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ABSTRACT

Kushal S. Shah: Statistical Machine Learning Methodology for Individualized Treatment Rule
Estimation in Precision Medicine

(Under the direction of Michael R. Kosorok and Haoda Fu)

Precision medicine aims to deliver optimal, individualized treatments for patients by account-

ing for their unique characteristics. With a foundation in reinforcement learning, decision theory,

and causal inference, the field of precision medicine has seen many advancements in recent years.

Significant focus has been placed on creating algorithms to estimate individualized treatment

rules (ITRs), which map from patient covariates to the space of available treatments with the goal

of maximizing patient outcome.

In Chapter 1, we extend ITR estimation methodology in the scenario where variance of the

outcome is heterogeneous with respect to treatment and covariates. Accordingly, we propose

Stabilized Direct Learning (SD-Learning), which utilizes heteroscedasticity in the error term

through a residual reweighting framework that models residual variance via flexible machine

learning algorithms such as XGBoost and random forests. We also develop an internal cross-

validation scheme which determines the best residual model among competing models. Further,

we extend this methodology to multi-arm treatment scenarios.

In Chapter 2, we develop ITR estimation methodology for situations where clinical decision-

making involves balancing multiple outcomes of interest. Our proposed framework estimates

an ITR which maximizes a combination of the multiple clinical outcomes, accounting for the

fact that patients may ascribe importance to outcomes differently (utility heterogeneity). This ap-

proach employs inverse reinforcement learning (IRL) techniques through an expert-augmentation

solution, whereby physicians provide input to guide the utility estimation and ITR learning pro-

cesses.
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In Chapter 3, we apply an end-to-end precision medicine workflow to novel data from older

adults with Type 1 Diabetes in order to understand the heterogeneous treatment effects of contin-

uous glucose monitoring (CGM) and develop an interpretable ITR to reveal patients for which

CGM confers a major safety benefit. The results from this analysis elucidate the demographic

and clinical markers which moderate CGM’s success, provide the basis for using diagnostic

CGM to inform therapeutic CGM decisions, and serve to augment clinical decision-making.

Finally, in Chapter 4, as a future research direction, we propose a deep autoencoder frame-

work which simultaneously performs feature selection and ITR optimization, contributing to

methodology built for direct consumption of unstructured, high-dimensional data in the precision

medicine pipeline.
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CHAPTER 1: STABILIZED DIRECT LEARNING FOR EFFICIENT ESTIMATION
OF INDIVIDUALIZED TREATMENT RULES

1.1 Introduction

Precision medicine is a framework at the intersection of statistics, machine learning, and

causal inference, for leveraging patient heterogeneity to improve patient outcomes. Unlike the

standard “one-size-fits-all” approach designed for the average patient, individualized treatment

rules (ITRs) may recommend personalized actions based on patient demographic information,

clinical biomarkers, or genetic data in order to maximize expected treatment benefit across a

population. One of the primary goals of precision medicine has been formalized as decision

support - the estimation of optimal and near-optimal regimes (Kosorok and Laber (2019)). In this

vein, it is important to develop algorithms which work efficiently with the data at hand.

The performance of an ITR is commonly evaluated by its value function, a measure of the

expected population mean outcome if all patients were to follow the decision rule. Various pre-

cision medicine algorithms have been developed to identify the optimal treatment rule which

maximizes the value function (Imai and Li (2021)). The value function can be estimated through

cross-validation techniques as a weighted combination of the individual patient outcomes (Qian

and Murphy (2011); Jiang (2020)).

It is also clinically relevant to identify biomarkers which are influential in choosing an opti-

mal treatment. Kosorok and Laber (2019) breaks down biomarkers which provide clinical infor-

mation into three types: prognostic/predictive (useful in predicting patient mean outcome with

respect to a clinical endpoint of interest), moderating (useful in predicting contrasts in the effects

of candidate treatments on a mean outcome), and prescriptive (useful in selecting an optimal

treatment to maximize the clinical outcome). Although all moderating biomarkers are prognos-
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tic, and all prescriptive biomarkers are both moderating and prognostic, it may be the case that a

prognostic biomarker is not prescriptive. The discovery of prescriptive biomarkers is relevant to

precision medicine because it can inform the choice of an optimal action (treatment selection).

1.1.1 Common Methods for ITR Estimation

In recent years, an extensive literature has been developed in the area of estimating optimal

ITRs to maximize a single outcome of interest. Traditionally, algorithms have fallen into one of

two categories: model-based vs. policy-search approaches.

Model-based approaches may also be considered “regression-based” or “indirect” in that they

first model the conditional response of interest and then invert the relationship between patient

covariates, treatment, and outcome to estimate an optimal rule (Kosorok and Moodie (2016)).

Primary examples of model-based approaches are Q-Learning (Qian and Murphy (2011)) and

A-Learning (Murphy (2003); Robins (2004)). Q-Learning approaches model the outcome condi-

tional on covariates, whereas A-Learning approaches model regret functions or contrast functions

between treatments (Schulte et al. (2014)). The Qian and Murphy (2011) method is a two-step

procedure: it first estimates the mean outcome, conditional on covariates and treatment, and then

compares the conditional mean outcome across individual treatments in order to determine the

optimal treatment.

Model-based methods are convenient because they allow for the use of well-known regres-

sion algorithms to model the conditional response of interest (e.g. linear regression, random

forest, gradient boosting trees, etc.). In this sense, they are flexible and easy to implement, as well

as logical: model the response as a function of each treatment individually, and pick the treat-

ment that gives the optimal predicted response. However, this modeling approach requires the

specification of a mean response model, which results in estimating many nuisance parameters

(main effect parameters) which are not directly of interest for treatment selection. Performance,

therefore, is highly dependent on correct specification of the mean response model, and can easily

suffer from misspecification. Additionally, model-based methods often favor prediction accuracy
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(good models for predicting outcome/response) over treatment decision accuracy (good ITRs for

maximizing patient outcomes) (Murphy (2005)) due to a mismatch between the target of outcome

regression modeling and the goal of learning the optimal ITR (Zhang and Zhang (2018)).

Policy-search approaches, on the other hand, maximize value functions directly instead

of modeling the conditional mean. For this reason, they are also known as “value-search” or

“direct-search” (Kosorok and Moodie (2016)). Many policy-search approaches have reframed

the maximization of clinical outcomes as a weighted classification problem with the goal of

minimizing weighted classification error, including the outcome weighted learning (OWL) family

of methods (Zhao et al. (2012); Zhou et al. (2017); Zhang et al. (2020)), which utilizes weighted

support vector machines (SVMs) (Vapnik (1999)) for ITR estimation, and various tree-based

extensions (Cui, Zhu, and Kosorok (2017); Zhu et al. (2017); Kallus (2018)). By sidestepping

the modeling step and directly searching for an optimal rule among a class of policies, policy-

search algorithms may avoid model misspecification (Xiao et al. (2019)). However, policy-search

approaches such as OWL involve maximizing a discontinuous objective function, which can

become computationally burdensome.

A third category of algorithms to estimate ITRs also exists, consisting of hybrid methods

which have attempted to combine the advantages of model-based and policy-search approaches

while maintaining the classification framework. Often, these methods use the augmented inverse

probability weighted estimator (AIPWE) within the classification framework, which requires a

regression model for outcome to be posited. Such approaches are robust in the sense that they en-

joy greater protection against model misspecification and increased efficiency when both models

are correctly specified (Zhang and Zhang (2018); Liu et al. (2018); Zhao et al. (2019)). Further,

residual weighted learning (RWL) of Zhou et al. (2017) can be considered as a modification of

the AIPWE approach which enjoys efficiency gained from replacing the outcome in OWL by

the residual (which requires an outcome model to be estimated). It is important to note that these

approaches still maintain the classification-based framework and must handle the discontinuous

objective function through a variety of possible methods (e.g. SVM-like estimation using a con-
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cave relaxation like hinge loss (Hastie et al. (2009)), the GENOUD algorithm for discontinuous

optimization (Mebane and Sekhon (2011)), etc.). Notably, however, estimation is supported by a

mean outcome model in order to gain efficiency and robustness.

The following is a summary of the three categories of approaches, adapted from Zhang and

Zhang (2018):

• Model-based: Response (outcome or regret) regression modeling followed by selection of

a treatment which optimizes response. The form of the optimal ITR is completely deter-

mined by specification of mean response models (Q- or A-functions).

• Policy-search: Direct maximization of value function through classification framework,

without incorporating information from outcome regression modeling. The form of the

resulting ITR is dictated by optimization method.

• Classification-based Hybrid: Direct maximization of value function through classification

framework, supplemented by information borrowed from outcome regression models (good

outcome regression models can augment performance). However, outcome regression

models to not dictate the form of the optimal ITR.

1.1.2 Direct Learning: A Unique Regression-Based Hybrid

Tian et al. (2014) developed a “modified-covariate” approach for ITR estimation, which is

a hybrid method but is unique in that it maintains the regression-based framework to model the

treatment-covariate interaction effect directly, without having to specify a main effect model or

conditional mean outcome function. Later, Qi and Liu (2018) coined the term “Direct Learn-

ing” (D-Learning) for the Tian et al. (2014) method and extended it to nonlinear decision rules

and multi-arm treatment settings. D-Learning is a simple method which allows for regression

to be used, and is yet a one-step approach which sidesteps mean outcome modeling altogether.

Therefore, it comes the benefits of many aforementioned methods because it maintains the flexi-
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bility and simplicity of regression, models the treatment-covariate interaction effect directly, and

bypasses the estimation of main effect nuisance parameters.

Key extensions to D-Learning are Angle-based Direct Learning (AD-Learning) (Qi et al.

(2020)), which improves D-Learning in the multi-arm treatment case, and Robust Direct Learning

(RD-Learning) (Meng and Qiao (2021)), which replaces the outcome by the residual similarly to

RWL, thereby achieving a double robustness property.

Now consider, for example, the “AIDS Clinical Trial Group Study 175” (ACTG175), a ran-

domized clinical trial (RCT) which compared the effectiveness of four treatments in increasing

CD4 cell counts in HIV-1 patients (Hammer, S. M. et al. (1996)). Previous studies have suggested

that the response of change in CD4 cell count from this data may have skewed, heteroscedastic

errors (Xiao et al. (2019), Zhang et al. (2021)), which we confirm in Section 1.5. In such a sit-

uation, when the variance of the clinical outcome is a function of the covariates (or treatment),

the D-Learning family of estimators remains consistent for the optimal ITR, but gives each ob-

servation equal weight by default in model training. A reweighting approach which utilizes this

error structure to prioritize observations with smaller expected outcome variance is beneficial

because it can attain greater efficiency when estimating an ITR. This example motivates the the

ITR estimation approach of this paper.

1.1.3 Proposed Method

In this article, we propose Stabilized D-Learning (SD-Learning), a method to increase the

efficiency of D-Learning estimates in situations where the variance of the error term is non-

homogeneous and a function of the treatment and covariates. SD-Learning can be viewed as

a special case of the framework of Liang and Yu (2020) with a single-index model. Liang and

Yu (2020) find the efficient score for a semiparametric, and hence general, class of estimators of

the decision function, but the estimation procedure does not lead to optimality. The SD-Learning

methodology specializes on a smaller class of decision rules and achieves optimality within that

class. These differences are highlighted in Section 1.2. From another perspective, SD-Learning
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may be considered an adaptation of feasible weighted least squares (FWLS) (Olive (2017)) to

the precision medicine setting where optimal ITR estimation with two or more treatments is of

interest. Similarly to FWLS, SD-Learning is motivated by efficient estimation and controls on

variance (Miller and Startz (2018)). We contribute to existing literature in the following ways:

1. We bring the work of Tian et al. (2014), Qi and Liu (2018), Qi et al. (2020), and Meng

and Qiao (2022) into a single framework such that the estimated parameters from either of

these methods can be improved by a single-iteration update.

2. Our method applies concepts from weighted least squares (WLS) theory to increase the

precision of ITR parameter estimation under heteroscedasticity. This entails a residual

reweighting framework where residual variance is modeled through flexible machine learn-

ing methods. We develop an internal cross-validation scheme allowing for selection of an

optimal model amongst methods such as XGBoost (Chen and Guestrin (2016)) and random

forests (Breiman (2001)).

3. We allow for even the multiple-treatment scenario (K ě 3 treatments) to fit into the least

squares framework through a vectorization approach. As a result of this, parameter estima-

tion has a simple implementation leading to a closed-form solution; hence, the algorithm is

efficient and does not require iterative optimization techniques to solve.

4. We show that SD-Learning parameter estimates are consistent, asymptotically normal in bi-

nary and multi-arm treatment scenarios under heterogeneous error, have greater efficiency

than D-Learning estimates, and establish value function convergence bounds.

The rest of this paper is organized as follows: In Section 1.2, we introduce the methodol-

ogy of SD-Learning. Specifically, Section 1.2.1 reviews recent developments in D-Learning

and Section 1.2.2 introduces the mathematical motivation behind SD-Learning and outlines the

reweighting solution. Section 1.2.3 extends the reweighting solution to scenarios with multi-arm

treatments. In Section 1.2.4, the residual model fitting step of the method is described in greater

6



detail, and a stepwise implementation of the method is delineated. In Section 1.3, theoretical

results for SD-Learning including consistency, asymptotic normality, asymptotic efficiency, and

value bounds are established for binary and multi-arm settings. Head-to-head simulations com-

paring SD-Learning to D-Learning, AD-Learning, and RD-Learning based on average prediction

error (APE), misclassification rate, and empirical value are provided in Section 1.4, and value

comparisons from analysis of the ACTG175 RCT data are made in Section 1.5. Concluding

discussions and areas for future work are presented in Section 1.6.

1.2 Stabilized Direct Learning (SD-Learning)

Although SD-Learning works with observational data, for simplicity, we first consider an

RCT setting to demonstrate the methodology. For n patients, we observe independent realizations

of the random triplet pX, A,Rq. Patient covariates are represented by the p-dimensional vector,

X P X Ă Rp, which includes an intercept. We start with the binary treatment scenario, A P

A “ t´1, 1u. Clinical outcome is represented by R P R, and it is assumed, without loss of

generality, that larger R corresponds to better outcome. The probability of receiving treatment a,

given covariates x, is represented by πpa,xq “ PrpA “ a|X “ xq. An ITR, dpXq : X ÞÑ A, is a

mapping from covariates to treatments. Let 1p¨q represent the indicator function, ZJ denote the

transpose of matrix Z, and Pn p¨q represent empirical average (e.g. PnpXq “ n´1
řn

i“1 xi, where

x1, ...,xn are realizations of the random variable, X). Let VecpZq represent vectorization (e.g.

for matrix Z “
`

a b
c d

˘

, VecpZq “ ra c b dsJ).

Let R˚p´1q and R˚p1q represent potential outcomes that would have been observed had

a patient received treatment ´1 or 1, respectively. From the framework of Rubin (1974), we

make the usual assumptions for the precision medicine context (Kosorok and Moodie (2016),

Hernn and Robins (2019), Kosorok and Laber (2019)): (i) Stable unit treatment value assumption

(SUTVA): R “ R˚pAq, (ii) No unmeasured confounding (conditional exchangeability): A K

tR˚p´1q, R˚p1qu | X , and (iii) Positivity: πpA,Xq ą c ą 0, @ A P A,X P X . Prior to outlining
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the proposed SD-Learning methodology, we review key findings from the D-Learning family of

methods.

1.2.1 D-Learning Background

It is known from Qian and Murphy (2011) that the expected response under an ITR, d, can be

represented by the value function:

V pdq “ E tR | A “ dpXqu “ E

„

R ¨ 1tA “ dpXqu

πpA,Xq

ȷ

,

and we define an optimal ITR, dopt, as the decision rule that maximizes the expected average

response: doptp¨q “ argmax
dPD

V pdq, where D is a prespecified class of decision rules. Using the po-

tential outcomes notation, V pdq “ EtR˚pdqu “
ř

aPt´1,1u
EtR˚paquP tdpXq “ au, representing

the counterfactual population mean outcome under the ITR, d.

1.2.1.1 D-Learning

In the two-arm setting, assume that the outcome can be expressed by:

R “ mpXq ` δpXqA ` η, (1.1)

where mpXq and δpXq are measurable functions representing the main and interaction effects,

respectively, and η is a mean-zero random error term. (1.1) is a general multivariate regression

setup for characterizing interactions between treatment and covariates. Note the following:

doptpXq “ sign tEpR|X, A “ 1q ´ EpR|X, A “ ´1qu :“ sign
␣

f opt
pXq

(

, (1.2)

f opt
pXq “ E

"

RA

πpA,Xq

ˇ

ˇ

ˇ

ˇ

X

*

“ 2δpXq. (1.3)
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The no unmeasured confounders assumption ensures that a sufficient set of predictors has

been included so that treatment assignment depends only on measured covariates. Due to SUTVA

and the no unmeasured confounders assumptions, f optpXq in (1.2) is causally interpreted as the

conditional average treatment effect (CATE), as outlined in Pu and Zhang (2021) and in (2.3) of

Jacob (2021):

f opt
pXq “ EpR|X, A “ 1q ´ EpR|X, A “ ´1q

“ E tR˚
p1q|X, A “ 1u ´ E tR˚

p´1q|X, A “ ´1u (SUTVA)

“ E tR˚
p1q|Xu ´ E tR˚

p´1q|Xu (NUC)

“ E tR˚
p1q ´ R˚

p´1q|Xu .

