kinobeads (Pink) and KINOMEscan (blue). (b) Scatter plot 

showing relationship between AUC’s predicted by model and experimentally generated AUC’s 

for drugs not yet tested by PRISM in Breast Cancer Cell Lines (c) Scatter plot showing 

relationship between AUC’s predicted by model and experimentally generated AUC’s for drugs 

from Kinobeads and KINOMEscan tested in primary-tumor and stroma PDAC cell lines. 
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DISCUSSION 

Kinase inhibitors are one of the fastest growing classes of targeted cancer therapies, but 

only a small fraction of the druggable kinome has been explored to date[16]. We have previously 

used data describing kinobeads-derived kinome inhibition states to predict cell viability in cancer 

cell lines in response to clinical kinase inhibitors and shown high prediction accuracy. However, 

public databases of kinome inhibition states derived through the more accessible KINOMEscan 

assay cover a large number of uncharacterized compounds and vastly widen the kinome space 

that can be targeted.  In this work, we created a large integrated set of inhibitor-altered kinome 

states across the kinobeads and KINOMEscan assays, representing a broad space of kinome 

targets and including a host of tool compounds targeting understudied kinases. We linked these 

kinome inhibition states to cancer cell line responses to kinase inhibitors (dose response AUC 

and IC50). We then built machine learning models that integrate these kinome states with cell 

line baseline gene expression values to predict cell line response to kinase inhibitors. Finally, we 

predicted cell line sensitivity to previously untested kinase inhibitors in characterized breast 

cancer and patient derived PDAC cell lines and validated them experimentally.  

Prediction of therapy response for cancer cell lines has been demonstrated through 

various methods, mostly utilizing chemical structure information, baseline gene expression and 

gene mutation status. Drug-target interaction data is relatively under-utilized for phenotype 

prediction, but offers opportunities for biological hypothesis building, especially for compounds 

with uncharacterized mechanisms of action. Kinome profiling data provides an exciting 

opportunity to use a wide array of functionally relevant drug-target interactions and is almost 

unique (except for GPCR inhibitors and HDAC inhibitors) in terms of ability to assay potential 

off target interactions. While we have previously shown that kinome profiling data generated 

from the kinobeads assay is informative for cell viability prediction, KINOMEscan data is much 
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more easily accessible, available publicly for uncharacterized compounds and easier to generate. 

In addition, it vastly broadens the kinome space capable of being targeted and increases the 

number of inhibitors that can be virtually screened as potential therapeutics.     

It is important to note that this model linking kinome inhibition states to cell line 

response is generalizable to any human cancer sample, provided the sample has baseline 

transcriptomic data available. We have shown in this work and previously that the model can 

reasonably extrapolate to kinase inhibitors that have not been tested before in well-characterized 

cell lines. Significantly, in this work we have extended the scope of the model by using novel 

RNAseq data from patient derived PDAC cell lines, and testing kinase inhibitors against both 

tumor and stroma cell lines and achieving reasonable prediction accuracy.  

Using tree-based models like gradient boosting lends us the ability to explain to some 

degree which features most affected cell viability. Shapley importance values generated from the 

best-performing model show that the inhibition states of kinases had overwhelmingly more 

predictive power compared to baseline gene expression values, with FLT3 as the most important 

feature. FLT3 mutations are observed in 30% of acute myeloid leukemia (AML) patients, and 

various FLT3 inhibitors are commonly prescribed for treatment[17]. However, the study dataset 

contains a majority of cell lines from non-small cell lung cancer (NSCLC), and FLT3 inhibitors 

have recently shown promise in preclinical studies by abrogating DNA damage[18]. Although 

the baseline gene expression features had considerably lower predictive power in the model, it is 

important to note that they provided crucial cell line specific context to the model. Interestingly, 

40% of all the top 50 gene expression features were annotated as known kinase interactors in the 

STRING database. An additional strength of modeling cancer response from kinase-drug 

interactions is the generation of new hypotheses for understudied kinases. For example, the 

understudied[19] “Dark” kinases PIP4K2C and CSNK2A2 appear in the top 25 features of the 
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best-performing model, suggesting possible functional roles in cancer cell viability. Interestingly, 

PIP4K2C expression has been associated with outcomes in Acute Myeloid Leukemia (AML)[20], 

while CSNK2A2 has been associated significantly with prognoses of 14 different cancer 

types[21]. 

There are still many limitations to the results reported in this study. The creation of a 

combined kinome profiling dataset involves gluing together results from different assay types. 

Although the assays produce the same output (ratio of kinase in treatment sample to kinase in 

control), there may be numerous methodological artifacts that add noise to the data. We have 

attempted to address this by analyzing model performance on each assay type individually, and 

we can see that responses to inhibitors with data originating from KINOMEscan are noisier and 

more difficult to predict than inhibitors with data from kinobeads. This discrepancy is potentially 

due to the imbalance in training data availability for the KINOMEscan inhibitors, with only 15 

inhibitors having annotated cell line sensitivity data available. In the future, as more cell line 

sensitivity testing is performed for compounds in the KINOMEscan dataset, model 

performance for this assay may improve. Additionally, model performance also decreases when 

shifting from gene expression data from well-characterized cancer cell lines to that of novel 

patient-derived cell lines. This is potentially due to the innate and significant heterogeneity that 

exists in such samples and because the models have been trained on baseline transcriptomics set 

of the given ~450 cell lines. 

It should be possible to extend these models to incorporate multiple kinase inhibitors in 

combination. This is significant, given the frequency of resistance to targeted cancer 

monotherapies [22] and the potential to escape kinome reprogramming through multi-inhibitor 

combinations[23]. Thus, another area of future work is to combine the kinome inhibition states 

of multiple inhibitors to gain an understanding of their dual effect on the kinome, connecting 
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them to biological phenotypes that arise in response to inhibitor combinations to eventually 

build models and predict effective kinome-targeting combination therapies.      

While targeted therapies such as kinase inhibitors have had significant clinical impact, 

much work remains to better understand how their modulation of the kinome leads to both 

desirable and undesirable phenotypic effects. The results presented here provide one approach 

where knowledge of the inhibition state of the kinome can be linked to downstream phenotypes 

through predictive models, greatly expanding our ability to predict the effects of existing targeted 

therapies as well as facilitating the design of novel ones. 
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METHODS 

Data Sources 

The primary data sources we used can be split into two categories: the integrated kinome 

profiling data set and the cancer cell line set. The following were downloaded from the 

respective supplementary materials to create the integrated set of kinome profiling data: 

   

1. Kinome profiling data from the kinobeads assay 

a. Klaeger et. al 2017 

2. Kinome profiling data from KINOMEscan assay 

a. LINCS: kinome profiling datasets for individual compounds downloaded 

programmatically from http://lincs.hms.harvard.edu/db/datasets/ [7] 

b. Kinome profiling data for the PKIS drug set was downloaded from the 

supplementary data of 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181585 [10] 

c. Kinome profiling data for the KCGS drug set was downloaded from the 

supplementary data of https://www.mdpi.com/1422-0067/22/2/566 [8] and 

from internal data provided by SGC-UNC. 
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The following were downloaded from the DepMap portal 

(https://depmap.org/portal/download/all/) to create the set of cancer cell line sensitivities and 

their gene expression characteristics: 

1. DepMap secondary repurposing screen (“secondary-screen-dose-response-curve-

parameters.csv”) 

2. CCLE gene expression set (“CCLE_expression.csv”) 

The high-throughput screening data gathered in PDAC patient-derived cell lines was 

gathered from Lipner et al. [14] with methods as described in Berginski et al 2021 [15].  

Data Preprocessing 

The scripts implementing these descriptions are all available through github. 

Klaeger et al. Kinobead Kinase Inhibition Profiles: As previously described [6], we read the 

values from the supplemental data table into R and produced a filtered list of kinase and kinase 

interactor relative intensity values. We imputed missing values with the default “no interaction” 

value of 1, and truncated likely outlier values to the 99.99 percentile (3.43). 