Positivity is necessary for dopt to be optimal, as it ensures that every covariate-treatment

combination has positive probability of being observed and that propensity score estimation does

not produce extreme weights (Kosorok and Moodie (2016); Schulte et al. (2014)). Since the

CATE is a contrast between the effects of two treatments (´1 and 1), the link between f optpXq

and δpXq is intuitive because δpXqp1q ´ δpXqp´1q “ 2δpXq, so estimating one is equivalent to

estimating the other.

Tian et al. (2014) made the connection between the optimal ITR in (1.2) and formulation of

the optimal decision function in (1.3), which forms the basis of D-Learning, as f optpXq can now

be directly learned through a regression method of choice. Lemma 1 of Qi and Liu (2018) shows

that an estimation framework for f optpXq in (1.3) is:

f opt
pXq P argmin

f
E

«

t2RA ´ fpXqu
2

πpA,Xq

ff

. (1.4)

Considering the class F “ tfpXq “ XJβ : β P Rpu to approximate f optpXq, the estimation

problem can be solved with ordinary least squares (OLS) with or without regularization.
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1.2.1.2 AD-Learning

Qi and Liu (2018) proposed pairwise D-Learning for the case where A P t1, 2, ..., Ku. This

was improved with AD-Learning (Qi et al. (2020)), which uses the angle-based approach of

Zhang and Liu (2014) to project treatment A into K simplex vertices defined in RK´1. Let treat-

ment A be represented by the vector uA P RK´1:

uA “

$

’

&

’

%

1?
K´1

1K´1, A “ 1
b

K
K´1

eA´1 ´ 1`
?
K?

pK´1q3
1K´1, 2 ď A ď K.

(1.5)

Here, ei is a pK ´ 1q-dimensional vector of zeroes with 1 in the ith location. Let the random vector

U be such that U | pX, Aq
a.s.
“ uA. The working model is:

R “ µpXq `

K
ÿ

k“1

δkpXq1pA “ kq ` η, (1.6)

where µpXq is the main effect, δkpXq is the interaction effect between the kth treatment and

covariates, and η is the mean-zero random error. The contrast δkpXq ´ δjpXq can be causally

interpreted as the CATE between treatments k and j. The optimal ITR can then be expressed as:

doptpXq “ argmax
kPt1,...,Ku

EpR|X “ x, A “ kq

“ argmax
kPt1,...,Ku

uJ
kE

"

RU

πpA,Xq

ˇ

ˇ

ˇ

ˇ

X

*

“ argmax
kPt1,...,Ku

uJ
k

K
ÿ

k“1

δkpXquk

:“ argmax
kPt1,...,Ku

uJ
k f

opt
pXq

“ argmax
kPt1,...,Ku

δkpXq,

(1.7)
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where f optpXq : Rp`1 ÞÑ RK´1. As shown in Lemma 1 of Qi et al. (2020), for independent

responses, this leads to an estimation problem for f optpXq in (1.7) of the form:

f opt
pXq P argmin

fPRK´1

E

«

tKRU ´ fpXqu
J

tKRU ´ fpXqu

πpA,Xq

ff

,

which, in Lemma 2, is shown to be equivalent to the following estimation framework:

f opt
pXq P argmin

fPRK´1

E

«

1

πpA,Xq

"

K

K ´ 1
R ´ UJfpXq

*2
ff

. (1.8)

1.2.1.3 RD-Learning

Meng and Qiao (2022) develop RD-Learning, which replaces the outcome ri in D-Learning

with the residual ri ´ pmpxiq, where pmpXq is an estimator for the main effect, mpXq (similarly

to Zhou et al. (2017)). This reduces the variance and leads to doubly robust estimation of the

treatment effect in the sense that consistency is guaranteed if either the main effect model or

propensity score model is correctly specified.

1.2.2 SD-Learning

For the binary treatment RCT setting, πpA,Xq is known, and assuming (1.1), the D-Learning

estimation problem in (1.4) induces the following working model:

2RA “ fpXq ` ϵ,

showing that the estimation of fpXq can proceed without needing to model mpXq. Assume that

Epϵ|A,Xq “ 0 and varpϵ|A,Xq “ σ2
0pA,Xq. Note that this error term is very general; it can

be an arbitrary function of the treatment and covariates. In this case, the D-Learning estimator of

the treatment effect is consistent, but due to the potential heteroscedasticity, it may lack efficiency

as it gives each observation equal weight. Considering decision functions in F , we propose a
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modified D-Learning objective function based on reweighting to gain efficiency:

pβS
n “ argmin

βPRp

Pn

"

p2RA ´ XJβq2

wpA,XqπpA,Xq

*

, (1.9)

where wpA,Xq is an arbitrary set of weights which need to be specified and/or estimated. The

following assumptions establish the basic conditions needed to find optimal weights. For all

A P A and X P X almost surely:

Assumption 1.1. EpXXJq is full rank and E }X}
2

ă 8.

Assumption 1.2. 0 ă c1 ď σ2
0pA,Xq ď c2 ă 8 almost surely.

Assumption 1.1 imposes a finite second moment restriction and assumes nonsingularity

of the covariates. Assumption 1.2 ensures that the true residual variance function is finite and

nonzero (bounded above and below).

Proposition 1.1. Under Assumptions 1.1 and 1.2, setting wpA,Xq “
σ2
0pA,Xq

πpA,Xq
minimizes the

estimator of the asymptotic variance of (1.9).

Proposition 1.1 offers a simple way to perform the reweighting. Let pβD
n be a consistent esti-

mate of β0, which can be obtained by fitting a traditional D-Learning model (Qi and Liu (2018)).

Since ϵ “ 2AR ´ XJβ, σ2
0pA,Xq can be estimated by regressing

´

2AR ´ XJ
pβD
n

¯2

on pA,Xq

through a parametric or nonparametric model. The resulting prediction function can be denoted

as pσ2
npA,Xq. This procedure breaks down into the following implementation steps:

1. Obtain a D-Learning estimator:

pβD
n “ argmin

βPRp

1

n

n
ÿ

i“1

`

2riai ´ xJ
i β

˘2

πpai,xiq
.

2. Regress the squared residuals from Step 1,
´

2AR ´ XJ
pβD
n

¯2

, on the treatment and covari-

ates, pA,Xq, to obtain prediction function pσ2
npA,Xq.
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3. Find pβS
n using:

pβS
n “ argmin

βPRp

1

n

n
ÿ

i“1

π pai,xiq
`

2riai ´ xJ
i β

˘2

pσ2
n pai,xiqπ pai,xiq

“ argmin
βPRp

1

n

n
ÿ

i“1

`

2riai ´ xJ
i β

˘2

pσ2
n pai,xiq

.

(1.10)

Thus, the SD-Learning estimator for the binary treatment case is formulated as a least squares

problem, reweighted by the inverse of the estimated residual variance. A procedure for obtain-

ing an improved estimate of the parameters has therefore been provided for binary D-Learning

in the case of heteroscedasticity. The same reweighting framework can be used in the case of

RD-Learning, where the only differences are that a model for the main effect, mpXq, must be

estimated, and the augmented outcome becomes R˚ “ R ´ pmpXq.

1.2.3 Extension of SD-Learning to Multiple Treatments

Now, we expand the treatment space to K treatments, indexed as A P t1, 2, ..., Ku. Let

uA P RK´1 be defined as per (1.5). Assuming (1.6), the AD-Learning estimation problem in (1.8)

induces the following working model:

K

K ´ 1
R “ UJfpXq ` ϵ.

We use this working model under the same scenario as Section 1.2.2: Epϵ|A,Xq “ 0 and

varpϵ|A,Xq “ σ2
0pA,Xq. The class of linear decision functions is defined as F “ tfpXq “

BJX : B P RpˆpK´1qu.

Adding an arbitrary weight term, wpA,Xq, in the denominator, similarly to the binary case,

we propose the SD-Learning objective function as a modified version of AD-Learning:

pBS
n “ argmin

BPRpˆpK´1q

Pn

"

1

wpA,XqπpA,Xq
ˆ

ˆ

K

K ´ 1
R ´ UJBJX

˙2 *

. (1.11)
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Again, wpA,Xq must be optimally chosen. We can reframe this objective function so that it is

easier to optimize. Using the identity Vec pABCq “
`

CJ b A
˘

VecpBq, where b denotes the

Kronecker product, and the fact that UJBJX is a scalar:

UJBJX “ Vec
`

UJBJX
˘

“
`

XJ
b UJ

˘

Vec
`

BJ
˘

“ XJ
˚ B˚,

where X˚ “
`

XJ b UJ
˘J and B˚ “ Vec

`

BJ
˘

. This allows for an equivalent reformulation of

the SD-Learning estimation problem:

pBS
n “ argmin

BPRpˆpK´1q

Pn

"

1

wpA,XqπpA,Xq
ˆ

ˆ

K

K ´ 1
R ´ XJ

˚ B˚

˙2*

. (1.12)

Note that B˚ and X˚ in (1.12) are vectors in RppK´1q, unlike B and X in (1.11), which are a

matrix in RpˆpK´1q and vector in Rp, respectively. wpA,Xq can now be optimized in a fashion

akin to the binary SD-Learning case:

Proposition 1.2. Under Assumption 1.1 for X˚ instead of X and Assumption 1.2, setting

wpA,Xq “
σ2
0pA,Xq

πpA,Xq
minimizes the estimator of the asymptotic variance of (1.12).

Note that these are the same weights as found in Proposition 1.1 for the binary treatment

case. Having found the optimal weights, wpA,Xq, we switch back to non-vectorized notation

(using UJBJX instead of the equivalent XJ
˚ B˚). σ2

0pA,Xq can be estimated by regressing
!

K
K´1

R ´ uJ
`

pBAD
n

˘J
X
)2

on pA,Xq through a parametric or nonparametric model, with the

estimate denoted by pσ2
npA,Xq. Let pBAD

n represent a consistent estimate of B0, obtained via an

AD-Learning model (Qi et al. (2020)). The implementation of this procedure is as follows:

1. Obtain an AD-Learning estimator:

pBAD
n “ argmin

BPRpˆpK´1q

1

n

n
ÿ

i“1

1

πpai,xiq

ˆ

K

K ´ 1
ri ´ uJ

ai
BJxi

˙2

.
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2. Regress the squared residuals from Step 1,
"

K
K´1

R ´ uJ

´

pBAD
n

¯J

X

*2

, on pA,Xq, to

obtain prediction function pσ2
npA,Xq.

3. Find pBS
n using:

pBS
n “ argmin

BPRpˆpK´1q

1

n

n
ÿ

i“1

1

pσ2
npai,xiq

ˆ

K

K ´ 1
ri ´ uJ

ai
BJxi

˙2

. (1.13)

Thus, SD-Learning in the multi-arm scenario remains a least squares problem, and under

non-homogeneous error structures, provides an increased-efficiency estimation approach through

the angle-based framework (refer to Theoretical Results in Section 1.3).

As per covariate dimensionality and sparsity assumptions, the OLS steps of the implementa-

tion (Steps 1 and 3) in the binary or multi-arm case can be replaced with LASSO, Ridge, Elastic

Net, or other regularized least squares techniques. Detailed proofs of Propositions 1.1 and 1.2 can

be found in Appendix A.1, and the extension of SD-Learning to observational data can be found

in Appendix A.3.

We note that Liang and Yu (2020) use the same working model in developing a semiparamet-

ric efficiency framework for a large class of estimators (fpXq “ gpβJXq, where g is an arbitrary

function), leading to an efficient score function which also includes inverse variance estimates.

However, due to the many conditional expectations involved in the score function, the inverse

variance terms are difficult to estimate directly. As a result of this, their actual estimation proce-

dure ignores the variance terms and reduces to D-Learning of Tian et al. (2014) if a single-index

model is used and E pϵ|Xq “ 0 is assumed. In this case, if a linear decision function is assumed,

the leading variance term can be added back and the resulting efficient score function can be

solved with the SD-Learning algorithm. Thus, SD-Learning enhances the estimation procedure of

Liang and Yu (2020) in the linear decision function case. Additionally, SD-Learning allows the

error term to depend on A as well as X , which is often encountered in practice.

Similarly, Mo and Liu (2021) develop Efficient Learning (E-Learning), a semiparametric

approach incorporating an inverse variance term, but this method necessitates the specification
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of a main effect model. Moreover, multi-arm treatment estimation in E-Learning no longer main-

tains the least squares framework, hence requiring an accelerated proximal gradient method to

solve (Nesterov (2013)). Compared to both methods, we specialize to linear decision rules, and

within this class, achieve 1) the optimal estimator and 2) an estimation procedure which reaches a

closed-form solution instead of requiring optimization techniques.

1.2.4 Residual Model Fitting

The residual modeling step in the implementation of SD-Learning is important, with various

parametric and nonparametric options. We propose LASSO, random forest, and/or tree-based

XGBoost for residual modeling in order to include a diversity of approaches through parametric

assumptions, bagging, and/or boosting, respectively. Additionally, all three methods were cho-

sen for their speed, LASSO and XGBoost for their ability to handle sparsity (Zhang and Huang

(2008), Fauzan and Murfi (2018), Chen and Guestrin (2016)), and in the case of random forests

and XGBoost, flexibility. They also have a relatively low number of hyperparameters to tune,

making their implementation easier. A SuperLearner algorithm can also be used, which combines

candidate parametric and nonparametric methods to find an optimal combination which mini-

mizes cross-validated risk. The SuperLearner has been shown to perform asymptotically as well

as or better than any of the constituent candidate learners (van der Laan et al. (2007)).

Instead of picking one of the above residual modeling algorithms directly, we propose to first

compare them using an internal cross-validation step. After squared residuals from the initial D-

Learning fit, Z “

´

2AR ´ X 1
pβD
n

¯2

, are obtained, each algorithm is fit by regressing Z against

treatment and covariates, pA,Xq. After the hyperparameters for each algorithm are tuned, they

can be compared using K-fold cross-validation with mean squared error (MSE) as the evaluation

metric. This results in finding the best residual modeling method. We describe the algorithm in

detail in Table 1.1.
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Table 1.1: Detailed overview of the SD- and SABD-Learning algorithms.

(1) Initial Estimate: Obtain a consistent estimate, pβD
n , of the parameters of the decision

function through D-Learning in the binary treatment case or AD-Learning in the
multi-arm treatment case (unweighted).

(2) Hyperparameter Tuning: Obtain Z “

´

2AR ´ X 1
pβD
n

¯2

as squared residuals from
Step (1). Find optimal LASSO (L), random forest (RF), XGBoost (XG), and/or Su-
perLearner (SL) parameters for predicting Z from treatment and covariates, pA,Xq,
resulting in candidate prediction functions pσ2

L pA,Xq, pσ2
RF pA,Xq, pσ2

XG pA,Xq, and
pσ2
SL pA,Xq.

(3) Internal K-Fold CV: Randomly partition the original sample into K equal-sized
(or nearly equal) training folds and let zij , aij , and rij represent the squared resid-
ual, treatment, and outcome, respectively, corresponding to the ith observation in
the jth testing fold (of size nj), where i P t1, ..., nju and j P t1, ..., Ku. For the
method m P tL,RF,XG, SLu, the average test set error can be determined as
MSEm “ 1

K

řK
j“1

”

1
nj

řnj

i“1

␣

zij ´ pσ2
mj paij,xijq

(2
ı

, where pσ2
mj pA,Xq represents

the prediction function resulting from method m when trained on training data from
fold j. Pick the method with the lowest average error, mopt “ argmin

m
tMSEmu.

(4) Obtaining Weights: Using mopt from Step (3), obtain the predicted squared residual
for each of n observations, pσ2

mopt
pA,Xq.

(5) Reweighted Estimate: Using pσ2
mopt

pA,Xq from Step (4) as weights, obtain stabi-
lized parameter estimates through SD-Learning as in (1.10) or SABD-Learning as in
(1.13).
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1.3 Theoretical Results

In this section, we establish the theoretical properties of SD-Learning for settings with fixed

dimension, p. We establish consistency and asymptotic normality of the SD-Learning estimator,

along with bounds for the empirical value function. Detailed proofs for all theorems and remarks

can be found in Appendix A.2. We state two additional assumptions below, and will delineate

which assumptions are needed for each theorem.

Assumption 1.3. pσ2
npA,Xq is uniformly consistent for σ2

0pA,Xq. In other words, ||pσ2
npA,Xq ´

σ2
0pA,Xq||8,pA,X q

P
Ñ 0, where || ¨ ||8,pA,X q represents the uniform norm over pA,X q, and

pA,X q is in a bounded set. In the case of observational data, we also require ||pπnpA,Xq ´

π0pA,Xq||8,pA,X q
P
Ñ 0.

Assumption 1.4. @ γ ą 0, D G which is P-Donsker such that Pr
!

Xϵ
pσ2
npA,Xq

P G
)

ą 1´ γ, @ n large

enough.

In Remark 1.1, below, we propose two estimation methods for pσ2
npA,Xq and provide justifi-

cation that they satisfy Assumptions 1.3 and 1.4. Then, in Theorem 1.1, we establish consistency

of the SD-Learning estimator in the binary treatment setting, and with consistency established,

asymptotic normality of the estimator is shown in Theorem 1.2.

Remark 1.1. Estimating σ2
0pA,Xq by regressing squared residuals, Z, against treatment and

covariates, pA,Xq, with (1) Linear regression with arbitrary features and (2) Random forests

satisfies Assumptions 1.3 and 1.4.

Theorem 1.1. If Assumptions 1.1-1.3 are met, pβS
n

P
Ñ β0.

Theorem 1.2. Let Y ˚ “ 2AY and EpY ˚|Xq “ Xβ0. Denote U0 “ E

"

XXJ

σ2
0 pA,Xq

*

. If

Assumption 1.4 is additionally met,
?
n
`

pβS
n ´ β0

˘

is asymptotically normal with variance U´1
0 .

pβS
n achieves the lower bound of the asymptotic variance shown in Proposition 1.1, and is

thus the optimal estimator for β0 among the weighted choices of (1.9). Thus we have achieved

consistency, convergence, and asymptotic efficiency.
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Since Section 1.2.3 unifies the framework between SD-Learning in binary vs. multi-arm

treatment scenarios, the extension of Theorems 1.1 and 1.2 to multi-arm treatment are natural.

This development is outlined in Theorem 1.3:

Theorem 1.3. Let X˚ “
`

XJ b UJ
˘J, B˚ “ Vec

`

BJ
˘

, Y ˚ “ K
K´1

R where A P t1, 2, ..., Ku,

and E pY ˚|X˚q “ XJ
˚ B˚. Denote U0 “ E

"

X˚X
J
˚

σ2
0 pA,Xq

*

. Under Assumption 1.1 for X˚

instead of X and Assumptions 1.2-1.3, pBS
˚

P
Ñ B˚. Moreover, if Assumption 1.4 is additionally

met,
?
n
´

pBS
˚ ´ B˚

¯

is asymptotically normally distributed with variance U´1
0 .

Thus, all results established for the binary treatment case extend to the multi-arm setting.

Combining the asymptotic normality result of Theorem 1.3 with Theorem 1 of Qi et al. (2020)

which shows that:

V pdoptq ´ V ppdnq ď
2KpK ´ 1q

1 ´ CpKq

ˆ

E
›

›

›
f opt

´ pfn

›

›

›

2

2

˙1{2

,

where constant CpKq only depends on K,
?
n-convergence of V ppdnq to V pdoptq is established.

1.4 Numerical Results: Simulation Studies

We perform head-to-head comparisons between SD-Learning and the D-Learning family

of methods (D-Learning, AD-Learning, and RD-Learning), while noting that D-Learning has

been extensively compared to other precision medicine methods in existing literature (Qi and Liu

(2018); Wang et al. (2020); Qi et al. (2020); Meng and Qiao (2021); Mo and Liu (2021)). In all

simulations, LASSO is used to obtain estimates of the decision function parameters (Steps 1 and

5 of Table 1.1), and we use internal cross-validation to pick between LASSO, random forest, and

XGBoost at the intermediate residual modeling steps (Steps 2 and 3 of Table 1.1). Methods are

evaluated based on three criteria:

1. Average Prediction Error (APE): Coefficient accuracy based on MSE of true vs. predicted

decision functions. For binary simulation settings, APE “ n´1
řn

i“1

`

xJ
i β0 ´ xJ

i
pβn

˘2; for
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multi-arm settings, APE “ n´1
řn

i“1

␣

f optpxiq ´ pfpxiq
(2

“ n´1
řn

i“1

␣
řK

k“1 δkpxiquk ´

řK
k“1

pδkpxiquk

(2.

2. Misclassification Rate: % incorrect treatment assignment.

3. Empirical Value: pV pdq “
Pn rR ¨ 1tA “ dpXqu{πpA,Xqs

Pn r1tA “ dpXqu{πpA,Xqs
.

Better performance corresponds to lower APE, lower misclassification rate, and higher empirical

value. In all simulations, performance based on these criteria is determined on a test data set with

10000 observations. 100 replications of each simulation setting are performed.

We compare all binary methods with p “ t30, 60, 120u and multi-arm methods with p “

t20, 40, 60u. Simulated observations are independent with continuous covariates generated ac-

cording to a U[-1,1] distribution. To allow for heteroscedasticity, the outcome is generated ac-

cording to the working model in (1.1) for binary treatments and (1.6) for multi-arm treatments,

but with η generated according to σ0pXq ˚ Z, where Z „ Np0, 1q and σ0pXq ą 0. Here, non-

constant σ0pXq introduces heteroscedasticity.

1.4.1 Binary Treatment Simulations

We compare SD-Learning and D-Learning with four simulation settings where n “ 200:

1. mpXq “ 1 ` 2X1 ` X2 ` 0.5X3; δpXq “ 0.5p0.9 ´ X1q;

σ2
0pXq “ 1; πpA “ 1,Xq “ 0.5 (RCT).

2. mpXq “ 1 ` 12X1 ` 6X2 ` 3X3; δpXq “ 4X1;

σ2
0pXq “ 0.25 ` pX2 ` 1q2; πpA “ 1,Xq “ 0.25 ` 0.5 ˚ 1pX2 ą 0q.

3. mpXq “ 1 ` 10X1 ` 10X2 ` 20X3 ` 5X4; δpXq “ 4p0.3 ´ X1 ´ X2q;

σ2
0pXq “ 1 ` 4X2

3 ; πpA “ 1,Xq “ 0.5 (RCT).

4. mpXq “ 1 ` 10X1 ` 6X2
1 ´ 6X2

2 ` 10X3; δpXq “ 2X2
2 ` 1.5X3 ` 3X4;

σ2
0pXq “ .25 ` p.3 ´ X1 ´ X2q2; πpA “ 1,Xq “ 0.5 (RCT).
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Scenario (1) is very similar to the third linear decision boundary scenario in Qi and Liu (2018),

and has homoscedastic error. In this case, an intermediate residual reweighting step is not nec-

essary since the optimal weights are wpXq “ 1 by design, which is the default for D-Learning.

(2)-(4) introduce heteroscedasticity through the error term. (2) and (3) meet linear decision func-

tion assumptions, and in both, the interaction effect has variables in common with the main effect

but not with the error function. Specifically, (2) is an observational data setting, where we model

the propensity score through random forest for binary classification. Finally, (4) is a nonlinear

decision boundary scenario where SD-Learning is misspecified. This scenario will help test the

robustness of SD-Learning in situations where the true parameters of the decision function cannot

be consistently estimated.

Figure 1.1 shows the APE for all four scenarios, and Table 1.2 contains misclassification

rates and the estimated empirical value function on the test dataset. Since Scenario (1) has ho-

moscedastic error, D-Learning performs “optimally” in the sense of correctly specified weights;

hence, stabilizing the D-Learning estimates is technically not needed. However, SD-Learning still

performs similarly to D-Learning, with comparable APE and only slightly lower misclassifica-

tion rate and empirical value. For scenarios (2) and (3), SD-Learning outperforms D-Learning

because of the heterogeneous error structure. SD-Learning prioritizes observations with smaller

expected outcome variance, and therefore estimates parameters more efficiently, as shown by

the lower APEs in Figure 1.1. This results in better classification and therefore, higher empirical

value. In Scenario (4), although the true decision boundary is nonlinear, SD-Learning’s flexible

modeling of heteroscedasticity gives it an advantage over D-Learning.

We also perform simulations to show the advantage of stabilizing the estimates of RD-

Learning. For these simulations, n “ 100. For the main effect modeling step, LASSO was

used, but nonparametric methods may also be used as per Meng and Qiao (2022). The simulation

settings for SRD-Learning vs. RD-Learning are as follows:

5. mpXq “ 1 ` 10X1 ` 10X2 ` 20X3 ` 20X5 ` 10X1X2; δpXq “ 1.25X3 ` 2.5X4;

σ2
0pXq “ 1 ` 0.1p1 ` X2

1 q; πpA “ 1,Xq “ 0.5 (RCT).
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Figure 1.1: Average Prediction Error (APE) results, along with standard error of the mean (SEM)
bars, of four binary simulation scenarios comparing D- to SD-Learning (n “ 200), two binary
simulation scenarios comparing RD- to SRD-Learning (n “ 100), and two multi-arm simulation
scenarios comparing AD- to SABD-Learning (n “ 200). In binary scenarios, p varies from 30 to
120, and in multi-arm scenarios, p varies from 20 to 60. This figure appears in color in the
electronic version of this article, and any mention of color refers to that version.
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Table 1.2: Mean empirical value and misclassification rate, along with standard error of the mean
(SEM), for four binary D- vs. SD-Learning simulations and two binary RD- vs. SRD-Learning
simulations for 30, 60, and 120 covariates. The best-performing method for each category is
bolded.

p “ 30 p “ 60 p “ 120

Value Misclass. Value Misclass. Value Misclass.
Scenario 1

D-Learning 1.43 (0.01) 0.07 (0.01) 1.43 (0.01) 0.07 (0.01) 1.44 (0.01) 0.08 (0.01)
SD-Learning 1.42 (0.01) 0.08 (0.01) 1.42 (0.01) 0.09 (0.01) 1.43 (0.01) 0.09 (0.01)

Scenario 2
D-Learning 2.46 (0.01) 0.14 (0.01) 2.27 (0.01) 0.14 (0.01) 2.17 (0.01) 0.15 (0.01)

SD-Learning 2.48 (0.01) 0.13 (0.01) 2.30 (0.01) 0.13 (0.01) 2.21 (0.01) 0.14 (0.01)
Scenario 3

D-Learning 2.64 (0.09) 0.29 (0.01) 2.40 (0.09) 0.32 (0.01) 2.16 (0.08) 0.36 (0.01)
SD-Learning 2.82 (0.08) 0.26 (0.01) 2.56 (0.09) 0.30 (0.01) 2.21 (0.08) 0.35 (0.01)

Scenario 4
D-Learning 1.81 (0.05) 0.31 (0.01) 1.91 (0.05) 0.32 (0.01) 1.90 (0.04) 0.33 (0.01)

SD-Learning 2.08 (0.03) 0.24 (0.01) 2.02 (0.05) 0.29 (0.01) 1.99 (0.04) 0.31 (0.01)
Scenario 5

RD-Learning 1.94 (0.03) 0.20 (0.01) 1.91 (0.05) 0.27 (0.01) 1.43 (0.05) 0.30 (0.01)
SRD-Learning 1.98 (0.03) 0.18 (0.01) 2.02 (0.04) 0.24 (0.01) 1.55 (0.05) 0.27 (0.01)

Scenario 6
RD-Learning 6.16 (0.04) 0.21 (0.01) 5.94 (0.04) 0.23 (0.01) 5.65 (0.05) 0.25 (0.02)

SRD-Learning 6.24 (0.04) 0.19 (0.01) 5.97 (0.04) 0.23 (0.01) 5.70 (0.05) 0.24 (0.01)
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6. mpXq “ 1 ` 5 cos2pX1q ` 10X1X2 ` 20X2 ` 30X5; δpXq “ 3X1 ` 2X2 ` 2X2
5 ;

σ2
0pXq “ 0.5 ` 0.5 p1 ´ 0.25X6q

3; πpA “ 1,Xq “ 0.5 (RCT).

Both scenarios have heterogeneous error. Scenario (5) has a true linear decision function,

whereas (6) has a nonlinear decision function along with a nonlinear cosine term in the main

effect. Figure 1.1 shows the APE for both scenarios, and Table 1.2 contains misclassification

rates and the estimated empirical value function on the test dataset. Although RD-Learning is

already robust in the sense that the main effect is removed before model fitting, the reweighing

step of SRD-Learning adds efficiency in situations with heteroscedasticity - even in the presence

of a misspecified decision function and nonlinearity in the main effect.

1.4.2 Multi-Arm Treatment Simulations

We compare SABD-Learning and AD-Learning with two multi-arm treatment scenarios

under heteroscedasticity, setting K “ 4 and n “ 200 in both:

7. mpXq “ 1 ` 2X1 ` 2X2;

σ2
0pXq “ .25 ` 0.2p1.5 ´ X2q

2;
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

δpXq “ .75 ` 1.5X1 ` 1.5X2 ` 1.5X3 ` 1.5X4; πpA,Xq “ 0.25, A “ 1

δpXq “ .75 ` 1.5X1 ´ 1.5X2 ´ 1.5X3 ` 1.5X4; πpA,Xq “ 0.25, A “ 2

δpXq “ .75 ` 1.5X1 ´ 1.5X2 ` 1.5X3 ´ 1.5X4; πpA,Xq “ 0.25, A “ 3

δpXq “ .75 ´ 1.5X1 ` 1.5X2 ´ 1.5X3 ` 1.5X4; πpA,Xq “ 0.25, A “ 4

8. mpXq “ 1 ` X5 ` 3X6 ` 2X1X2;

σ2
0pXq “ .25 ` 2X2 ˚ 1pX2 ą 0q ` X3 ˚ 1pX3 ą 0, A “ 1q ` X4 ˚ 1pX4 ą 0, A “ 2q;

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’
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’

’

’

’

’

%

δpXq “ 0.5 ` 2X1 ` X2 ` X3; πpA,Xq “ 0.25˚1pX1 ă 0q ` 0.4˚1pX1 ą 0q, A “ 1

δpXq “ 1 ` X1 ´ X2 ´ X3; πpA,Xq “ 0.25˚1pX1 ă 0q ` 0.2˚1pX1 ą 0q, A “ 2

δpXq “ 1.5 ` 3X1 ´ X2 ` X3; πpA,Xq “ 0.25˚1pX1 ă 0q ` 0.2˚1pX1 ą 0q, A “ 3

δpXq “ 1 ´ X1 ´ X2 ` X3; πpA,Xq “ 0.25˚1pX1 ă 0q ` 0.2˚1pX1 ą 0q, A “ 4.

24



Table 1.3: Mean empirical value and misclassification rate, along with standard error of the mean
(SEM), for two multi-arm scenarios comparing AD-Learning to SABD-Learning. All simulations
are repeated with 20, 40, and 60 covariates. The best-performing method for each category is
bolded.

p “ 20 p “ 40 p “ 60

Value Misclass. Value Misclass. Value Misclass.
Scenario 7

AD-Learning 3.39 (0.02) 0.34 (0.01) 3.23 (0.03) 0.39 (0.01) 3.19 (0.03) 0.42 (0.01)
SABD-Learning 3.49 (0.01) 0.30 (0.01) 3.39 (0.02) 0.33 (0.01) 3.39 (0.02) 0.35 (0.01)

Scenario 8
AD-Learning 2.71 (0.03) 0.52 (0.01) 2.68 (0.03) 0.56 (0.01) 2.67 (0.03) 0.58 (0.01)

SABD-Learning 2.86 (0.02) 0.47 (0.01) 2.86 (0.02) 0.50 (0.01) 2.88 (0.02) 0.51 (0.01)

Both scenarios meet linear assumptions for the treatment-covariate interaction effects. In

Scenario (7), heterogeneous error is a quadratic function of the covariate X2, but in Scenario (8),

it is a spline function of X2, X3, and X4 dependent on treatments A “ 1 and A “ 2. Scenario

(8) is additionally an observational data setting, with the propensity score modeled through ran-

dom forest for multiclass classification. Figure 1.1 reports APE for both scenarios, and Table 1.3

displays misclassification and value results. Reweighting in the multi-arm scenario under het-

eroscedasticity also improves efficiency, resulting in lower APEs and misclassification rates, and

higher empirical values. SABD-Learning improves the performance of AD-Learning when an

error structure can be learned and utilized to obtain decision rules built by favoring observations

which are more likely to represent signal than noise.

1.5 Data Analysis: AIDS Clinical Trial

We observe that in the ACTG175 data of 2139 patients, heteroscedasticity is present through

covariates and treatments; this analysis is detailed in Appendix A.4. Hence, we apply SD-Learning

to the data, which may benefit from a reweighting approach. This double-blinded study evaluated

monotherapy vs. combination approaches to increasing CD4 cell counts in HIV-1-infected pa-

tients with initial cell counts of 200-500 cells/mm3 (Hammer, S. M. et al. (1996)). AIDS-defining
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illnesses have been shown to decrease as CD4 cell count increases (Mocroft, A. et al. (2013)), so

larger increases in CD4 cell count are preferable.