KINOMEscan Inhibition Profiles: We read in the three datasets mentioned above into R and 

concatenated them into a single combined data set. All the individual data sets contain identical 

protein lists because of the same assay type. Values are reported as “Percent Control”, a ratio of 

protein pulled down in experimental condition (with inhibitor) vs control condition (without 

inhibitor). These were divided by 100 to convert the scale to 0-1 to match the Kinobeads relative 

intensity data.     
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Creating the Combined Kinome Inhibition Profiling Set: We took the kinobeads dataset and the 

KINOMEscan dataset and concatenated them into one large set containing inhibitor-kinase 

interaction states for ~800 total kinases and kinase interactors. We left out assays that included 

recombinantly mutated kinases, but left those with naturally occurring post-translational 

modifications. The vast majority (99.95%) of the inhibitor-kinase pairs represented was unique 

for either assay type, but for the 0.05% inhibitor-kinase pairs, we took the mean value of the 

measurements across the two assay types. Additionally, any missing values were imputed with 

the default “no interaction” value of 1. In the end we were left with kinome inhibition states for 

~1000 kinase inhibitors.  

Dataset of Cancer Cell Line Sensitivity to Drugs from DepMap: The DepMap repurposing 

dataset contains cell viability measurements across multiple doses, but since our dataset of 

kinome states is restricted to single-dose measurements, we extracted single summary statistics 

of cell line sensitivity to kinase inhibitors: Dose-response Area Under the Curve (AUC) and half-

maximal Inhibitory Concentration (IC50). We extracted these by reading in the “secondary-

screen-dose-response-curve-parameters'' dataset into R, which contains curve parameters for a 

log-logisitic curve fit to the cell viability dose response curve and filtered it down to cell line 

name, IC50, AUC and other associated metadata.  

Matching of Kinase Inhibitors between Profiling Dataset and Cell-Line Sensitivity Dataset: The 

compound names from each dataset were read into R, and the package Webchem [24] was used 

to retrieve PubChem compound IDs. The two sets of compound names were then matched 

based on these reference IDs. There were 252 matches between the two sets, forming a final set 

of ~70,000 inhibitor-cell line combinations. 
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Baseline Gene Expression: As described before[6] the RNAseq data provided in the 

“CCLE_expression.csv” file needed no modifications while preprocessing. Our only 

modification was to add identifiers to each gene label (“exp_”), to ensure that kinome inhibition 

data and expression data related to the same gene weren’t accidentally combined. 

  String: The STRING database[25] was processed as described previously[6] to annotate 

kinases and kinase interacting genes. 

Modeling Techniques 

To assess our models we used a random 10-fold cross validation strategy. The number of 

features was varied as specified by the feature selection scheme described in the results section. 

We compared the performance of three model types using this strategy: LASSO (Least Absolute 

Shrinkage and Selection Operator) regression using the glmnet engine[26], random forest using 

the ranger engine[27] and gradient boosting using the XGBoost (eXtreme Gradient Boosting) 

engine[28]. Model performance was assessed by the R-squared value between predicted and 

actual outcome within the cross validation scheme. For each model type, we tuned sets of 30 

hyperparameters to find the best possible performer as follows: 

1. LASSO 

a. Penalty (1E-10 - 0.9) 

2. Random Forest 

a. Trees (100 - 2000) 

3. XGBoost 

a. Trees (100 - 1000) 

b. Tree Depth (4 - 30) 

After final model selection, we fit the model on the entire dataset and then made 

predictions on inhibitor-cell line pairs not found in the original DepMap screening data.  
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Compound Testing 

BT-474, HCC1806, SUM-159 and SKBR-3 cells were assayed as described previously [6]. 

Briefly, cells were grown in ATCC recommended media and seeded at 4000, 2000, 4000 and 500 

cells per well respectively. 24 hours after seeding, cells were treated with inhibitors at 30 μM, 3 

μM, 1 μM, 300 nM, 100 nM, 30 nM, 10 nM, and 3 nM, along with the appropropriate DMSO 

controls. seeded at, in white flat-bottom 96-well plates (Corning). Seventy-two hours post-

treatment, cells were lysed with CellTiter-Glo (Promega) and luminescence was read using the 

PHERAstar FS microplate reader (BMG Labtech) and gain adjustments were conducted for 

each cell line. Data were normalized row-wise to the DMSO-only (0.1% on cells) control 

samples on each plate to calculate relative viability. Quality checks were performed to look at the 

data distribution and the presence of spatial bias on a plate. A quality control metric of <120% 

of DMSO was applied to all rows analyzed. 

The functions “ComputeAUC” and “ComputeIC50” from the R package dr4pl [29] was 

used to fit a four-parameter log-logistic curve to the cell viability data, and extract AUC and 

IC50 values from the 9-point cell viability curves.  

Software Availability 

All of the code written to support this paper is available through github 

(https://github.com/gomezlab/kinomescan_viability_prediction) along with a walkthrough 

explaining where to find the code relevant to each part of the paper. 
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Supplementary Figure 3.1. Modeling Results from Integrating Multi-Omics Data with 

Kinome Inhibition States and Baseline Gene Expression to Predict Cell Line Sensitivity. 

(a) Ridgeline Plot showing distributions of correlations with drug IC50s and AUC values across 

the data types included in analysis. (b) Plots showing what order classes of features are selected 

from the ranked set of inhibition states and baseline gene expression values. The dotted lines 

indicate the discrete increments of feature rank cutoffs at which model performance was tested. 

(c)  Model performance metrics (R-squared) for LASSO (orange dot), Random Forest (green 

triangle) and XGBoost (blue square). 
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CHAPTER 4: COMBINED KINOME INHIBITION STATES ARE PREDICTIVE 
OF CANCER CELL LINE SENSITIVITY TO KINASE INHIBITOR 

COMBINATION THERAPIES   
 
 
INTRODUCTION 

Protein kinases, which serve as the primary conduits for information transfer within 

cells, are often implicated as key drivers in cancer development and have thus become a 

cornerstone in current targeted therapies[1]. The rapid expansion of kinase inhibitor therapies as 

an oncology drug class is exemplified by the FDA's approval of nearly 60 such therapies over the 

past 20 years[2]. Despite their initial promise, kinase-targeting monotherapies frequently give rise 

to resistance[3], in part due to the dynamic nature of the kinase network, i.e. the “kinome,” 

which has been shown to reprogram and respond to the inhibition of single kinases by 

upregulating expression of partner pathways[4–6]. This necessitates the development of novel 

strategies to effectively target the kinome and harness the vast array of potential drug targets it 

offers. 

One emerging strategy to counteract the dynamic acquisition of kinase inhibitor 

resistance involves the design of combination therapies, which perturb multiple targets with two 

or more drugs. These targets may be either known compensatory pathway partners, referred to 

as "horizontal pathway inhibition," or multiple targets within the same pathway, known as 

"vertical pathway inhibition"[7]. This approach has recently gained traction with the FDA 

approval of the combination of trametinib and dabrafenib for treating advanced melanoma[8]. 

This combination therapy "vertically" targets both BRAF and MEK within the RAF-MEK-ERK 

(MAPK) pathway, demonstrating the potential effectiveness of this strategy. However, this 
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method of empirical design of combination therapies is not feasible for less characterized kinase 

pathways, and the sheer number of possible combinations of potential kinase targets (2~500) 

prevents comprehensive screening or drug design.  

To circumvent this issue, computational screening offers an appealing alternative, 

enabling the prediction of effective drug combinations in-silico prior to testing a reduced pool of 

potential combinations in-vitro. This method not only potentially streamlines the drug 

development process but, when combined with patient-specific genomic profiling, can also 

enable personalized drug combination selection to potentially achieve resistance-proof responses 

in patients. 

In recent years, a variety of computational approaches have been developed to predict 

combination therapy responses for cancer drug screening [9,10]. The majority of these methods 

primarily rely on drug structure characteristics and cancer-specific baseline genomic profiling to 

predict effective drug combinations, spurred by advancements in the high-throughput 

acquisition of these data types. For example, a high-dimensional tensor-based modeling strategy 

used similar data and achieved impressive accuracy (Overall R2 ~ 0.8) in predicting response to 

combination therapies, validated experimentally[11]. This approach and others employ intricate 

neural network architectures that, while capable of producing high performing models, can be 

challenging to interpret, posing a barrier to the broader adoption and understanding of their 

underlying mechanisms. Tree-based machine learning models on the other hand, although 

simpler and sometimes less powerful, are generally considered interpretable depending on the 

type of data fed to them[12]. Notably, drug-protein interactions, which are intuitively central to 

the process of phenotype reversal, have been relatively underexplored in these computational 

approaches. In part, the minimal amount of drug-target information leveraged in current 

response prediction efforts is because of the sheer amount of data generated by genomics and 
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molecular fingerprinting, generating thousands of features for each measurement, while drug 

target data has been generally sparse with only a few annotated targets per drug. However, recent 

advances in technology to profile the interactions of clinical drugs with all the members of the 

kinome represent an unprecedented ability to measure drug-target information across ~500 

proteins simultaneously in a quantitative manner[13,14]. The breadth, density, and ease of 

acquisition of this data, often measured at multiple dose points, is ideal for integration into 

machine learning models that can leverage diverse data types for drug response prediction.  