Patients were randomly assigned to one of four daily regimens with equal probability:

1. 600 mg zidovudine (Z)

2. 600 mg zidovudine + 400 mg didanosine (ZD)

3. 600 mg zidovudine + 2.25 mg zalcitabine (ZZ)

4. 400 mg didanosine (D)

The outcome we use for this analysis is the change in CD4 cell count from baseline to 20

weeks, as done in Qi and Liu (2018) and Qi et al. (2020). 12 covariates are selected as per Fan

et al. (2017); five continuous: weight (kg), age (years), Karnofsky score (0-100), baseline CD4

count (cells/mm3), baseline CD8 count (cells/mm3); and seven binary: hemophilia (1=yes, 2=no),

homosexual activity (1=yes, 0=no), history of intravenous drug use (1=yes, 0=no), race (1=non-

white, 0=white), gender (1=male, 0=female), antiretroviral history (1=experienced, 0=naive), and

symptomatic status (1=symptomatic, 0=asymptomatic). For all comparisons, LASSO is used

to obtain estimates of the decision function parameters. LASSO, random forest, and XGBoost

are tuned and used for the residual modeling step of SD- and SABD-Learning, with the optimal

method picked by internal cross-validation.

1.5.1 Binary Scenario

We compare the performance of D-Learning and its corresponding stabilized version, SD-

Learning, for each pairwise set of treatments from the four choices. We randomly split the data

into a training set of n observations, using the rest of the observations as testing data. n is se-

lected to be 100, 200, 400, and 800. For generating empirical value estimates, pV pdq, we perform

Monte Carlo Cross-Validation (repeated random subsampling) with 1000 iterations at each n.

The corresponding binary treatment results are shown in Table 1.4.
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Table 1.4: Empirical value estimates for binary AIDS data scenarios comparing performance of
D- and SD-Learning on each pairwise set of treatments (Z, ZD, ZZ, D) at varying sample sizes of
training data (n “ 100, 200, 400, 800). At each sample size, results are averaged from 1000
replications, and corresponding standard error of the mean (SEM) is shown. The best-performing
method at each level of sample size is bolded. When both methods converge upon recommending
a single treatment (in over 99% of patients across all replications), the treatment is specified
instead of the (nearly identical) value estimates.

D-Learning SD-Learning D-Learning SD-Learning
ZD vs. ZZ n “ 100 49.12 (0.31) 49.24 (0.30) Z vs. ZD n “ 100 51.75 (0.21) 52.18 (0.20)

n “ 200 51.76 (0.21) 52.12 (0.20) n “ 200 52.92 (0.15) 53.43 (0.14)
n “ 400 52.74 (0.18) 53.15 (0.17) n “ 400 53.48 (0.16) 53.90 (0.16)
n “ 800 53.16 (0.35) 53.55 (0.36) n “ 800 53.84 (0.35) 54.30 (0.35)

ZD vs. D n “ 100 48.67 (0.29) 48.92 (0.28) Z vs. ZZ n “ 100 15.62 (0.27) 15.62 (0.27)
n “ 200 50.59 (0.23) 51.02 (0.23) n “ 200 17.96 (0.14) 18.10 (0.15)
n “ 400 52.88 (0.19) 53.28 (0.19) n “ 400 ZZ for over 99% of patients.
n “ 800 55.99 (0.33) 56.42 (0.33) n “ 800 ZZ for over 99% of patients.

ZZ vs. D n “ 100 23.57 (0.13) 23.64 (0.13) Z vs. D n “ 100 24.57 (0.19) 24.55 (0.19)
n “ 200 23.89 (0.13) 23.88 (0.14) n “ 200 D for over 99% of patients.
n “ 400 24.52 (0.15) 24.57 (0.15) n “ 400 D for over 99% of patients.
n “ 800 25.55 (0.25) 25.48 (0.25) n “ 800 D for over 99% of patients.

In terms of empirical value, SD-Learning improves upon the performance of D-Learning in

most scenarios, especially for comparisons involving treatment ZD. SD- and D-Learning perform

approximately equally well for ZZ vs. D, with empirical values differing by less than 0.10 in

all cases. For pairwise comparisons of Z vs. ZZ and Z vs. D, both methods eventually converge

upon recommending a single treatment to over 99% of patients and therefore have very similar

value estimates. Overall, SD-Learning either outperforms D-Learning (ZD vs. ZZ, ZD vs. D, and

Z vs. ZD) or performs equally as well (ZZ vs. D, Z vs. ZZ, Z vs. D).

1.5.2 Multi-Arm Treatment Scenario

We now compare the performance of AD- and SABD-Learning at varying sample sizes

while considering all four treatments simultaneously. We randomly split the data into training

sets of n “ 100, 200, 400, 800, and 1200, using the rest of the observations as testing data. The

procedure is repeated 1000 times for each value of n. All results are shown in Table 1.5.

SABD-Learning has a distinct advantage over AD-Learning at all observed training data

sample sizes. The stabilization step weighs patients differentially based on predicted squared
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Table 1.5: Empirical value estimates for multi-arm AIDS data scenarios comparing the
performance of AD- and SABD-Learning in selecting amongst four treatments simultaneously.
Varying sample sizes of the training data were chosen to be n “ 100, 200, 400, 800, and 1200. At
each sample size, results are averaged from 1000 replications, and the corresponding standard
error of the mean (SEM) is shown. The best-performing method at each level of sample size is
bolded.

AD-Learning SABD-Learning
n “ 100 43.27 (0.43) 43.98 (0.43)
n “ 200 47.19 (0.37) 48.29 (0.35)
n “ 400 50.57 (0.25) 51.74 (0.22)
n “ 800 53.35 (0.18) 54.25 (0.17)
n “ 1200 54.27 (0.23) 55.24 (0.23)

residual from the initial AD-Learning step. This results in more efficiently estimated treatment

rules and therefore higher values, even in scenarios with very low sample sizes.
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1.6 Discussion

In this article, we propose SD-Learning, which boosts the efficiency of D-Learning in a wide

range of scenarios with more general error functions, thus enhancing the utility of D-Learning

on datasets which may be encountered in practice. The performance of SD-Learning relies on

sufficiently modeling residuals from an initial D-Learning fit, which can be achieved through

a variety of parametric or nonparametric methods. When the true residual variance is homoge-

neous, SD-Learning reduces to D-Learning. Our results suggest that under this homogeneous

error, SD-Learning pays a minor efficiency price, but under heterogeneous error, it can offer

substantial efficiency gains. Additionally, SD-Learning parameter estimates are asymptotically

normal when OLS is used for the estimation steps, allowing post-modeling inference even in the

multi-arm treatment scenario.

The implementation benefits of SD-, SRD-, and SABD-Learning lie in the fact that they are

straightforward to use and can simply be stacked on top of D-, RD-, and AD-Learning which

have been shown to perform well in a multitude of settings. Additionally, our methodology even

in the multi-arm treatment setting (SABD-Learning) remains estimable with a least squares

framework and closed-form solution, not requiring the use of optimization algorithms.

For practical use, we recommend SRD-Learning, since Meng and Qiao (2022) showed that

incorporation of the mean outcome model results in protection against incorrect specification of

the propensity score model. This would be especially helpful in the case of observational data. In

general, unless there is prior evidence of homoscedasticity, we recommend SD-Learning meth-

ods because they involve reweighting, which is a simple add-on that increases the efficiency of

already-proven methods of Qi and Liu (2018) and Tian et al. (2014). We also suggest consider-

ing a variety of nonparametric prediction algorithms for the residual modeling step in order to

gain an understanding of the heteroscedasticity structure of the dataset at hand. Random forests

appeared to work well under a wide variety of scenarios, with the number of trees as the most

important tuning parameter.
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Several future extensions of this work are possible. Theoretical results in Section 1.3, includ-

ing Remark 1.1 for random forests, can be extended to the case where covariate dimension, p,

increases with n. Although our method can be used with higher-order polynomial terms and inter-

actions by replacing X with a collection of bases of X , a more natural methodological extension

would be to allow for SD-Learning to estimate nonlinear decision rules using Reproducing Ker-

nel Hilbert Space (RKHS) techniques (Fan et al. (2019)). Additionally, SD-Learning may be

broadened to work for binary and survival outcomes under heteroscedasticity. As proposed in

this paper, SD-Learning assumes independence (but not identically distributed errors) between

observations. It would also be valuable to use SD-Learning in scenarios with correlation between

observations. This would be akin to feasible generalized least squares (FGLS) (Olive (2017)) for

ITR estimation.
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CHAPTER 2: INVERSE REINFORCEMENT LEARNING FOR PHYSICIAN-ASSISTED
ESTIMATION OF INDIVIDUALIZED TREATMENT RULES WITH MULTIPLE

OUTCOMES OF INTEREST

2.1 Introduction

The majority of precision medicine methods, including those outlined in Section 1.1.1, have

been developed with a goal of optimizing one outcome of interest. However, it is often the case

that treatment selection involves balancing trade-offs between multiple outcomes of interest.

Take, for example, H. pylori infection, a common cause of stomach ulcers. Two main treatment

strategies include 14-day triple therapy (14T) and dual therapy of omeprazole plus amoxycillin

or clarithromycin (OAC). De Boer and Tytgat (1995) present the question, “Should efficacy or

side-effect profile determine our choice?”, and then outline that 14T provides the best eradication

results but comes with severe side effects, whereas OAC causes less patient burden but also lacks

the efficacy of 14T. Similar examples are seen in schizophrenia, where antipsychotic medica-

tions are more efficacious than other treatments but come with greater side effects (Swartz et al.

(2008)), and bipolar disorder, where treatment must balance trade-offs between depression and

mania (Wu et al. (2015)).

2.1.1 Precision Medicine with Multiple Outcomes of Interest

The need for precision medicine is often described to result from treatment effect hetero-

geneity (Wager and Athey (2018); Kent et al. (2020); Fang et al. (2022)), where patients exhibit

diversity in their responses to treatment. However, in the above examples, when multiple clinical

endpoints are of interest, patients may display utility heterogeneity and perceive the importance

of individual endpoints differently (Irony (2017)). In such scenarios, individual composite util-
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ity (as a weighted combination of the multiple outcomes) varies on the basis of patient-specific

factors (e.g. a subgroup that displays increased vulnerability to side effects). Such utility hetero-

geneity also begets a need for personalization of decision making.

Beginning to formalize the setting with heterogeneous utilities, we note that patient-specific

utilities will depend on:

(1) Characteristics of the outcomes (i.e. certain outcomes, overall, are more important than

other outcomes)

(2) Characteristics of patients (i.e. some patients may prescribe greater importance to certain

outcomes than other patients)

The latter drives the patient-specific tailoring, but both must be accounted for.

There are a number of approaches for constructing composite utilities. Classical approaches

include canonical correlation analysis (CCA), which maximizes correlation between a linear

combination of outcomes and covariates (Thompson (1984)), and nonlinear extensions (Nandy

and Cordes (2003)). A more recent approach related to CCA finds a univariate outcome “most-

easily predicted” by the covariates and treats it as an optimal summary outcome (Benkeser et al.

(2021)). Latent variable analysis has strived to turn multiple outcomes into a lower-dimensional

representation through unsupervised grouping, with a-posteriori analysis to attribute meaning to

the dimensions (Sobel (1994)). A number of methods can be used to estimate ITRs in multiple

outcome situations: Murray et al. (2016) converts the outcomes to a pre-specified composite for

all patients, Laber et al. (2014) recommends sets of treatments at each decision point if differ-

ent treatments optimize different outcomes, and Chen et al. (2021) learn ITRs through finding

discrete latent constructs that underlie observed outcomes. Notably, however, none of the afore-

mentioned methods estimate individual patient-specific utility functions. Rather, they assume that

a single composite outcome can be estimated to reflect utility across all patients.
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2.1.2 Strategies for Observational Data

Most precision medicine strategies are predicated on the assumption that the data at hand

reflect mixed treatment assignment (i.e. some patients treated optimally and others treated non-

optimally), and that a treatment rule can be derived from the data which is more effective than

the rule used to generate the data. Of course, this is most often the case. However, Wallace et al.

(2018) argue that there are certain observational data situations in which clinicians assign treat-

ments well; that is, they assign treatment optimally. For this situation, they propose to ignore pa-

tient outcomes entirely and focus on predicting observed treatment from covariates. This method

is called Reward Ignorant Modeling of ITRs. If it is assumed that the data already reflect the opti-

mal treatment rule, it is natural that directly predicting observed treatment is more efficient than

using common ITR estimation strategies which are built to determine patients who were treated

well and patients who were treated poorly. This regression is independent of the number of ob-

served outcomes, so this strategy works for multiple outcomes in a roundabout way. However, the

assumption that motivates this approach is strong, nothing is learned about the patient-specific

outcome preferences (heterogeneous utility), and this method is not transferable to the random-

ized clinical trial (RCT) setting.

Luckett et al. (2021) extends the Reward Ignorant Modeling framework by assuming that

physicians follow an approximately optimal policy, not an optimal one. Instead of assuming that

physicians treat all patients optimally, they estimate the probability that each patient is treated

optimally. This basis is used to develop estimators of individual patient utilities, and further,

decision rules which optimize patient-specific composite outcomes.

It should be noted that these papers are inherently related to the field of inverse reinforcement

learning (IRL), which Ng and Russell (2000) describe as the problem of attempting to extract the

reward function (i.e., utility function) given observed, optimal behavior of an agent. IRL can also

be considered a branch of imitation learning as it works to learn a policy through examples or

reproduce demonstrated behavior (Zhifei and Meng Joo (2012)). Examples of application areas

of IRL are self-driving cars, which attempt to learn reward structures from the behavior of drivers
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in various situations (Arora and Doshi (2021)), teaching a computer a control policy (Hussein

et al. (2017)), or even teaching a robot to play table tennis from demonstrations (Muelling et al.

(2014)).

IRL however, assumes that there is a single environment in which the agent makes decisions.

In the context of utility heterogeneity, the utility function varies across patients, and hence the

decisions of the expert are not only outcome-specific, but also patient-specific (as defined in

Section 2.1.1). Thus, whereas the work of Wallace et al. (2018) is pure IRL, the work of Luckett

et al. (2021), which attempts to understand and recreate expert behavior with multiple patients,

should be considered a variant of IRL with multiple environments.

That physicians make optimal or near-optimal decisions with respect to the patient is a strong

assumption, but may apply based on prior knowledge of certain clinical settings. However, these

methods do not readily extend to RCT settings, in which no judgement was made to inform

treatment.

2.1.3 Patient Preference Elicitation

In RCT settings, some form of additional information must be collected in order to learn

about patient-specific reward structures amongst multiple outcomes. Butler et al. (2018) in-

corporates patient preference information to augment the ITR estimation framework for two-

outcome settings. A questionnaire is first composed with binary-choice questions for patients to

answer, assuming that each patient has an underlying preference that parameterizes a weighting

between the outcomes. The methodology then utilizes concepts from the field of item response

theory (Embretson and Reise (2000)) to implement a latent trait model (Rasch model; Kean et al.

(2018)) with Q-learning to incorporate these preferences into a treatment plan. Butler (2016)

incorporates a nonparametric model to determine the weights of the linear utility function.

Notably, the work of Luckett et al. (2021) for observational data and Butler (2016) for pa-

tient preferences in RCT settings works for two outcomes of interest. Because both methods are

framed with Q-learning for ITR estimation, they can work with ą 2 treatments, although these
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cases are not covered as examples in the papers. Butler (2016) requires that preference informa-

tion be collected for each incoming patient. It would be worthwhile to develop methodology that

links preference information with covariates such that preferences for new patients can be known

directly from the covariates they present with.

2.1.4 Proposed Method

In this article, we propose an ITR estimation framework, augmented by physician input, for

settings where multiple outcomes are of interest. Although extensive research has attempted to

develop composite outcomes where weights are assigned based on expert (physician) opinion,

these methods take a “one utility fits all” approach and do not account for utility function vari-

ation across patients. Our methodology involves a physician questionnaire and attempts to find

an individualized utility function as a weighted combination of the observed outcomes. Each

weighted combination serves as a composite outcome that can be used in the precision medicine

pipeline for ITR estimation. A covariate-dependent set of weights is interpreted as a preference

describing the relative importance of the different outcomes for a specific patient.

2.2 Physician-assisted ITR Estimation with Heterogeneous Utilities

2.2.1 Setup and Notation

We assume that observed patient data, for patients i P t1, ..., nu with outcomes l P L “

t1, ..., Lu, constitute independent realizations of the random triplet tX, A,Rui, where patient

covariates are represented by the pd ` 1q-dimensional vector, X P X Ă Rd`1, which includes

an intercept, A represents one of K possible treatments in A “ t1, ..., Ku, and R “ tR1, ..., RLu

is a vector of the L unique outcomes. The probability of receiving treatment a, given covariates

x, is represented by πpa,xq “ PrpA “ a|X “ xq. Outcomes where smaller is better (e.g. side

effect burden) can be negated without loss of generality, so it is assumed in the methodology that

larger Rl corresponds to better outcome.
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Figure 2.1: Example choice scenario from a physician questionnaire. Here, the physician is
presented with a diabetic patient’s baseline demographic and clinical information, along with two
potential outcomes containing built-in trade-offs (Outcome A with greater reduction of HbA1c
and hypoglycemia, and Outcome B with better physical and mental functioning). Based on the
patient, the physician must decide on a preferred outcome amongst the two.

For physicians p P t1, ...,mu, assume that each physician is presented with cq choice sce-

narios, indexed by q P t1, ..., cpu. Let realizations of the individual choice scenarios be rep-

resented by the random vector tX˚,RA,RB, Supq, where RA “ tRA1, ..., RALu and RB “

tRB1, ..., RBLu are two competing outcome profiles for a hypothetical patient presenting with

covariates X˚, and S P t0, 1u reflects the “better” outcome profile selected by the physician

for that patient, with S “ 1 corresponding to a selection of RA and S “ 0 to RB. Note that

choice scenarios between different physicians are independent from one another, but choice sce-

narios within a physician are not. An example choice scenario is shown in Figure 2.1. Practical

considerations for developing a physician questionnaire are discussed in Section 2.2.5.

An ITR, dpXq : X ÞÑ A, is a mapping from covariates to treatments. Let 1p¨q represent the

indicator function.
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2.2.2 Utility Function Characterization

We assume that individual utility can be represented by the function UpR|Xq “ w1pXqR1 `

... ` wLpXqRL, a convex combination of the individual outcomes, with covariate-dependent

weights, tw1pXq, ..., wLpXqu, constrained such that
řL

l“1wlpXq “ 1.

Parameterizing weights with β “ p0,β2, ...,βLq such that wlpX;βq “ eβ
J
l x{

´

1 `
řL

l“2 e
βJ
l x
¯

,

where βJ
1 “ 0 and βJ

l “ tβl0, ..., βldu for l ě 2, the utility function can be represented by the

following multinomial logit-like model:

UβpR|X “ xq “
R1 `

řL
l“2 e

βJ
l xRl

1 `
řL

l“2 e
βJ
l x

. (2.1)

This representation of the utility function maintains convexity (by enforcing that wlpXq ą

0 @ l P L and
řL

l“1wlpXq “ 1) and allows for the outcome-specific weights to be modeled as

functions of covariates. Such a convex utility is also rational (i.e. if one outcome profile is better

than another profile at every individual outcome, its utility will always be greater) (Butler et al.

(2018)). Note that βJ
l x “ βl0 ` βl1x1 ` ... ` βldxd, so the intercept parameters, tβl0 P β :

2 ď l ď Lu, establish population-average importance weights of the outcomes, and all other

parameters, tβl1, ..., βld P β : 2 ď l ď Lu, establish individual perturbations to the weights

through interaction with X . Thus, estimating β amounts to achieving patient-specific weighting

of the outcomes.

2.2.3 Utility Function Parameter Estimation

In this section, we demonstrate the following: (1) A design of physician questionnaires such

that the parameters of (2.1) can be estimated from response data, and (2) The ensuing estimation

procedure.

The difference in utility of the two outcome profiles, RA and RB, can be represented by:

UβpRA ´ RB|X “ xq “
pRA1 ´ RB1q `

řL
l“2 e

βJ
l xpRAl ´ RBlq

1 `
řL

l“2 e
βJ
l x

. (2.2)
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Physician preference information is collected with a goal of estimating β, thus establishing

a link between X and the utility function. We design the questionnaire by simulating various

choice scenarios with a hypothetical patient (randomly-generated X˚) and two potential outcome

profiles (randomly generated RA and RB). For the given patient presenting with covariates X˚,

the physician compares the utility of RA and RB and makes a selection, S, of a preferred out-

come profile. Let p physicians each be presented with cp such choice scenarios, amongst which

they must make selections. Due to possible dependence within each physician’s answers, we

incorporate physician-specific random intercepts, bp “ tbp2, ..., bpLu, for all p P t1, ...,mu. This

allows for dependence amongst the random effects pertaining to each outcome. Thus, the utility

difference for two outcome profiles, specific to arbitrary physician p, is:

Uβ,ppRA ´ RB|X “ xq “
pRA1 ´ RB1q `

řL
l“2 e

βJ
l x`bplpRAl ´ RBlq

1 `
řL

l“2 e
βJ
l x`bpl

. (2.3)

Let PrpqpX˚,RA,RB|β, bpq represent the probability that outcome RA is selected over

RB in choice scenario q for physician p, where the hypothetical patient has covariates X˚. We

establish the following logit framework to link probability of selection with difference in utility:

logit tPrpqpX
˚,RA,RB|β, bpqu “ Uβ,ppRA ´ RB|X˚

q, (2.4)

Finally, let the prior distribution for bp be Np0L´1,ΣpL´1q˚pL´1qq, where Σ is an arbitrary

exchangeable covariance matrix, indexed by ρ, a scalar representing correlation, and σ2, a rep-

resentation of the element-wise variances of β. The full data likelihood for fixed parameters can
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now be written as:

Lpβ,σ2, ρq “ ppS|β,σ2, ρq

“

ż

ppS, b|β,σ2, ρqdb

“

ż

ppS|β,σ2, ρ, bq ¨ ppb|β,σ2, ρqdb

“

ż

ppS|β, bq ¨ ppb|σ2, ρqdb

“

ż m
ź

p“1

#

cp
ź

q“1

ppspq|β, bpq

+

¨ ppbp|σ2, ρqdbp

“

m
ź

p“1

ż

#

cp
ź

q“1

ppspq|β, bpq

+

¨ ppbp|σ2, ρqdbp,

(2.5)

where, letting Prpqpβ, bpq represent PrpqpX˚,RA,RB|β, bpq for notational convenience,

ppspq|β, bpq “ tPrpqpβ, bpqu
spq ˚ t1 ´ Prpqpβ, bpqu

1´spq .

We optimize the likelihood above through a Bayesian approach: setting prior distributions

for the components of β and b and using Markov chain Monte Carlo (MCMC) sampling with

Metropolis-Hastings (MH) (Chib and Greenberg (1995)) implementation to obtain iterative

draws from the posterior. The elements of β are set to initial values of 0, with priors accord-

ing to Npµ, σ2q, where µ and σ2 are pre-specified to µ “ 0 and σ2-large. Given that the prior

distribution for bp is Np0,Σq, where Σ is an exchangeable covariance matrix, let Σ “ DApρqD,

where D is a diagonal matrix with entries d “ pσ2, ..., σLq
J and Apρq “ p1 ´ ρqI ` ρjjJ, where

I is a pL ´ 1q ˆ pL ´ 1q identity matrix, and j is an pL ´ 1q-vector of ones. σ2
l is pre-specified

with a flat prior distribution of Γp0.01, 0.01q for all l P t2, ..., Lu.

Constant priors would ensure that the posterior is effectively proportional to the likelihood

function, resulting in the posterior mode being numerically identical to the maximum likelihood

estimate (Song (2007)), thus the preference for flat priors (unless prior information is available

for certain elements of β). MCMC automatically integrates over the random effect (Pollock

(2002)), thus the posterior distribution of β reflects the marginal, which is of interest. All parame-

ters are estimated as the average of the MCMC draws following a specified burn-in period.
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2.2.4 ITR Estimation

In this section, we describe two approaches for ITR estimation. Having already obtained pβn,

let the estimator for UβpR|X “ xq be U
pβn

pR|X “ xq “
řL

l“1wlpx; pβnqRl. We begin with a

general method, and follow it up with a regression-based approach.

Method #1 (General): For all patients, calculate U
pβn

pR|Xq, which represents the estimated

utility based on observed outcomes. U
pβn

pR|Xq can directly be treated as the “new” observed

outcome which can be used with any preexisting ITR estimation algorithm with desired proper-

ties, such as efficient augmentation and relaxation learning (EARL) for double robustness (Zhao

et al. (2019)), Stabilized Direct Learning (SD-Learning) for heteroscedastic data (Shah et al.

(2022)), Multicategory Outcome Weighted Margin-based Learning (MOML) for ě 2 treatments

(Zhang et al. (2020)), etc.

Method #2 (Q-Learning analog): For every outcome l P L, let QlpX, Aq “ E pRl|X, Aq,

which can be estimated through regression. With the subsequent Q-function for overall utility, the

optimal ITR, d, can be estimated according to the following:

QU
pβn

pX “ x, A “ aq “

L
ÿ

l“1

wlpx; pβnq pQlpx, aq.

pdpxq “ argmax
aPA

QU
pβn

px, aq.

This estimation approach amounts to a Q-Learning analog that finds an ITR to maximize individ-

ual patient utility.

While Method #2 utilizes more information because it predicts each outcome separately,

Method #1 gives the flexibility of treating estimated utility as the single observed outcome and

then using any precision medicine algorithm to estimate the ITR.
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2.2.5 Practical Considerations for Developing Physician Questionnaire

Utility function estimation is an inverse reinforcement learning task; at this step, instead

of creating the optimal behavior/actions, we strive to find the reward function (utility function)

from expert demonstrations that display informed behavior (physician questionnaire). This will

be followed by the reinforcement learning step: treatment selection in order to optimize patient-

specific utility.

In the questionnaire, each physician is presented with a series of choice tasks, each of which

presents a hypothetical patient, X˚, along with two possible sets of outcomes, RA “ tRA1, ..., RALu

and RB “ tRB1, ..., RBLu. Keeping that patient in mind, the physician must choose the more

desirable set of outcomes. In the example choice scenario shown in Figure 2.1, a physician must

examine a diabetic patient’s baseline data and choose amongst two outcome vectors with a built-

in trade-off (one favoring HbA1c and hypoglycemia reduction, the other favoring physical and

mental functioning). Note that the patient covariates shown to physicians can be (and are likely to

be) a subset of the collected baseline data. This decision can be made based on prior knowledge

of the variables that affect patient utility.

Designing these choice scenarios poses two key challenges: (1) The question of whether

the distribution of the hypothetical covariates and corresponding outcomes matches what could

be observed in reality, and (2) Designing pairs of outcomes that have trade-offs built in. For

(1), if the distributions are not close, the resultant data drift (Shandhi and Dunn (2022)) could

cause significant inefficiency in attempting to estimate the utility function. This issue is further

aggravated with curse of dimensionality. For (2), choice scenarios with outcomes lacking trade-

offs would be redundant in the sense that no information is gained by a physician picking the

outcome vector which is clearly optimal at each individual outcome.

To alleviate these challenges, we first propose that the hypothetical patient data (X˚) pre-

sented to physicians are actually chosen as random samples from X , the observed patient data.

This ensures that the distribution of patients presented to physicians matches covariates that are

observed in reality. In order to generate realistic hypothetical outcomes for the given covariates,
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we propose a solution through Distributional Random Forests (DRF) (Cevid et al. (2022)). DRF

is a regression framework that finds the estimated conditional outcome distribution, rather than

simply the conditional expectation of the outcome (a point prediction). Further, the methodol-

ogy allows for prediction of distributions of multivariate response vectors. Therefore, we train

a DRF model to estimate the conditional distribution of R given X . Then for choice scenario

q for physician p, we obtain samples from ppR|X˚
pqq until two that have a trade-off are found.

These two samples are considered as RA and RB for that scenario, and this is repeated to obtain

hypothetical outcomes for all choice scenarios for each physician.

2.3 Theory

In this section, we delineate the theoretical properties of the utility function parameter es-

timation technique in Section 2.2.3. We establish consistency and asymptotic normality of the

parameters of the estimator in the scenario that the number of physicians in the questionnaire,

m, diverges, and covariate dimensionality is fixed. Detailed proofs for all theorems are shown in

the Supporting Information in Appendix B. In order to show consistency of the utility function

parameter estimates, we begin by stating a standard assumption of boundedness and rank of the

second moment, along with a constraint on ρ:

Assumption 2.1. EpXXJq is full rank, E }X}
2

ă cx ă 8, max
2ďlďL

pE|RAl|
2 ` E|RBl|

2q ă 8,

and 0 ă σ2
l ă 8 for all l P L.

Assumption 2.2. Let θ “ tβ,σ2, ρu P Θ. The true values of the fixed parameters, θ0 “

tβ0,σ
2
0, ρ0u, lie in the interior of Θ0, which is a known, compact subset of Θ, the parameter

space. Additionally, the exchangeable correlation, ρ, of the exchangeable correlation matrix,

Σ “ DApρqD, is bounded such that ´1
L´2

ă ρ ă 1.

Theorem 2.1. Consistency: Let pθ “

!

pβ, pσ2, pρ
)

. If Assumptions 2.1 and 2.2 are met, then the

utility function parameter estimation is consistent. That is, pθ P
Ñ θ0.
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With consistency proven, we can move towards additionally showing asymptotic normality

of the utility function parameter estimates. This will require one additional assumption:

Assumption 2.3. Log-concavity: The Fisher Information, I pθ0q, is positive-definite for all

θ P Θ.

Theorem 2.2. Asymptotic normality: Let pθ “

!

pβ, pσ2, pρ
)

. With Assumptions 2.1-2.3 met, and

consistency established,
?
m
´

pθ ´ θ0

¯

is asymptotically normal with mean 0 and covariance

matrix I pθ0q
´1. Thus, the maximum likelihood estimator achieves the asymptotic efficiency

bound.

In Theorem 2.3, we also show that the inverse Fisher Information, found in Theorem 2.2 to

be the asymptotic covariance, can be consistently estimated.

Theorem 2.3. Let the observed information matrix be represented by Ippθq:

Ippθq “
1

m

˜

m
ÿ

p“1

dlp
dθ

¸˜

m
ÿ

p“1

dlp
dθ

¸J ˇ

ˇ

ˇ

ˇ

ˇ

θ“pθ

. (2.6)

Then, Ippθq´1 is a consistent estimator of the inverse Fisher Information matrix, I pθ0q
´1, which

is the asymptotic covariance of
?
m
´

pθ ´ θ0

¯

.

Having shown properties of the asymptotic distribution of the estimated utility function, we

turn our attention to the resulting ITR estimation and value function. Let Y represent an arbitrary,

scalar outcome of interest. Under an ITR, d, the expected population outcome can be represented

by the value function:

V pdq “ E tY | A “ d pXqu , (2.7)

and the optimal ITR with respect to that outcome, dopt, is that which maximizes the expected

outcome: doptp¨q “ argmax
dPD

V pdq, where D is a prespecified class of decision rules. Accurate

evaluation of the performance any decision rule is critical in determining its usability in practice,

thus an unbiased and consistent estimator for V pdq has been established by Qian and Murphy
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(2011) as:

pV pdq “

řn
i“1 Yi ¨ 1 tAi “ dpXiqu {πpAi|Xiq
řn

i“1 1 tAi “ dpXiqu {πpAi|Xiq
. (2.8)

Now, the methodology in this paper strives to optimize patient utility, thus setting Y “ U (see

Method #1 in Section 2.2.4). However, U is unobserved and estimated as pU by plugging pβ into

Equation 2.1. As a result, instead of plugging Yi “ Ui into pV pdq, our version of the value func-

tion estimate, denoted as pV
pUpdq, will set Yi “ pUi (the estimated outcome). Since pV

pUpdq uses an

estimated instead of observed outcome of interest, its consistency for V pdq cannot be assumed

from previous results and must be established. We demonstrate this result in Theorem 2.4:

Theorem 2.4. Under Assumptions 2.1 and 2.2, along with consistency of the utility function

parameters (established in Theorem 2.1) and πpA|Xq being known (or estimated such that

pπpA|Xq
P
Ñ πpA|Xq), pV

pUpdq is a consistent estimator of V pdq.

The proof of 2.4 is dependent on the consistency of the parameters involved in the calcula-

tion of pU as shown in Theorem 2.1. Consistency of pV
pUpdq for the truth establishes that pU can

be used in value calculations. As a result, standard precision medicine results hold, such as the

convergence of pV
pUpdq to the value function for the optimal decision rule, V pdoptq.

2.4 Numerical Results: Simulation Study

We outline a simulation to demonstrate the value of this methodology for scenarios with mul-

tiple outcomes and utility heterogeneity. In this scenario, there are L “ 2 outcomes of interest,

and 2 covariates are shown to physicians. The two competing outcomes, R1 and R2, are efficacy

and side effect reduction, with both outcomes coded so that larger values are preferred. Assume

binary treatment, A P A “ t´1, 1u, and covariates X “ pX0, X1, X2q, where X0 “ 1 is the

intercept, and X1 P r0, 2s represents a depression assessment scale where 0 reflects no depression,

1 reflects mild depression, and 2 reflects severe depression, and X2 is an arbitrary covariate that is

measured but does not factor into the utility function. Let β “ pβ1,β2q, where β1 “ p0, 0, 0q by

44



definition and β2 “ p´1, 1, 0q. Thus, the true utility function is:

UβpR|X “ xq “
R1 ` ex1´1R2

1 ` ex1´1
.

The resulting utility functions for patients presenting with different levels of depression are

shown below:

UβpR|X1 “ 0q “ 0.73R1 ` 0.27R2,

UβpR|X1 “ 1q “ 0.5R1 ` 0.5R2,

UβpR|X1 “ 2q “ 0.27R1 ` 0.73R2.