Specifically, recent advances in proteomics techniques have facilitated the large-scale 

characterization of drug-kinase interactions, providing valuable information on the extent to 

which the entire kinome is inhibited by specific drugs or drug combinations. A landmark paper 

in 2017 used a mass spectrometry-based assay that used promiscuous kinase-binding compounds 

immobilized on beads to measure the binding competition between any given inhibitor and any 

given kinase (henceforth called the “kinobeads” assay)[15]. Using this assay, the kinome-wide 

binding profiles for ~230 clinical kinase inhibitors at eight doses each were elucidated using 

cancer cell lysates, forming the largest in-cell drug-target binding database publicly available at 

this time. The data generated from these assays allow interrogation of how clinical and 

investigational drugs interact with the entire kinome on an unprecedented scale. By analyzing the 

degree of inhibition of all kinases simultaneously for a given inhibitor, we can treat this as 

characterizing the degree of departure from the “baseline kinome state”, thus moving through 

drug-induced alteration of multiple kinase activities to a new “kinome inhibition state”. Given 

the degree to which modulation of the kinome alters cellular state and downstream behavior, 

these baseline kinome states and kinome inhibition states can be directly connected to various 

measured cellular phenotypes. We have recently demonstrated this idea by showing that kinome 

inhibition state is significantly predictive of cancer cell responses to kinase inhibitor 
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monotherapies when integrated with cancer-specific information, such as baseline 

transcriptomics, using tree-based machine learning models[16].  

In this work, we show that by combining the inhibition states of two kinase inhibitors, 

we can generate a hypothetical “combined” inhibition state for an untested inhibitor 

combination. In this manner, we can rationally use all combinatorial kinome inhibition states to 

sample all possible kinase target combinations, hypothetically including all pathway partners. By 

integrating these inhibition states with cancer-specific baseline transcriptomics, we demonstrate 

that the combined inhibition state can predict the sensitivity of cancer cell lines to inhibitor 

combination treatments from the NCI-ALMANAC dataset using interpretable machine learning 

models. We further validate these models experimentally by examining novel inhibitor 

combinations in a PDX-derived triple-negative breast cancer (TNBC) cell line. By focusing on 

dual-inhibitor drug-kinase interactions combined with cancer-specific baseline genomic profiling, 

we can enhance computation combination drug screening pipelines with combinatorial kinase 

targeting. Furthermore, this approach lays the foundation for the rational design and a priori 

prediction of combination kinase inhibitor treatments for patients with the potential to 

ultimately reduce single kinase inhibitor resistance acquisition by prior rational targeting of 

partner pathways and associated kinases. 
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RESULTS 

Creating a Set of Combined Kinome Inhibition States Representing Current and 

Potential Kinase Inhibitor Combination Therapies 

  In this work, we have focused on a specific set of 200 kinase inhibitors characterized 

using the kinobeads assay[15]. These inhibitors were profiled in-cell for their interactions with 

~500 kinases and kinase-interacting proteins, across eight doses. From this data, as described 

previously (insert citation), we extracted monotherapy “kinome inhibition states”, denoting the 

degree to which they inhibit each kinase in the kinome at eight doses on a scale of 0-1 (0 is 

complete inhibition and 1 is no inhibition of a given kinase).  

We next tested different methods to approximate the kinome inhibition state of a kinase 

inhibitor combination. Intuitively, this can be thought of as simply superimposing two individual 

monotherapy inhibition states, but for the few cases where different inhibitors target the same 

kinase, we have to find ways to accurately reflect the resulting effect on the kinome. Here,  we 

tested combining monotherapy kinome inhibition state vectors through addition, multiplication, 

truncated multiplication (excluding kinase inhibition values >1). All three methods were 

compared for downstream model performance.  

After combining the individual inhibition states, we were left with a dataset describing all 

possible pairwise combinations of ~220 kinase inhibitors. These ~45,000 combinations 

represent the kinome inhibition states of existing clinical therapies (example), therapies currently 

in clinical trials (example), as well as potential therapies. Together, they interrogate a search space 

that includes nearly every known kinase on the phylogenetic tree (Fig S1). 
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Connecting Inhibited Kinome States with Cancer Cell Line Combination Sensitivities 

Next, we linked the data set describing kinase inhibitor combinations to their cell 

sensitivity phenotypes in the large-scale ALMANAC drug combination screen. The ALMANAC 

screen contains cell sensitivity data for 53 kinase inhibitor combinations, over ~200 unique dose 

combinations for 45 cell lines across 9 cancer types. Additionally, previous high-throughput 

combination screens conducted in our lab in breast cancer offered data for 56 inhibitor 

combinations in four cell lines. Ideally, we would like exact matches between the dose at which 

kinome inhibition state is profiled and the dose at which cell sensitivity was measured. However, 

there are very few exact matches between the datasets. To overcome this, we found the nearest 

dose (at maximum differing by 1uM) at which kinome inhibition was profiled for each cell 

sensitivity measurement and connected the two datasets using these dose matches.  

Additionally, we added cell line specific information to the dataset to complement the 

drug-specific kinome inhibition states. The CCLE database contains baseline transcriptomics 

data for ~1500 cancer cell lines, and almost all of the cell lines included in our data set were 

represented. Using this, we further added baseline gene expression into the dataset, now 

containing kinase inhibitor combinations, their inhibition state of the kinome, the cell line 

sensitivity to their treatment, as well as that cell line’s baseline gene expression. In this way, the 

dataset connects the kinome inhibition states of inhibitor combinations to their cell sensitivity 

phenotypes.  

The collected dataset represents a total of eight major cancer types, with the majority 

having ~7 cell lines represented each, while breast cancer had the most representation (11 cell 

lines). To ensure that the machine learning model downstream could find cancer-specific 

linkages between the kinome and cell sensitivity, we split the dataset into eight individual cancer 

type datasets, and conducted all modeling on each data split in parallel. 
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Figure 4.1. Kinome inhibition State Combination Modeling and Data Overview. (a) 

Schematic of modeling pipeline. (b) Heatmap showing the inhibition state of individual kinase 

inhibitors (row 1 and 2), and the hypothetical “combined” inhibition state for the two inhibitors 

(row 3) (c) Bar plot showing number of cell lines tested per cancer type in training data set (d) 

Bar plot showing number of unique combinations tested per cell line for the breast cancer subset 

of the training data set (e) Ridge plots showing cell viability (x-axis) variation for a random 

subset of different kinase inhibitor combinations (y-axis) in the NCI-ALMANAC data for breast 

cancer cell lines. Different breast cancer subtypes are represented with differing colors.   
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Elastic-Net Feature Selection Reveals Kinome Inhibition States to be Most Informative 

In our collected dataset, kinome inhibition states and baseline gene expression together 

represent ~20,000 variables or “features” that could affect the phenotype of cell sensitivity to 

kinase inhibitors. It is both practically prohibitive and ineffective to build models using all 

available features, and so keeping in mind computational efficiency we sought to filter down the 

dataset to include only the most informative features.  To accomplish this “feature selection”, we 

built our machine learning pipeline starting with an elastic-net regression[17] model built against 

the outcome of cell sensitivity. This generated coefficients for each feature, with the absolute 

value of the feature coefficient directly proportional to its predictive value for the outcome. We 

ensured non-informative features were not included in modeling by only considering features 

with non-zero coefficients. We fit the model on the entire dataset to visualize a snapshot of the 

feature coefficients globally. This revealed overwhelmingly larger coefficients for kinome 

inhibition states compared to baseline gene expression (Fig 2a), thus indicating that kinome 

inhibition states were globally more informative for cell sensitivity prediction compared to 

baseline gene expression.  