This shows that a patient with no depression favors efficacy (R1), one with mild depression

places equal importance on each outcome, and one with severe depression favors side effect

reduction (R2).

We simulate data for 200 patients with X1, X2 „ U r0, 2s, and A based on an RCT setting

equal probability either treatment being assigned. Letting ϵ „ Np0, 1q, patient outcomes are

simulated according to the following:

R1 “ 5 ´ X1 ` 2A ` ϵ, (2.9)

R2 “ 5 ´ X1 ´ 2A ` 0.25X1A ` ϵ. (2.10)

Note that this simulation was designed such that treatment A “ 1 generally leads to greater

efficacy and A “ ´1 leads to greater side effect reduction. Thus, patients with no depression are

more likely to favor A “ 1, and those with severe depression are likely to favor A “ ´1. Patients

with mild depression (X1 “ 1) favor A “ 1 slightly because they value both outcomes equally,

and A “ 1 boosts R1 more than it decreases R2.

Finally, we simulate physician responses at 3 sample sizes: (1) m “ 10 physicians each

answering cp “ 10 questions, (2) m “ 20 physicians each answering cp “ 20 questions, and
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(3) m “ 30 physicians each answering cp “ 30 questions. We randomly sample patient covari-

ates and link them with hypothetical outcome vectors according to the DRF method outlined in

Section 2.2.5, which ensures that there is always a trade-off between RA and RB (i.e., there are

no obvious choice scenarios where one outcome profile beats another at both outcomes). We

also generate b “ tb1, ..., bmu, which are scalar physician-specific random effects when L “ 2,

according to Np0, σ2
2q where σ2

2 “ 1. Recall that Prpq, the probability that physician p selects

RA as the better outcome in choice scenario q, is equal to e
Uβ,ppRA´RB |X˚q

1`e
Uβ,bpRA´RB |X˚q

based on Equation

(2.4), and thus the resulting selection, Spq, is simulated as Spq „ BernoullipPrpqq, where Spq “ 1

corresponds to selecting RA and Spq “ 0 to RB.

From the physician data, we use a MH algorithm to estimate tβ2, σ
2
2u, initiating each element

of β2 with a prior of Np0, 1000q, σ2
2 with a prior of Γp0.001, 0.001q, and treating the elements of

b as fixed with priors of Np0, σ2
2q. After performing 10,000 iterations with a burn-in period of

1,000, we obtain pβ2 “ ppβ20, pβ21, pβ22q and pσ2
2 by taking the mean of samples 1,000 through 10,000.

This full simulation (including patient data generation, physician data generation, and MCMC

estimation) is repeated 100 times, with parameter estimation results displayed in Figure 2.2. It is

clearly seen that as the number of physicians and choice scenarios increases, parameter estimates

fall closer to the truth.

We then use pβ2 to calculate each patient’s estimated observed utility, U
pβn

pR|Xq. Using the

estimated utilities as the new, scalar outcome, we perform Q-Learning (using random forest for

the regression method) to estimate an ITR, pdIRL. We use the known utilities, U , to calculate the

empirical value, pV ppdIRLq “
PnrU ¨1tA“ pdIRLpXqu{0.5s

Pnr1tA“ pdIRLpXqu{0.5s
(i.e., the expected outcome if treatment were to

be assigned according to pdIRL). For comparison purposes, we also calculated the estimated utility

derived from three other treatment assignment strategies: (1) Q-Learning optimizing only R1

(efficacy), (2) Q-Learning optimizing only R2 (side effect reduction), and (3) Coinflip (random)

treatment assignment. The results are displayed in Figure 2.3. Expectedly, IRL outperforms the

other methods and improves quickly with greater sample size of the physician data (thus more

accurate estimation of the utility function).
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Figure 2.2: Boxplots displaying parameter estimation results of β20, β21, β22 and σ2
2 resulting

from 100 replications of the simulation at 3 sample sizes of physician questionnaire data: (1)
m “ 10, cp “ 10; (2) m “ 20, cp “ 20; (3) m “ 30, cp “ 30. The true parameter values are
reflected by the dashed red line. The sample size of the patient data for this simulation is
n “ 200.
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Figure 2.3: Expected utility, averaged across the 100 replications, along with standard error of
the mean (SEM) bars, for the IRL methodology at 3 sample sizes of physician questionnaire data:
(1) m “ 10, cp “ 10; (2) m “ 20, cp “ 20; (3) m “ 30, cp “ 30. For comparison, expected utility
results are displayed for 3 other methods: (1) Optimization of efficacy only, (2) Optimization of
side effect reduction only, and (3) Coinflip (random) treatment assignment. For all methods, the
expected utility estimates are based on the patient data with a sample size of n “ 200.

2.5 Discussion

This work develops a method for linking physician input and patient covariates in such a

way knowing X provides the entire utility information for a patient. After estimating a utility

function, we demonstrate how ensuing ITR estimation can provide a decision rule, which, amidst

utility heterogeneity across patients, optimizes individual patient utility.

The methodology contributed by this paper is an Inverse Reinforcement Learning (IRL)

step that precedes the usual reinforcement learning (RL) framework of ITR estimation. In the

IRL step, we strive to find the reward/utility function (i.e., uncover patient-specific importance

weights for the outcomes based on demonstrations of expert behavior). In the RL step, we strive

to optimize action (i.e., optimal treatment selection in relation to the individual-specific estimated

utilities). By unifying the IRL and RL steps, this paper contributes a novel precision medicine
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approach that allows for multiple outcomes to be considered in the treatment decision-making

framework.

Unlike the patient preferences setting, where preference information has to be collected for

every incoming patient, we use physician recommendations as a proxy for patient preference.

Our methodology requires physician data to be collected only once, in order to draw a connection

between covariates and utility function. Then, for all patients, this link can be used to estimate

the patient-specific utilities.

Our method works for any number of outcomes of interest, although dimensionality consider-

ations should be made when selecting the number of outcomes that will be used to construct the

utility function. This method also works in scenarios with any number of treatments, because it

allows for any ITR estimation method to be used, including approaches built for ą 2 treatments.

An area in which the methodology presented in this paper could be fruitful is Type 1 Dia-

betes (T1D). The Wireless Innovation for Seniors with Diabetes Mellitus (WISDM) clinical trial

(Pratley et al. (2020); Weinstein et al. (2023)) measured the effectiveness of the interventions of

continuous glucose monitoring (CGM) and traditional blood glucose monitoring (BGM), while

also measuring a variety of outcomes, both clinical (hypoglycemia, hyperglycemia, etc.) and psy-

chosocial (mental/physical functioning, etc.). A precision medicine analysis has been conducted

on this data in order to find an ITR that minimizes patient time spent in hypoglycemia (Kahkoska

et al. (2023)). However, if balancing multiple outcomes is of interest (such as a patient’s clini-

cal variables along with mental and physical health), the methodology of this paper may lead to

decision support algorithms that optimize overall patient utility rather than only one individual

outcome.

As a future extension, the constraint of wlpXq ą 0 could be relaxed to wlpXq ě 0 with a

selection strategy capable of excluding some outcomes altogether for certain subsets of patients.

Additionally, the physician questionnaire could be designed with some form of internal valida-

tion in mind; a subset of the choice scenarios could be repeated between physicians, with the

results statistically analyzed to determine the level of general agreement between physicians.
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Finite-sample theory could also be developed to assist with strategical considerations of resource

constraints (e.g. determining whether it is more beneficial to increase the number of choices in

a questionnaire vs. increasing the number of physicians that respond to the survey). Finally, it

is worth exploring construction of the questionnaire more deeply in order to determine whether

more efficient designs are possible (better estimation of the parameters with lower required sam-

ple size).
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CHAPTER 3: PRECISION MEDICINE IN DIABETES: ESTIMATION OF A
DECISION RULE TO UNCOVER HETEROGENEOUS EFFECTS OF

CONTINUOUS GLUCOSE MONITORING ON HYPOGLYCEMIA

3.1 Introduction

It is often quoted that the primary goal of precision medicine is to deliver the “right treatment

to the right patient at the right time” (Zhang (2015); Kosorok and Laber (2019); Freeman et al.

(2022)). We denote this as decision making. However, there may be scenarios in which this goal

is not of primary importance.

Say, for example, that clinical contexts exists in which: (1) Clinicians are not looking for al-

gorithms to replace human decision making, or (2) A treatment has already been well-established

as the standard of care. What can precision medicine methodology contribute in these cases?

In scenario (1), precision medicine can still offer decision support by helping to augment deci-

sions that are already being made based on what is known scientifically. In scenario (2), precision

medicine can contribute scientific depth by helping understand why a treatment works, and who it

works well on.

Thus, although the precision medicine framework is built to offer the potential of decision

making capabilities, it also contributes to the secondary goals of decision support and scientific

depth. Many such clinical contexts exist in which these secondary goals are of prime interest.

One such context is Type 1 Diabetes (T1D).

3.1.1 The Utility of Precision Medicine in Type I Diabetes

The Wireless Innovation for Seniors with Diabetes Mellitus (WISDM) study evaluated the

effect of continuous glucose monitoring (CGM) on hypoglycemia (glucose ă70 mg/dL) over
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6 months, compared with standard BGM, among older adults ages 60 years with T1D (Pratley

et al. (2020)). On average, use of CGM reduced hypoglycemia from approximately 73 minutes

per day at the trial baseline to 39 minutes per day over the 6-month trial period, with a concurrent

reduction in hemoglobin A1c (HbA1c). There were no significant changes in the BGM group,

who experienced hypoglycemia for 68 minutes per day at baseline and 70 minutes per day over

the trial period (Pratley et al. (2020)). Based on the WISDM trial and other studies (Ruedy et al.

(2017); Toschi et al. (2020); Munshi et al. (2022)), contemporary clinical guidelines state that

CGM should be considered for glucose monitoring for older adults with T1D (ADA Professional

Practice Committee (2022a)), and specifically to reduce hypoglycemia.

Though there are likely benefits of CGM for all older adults with T1D (Toschi et al. (2020);

ADA Professional Practice Committee (2022a)), it is known that estimates of average treatment

effects of the primary outcome in a trial setting can mask the effects that individual participants

may experience. Pre-specified subgroup analyses in the WISDM study showed the treatment

effect of CGM, in terms of reduction in hypoglycemia, was greater among participants with

increased baseline hypoglycemia and glycemic variability as measured by the coefficient of

variation (%CV), and lower detectable C-peptide levels (Pratley et al. (2020)).

Yet, conventional subgroup analyses are limited in discovering heterogeneous treatment

effects as they require moderating markers to be decided a priori (Kent et al. (2018)). Given that

older adults are extremely diverse in terms of biopsychosocial profiles, clinical needs, historical

diabetes self-management experiences, and preferences for care (Munshi et al. (2020); Kirkman

et al. (2012)), an entirely a priori approach may not capture patient markers that were not pre-

specified as previously recognized as potential moderating markers of a treatment response.

An alternative approach is to use rigorous machine learning methods from the field of pre-

cision medicine that estimate a decision rule, a mathematical function that maps patient-level

information (demographic characteristics, clinical biomarkers, other measures) to a recom-

mended treatment or intervention to optimize (i.e., maximize or minimize) an outcome of interest

(Kosorok and Laber (2019)). Decision rules offer an entirely data-driven approach to discovery
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of moderating markers (i.e., the patient-level variables that are predictive of the within-individual

difference in effect of 2 or more treatments, as per Kosorok and Laber (2019)), and link therapies

to subgroups of patients likely to show favorable responses (Kosorok and Laber (2019); Trusheim

et al. (2007)).

3.1.2 Proposed Approach

In this post hoc analysis, our objective was to use a data-driven approach to explore the mod-

erating markers (such as baseline CGM glucose management indices and participant characteris-

tics) that are associated with heterogeneous effects of CGM on hypoglycemia in older adults with

T1D. The significance of this work is to inform future hypotheses by supporting shared decision-

making surrounding the utility of CGM for individual older adults living with T1D (decision

support) and uncovering relationships between moderating markers and differential effects of

CGM on hypoglycemia (scientific depth). In relation to the former objective, we strive to answer

the question, “Are there edge-cases where a physician’s decision-making can be augmented?” To-

wards the latter objective, we answer the question, “Can we uncover patterns in the heterogeneity

of treatment success of CGM?”

3.2 Methodology

3.2.1 Design, Setting, and Participants

The WISDM study (ClinicalTrials.gov Identifier: NCT03240432) enrolled 203 older adults

with T1D at 22 sites in the United States. Older adults (age 60 years) were eligible if they used

an insulin pump or multiple daily injections, but they could not have used unblinded CGM as part

of T1D management in the past 3 months. Participants were randomized to CGM (n = 103) or

BGM (n = 100) for 6 months to study whether CGM could reduce hypoglycemia (% time with

glucose ă70 mg/dL) Pratley et al. (2020). The cohort has been extensively characterized, with

both treatment groups having balanced baseline characteristics as per Table 1 and eTable 16 of
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Pratley et al. (2020). Seven patients were lost to follow-up, requested withdrawal from the study,

or discontinued the intervention, and 2 patients were missing education data, resulting in 194

older adults for this analysis (CGM [n = 100]; BGM [n = 94]).

3.2.2 Measures

The primary outcome was CGM-measured percentage of time spent in hypoglycemic range

(ă70 mg/dL) at follow-up, which used pooled data from approximately 2 weeks prior to random-

ization, and 1 week prior to the 8-, 16-, and 26-week visits, during which time participants in the

BGM arm wore blinded CGM (Pratley et al. (2020)). For the WISDM participants in this anal-

ysis, the average baseline time with CGM readings was 16.3 days (fifth percentile of 12.8 days

and 95th percentile of 23.8 days) with an average of 21.9 hours of CGM data per day (fifth per-

centile of 17.0 h and 95th percentile of 23.7 h). The average follow-up time with CGM readings

was 6.9 days (fifth percentile of 5.8 days and 95th percentile of 7.0 days) with an average of 22.5

hours of CGM readings per day (fifth percentile of 17.8 h and 95th percentile of 24.0 h). For our

decision rule, we specified a minimization of percentage of time in hypoglycemia as the optimal

outcome for each participant. As a secondary analysis, we repeated the analysis using change in

CGM-measured percentage of time spent in hypoglycemic range (ă70 mg/dL) between baseline

and follow-up (Pratley et al. (2020)). Here, a decrease in the percentage of time in hypoglycemia

was defined as the optimal outcome.

In estimating the optimal decision rule, we considered the following baseline variables,

which were collected from medical records and confirmed by participants (Pratley et al. (2020)):

age, diabetes duration, age at diagnosis, sex, highest education, health insurance status, insulin

pump use, screening HbA1c, detectable C-peptide levels, history of severe hypoglycemia events,

and diabetic ketoacidosis events in the past 12 months. We used 3 variables measured during

the baseline period of blinded CGM wear: percentage of time in hypoglycemia (glucose under

70 mg/dL), percentage of time in range (TIR; glucose in range of 70-180 mg/dL), and glycemic

variability (defined as the %CV).
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Highest education was categorized by “Bachelors Degree”, “Less than a Bachelors Degree”,

“More than a Bachelors degree”. Health insurance was split into “Private”, “Private and Medi-

care”, and “Medicare/other”. C-peptide values were dichotomized into non-detectable (ă0.003

nmol/L) and detectable (ě0.003 nmol/L). Severe hypoglycemia and diabetic ketoacidosis were

dichotomized to reflect whether an event occurred or not. For characterizing the resulting sub-

groups produced by the decision rule, we additionally compared the subgroups based on race and

ethnicity, total daily insulin dose per kg, and body mass index.

3.2.3 Statistical Analysis

We estimated and evaluated a series of potential decision rules that estimate an optimal glu-

cose monitoring modality for each WISDM study participant (CGM vs BGM) to minimize total

time in hypoglycemia. As above, we repeated our approach as part of a secondary analysis to

maximize the reduction (i.e., negative change) in time spent in hypoglycemia from baseline.

The decision rules were based on the 14 demographic, clinical, and laboratory measures

specified above. We selected statistical approaches for precision medicine that estimate simple,

interpretable treatment decision rules which can be applied clinically (Rudin (2019)). We esti-

mated optimal decision rules by implementing policy trees (Zhou et al. (2022)) and decision lists

(Zhang et al. (2015)).

The decision list algorithm results in decision rules in the form of a sequence of “if-then”

statements, while the policy tree algorithm results in a decision tree. For both algorithms, the

“depth” parameter is synonymous with the number of steps involved in using a decision rule to

identify an optimal intervention: For a decision lists, depth is the number of “if-then” statements,

and for a policy tree, depth is the number of layers of the tree. While the decision rule provides

estimation of optimal therapies, it is not meant to provide deterministic treatment “assignments”

or clinical recommendations for actual patients, but rather, to explore subgroups and the markers

that define the subgroups, as treatment effects may vary based on their values. We refer to the

subgroups as the CGM versus BGM treatment rule subgroups.
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3.2.4 Decision Rule Evaluation

We evaluated the clinical benefit of potential decision rules using the value function, a scalar

performance measure which estimates the expected outcome in the study population if every par-

ticipant was to receive their optimal intervention as estimated by the rule. For the “total time in

hypoglycemia” outcome, a lower value suggests better performance of the rule, as it is indicative

of less time spent in hypoglycemia. For the “reduction in time spent in hypoglycemia” outcome,

a higher value suggests better performance, as it indicates a larger decrease in percentage of time

in hypoglycemia over the duration of the trial.