For downstream model building, the data set was split into a training and testing set five 

times (five-fold cross validation). For the training set data to not have any influence on the test 

set (to prevent data leakage), the elastic net model is fit on only the training data, and features are 

selected within each fold. Parameters for the elastic net model and hyperparameters for the 

tested model types were also tuned this way.  
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Figure 4.2. Feature Selection using an Elastic-net Regression Model against Cancer Cell 

Line Sensitivity. (a) Ridge plot showing the distribution of LASSO coefficient sizes as a metric 

for feature importance, for each feature type (b) Horizontal bar plot showing kinases with the 

largest elastic-net  coefficient values, coloured by whether they are defined as “understudied” 

(Dark) or “well-characterized” (Light).  

 

Machine Learning Models Can Predict Cancer Cell Line Sensitivity to Combination 

Therapies by Integrating Kinome Inhibition States and Baseline Transcriptomics 

After data set preparation and feature selection, we built machine learning models that 

can predict cell sensitivity to kinase inhibitor combinations. For each cancer type, three machine 

learning model types were tested: random forest, boosted trees (xgboost) and deep neural 

networks. Xgboost performed the best for all cancer types, with type-specific performance 

largely dependent on abundance of data in the training set (Fig 3b). The most abundant cancer 

type (breast) had the best performing model with an R-squared score of 0.93 (Fig 3b) while the 
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lowest performing model was prostate cancer with R-squared = 0.73. Given our previous lab 

experience with breast cancer, we chose the breast cancer model for downstream experiments 

and validation. 

Additionally, since the best-performing model was tree-based gradient boosting, we were 

able to further analyze the model using computed feature importance to find the most 

informative features in the data set based on the feature importance metric. Similar to the feature 

selection output, we saw much higher feature importance scores overall for kinome inhibition 

states when compared to baseline gene expression, and several kinases implicated in breast 

cancer dysfunction had high importance scores, such as MAP2K1/2 and EGFR(Fig. 3c).   
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Figure 4.3.  Development of Models to Predict Cancer Cell Line Sensitivities to Kinase 

Inhibitor Combination Therapies from Kinome Inhibition States (a) Model performance 

metrics (R-squared) for Random Forest (dots) and XGBoost (triangles). (b) Scatter Plot of 

predicted sensitivity values from the best-performing model vs actual sensitivity values. The red 

line indicates a smooth fit through the data points. (c) Horizontal bar plot showing model 

importance of individual kinase inhibition states by importance values. (d) Horizontal bar plot 

showing model importance of individual baseline gene expression by importance values. 

 

Experimental Validation of Model Predictions in a PDX-Derived Triple Negative Breast 

Cancer Cell Line was Successful  

We demonstrated that machine learning models using the kinome inhibition states of 

combination therapies along with cell-specific baseline gene expression could robustly predict 

cell sensitivity in multiple cancer types. However, to see if these predictive models could extend 

to real-world experiments, we experimentally validated 35 kinase inhibitor combinations in a 

PDX-tumor derived cell line(Fig 4A).  

High-throughput cell line drug screens have been widely documented to suffer from a 

lack of reproducibility and poor translation to more complex samples like patient tumours. We 

sought to test whether our model of cell sensitivity in breast cancer, trained on 11 well-

characterized immortalized cell lines, could effectively predict cell sensitivity in a PDX (Patient-

Derived Xenograft) derived cell line. We chose the WHIM12 PDX-derived cell line, which was 

generated from a highly chemo-resistant TNBC tumor [18]. Previous experiments in the lab had 

conducted a drug combination screen in the WHIM12 cell line, out of which 35 kinase inhibitors 

were tested in combination with trametinib. Complementary baseline gene expression data was 

also generated through RNAseq. Using these in-house data, we were able to input the unseen 
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WHIM12 gene expression into the trained model, and predict the cell sensitivity outcomes of 

the conducted drug combination screen. We achieved robust prediction accuracy (Global R-

squared = 0.74 / RMSE = 0.14) in predicting exact cell viability in response to treatment with 35 

kinase inhibitor combinations, across 64 dose combinations (Fig 4c, d). 

Model Predictions Reveal Known Synergy in trametinib/omipalisib Combination 

The model predictions in the WHIM12 cell line were further interrogated for potential 

synergy. We generated synergy scores for all 35 combinations at each of the 64 dose points using 

the R package SynergyFinder[19] based on four different metrics: Zero-Interaction Potency[10] 

(ZIP), Bliss Independence[20], Highest Single-Agent (HSA), and Loewe Additivity[21].  

Additionally, we generated similar synergy scores using the actual experimental data generated 

for validation as a comparison. We found a high degree of similarity (Global R-squared ~ 0.94/ 

RMSE ~ 0.5) between predicted and actual synergy, with trametinib + omipalisib as our most 

synergistic predicted combination, with a ZIP score of ~8 at certain dose combinations(Fig 4e, 

f). This is significant as the model predictions were in a TNBC PDX-derived line, and the 

trametinib/omipalisib combination represents the popular strategy of simultaneously targeting 

the MAPK and PI3K pathways[22].    
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Figure 4.4. Experimental Validation of Model through a Trametinib Combination 

Screen in the WHIM12 Patient-Derived TNBC Cell Line. (a) Schematic showing 

experimental validation pipeline for the WHIM12 PDX-derived cell line. (b) Kinome 

phylogenetic map showing diversity of kinome space targeted (red = inhibited by a validated 

kinase inhibitor combination). (c) Grid of scatter plots showing accuracy of predicted vs 

experimental sensitivity to the top 9 tested combinations. For all scatter plots, the dashed line 

indicates where perfect predictions would lie and the red line shows a linear fit through the data. 

Quantitative accuracy is represented by the R-squared score. (d) Scatter plot showing the global 

accuracy of model predicted sensitivity compared to experimental sensitivity. (e) Grid of scatter 

plots showing accuracy of model predicted synergy scores compared to experimentally measured 

synergy scores across four metric types (HSA, Loewe, ZIP, Bliss). (f) Grid of heatmap plots 

showing comparison of predicted vs experimentally measured sensitivity and synergy for the 

highly synergistic Trametinib / Omipalisib combination.  
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DISCUSSION 

Kinase inhibitors are one of the fastest growing drug classes for cancer therapy, with 

~62 FDA approved in total against neoplasms[2]. With 500 potential druggable targets, there is 

significant interest in decoding the spectrum of kinases targeted by current inhibitors, and 

streamlining the kinase inhibitor screening process. We have previously introduced[16,23,24] the 

idea that the full spectrum of a given inhibitor’s effect on the kinome as measured by recent 

advances in kinobead-competition/MS technology[15] can be represented as a “kinome 

inhibition state”, i.e. a vector representing the effect of a given inhibitor on the kinome as a 

whole.  

In this work, we have extended this idea to represent the kinome inhibition state of a 

combination of inhibitors, using a simple multiplicative probability model to “combine” the 

inhibition states of two given kinase inhibitors. By generating these “combined” inhibition 

states, we can vastly expand the search space targeted by inhibitor monotherapies, sampling all 

possible combinations of currently available therapies. To accomplish this, we used publicly 

available drug-kinome interaction data to generate snapshots of the combined effect of a 

combination therapy on the protein kinome. We then linked these kinome inhibition states of 

inhibitor combinations to cancer cell sensitivity phenotypes to combination treatment, creating a 

framework for predicting the efficacy of combination therapies in different cancer types.  

We fit tree-based machine learning models as well as neural networks on this linked data 

set to robustly predict precise cancer cell line sensitivity and synergy for untested kinase inhibitor 

combinations therapies, and validate those predictions in complex patient derived samples. 

gradient-boosted tree models were highly accurate across cancer types (R-squared 0.75-0.93), 

comparable to two recent neural-network driven attempts to predict cell line response to drug 

combinations[9,11]. We chose to move forward with the highest performing breast cancer 
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model for further validation. We chose to validate our model predictions in the PDX-dervied 

WHIM12 line, reasoning that PDX-derived cell lines retain many of the molecular and genetic 

features of the xenografted original tumors and offer a closer representation of the disease state 

compared to traditional cell lines. We were able to show that the models performed robustly on 

novel baseline gene expression data (Global Accurcacy R-squared ~0.74) , representing its ability 

to extend to complex and clinical-adjacent samples compared to well-characterized cell line data. 

One of the strengths of tree-based models compared to deep neural networks is that 

they are generally considered to be interpretable through feature importance computation[12,25]. 

Using this, we were able to investigate the “black box” and query which specific kinase 

inhibition states and baseline genes were most predictive of cell sensitivity. We found that for 

the best performing breast cancer model, the inhibition of the kinases MAP2K1/2 were the 

most informative by far. This is intuitive considering the most abundant kinase inhibitor in the 

dataset is the allosteric MEK inhibitor trametinib, but it must be noted that MEK inhibition is 

always only just one half of the kinome targeting in the combination. There has been increasing 

clinical interest recently in targeting the PI3K and MAPK pathways[22], and our lab has shown 

before that MEK1/2 inhibition in TNBC by trametinib induces widespread transcriptional 

adaptation, and that there is potential for clinical efficacy for complementary kinome targeting 

with trametinib[26]. Since our model’s sensitivity predictions can effectively simultaneously 

predict synergy, our top synergy prediction for breast cancer according to the ZIP metric was 

trametinib and omipalisib, which we were able to  validate experimentally in the WHIM12 line. 

This indicates that from the training breast cancer screening data, the model was able to learn 

that targeting the complementary PI3K and MAPK pathways is effective and synergistic in 

TNBC cell lines.  
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Interestingly, the predicted high-synergy combination of trametinib/omipalisib was 

recently in phase I clinical trials for advanced solid tumors but failed due to patient intolerability 

[27]. This highlights some limitations of our modeling approach. Ideally, kinome inhibition state 

would be one of many different drug modalities included for response prediction, and we plan 

to further expand these models in the future by considering toxicity, drug structure and cancer-

describing multi-omic data types not limited to baseline gene expression. Additionally, in this 

proof-of-concept study we utilized a simple multiplicative probability model to generate the 

“combined” inhibition state of two inhibitors on the kinome, by assuming that the inhibition of 

a given kinase is mutually exclusive from that of other kinases. We know that kinases function 

physiologically as part of complex signaling networks, and their inhibition may have downstream 

effects on other kinases and signaling pathways. To address this limitation, future models will 

incorporate more biologically representative schemes to hypothesize combined kinome 

inhibition states. 

In summary, through this work we demonstrate the development of a framework for 

predicting the efficacy of combination therapies in different cancer types using just kinome-drug 

interactions and baseline gene expression. We use a multiplicative probability model to generate 

the "kinome inhibition state" of a combination of kinase inhibitors and link these states to 

cancer cell sensitivity phenotypes. First, we were able to show that a given combination therapy’s 

cancer-agnostic interaction with the kinome was far more informative than baseline genomics in 

predicting downstream response. This is intuitive fundamentally, as drug-protein interactions are 

the primary means of drug effect on physiology, but this type of data is still underutilized in 

computational screening approaches. We then used machine learning models to predict cell line 

sensitivity and synergy for untested kinase inhibitor combination therapies and validate those 

predictions in complex patient derived samples. We found that the inhibition of the kinases 
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MAP2K1/2 was the most informative for predicting breast cancer cell sensitivity, and the 

predicted high-synergy combination of trametinib/omipalisib was validated experimentally in a 

PDX-derived TNBC cell line. 

 
METHODS 

Data Sources 

The primary data sources we used can be split into three categories: the kinome profiling 

data set, the combination-treated cell line sensitivity set, and the cancer cell line transcriptomics 

set: 

The kinome profiling data set from the kinobeads assay was downloaded from the 

supplementary materials of Klaeger et al. 2017[15].  

For cancer cell line sensitivity to kinase inhibitor combinations, data was downloaded from 

the following: 

1. NCI-ALMANAC cell sensitivity data was downloaded from the NCI wiki database 

(https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-ALMANAC). 

2. Supplementary materials of previous lab combination screens published in Beville et al. 

2019 [28] and Stuhlmiller et al. 2015 [29]. 

The CCLE gene expression set (“CCLE_expression.csv”) was downloaded from the 

DepMap portal (https://depmap.org/portal/download/all/) to create the set of cancer cell lines 

and their gene expression characteristics. 

In-house baseline gene expression data for the PDX-derived WHIM12 line was 

downloaded from the GEO repository for the Zawitowski et al. paper[26] (GSE87424). 
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Data Preprocessing 

The scripts implementing these descriptions are all available through github. 

Klaeger et al. Kinobead Kinase Inhibition Profiles: As previously described[16], we read the 

values from the supplemental data table into R and produced a filtered list of kinase and kinase 

interactor relative intensity values. We imputed missing values with the default “no interaction” 

value of 1 and truncated likely outlier values to the 99.99 percentile (3.43). 

Creating the Combination Inhibition State Data Set: To create a “combined” inhibition state of 

a given kinase inhibitor combination, we sought to superimpose the inhibition states of two 

individual states at specific doses. There were eight doses measured for each individual inhibitor, 

thus there were 64 possible combinations for each combination. We took the monotherapy 

kinome inhibition states from the Klaeger et al. set and computed a “combined” inhibition state 

for each kinase, based on three different combination schemes: 

1. Simple Multiplicative: The simple conditional probability rule assumes two independent 

events (Eq. 1). Since the default “no interaction” inhibition value is 1, for kinases that are 

not targeted by both inhibitors simultaneously, the “combined” inhibition state value is 

simply either one in monotherapy.  

2. Truncated Multiplicative: A minority of measured kinase inhibition states (~1%) have 

values > 1 in the Klaeger et al. dataset, a possible artifact from the mass spectrometry 

measuring process. To avoid inflating those values, all >1 values were truncated at 1 and 

simple multiplication was performed as described above. 

3. Addition: All kinase inhibition states were inverted into “Percent Inhibition” values, 

where 0 denotes no inhibition and  100 denotes complete inhibition. Then, when two 

inhibition states were combined they were simply added together (truncated at a max 

value of 100). 
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𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1. 𝑃(𝐴𝐵) 	= 	𝑃(𝐴) ∗ 𝑃(𝐵)		{𝐼𝑓	𝑃(𝐴|𝐵) 	= 	𝑃(𝐴)} 

All three methods were tested in downstream modeling, resulting in minor variation. 

Truncated multiplied vectors were slightly more predictive (R-squared score of ~0.01 greater) so 

we used that scheme for all downstream modeling. In this way, we were able to compute 

hypothetical “combined” inhibition states for all possible combinations of ~220 inhibitors, 

altogether comprising ~2,000,000 combined inhibition states. 

Dataset of Cancer Cell Line Sensitivity to Kinase Inhibitor Combinations: The cell sensitivity 

dataset from NCI-ALMANAC and previous lab publications were filtered to contain only kinase 

inhibitor small molecules, then summarized over replicates and converted to cell viability (1 = 

fully viable cell and 0 = full cell death). Relevant cancer types were annotated and individual 

cancer type datasets were subsetted for downstream cancer type-specific modeling.   

Matching of Kinase Inhibitors between Inhibition State Dataset and Cell Line Sensitivity Dataset: The 

drug names from each dataset were read into R, and the package Webchem [30] was used to 

retrieve PubChem compound IDs (cid’s). The two sets of drug names were then matched based 

on these reference IDs, with a total of ~100 matches between the two sets.  

Baseline Gene Expression from CCLE: Data was preprocessed as described before[31] from 

the “CCLE_expression.csv” file. Cell line names were matched manually between CCLE and the 

NCI naming scheme. All cell lines represented in NCI-ALMANAC had a match in the CCLE 

database.  

  String: The STRING database[32] was processed as described previously[31] to annotate 

kinases and kinase interacting genes. 
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Modeling Techniques 

To assess our models we used a random 5-fold cross validation strategy. The features 

included in each fold were selected as specified by the feature selection scheme described in the 

results section. We implemented Elastic-net regression using the glmnet engine[33] for the 

feature selection scheme[17], We compared the performance of three model types using this 

strategy: random forest using the ranger engine[34] and gradient boosting using the XGBoost 

(eXtreme Gradient Boosting) engine[35]. Model performance was assessed by the R-squared 

value between predicted and actual outcome within the cross-validation scheme. For each model 

type and for the feature selection model, we tuned sets of 20 hyperparameters to find the best 

possible performer as follows: 

1. Elastic-net 

a. Penalty (0 - 0.1) 

b. Regularization (0.1-1) 

2. Random Forest 

a. Trees (100 - 2000) 

3. XGBoost 

a. Trees (100 - 1000) 

b. Tree Depth (4 - 30) 

After final model selection, we fit the model on the entire dataset and then made 

predictions on the experimental validation data.  
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Experimental Validation 

6x6 dose combination screens were performed in the WHIM12 cell line as described in 

Beville et al. 2019[28]. Briefly, cells were seeded in 384-well plates and dosed with drug after 24h. 