Estimation of the value of the resultant decision rules was carried out over a nested 5 ˆ 5

cross-validation scheme. An initial outer loop was used to split the data into 5 training and test

folds, and within the training set, an inner 5-fold cross-validation loop was used for algorithm

selection and tuning of the depth parameter. Once the optimal model (algorithm and depth) was

selected using the inner loop, for evaluation, its value was estimated on the held-out data using

5-fold cross-validation in the outer loop. This resulted in an honest cross-validation process in

which the data by which the final model was selected and evaluated was kept separate from the

training data.

For comparison, we estimated the value function for a “CGM-only” rule (i.e., all participants

receive CGM) through 5-fold cross-validation in the outer loop. As context for the value of the

optimal decision rule and the CGM-only rule, we also estimated the value of a “BGM-only” rule.

3.2.5 Subgroup Characterization

Using descriptive statistics, we compared the characteristics of the participants in the CGM

versus BGM treatment rule subgroups, as per the optimal decision rule for the primary outcome.

P-values for differences in means were calculated with a 2-sample t-test and differences in pro-

portions with a 2-proportion Z-test at the 0.05 and 0.10 significance levels. All analyses were

conducted in R, version 3.6.
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3.2.6 Data Availability and Resource Sharing

The WISDM data are publicly available through the Jaeb Center for Health Research (JCHR).

All codes to replicate the secondary analyses described herein are available on GitHub at the

following link: https://github.com/kushshah1/WISDM-Precision-Medicine.

This repository includes all steps of the precision medicine pipeline, including data processing

(compilation of variables, treatment infromation, and clinical outcome, along with omission

of patients lost to follow-up and selection of final features for analysis), model fitting (imple-

mentation of interpretable precision medicine algorithms - decision list and policy tree), model

evaluation (empirical value function approximation for resulting ITRs, along with nested K-fold

cross validation for parameter tuning, optimal model selection, and optimal model evaluation on

held-out test set), and compilation of results (optimal decision rule, study participant character-

istics, visualization of differential treatment effects, training/validation set estimates of potential

decision rules, and held-out test set evaluation of optimal rule). Step-by-step instructions to run

the workflow can be found in the online documentation for the GitHub repository.

3.3 Results

The optimal decision rule was found to be a decision list with a depth of 3 (Table 3.1). The

decision rule is depicted in Figure 3.1. The first step of the decision rule moved WISDM partici-

pants with baseline time-below range ą1.35% and no detectable C-Peptide to the CGM subgroup

(n = 139), and the second step moved WISDM participants with baseline time-below range of

ą6.45% to the CGM subgroup (n = 18). The remaining participants (n = 37) were left in the

BGM subgroup.

The characteristics of the 157 (81%) WISDM participants in the CGM versus the 37 (19%)

WISDM participants in the BGM subgroup are shown in Table 3.2. The median baseline time

spent in hypoglycemia in the CGM subgroup was 6.7% (interquartile range [IQR]: 6.5%) com-

pared with 1.2% (IQR: 2.5%) in the BGM subgroup. The mean proportion of patients with de-
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Table 3.1: Training and validation set value estimates of potential decision rules, along with test
set evaluation of final rule, for the primary outcome (% time in hypoglycemia). The “optimal
method” was decided as the method with optimal (lowest) inner validation set value; only that
method was evaluated on the held-out test set in order to ensure honest cross validation.

Policy Tree - Parameter Tuning Final Evaluation (of optimal method)

Depth Training Set Value Inner Validation Set Value on Held-Out Test Set

1 2.87 3.07 –
2 2.66 3.09 –
3 2.46 3.29 –

Decision List - Parameter Tuning

Depth Training Set Value Inner Validation Set Value

1 2.87 3.13 –
2 2.87 3.13 –
3 2.87 3.01 2.98*

*Note, for comparison, that the estimated value of “CGM-only” rule on the held-out test set was
3.09%.

Figure 3.1: Visualization of the decision rule. *Denotes the first split, at which point 139
participants are assigned to the CGM group. **Denotes the second split, at which point 18
participants were assigned to the CGM group. The remaining 37 participants were assigned to the
BGM group.
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Table 3.2: Characteristics of study participants, stratified by decision rule subgroup. P values for
differences in means were calculated with a 2-sample t-test and differences in proportions with a
2-proportion Z-test. Abbreviations: SD, standard deviation; IQR, interquartile range.

Decision Rule Subgroup

Characteristic, n (%) or mean (SD) CGM BGM P-value
(n=157) (n=37)

Moderating Markers
Hypoglycemia (time ă70 mg/dL), %; median (IQR) 6.7 (6.5) 1.2 (2.5) ă.0001a

Hypoglycemia (time ă70 mg/dL), % 7.8 (5.0) 2.0 (1.7) ă.0001a

Detectable C-peptide 18 (11.5%) 28 (75.7%) ă.0001a

Demographic Characteristics
Age, years 67.9 (5.6) 69.4 (6.0) .17
Diabetes duration, years 38.3 (14.4) 25.3 (17.4) .0001**
Age at diagnosis, years 29.6 (15.3) 44.1 (18.8) ă.0001**
Male sex 72 (45.9%) 21 (56.8%) .31
Non-Hispanic ethnicity 152 (96.8%) 36 (97.3%) 1
White race 149 (94.9%) 34 (91.9%) .75
Highest education
Less than a bachelor’s degree 66 (42.0%) 9 (24.3%) .07*
Bachelor’s degree 46 (29.3%) 16 (43.2%) .15
Graduate or professional degree 45 (28.7%) 12 (32.4%) .80

Health insurance
Private 43 (27.4%) 9 (24.3%) .86
Private and Medicare 53 (33.8%) 14 (37.8%) .78
Medicare/other 61 (38.9%) 14 (37.8%) 1

Clinical Characteristics
Insulin pump use 89 (56.7%) 13 (35.1%) .03**
Coefficient of variation, % 43.1 (5.7) 35.4 (5.2) ă.0001**
Total daily insulin dose, units/kg 0.56 (0.20) 0.51 (0.283) .32
Screening HbA1c, % 7.5 (0.9) 7.8 (0.9) .13
Body mass index, kg/m2 27.3 (4.5) 26.3 (5.0) .30
ě 1 severe hypoglycemia event in past 12 months 25 (15.9%) 3 (8.1%) .34
ě 1 diabetic ketoacidosis event in past 12 months 8 (5.0%) 0 (0%) .35
Time with glucose in range of 70-180 mg/dL, % 56.6 (13.1) 54.0 (17.3) .39
aSignificance expected since decision rule is based on this marker.
*P ă .1, **P ă .05
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tectable C-peptide levels in the CGM subgroup was 11.5% compared with 75.7% in the BGM

subgroup. Compared with the BGM subgroup, the CGM subgroup also had, on average, a longer

diabetes duration (38.3 years vs 25.3 years; P = .0001) and younger age at diagnosis (29.6 years

vs 44.1 years; P ă .0001), in addition to a higher proportion with insulin pump use (56.7% vs

35.1%; P = .03) and larger mean %CV (43.1% vs 35.4%; P ă .0001). There were no significant

differences in age, sex, or other demographic factors, nor total daily insulin dose, HbA1c, history

of hypoglycemia in the preceding 6 months, or history of diabetic ketoacidosis (DKA) in the

preceding 6 months.

The optimal decision rule was estimated to result in a total time in hypoglycemia of 2.98%

(standard error of the mean [SEM]: 0.32%) across the full study population (Table 3.1), com-

pared with 3.09% (SEM: 0.24%) with the “CGM-only” rule. For context, use of BGM-only was

estimated to correspond with a total time in hypoglycemia of 6.23% (SEM: 0.44%).

The results of the secondary analyses, which focused on the secondary outcome, change in

hypoglycemia, are shown in Appendix C. For this outcome, the optimal decision rule was found

to be a policy tree algorithm with a depth of one, and the rule suggests that study participants

with baseline %CV ą34% would experience a greater reduction in hypoglycemia using CGM

compared with BGM.

3.4 Discussion

We used data from the WISDM study and machine learning methods to discover how patient

characteristics are associated with the estimated treatment effects of CGM on hypoglycemia

among older adults with T1D. Our results suggest that there are 2 distinct subgroups of the

WISDM participants - those with baseline time-below range ą1.35% and no detectable C-peptide

levels, and those with baseline time-below range of ą6.45% - for whom CGM was estimated

to result in lower hypoglycemia at the follow-up period compared with BGM. Together, these

subgroups represented the majority of the study sample, with distinguishing features including

a lower proportion of detectable C-peptide, higher glycemic variability, longer disease duration,
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and higher proportion of insulin pump use. As such, we elucidate the moderating factors to iden-

tify for whom treatment effect is expected to be greater or smaller, and importantly, markers for

the subgroups of older adults for whom CGM may be a particularly effective intervention for

reducing hypoglycemia.

The benefits of CGM for older adults are both significant and well-established, and CGM

now represents standard-of-care for T1D (Pratley et al. (2020); Ruedy et al. (2017); ADA Pro-

fessional Practice Committee (2022a); Kirkman et al. (2012); ADA Professional Practice Com-

mittee (2022c); Holt et al. (2021); Toschi and Munshi (2020); Forlenza et al. (2017)). This is

reflected in our results as well, where the majority of WISDM participants were estimated to

benefit from CGM over BGM to minimize time in hypoglycemia. It is also important to note

the small difference in mean expected hypoglycemia with the optimal treatment rule versus

CGM-only rule (2.98% vs 3.09%), which underscores the value of CGM across the population.

The decision rule herein also only focused on hypoglycemia, and thus does not focus on other

glycemic or patient-oriented benefits associated with CGM. Above all, estimating a decision rule

does not provide rationale for restricting an evidence-based therapy; rather, it offers insight into

how the same therapy may results in different outcomes for individuals, as well as the subgroups

for whom benefits in terms of one outcome may be more versus less pronounced, as well as the

physiology and clinical histories that may underlie those differences.

Furthermore, despite the benefits and value of CGM for older adults, there remains a propor-

tion of patients who do not use therapeutic CGM as part of their T1D self-management (Munshi

et al. (2022); Divan et al. (2022); Gubitosi-Klug et al. (2022)). The decision to initiate CGM may

be shaped by baseline glycemic management and priorities (Munshi et al. (2022)), perceived ben-

efits and burdens of the technology (Divan et al. (2022)), or the impact of age-specific challenges

to integrating technology into care (Krishnaswami et al. (2020)). As adults get older, managing

the device and data can be perceived as challenging, and preferences surrounding technology

use may evolve (Toschi and Munshi (2020)). Understanding heterogenous treatment effects and

markers thereof may aid providers in identifying patients for whom CGM technology is criti-
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cal to mitigate the risk of hypoglycemia. Providing more granular, individualized estimation of

the value of CGM may help providers to find ways to balance clinical outcomes and individual

preferences through shared decision-making.

The decision rule suggests that 2 groups of study participants would experience a lower

proportion of time spent in hypoglycemia by using CGM compared with BGM: (1) those with

baseline hypoglycemia ą1.35% and with no detectable C-peptide, and (2) those with baseline

hypoglycemia ą6.45%. The decision rule thus underscores an important link between baseline

hypoglycemia and risk for future events, which may be mitigated by CGM use. It is worth noting

that in a clinical setting, any duration of hypoglycemia greater than 1% may indicate a need for

CGM for the reduction in non-severe hypoglycemia and prevention of severe episodes in the

future (ADA Professional Practice Committee (2022a)), and 2023 Standards of Care in Diabetes

recommend CGM to reduce hypoglycemia among older adults with T1D. An inverse association

between age at diagnosis and pump use has been described previously (Casu et al. (2020)), and

one possible explanation between the higher proportion of insulin pump use in the subgroup may

reflect existing efforts to mitigate the burden of diabetes management, though this association

cannot be considered causal.

Together, this subgroup of patients was also distinguished by a longer disease duration and

higher glycemic variability at baseline, which may reflect, together, a phenotype of very long-

standing T1D. An association between glycemic variability and severe hypoglycemia has been

reported in older adults previously (DuBose et al. (2016); Weinstock et al. (2016)). A high CV

(ą36%) has also been associated with duration of time spent in non-severe hypoglycemia among

older adults with T1D (Toschi et al. (2020)). Interestingly, the a priori subgroup analysis of the

WISDM study showed that among participants in the CGM arm, a higher baseline %CV was

associated with a greater treatment effect (Pratley et al. (2020)). The results of the decision rule

analysis are related, but not redundant, with that finding, as the subgroups reported herein are

generated from the algorithm comparing predicted effects between CGM and BGM, for each

individual within the data set, to assign them to an optimal therapy group. Our finding that de-
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mographic features, markers of socioeconomic position, and HbA1c levels were not significantly

different across subgroups is also consistent with the main trial analyses, which did not find other

baseline characteristics, including age (ă70 vs ě70 years), socioeconomic status, presence of

cognitive impairment, or HbA1c value to interact with the treatment effect (on hypoglycemia)

(Pratley et al. (2020)).

Our secondary analysis showed that the moderating factors may shift based on the outcome

the decision rule aims to optimize, where baseline glycemic variability greater than 34% was a

marker in determining patients for whom CGM was estimated to produce the greatest reduction

in hypoglycemia. A point of interest is that the %CV threshold from the entirely data-driven de-

cision rule aligns closely with existing cutoffs for glycemic variability to minimize risk of hypo-

glycemia (Danne et al. (2017)), where a %CV of ă34% has been specified as an optimal thresh-

old to reduce such episodes (Danne et al. (2017); Gomez et al. (2019); Monnier et al. (2020))

and a %CV target of ă33% for “additional protection against hypoglycemia” in insulin-treated

diabetes (ADA Professional Practice Committee (2022b)). An association between glycemic

variability and severe hypoglycemia has been reported in older adults previously (DuBose et al.

(2016); Weinstock et al. (2016)).

Future studies can confirm the utility of hypoglycemia and C-peptide as a marker for hetero-

geneous effects of CGM on hypoglycemia in older adults. A potential implication of the deci-

sion rule is a role for laboratory values (i.e., C-peptide) and diagnostic CGM to inform decision-

making surrounding therapeutic CGM, particularly for older adults who do not wish to perma-

nently integrate new technology into their T1D self-management routines. Future studies may

also investigate decision rules for CGM to optimize other glycemic outcomes, such as TIR. To

understand the degree to which moderating markers generalize across age, it may be important to

evaluate markers of CGM effects on hypoglycemia in different age groups, including published

clinical trials in adolescents and young adults, such as the CGM Intervention in Teens and Young

Adults with T1D (CITY) trial.
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One of the most significant limitations of the study relates to the fact that the WISDM

study participants do not reflect the same level of heterogeneity of the larger population of

older adults with T1D. Not only is the sample a “young” older adult population, including in-

dividuals between 60 and 65 years of age, but this study population is also reflective of robust,

highly-educated, and majority non-Hispanic White older adult patients. The value of the preci-

sion medicine-based statistical methods applied herein may be greater in the setting of a wider

population, including variability in cognitive and physical function, living status, and diabetes

self-management.

Other limitations of the study include its exploratory nature, small sample size, and the focus

on hypoglycemia only. The WISDM study demonstrated treatment effects for hyperglycemia

(glucose levels ą180 mg/dL, ą250 mg/dL, and ą300 mg/dL), mean glucose concentration, and

glycemic variability (Pratley et al. (2020)); each of these outcomes comprise important clinical

benefits for patients. Several potential important variables were lacking for the analysis; data on

cognitive status were not included, in addition to physical function, other behavioral or psychoso-

cial measures such as impaired awareness of hypoglycemia, or living situation. Their inclusion

may change the decision rule (Flatt et al. (2022)).

The strengths of this analysis include the application of novel machine learning methods

from the field of statistical precision medicine. These methods are entirely data-driven and

thus permit the discovery of subgroups of interest with characteristics/features or a combina-

tion thereof that were not defined a priori. Though benefits of CGM for older adults are both

significant and well-established, our results may serve as the basis for future studies to explore

heterogeneous treatment effects and their markers across a range of outcomes, in more diverse

patient populations, and considering variables with known relevant to the clinical care of older

adults, such as frailty status, cognitive impairment, and living situation. In the meantime, the

results may also aid providers in identifying patients for whom technology is critical to mitigate

the risk of hypoglycemia and support enhanced shared decision-making surrounding the individu-

alized benefits of CGM for individual older T1D adults.
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3.5 Conclusion

A precision medicine approach was utilized in this analysis in order to contribute towards

two goals that were specified at the outset: decision support and scientific depth. In this section,

we summarize the Discussion section by briefly restating the direct contributions towards these

goals.