The screening library was tested for growth inhibition alone or in combination with Trametinib 

across 6 doses: 10 nmol/L, 100 nmol/L, 300 nmol/L, 1 μmol/L, 3 μmol/L, and 10 μmol/L. 

0.1% DMSO was included as the control for growth inhibition on each plate. Plates were 

incubated at 37°C for 96 hours and lysed using CellTiter-Glo Reagent (Promega, catalog. no. 

G7570). Luminescence was measured using a PHERAstar FS instrument and growth inhibition 

was calculated relative to DMSO-treated wells. 

Software Availability 

All of the code written to support this paper is available through github 

(https://github.com/gomezlab/kinotype_combination_prediction) along with a brief 

walkthrough explaining where to find the code relevant to each part of the paper. 
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CHAPTER 5: KINOME INHIBITION STATES WITH BASELINE GENOMIC 
PROFILING ARE PREDICTIVE OF PDX TUMOR RESPONSE IN FIVE 

COMMON SOLID CANCER TYPES 
 
 
INTRODUCTION 

The premise of precision oncology is to specifically target drivers of tumor growth in 

individual patients[1]. Since the approval of the Imatinib as the first “precision” therapy for 

Philadelphia chromosome positive CML, protein kinases have been a major focus in  precision 

cancer therapy for the past 20 years[2]. As of today, kinase inhibitors are one of the largest 

classes of FDA-approved drugs and have transformed the standard of clinical care for multiple 

malignancies[3]. As a result, there has been widespread interest in developing similar strategies 

for individual patient focused treatment in oncology, complemented by advances in the high-

throughput acquisition of baseline genomics[4]. However, resistance to kinase inhibitors is a 

major hurdle for effective pre-clinical and clinical drug development[5].  

Patient-derived xenograft (PDX) models have emerged as important tools in precision 

medicine to aid effective development of targeted therapies to treat cancer patients[6]. 

Compared to traditional screening methods involving immortalized cell lines, PDX models 

retain many of the molecular characteristics of their original patients, providing a more realistic 

platform for pre-clinical testing[7]. In particular, PDX models have been shown to be useful in 

evaluating the efficacy of kinase inhibitors and predicting clinical responses to kinase inhibitors 

in patients[8]. For example, in the development of trametinib, a MEK1/2 inhibitor, PDX 

models derived from human melanoma tumors were used to evaluate the efficacy and safety in 

preclinical studies. Along with cell lines, PDX models enabled researchers to identify predictive 
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biomarkers for patient selection, such as the presence of BRAF V600E mutations, which helped 

inform the design of subsequent clinical trials[9]. Ultimately, trametinib was approved by the 

FDA in 2013 for the treatment of patients with unresectable or metastatic melanoma with 

BRAF V600E/K mutations, the first MEK inhibitor to get clinical approval[10]. 

Although categorizing patients according to individual biomarkers can be effective, 

information about key mutations is not always easily accessible, and even when biomarkers are 

identified, they may not reliably predict complete responses because of inter-patient and intra-

tumor heterogeneity. Recently, machine learning models have leveraged the broad spectrum of 

baseline genomic profiling data to predict PDX tumor responses to targeted therapies by 

identifying complex patterns and correlations in baseline genomic profiling and imaging not 

immediately visible to the human eye[11–14]. However, despite drug-protein interactions being 

the primary and intuitive route for reversing phenotypes, the utilization of drug-target 

information in these precision oncology pipelines has been relatively limited, partly due to the 

lack of high-throughput drug-target screening technologies similar to genomic profiling. Recent 

advances in kinome profiling assays offer a way to leverage drug-specific information generated 

in high throughput for the 500-member kinase enzyme family simultaneously[15–17]. This 

approach allows us to capture a snapshot of kinase activity changes across the kinome 

influenced by a specific drug, henceforth referred to as a "kinome inhibition state." Further, 

recent landmark studies have profiled the target landscape of pre-clinical and clinical kinase 

inhibitors using assays such as Kinobeads and KINOMEscan (© DiscoverX), providing the 

opportunity to integrate this drug-specific knowledge into precision oncology pipelines. We have 

shown previously that adding in this information in an assay-agnostic fashion can improve the 

performance of predictive models for cell line responses across cancer types[18,19], but their 

predictive power in more complex preclinical models like PDX tumors remains unproven.  
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In this work, we demonstrate the integration of kinome inhibition states with baseline 

genomics using machine learning models that predict PDX tumor complete or partial response 

(CRorPR). We use response and baseline genomic profiling data from a high-throughput PDX 

screen conducted by Novartis[20], which tested a variety of monotherapies and combination 

therapies in five main cancer types: breast cancer (BRCA), cutaneous melanoma (CM), non-small 

cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma 

(PDAC). We then connect this data to our collected database of kinome inhibition states across 

assay types, while also using multimodal baseline genomic profiling to add cancer specific 

characteristics (gene expression, exome mutations, and copy number variation). We then 

perform simple correlation analysis to compare the predictive value of all the assay types, and 

then fit tree-based machine learning models to predict to a given treatment. This way we 

demonstrate the expansion of precision oncology models to include drug-specific data in the 

form of kinome inhibition states and improve both their performance and interpretability.  

 
RESULTS 

Connecting Kinome Inhibition States to PDX tumor responses  

In this study, we aimed to connect the kinome inhibition states to the response of 

patient-derived xenograft (PDX) tumors to kinase-targeting therapies. From a precision 

oncology standpoint, our goal was to generate a rigorously tested probability of given PDX’s 

response to any given kinase-targeted treatment. We utilized the Novartis high throughput PDX 

screen, which tested ~200 models across five cancer types (Fig 1B) against ~20 kinase-targeted 

therapies (Fig 1C), in addition to conducting multi-modal baseline genomic profiling. The 

response outcome of interest was a binary measure of complete response or partial response 

(CRorPR), determined by adapting the RECIST criteria[21]. To connect these responses to the 

treatment induced kinome inhibition states, we utilized kinome profiling data from the 
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kinobeads and kinomescan assays, complied as described previously. We then matched drugs 

between datasets for the monotherapy treatments and generated combined kinome inhibition 

states for combination therapies as described previously. The resulting dataset included the 

response of PDX tumors to kinase-targeted therapies, their kinome inhibition states, and 

baseline genomic profiling of three types (baseline gene expression, copy number variation. And 

exome mutations). Notably, the data was inherently unbalanced, as only 10% of PDX tumors 

fell into the "response" category. We split the data into five cancer type-specific sets for greater 

interpretability and specificity of downstream models. Our final dataset included 35 PDX 

models and ~10 kinase-targeting therapies per cancer type, and with the aim of building machine 

learning models to predict the response of PDX tumors, we first examined the relationships of 

all the multiomics data present in the dataset to the response outcome of CRorPR.  
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Figure 5.1. PDX modeling workflow overview and data description. A) Schematic 

describing data curation, integration and modeling strategy. B) Bar plot showing PDX models 

tested per cancer type. C) Bar plot showing kinase targeting therapies tested per cancer type. D) 

Visualization of number of responders per cancer type. 

 

Examination of Bi-serial Correlations with Partial or Complete Tumor Response Reveals 

Kinome Inhibition States are Marginally More Informative than Genomic Data 

We first investigated the predictive power of various individual data types in relation to 

the outcome of partial or complete tumor response (CRorPR). To achieve this, we used bi-serial 

correlation analysis, a statistical method that measures the strength of the association between a 

binary variable (CRorPR) and a continuous variable (all data types except exome mutations). For 

analysis of the relationship between CRorPR and exome mutations, we used tetrachoric 

correlation analysis[22]. We generated correlation coefficients for all different feature types 

against CRorPR for comparison: kinome inhibition states, copy number variation, baseline gene 
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expression, and exome mutations, allowing us to compare the predictive power of each feature 

type for CRorPR. 

Overall, we observed that kinome inhibition states and single exome mutations showed 

the highest median correlation to CRorPR(Fig 3A). Kinome inhibition states were found to be 

the most informative feature type in 3 out of 5 cancer types, including in the pan-cancer dataset. 

Moreover, we identified a biologically relevant high correlation features for each cancer type, 

showing that the correlation analysis was able to recapitulate known relationships with tumor 

response. Notably, the central cell cycle kinases MAP2K1/2 were found to be the highest 

correlated features for PDAC(Fig 3B), which is known to be a crucial regulator in its progression 

and a potential candidate for targeted therapy[23].  Overall, these findings suggest that kinome 

inhibition states could be a valuable feature type in predicting CRorPR, by having marginally 

higher correlation overall to CRorPR compared to baseline genomic measurements, further 

highlighting the importance of incorporating feature types beyond genomic data in precision 

medicine pipelines. To further explore the predictive power of these features, we then built more 

complex machine learning models using gradient boosting, aiming to leverage the multi-variable 

correlations with response in a coordinated manner. 
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Figure 5.2. Examination of bi-serial borrelations between all data types and PDX 

CRorPR A) Combined ridge plots showing distribution of individual feature correlation 

distributions per cancer type, with feature types arranged on Y axis from low to high median 

correlation value top to bottom. Colours and bars within ridge plots indicate quartiles. B) 

Combined horizontal bar plots showing the top 10 highest correlated features per cancer type, 

with colour indicating feature type. Order of horizontal bars indicates high to low correlation 

coefficient value from top to bottom.  

 

Machine Learning Models Can Predict CRorPR of PDX Tumors from a Combination of 

Kinome Inhibition States and Baseline Genomics 

After examining individual feature correlations with response, we sought to leverage the 

predictive power of all feature types including kinome inhibition states using machine learning to 

find combinations of features that are together informative.  

In order to emphasize explainability of the fitted models, we tested gradient boosting 

(XGboost) in favor of deep neural networks and transformers, with 5-fold random cross 

validation stratified because of unbalanced response outcome (~10% mean response rate across 

cancer types). The collected features for modelling together in the final dataset number ~40,000. 

To ensure computational feasibility, reduce noise, and minimize collinearity, we performed 

feature selection on the dataset prior to fitting and tuning the xgboost models. Logistic 

regression against CRorPR was used for feature selection within each cross-validation fold to 

prevent data leakage. Additionally, hyperparameters for each model type and the elastic-net 

feature selector were also tuned within each cross-validation fold. 
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The results from the cross validation revealed robust model performance across cancer 

types, with the best-performing pan-cancer model demonstrating an area under receiver 

operating curve ~0.85 and area under precision recall curve ~0.5 (Fig 4A). Although no direct 

comparisons in data used exist for comparison with the literature, this outperforms similar 

models built on this dataset previously by 5-10%[12]. Notably, the low precision recall AUC is 

somewhat expected, since only 10% of samples belong to the responder class in the original 

dataset. Overall, there was some variance in overall cancer-type performance (ROC-AUC 0.75 – 

0.85) with melanoma response being the easiest to predict and breast cancer the most difficult.  

We further split the modelling effort into data-type specific sets to compare the 

predictive value of kinome inhibition states and baseline genomics. We tested kinome inhibition 

states alone against CRorPR, as well as each baseline genomics alone respectively. Expectedly, 

kinome inhibition states alone had little predictive power (Fig 4B dark blue bars), since they are 

drug-specific, and without any baseline characteristics specific to the individual cancer they will 

generate the same prediction for all tumors treated with the same therapy. However, by 

comparing the performance of all baseline genomics together against including kinome 

inhibition states along with baseline genomics, we see a significant increase in model 

performance across cancer types (Fig 4B orange bars vs other colors). This increase represents 

an improvement in ~5-10% depending on the cancer type.  

Further, having confirmed the predictive power of kinome inhibition states in ensemble 

with baseline genomics, we can take advantage of the inherent interpretability in gradient 

boosting to determine which features were most informative for predicting CRorPR. We found 

that kinome inhibition states had higher feature importance scores overall, seeing a departure 

from the marginal increase we observed in the simple correlation analysis. This indicates that a 
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more complex model like gradient boosting was able to find associations between kinase 

inhibition states and other baseline genomics to extract more information overall from the 

kinome. Specifically, we saw high feature importance scores assigned in BRCA, PDAC, CM, and 

CRC for known cancer driving kinases involved in the MAPK and AKT pathways, as well as 

particular importance for the kinases ZAK and RIPK2.  
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Figure 5.3. Model performance metrics across cancer types and data types. A) Left plot 

shows Receiver-Operating Curve (ROC) for the best performing pan-cancer model, with title 

indicating the Area Under the Curve (AUC) metric. Right plot shows Precision-Recall (PR) 

curve for the same model, with AUC indicated in the title. B) Six bar plots showing the accuracy 

of all models via ROC AUC per cancer type, with the data types included in the models being 

varied across the X axis. Colors also indicate data types.  

 

 

Figure 5.4. Interpretation of Best-Performing Models. Combined plot of six horizontal bar-

plots, showing the top 10 most informative features for each best-performing model of a cancer 

type. Bars are colored according to their data type.  
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DISCUSSION 

In this chapter, we leverage the interactions of PDX treatments with the kinome by 

using “kinome inhibition states” derived from kinome profiling assays and connect these to 

baseline cancer profiling and PDX CrorPR.  

A recent high-throughput PDX screen conducted by Novartis tested ~200 models with 

a variety of kinase-targeting therapies across five common solid tumor types[20]. In this chapter, 

we used this data to connect the binary response (complete or partial) of these tumors to the 

kinome inhibition states induced by these treatments. In addition, we took advantage of the 

comprehensive multimodal baseline genomic profiling of each PDX model to combine model-

specific characteristics with kinome inhibition states, aiming to create a full precision medicine 

platform. The collected dataset maps both drug-specific and cancer-specific omics data to the 

downstream responses of the tumors, and our first step was to analyze the base correlations of 

each individual variable (henceforth termed “feature”) with the binary outcome of complete or 

partial response (CrorPR). Using bi-serial and tetrachoric correlation analysis, we found that a 

significant number of features across assay types had meaningful correlations with CrorPR. 

Overall, kinome inhibition states had the largest mean correlation in 3/5 cancer types, with 

exome mutations having the next-largest mean correlation. Notably, the inhibition state of the 

kinases MAP2K1/MAP2K2 were the most correlated feature by far for the response of PDAC 

tumors, recapitulating known information about the treatment efficacy of MAPK targeting in 

PDAC. These initial findings indicate that there is significant simple statistical association 

between inhibition state of the kinome and CrorPR of diverse PDX tumors, and there is 

potential value in including this data in precision oncology pipelines alongside baseline 

genomics.  
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To confirm the predictive value of kinome inhibition states, we built machine models on 

the collected data to leverage all the associations between the diverse features and CrorPR in a 

coordinated fashion. We showed that gradient boosting models fit on the data performed 

robustly, with an overall ROC AUC of ~0.85 for the pan cancer model, and ~0.75-0.85 for 

cancer-type specific models. By including data from each assay type individually and in tandem, 

we found that kinome inhibition states alone were not very predictive of CrorPR (ROC AUC ~ 

0.6) but added significant accuracy to models including all baseline genomics data. This is 

expected, since the kinome inhibition states represent a drug-specific and tumor agnostic data 

type, which without any baseline genomics predicts the same response for the same treatment, 

regardless of the tumor to which the treatment is being applied. However, we see a 5-10% 

increase in accuracy of models fit with both baseline genomics and kinome inhibition states, 

compared to models with only baseline genomics alone. This suggests that the baseline genomics 

“tunes” the kinome inhibition states to the specific tumor for prediction of response, while the 

baseline genomics alone lacks any drug-specific information to enhance predictions.  

Importantly, our decision to fit gradient boosting models in favor of deep neural 

networks or transformer-based networks was based on the critical nature of model explainability 

in clinical settings[24]. By probing the best-performing models we can generate feature 

importance scores for each model that are generally accepted to be indicative of a given feature’s 

impact on prediction of a desired outcome[25]. After generating these scores for each best-

performing model per cancer type, we were able to distinguish the top informative features for 

each of five solid tumor types in the dataset. Particularly, we confirmed our earlier finding from 

the correlation analyses that the inhibition state of MAP2K1 was overwhelmingly the most 

informative feature for predicting CrorPR in PDAC PDX tumors. Since PDAC is generally 

considered an aggressive cancer type with few treatment options, any potential therapeutic 
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strategies have a high impact on disease progression for patients[26]. Specifically, dysregulated 

MAP2K1 is known to be involved in pancreatic cancer progression, and its inhibition by small 

molecules has been shown to reduce pancreatic cancer growth and progression[27]. Moreover, 

targeting of this kinase by the inhibitor cobimetinib in combination with the EGFR inhibitor 

erlotinib is now in phase II clinical trials for pancreatic cancer (NCT03193190). This finding 

indicates that the PDAC-specific model was able to learn the significance of the kinome 

inhibition state of MAP2K1 in combination with baseline genomics to effectively predict 

CrorPR.  

There are many limitations to the results presented in this work. First, the size of the 

available data restricts the analysis to include only ~20 kinase inhibitor monotherapies and 

combination therapies, with an average of ~10 per cancer type. Future improvements in model 

performance and scope of usable drugs can be expected with an increase in PDX response data 

gathered experimentally. Further, regardless of complexity and explainability of our fit models, 

they only provide a correlative link between kinome inhibition states, baseline genomics, and 

CrorPR, and obtaining the top 10 informative features per model is no substitute for a 

mechanistic study of treatment efficacy. Additionally, the responses to kinase-targeting therapies 

presented and predicted are very much subject to the heterogeneity present in the Novartis set 

of PDX response data. In future work we aim to complete thorough experimental validation in 

independent PDX treatments and in-house baseline genomic profiling to test the model’s 

performance in real-world PDX-based precision oncology. Finally, although PDX models 

provide certain improvements over immortalized cell lines, they are still limited in their ability to 

replicate the complexity and tumor microenvironment of human cancers. In future work we 

hope to extend this modelling approach to generate treatment response probabilities directly in 

clinical settings.  
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In summary, through this work we demonstrate that the treatment-induced kinome 

inhibition state is powerfully predictive of PDX tumor response, in combination with 

multimodal baseline genomic profiling. Using both simple statistical correlation analysis as well 

as machine learning models, we were able to show robust prediction of PDX CrorPR (ROC 

AUC 0.85) for five common solid tumor types and interpret these models to find a specific use-

case for MAP2K1 inhibition as a potential treatment strategy for PDAC tumors. Overall, this 

analysis will encourage the inclusion of kinome inhibition states along with baseline genomic 

profiling in precision medicine pipelines and improve prediction of individual patient responses 

to treatments. 
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METHODS 

Data Sources 

The primary data sources we used can be split into two categories: the kinome profiling 

data set of kinome inhibition states and the data set of PDX tumor baseline genomics with 

annotated responses to kinase-targeting therapies.  

The kinome profiling data sets from the kinobeads and KINOMEscan assays were 

downloaded as described previously in chapter 3[19].  

For PDX tumor response and baseline genomic profiling, data was downloaded from 

the supplementary material of Rashid et al. 2021[12]. 

Data Preprocessing 

The scripts implementing these descriptions are all available through github. 

Kinase Inhibition Profiles: As previously descrived, kinome profiles for ~200 drugs from the 

kinobeads assay and ~800 drugs from the KINOMEscan assay were integrated using the 1uM 

measurement, providing a dataset of ~500 kinase inhibition values ranging from 0 (full 

inhibition) to 1 (no inhibition). Additionally, for combination therapies, hypothetical 

“combined” inhibition states were generated as described previously in chapter 4. 

Dataset PDX Tumor Response to Kinase-Targeting Therapies: The “split.cm.data.rda” file from 

the Rashid et. Al 2017 paper contains the full data for PDX responses to various therapies, as 

well as multimodal baseline genomic profiling (copy number variation, exome mutations, and 

gene expression). The data is presented for each cancer type individually and we retained all 

variables that were common across all of the cancer types (95% variables retained).  

Matching of Kinase Inhibitor Mono- and Combination Therapies between Inhibition State Dataset and 

PDX response Dataset: The drug names from each dataset were read into R, and the package 

Webchem[28] was used to retrieve PubChem compound IDs (cid’s). The two sets of drug names 
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were then matched based on these reference IDs, with a total of ~20 matches between the two 

sets.  

Modeling Techniques 

To assess our models we used a random 5-fold cross validation strategy. The features 

included in each fold were selected as specified by the feature selection scheme described in the 

results section. We implemented logistic regression using the glmnet engine[29] for the feature 

selection scheme using the “colino” package in R. We fit gradient boosting models using the 

XGBoost (eXtreme Gradient Boosting) engine[30]. Model performance was assessed by the 

ROC AUC value within the cross validation scheme. For Xgboost and for the feature selection 

logistic regression model, we tuned sets of 20 hyperparameters to find the best possible 

performer as follows: 

1. Logistic Regression 

a. Penalty (0 – 0.1) 

b. Regularization (0.1-1) 

2. XGBoost 

a. Trees (100 – 1000) 

b. Tree Depth (4 – 30) 

Software Availability 

All the code written to support this paper is available through github 

(https://github.com/gomezlab/PDX_response_prediction) along with a brief walkthrough 

explaining where to find the code relevant to each part of the paper. 
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CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 

 
 
 The work presented in this dissertation demonstrates the powerful potential in 

considering a novel data type for improving drug discovery and precision medicine in both 

investigational and clinical settings. For the first time,  we have shown that inhibition state of the 

kinome can accurately predict drug responses in cancer cell lines and solid tumors when 

combined with current state of the art genomic profiling. We showed comparable or higher 

predictive performance of interpretable computational models including kinome inhibition states 

relative to current  models considering baseline genomic profiling, drug structure, and complex 

modalities such as histology slide images. Importantly, we have also shown that this high 

accuracy extends to strict experimental validation in unseen samples, including patient-adjacent 

samples like PDX-derived cells. Together, this shows the immense potential in including novel 

data types like kinome inhibition states in the patient-specific design of targeted therapeutics 

across cancer types, laying the foundation for the design of mono and combination therapies 

using rational principles instead of empirical principles. Together, this work will improve drug 

development pipelines for kinase inhibitors starting from discovery to clinical testing and 

increase the chance of finding new transformative targeted therapies like Gleevec.  

 In the future, the main limitations for extension of this work are the lack of high-

throughput interrogations of the kinome. The thorough characterizations used in this work 

literature recently are relatively rare and unique and cover only a small percentage of known 

kinase inhibitors. However, given the drug-specific and cancer-agnostic nature of kinome 
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profiling, each acquisition assay for a given inhibitor needs to be run only once, after which it 

can be applied as shown along the entire drug discovery and treatment pipelines. Ongoing 

projects show promise in characterizing more optimized kinase inhibitor libraries that are 

engineered to target all families of the kinome equally, increasing targeting diversity and 

potentially novel therapeutic promise. The other important limitation for future work is the lack 

of high-throughput data annotating response of cancer samples to kinase inhibitors. Even in the 

most expansive dataset covering immortalized cancer cell line responses to monotherapy kinase 

inhibitors, we are currently limited to data characterizing ~120 inhibitors, compared to our 

collection of inhibition state data for ~1000 inhibitors. Moving forward, the mining of cell line, 

tumor, and patient phenotypes in response to kinase inhibitor treatments is a crucial focus for 

extensions of this work and represents exciting prospects for predicting not only direct response 

phenotypes, but also specific imaging and clinical phenotypes.  

 Finally, the long-term goal for this work is eventual inclusion in patient-facing settings, 

designing precision therapies based on both tumor-specific characteristics and drug-specific 

effect on the kinome. While we have demonstrated initial limited success in predicting response 

of cancer-type specific PDX tumors with a high level of accuracy, we need more extensive data 

and in-house experimental validation to verify the validity of this approach in patient samples. 

Another opportunity for patient-facing applications is the modelling of patient responses to 

clinical trial compounds. We in the lab have put significant effort in curating publicly available 

clinical trial data with annotated patient responses as well as baseline genomic profiling, and we 

hope to extend the work present in this dissertation to directly stratify predicted patient 

responses.  



   

 

  134 

 Overall, the work presented in this dissertation shows the powerful predictive value of 

the kinome and lays a solid foundation for the inclusion of kinome inhibition information in the 

rational design of targeted therapies for cancer. 