Towards the goal of decision support, the results from this analysis may be used to augment

decision-making where resource allocation/prioritization is needed (patients for whom CGM

is critical and immediately necessary vs. patients for whom the decision may be more relaxed).

Additionally, this analysis opens the door to other factors being considered in treatment selec-

tion (e.g. the burden of change for certain patients who may struggle with the complexity of

new technology), rather than only hypoglycemia. To this end, the methodology from Chapter 2

can be utilized in this context to simultaneously optimize hypoglycemia as well as other clini-

cal outcomes (e.g. hyperglycemia, time in range, etc.) and psychosocial measures (e.g. fear of

hypoglycemia, physical/mental functioning, etc.) which were also documented in this clinical

trial.

Towards the goal of scientific depth, we have elucidated demographic and clinical markers

which moderate CGM’s success. This provides the basis for using diagnostic CGM (CGM use

over a baseline trial period) to inform therapeutic CGM decisions. Additionally, the fact that

the optimal decision rule was unable to improve significantly over the “CGM-only” rule also

underscores the value of CGM at an individual level (whereas previous studies also showed the

value of CGM, but at the average population level).
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CHAPTER 4: FUTURE DIRECTIONS: AUTOENCODER-BASED REPRESENTATION
LEARNING FOR HIGH DIMENSIONAL PRECISION MEDICINE

4.1 Introduction

In precision medicine settings, it is a challenge to tailor treatment based on high-dimensional

patient data. Another layer of difficulty is added with data which is unstructured or correlated.

One example of this is X-ray images, where pixels of an image have spatial dependence, and

thus groups of pixels are needed to provide relevant information. Another example is continuous

glucose monitoring (CGM) counts in diabetes. A patient’s baseline CGM data, for example,

may consist of weeks worth of continuous reporting of blood glucose levels at intervals of 1 to

15 minutes (Bergenstal (2018)). CGM data is time-correlated, and a single time point provides

little value; trends and patterns in a subject’s blood glucose levels must be understood in order to

derive useful results.

4.1.1 General Approaches for Working with High-Dimensional Data

Many statistical and machine learning tools provide a framework for working with a large

set of features. Variable relevance ranking approaches like random forest Mean Decrease Gini

(MDG) (Han et al. (2016)) or Brownian distance covariance (BDC) (Szkely and Rizzo (2009))

can be used to order features according to various measures of importance, from which a pre-

specified top p variables can be selected. BDC, for example, can be used to evaluate the nonlinear

dependence between vectors of individual predictors and vectors of a response (or groups of

responses), resulting in p-values for independence tests which reflect the predictive power of

each feature. MDG measures how each covariate contributes to the homogeneity of nodes and

leaves in a random forest model, resulting in a predictive importance ranking. However, variable
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ranking approaches used directly in relation to an outcome of interest provide information on pre-

dictive relevance, but not prescriptive relevance, the latter of which is needed to tailor treatment.

Moreover, these approaches work with variables that can be independently ranked, but not with

unstructured data like CGM or image inputs.

For high dimensional and possibly unstructured data, there exist approaches which find low-

dimensional representations of the inputs, such as Principal Component Analysis (PCA) (Ringnr

(2008)), t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton (2008)), or

autoencoders (Wang et al. (2016)). Autoencoders are neural networks which have an input layer,

hidden middle layer, and output layer, and attempt to copy input to output with minimal recon-

struction error. Undercomplete autoencoders are built with a middle layer with smaller dimension

than the input, with a goal of learning a representation of the input which captures its most salient

features Goodfellow et al. (2016). Examples of autoencoders in practice include Homayouni

et al. (2020), who use an LSTM-autoencoder to detect anomalies in time-series data, and Gomez-

Bombarelli et al. (2018), who use a variational autoencoder (VAE) to generatively find points

in a continuous, low-dimensional latent space (hidden layer) that correspond to molecules in a

discrete input space with desirable properties. Rashid et al. (2021a) use autoencoders to perform

unsupervised feature extraction of X-ray images, which are then fed into a supervised convolu-

tional neural network architecture for COVID-19 prediction.

4.1.2 Traditional Precision Medicine Techniques for High-Dimensional Data

It is difficult to directly input high-dimensional data as covariates in nonparametric mean

response models, as this would lead to overfitting and poor performance on held-out test data.

Traditional precision medicine approaches for handling a large feature set focus on two steps: (1)

Derive a smaller feature set through variable ranking or representation learning approaches, as

described in Section 4.1.1. (2) Input these features as well-defined covariates into the traditional

ITR estimaton framework.
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Examples of such an approach include Lou et al. (2018), who discuss derivation of a smaller

feature set through correlation-based screening (Li et al. (2012)) before fitting an ITR, and Zhu

et al. (2017), who perform pre-screening of genes based on marginal variance prior to imple-

menting a subgroup identification approach. These approaches suffer from the fact that derived

variables are not necessarily prescriptive; they were selected with for their usefulness in outcome

prediction (prognostic variables) or input reconstruction (representative features), but not for their

ability to help with personalized treatment decision making. Rashid et al. (2021b) extend BDC

to prescriptive selection in a precision medicine pipeline, but the method is still limited to struc-

tured input list of covariates. Additional methods that perform prescriptive screening are Zhou

and Kosorok (2017), which proposes an adaptive causal k-nearest neighbor regime that simulta-

neously performs metric selection and variable selection, and Athey and Imbens (2016), which

discusses various ways for splitting causal trees on prescriptive covariates rather than predictive

ones.

Nezhad et al. (2016) propose a patient risk stratification approach with feature space reduc-

tion through autoencoders and supervised risk classification occur sequentially. Such frameworks,

with autoencoders being trained independently of the ensuing modeling approach, produce a fea-

ture set which is biased towards accurate reconstruction of the input only. However, a framework

where autoencoder input reconstruction is optimized simultaneously with ITR value maximiza-

tion using backpropagation and stochastic gradient descent (SGD) could produce a feature set

which is both representative and prescriptive. The combination of these two properties could be

powerful in the treatment recommendation framework.

4.1.3 Deep Learning in Precision Medicine

More recently, deep learning has begun to be utilized in the precision medicine pipeline.

Liang et al. (2018) use a neural network classifier within an OWL-like ITR estimation framework

for mutiple combination therapies in order to avoid local minimizers and achieve scalable compu-

tation amidst a nonsmooth/nonconvex loss function. The proposed solution to the optimization
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problem involves backpropagation and SGD as described in Goodfellow et al. (2016). Here, the

deep learning framework is used mainly as a method to minimize objective functions for ITR

estimation.

Jiang (2020) builds on the work of Liang et al. (2018) and proposes deep doubly robust

outcome weighted learning (DDROWL), a variant of RWL that can be solved by deep neural

networks, thereby achieving double robustness in the deep learning optimization framework. This

method exhibits flexibility and accommodates large covariates spaces which cannot be modeled

parametrically due to dimensionality, unknown model specification, etc. DDROWL is one of the

first methods to directly consume unstructured data with a large number of dimensions into the

precision medicine workflow. Specifically, it analyzes input MRI images of large dimension (e.g.

162x30x4096), which many existing methods are not able to handle. Mi et al. (2019) also devel-

ops a deep neural network (DNN) ensemble based on the original OWL optimization problem

and analyzes sequencing data from around 1000 human cancer cell lines for optimal treatment

allocation.

4.1.4 Proposed Method

Current ITR estimation approaches lack the ability to create learned representations of pre-

scriptive variables from unstructured, high-dimensional data. The question that motivates this

paper is: Can we develop a one-step approach which directly uses high-dimensional, unstructured

features in the precision medicine pipeline, without needing to make an initial conversion to low

dimensions (which runs the risk of losing prescriptive information)?

In learned representations of high-dimensional inputs, the representation is evaluated by

reconstruction error. That is, how well can the low-dimensional representation be used to recon-

struct the input data? This goal is the motivating factor behind autoencoders, an unsupervised

technique which utilizes a neural network architecture with a built-in bottleneck, thus forcing a

compressed representation of the original input (Sainath et al. (2012)).
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In precision medicine, three broad classes of covariates are specified: prognostic, moderating,

and prescriptive variables. The goal of identifying prescriptive variables is fundamental because

only prescriptive variables are useful in selecting treatments which maximize value (Kosorok

and Laber (2019)). The value of a decision rule is the expected population mean outcome if all

patients were to follow the rule; this is the key metric by which optimality of a rule is gauged.

The identification of prescriptive variables is what gives an ITR the potential to have higher value

than a “one-size-fits-all” approach.

We propose methodology for a novel approach for high-dimensional data that simultaneously

(1) uses an autoencoder to find a low-dimensional representation of the input which minimizes

reconstruction error, and (2) fits an ITR to maximize treatment benefit. We combine two objec-

tive functions (reconstruction loss minimization and value function maximization) into a single

optimization procedure that includes a parameter to control the trade-off between these two goals.

Thus, by balancing reconstruction loss minimization and value function maximization, this ap-

proach finds a prescriptive low-dimensional representation of the input data (features which are

both representative of the original input and prescriptive for ITR estimation).

4.2 Methodology

For the autoencoder framework, let X represent patient covariates (input layer), gθ1pXq

represent the encoded data (hidden layer), and rθ2 tgθ1pXqu represent the decoded data (output

layer). Then, let L1 rX, rθ2 tgθ1pXqus be the mean squared-error autoencoder reconstruction loss.

For value maximization, we use the outcome weighted learning (Zhao et al. (2012)) loss function

with the hidden layer, gθ1pXq, as covariate information:

L2 tgθ1pXq, A,Ru “
1

n

n
ÿ

i“1

Ri

pπpAi,Xiq
p1 ´ Ai rfθ3 tgθ1pXiqusq

`
` λn||fθ3 ||

2

We can then combine L1 and L2 into one optimization procedure:
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pθ “ argmin
θPΘ

αnL1 rX, rθ2 tgθ1pXqus ` L2 tgθ1pXq, A,Ru , (4.1)

where θ “ pθ1,θ2,θ3qqq and Θ reflects the joint parameter space for g, r, and f .

In (4.1), the reconstruction loss serves as a regularization term because of the bottleneck

forced by the middle layers of the neural network. This helps focus on finding representative

features which are useful in recovery of the input. (4.1) can be solved via a backpropagation

algorithm as per the architecture in Figure 4.1, which uses CGM input data as an example.

Figure 4.1: Neural network architecture for combined reconstruction loss minimization and
value function maximization. The ITR estimation portion of the optimization function takes the
low dimensional representation from the autoencoder, gpXqqq, as input, along with patient
treatment and observed outcome information. This figure is inspired by Gomez-Bombarelli et al.
(2018).
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4.3 Parameter Tuning and Evaluation

A simple method for parameter tuning is to perform a grid search and select the value of αn

that results in an ITR which maximizes the value function on a held-out test set. However, it is

likely that many estimated ITRs will perform similarly. In that case, we can pick the largest value

of αn (out of all values of αn) for which the resulting value function is within some specified

percentage of the optimal value function. Thus, we select an ITR with near-optimal performance

and an emphasis on reconstruction error minimization, resulting in a more robust decision rule.

4.4 Discussion

In general, traditional dimension reduction approaches which precede ITR estimation do

not consider value maximization in the feature derivation step. The approach presented in this

paper varies considerably from the traditional approach, because we present a single loss function

framework to simultaneously handle feature derivation and ITR value maximization. By includ-

ing the latter in the dimensionality reduction framework, our methodology biases the latent space

representation of the original input to be more helpful in treatment prescription than outcome

prediction. This framework contributes to methodology built to consume image data, CGM data,

sound waves, etc. directly in the precision medicine pipeline.
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APPENDIX A: SUPPORTING MATERIALS FOR CHAPTER 1

A.1 Proofs of Propositions

This section includes proofs of Proposition 1.1 and Proposition 1.2.

Proof of Proposition 1.1. Let lnpβq “ Pn

"

p2RA ´ XJβq2

wpA,XqπpA,Xq

*

, and define the first and second

derivatives of ln:

Blnpβq

Bβ
“ ´2Pn

"

p2RA ´ XJβqX

wpA,XqπpA,Xq

*

, (A.1)

B2lnpβq

Bβ2
“ 2Pn

"

XXJ

wpA,XqπpA,Xq

*

. (A.2)

Assume that pβ P
Ñ β. Using Taylor Series approximations:

0 “
Blnppβq

Bβ
“

Blnpβq

Bβ
`

"

B2lnpβq

Bβ2
` opp1q

*

´

pβ ´ β
¯

. (A.3)

From this, we have:

?
n
´

pβ ´ β
¯

“ ´
?
n

"

B2lnpβq

Bβ2

*´1
Blnpβq

Bβ
` opp1q

“
?
n

"

Pn
XXJ

wpA,XqπpA,Xq

*´1"

Pn
p2AR ´ XJβqX

wpA,XqπpA,Xq

*

` opp1q

“ E

„

XXJ

wpA,XqπpA,Xq

ȷ´1 "
?
nPn

ϵX

wpA,XqπpA,Xq

*

` opp1q, and

(A.4)
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var
!?

n
´

pβ ´ β
¯)

“ E

„

XXJ

wpA,XqπpA,Xq

ȷ´1

var

„

ϵX

wpA,XqπpA,Xq

ȷ

E

„

XXJ

wpA,XqπpA,Xq

ȷ´1

` op1q

“ E

„

XXJ

wpA,XqπpA,Xq

ȷ´1

E

„

XXJE pϵ2 | A,Xq

wpA,Xq2πpA,Xq2

ȷ

E

„

XXJ

wpA,XqπpA,Xq

ȷ´1

` op1q

“ E

„

XXJ

wpA,XqπpA,Xq

ȷ´1

E

„

XXJσ2
0pA,Xq

wpA,Xq2πpA,Xq2

ȷ

E

„

XXJ

wpA,XqπpA,Xq

ȷ´1

` op1q

“ A´1BA´1
` op1q,

(A.5)

since σ2
0pA,Xq “ var pϵ | A,Xq “ E pϵ2 | A,Xq. For ease of notation, we will let A “

E

„

XXJ

wpA,XqπpA,Xq

ȷ

and B “ E

„

XXJσ2
0pA,Xq

wpA,Xq2πpA,Xq2

ȷ

. Letting wtpA,Xq “ wpA,Xq `

tspA,Xq be a perturbation of the weights, we take a functional derivative and show that no mat-

ter the choice of spA,Xq, the first derivative of the variance expression is zero when wpA,Xq “

σ2
0pA,Xq

πpA,Xq
(e.g. the variance is minimized). The variance term can be written as:

var
␣?

nppβ ´ βq
(

“ E

„

XXJ

wtpA,XqπpA,Xq

ȷ´1

E

„

XXJσ2
0pA,Xq

wtpA,Xq2πpA,Xq2

ȷ

E

„

XXJ

wtpA,XqπpA,Xq

ȷ´1

` op1q

“ A´1
t BtA

´1
t ` op1q.

(A.6)

The derivatives of A´1
t and Bt are:

BA´1
t

Bt
“ ´A´1

t

BAt

Bt
A´1

t “ ´A´1
t E

"

´XXJspA,Xq

wtpA,Xq2πpA,Xq

*

A´1
t “ A´1

t CtA
´1
t , (A.7)

BBt

Bt
“ E

"

´2XXJσ2
0pA,XqspA,Xq

wtpA,Xq3πpA,Xq2

*

, (A.8)
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where Ct “ E

"

XXJspA,Xq

wtpXq2πpA,Xq

*

. Having noted this, we can take the first derivative of the

variance expression:

B

Bt

”

var
!?

n
´

pβ ´ β
¯)ı

“
BA´1

t

Bt
BtA

´1
t ` A´1

t

BBt

Bt
A´1

t ` A´1
t Bt

BA´1
t

Bt

“ A´1
t CtA

´1
t BtA

´1
t ` A´1

t E

"

´2XXJσ2
0pA,XqspA,Xq

wtpA,Xq3πpA,Xq2

*

A´1
t ` A´1

t BtA
´1
t CtA

´1
t .

(A.9)

Therefore:

B

Bt

”

var
!?

n
´

pβ ´ β
¯)ı

ˇ

ˇ

ˇ

ˇ

t“0

“ A´1CA´1BA´1
` A´1E

"

´2XXJσ2
0pA,XqspA,Xq

wpA,Xq3πpA,Xq2

*

A´1
` A´1BA´1CA´1.

(A.10)

Now, letting wpA,Xq “
σ2
0pA,Xq

πpA,Xq
:

E

"

´2XXJσ2
0pA,XqspA,Xq

wpA,Xq3πpA,Xq2

*

“ ´2C, (A.11)

A´1B “ E

"

XXJ

σ2
0pA,Xq

*´1

E

"

XXJ

σ2
0pA,Xq

*

“ 1. (A.12)

Therefore:

Bvar
!?

nppβ ´ βq

)

Bt

ˇ

ˇ

ˇ

ˇ

t“0

“ A´1CA´1
´ 2A´1CA´1

` A´1CA´1

“ 0.

(A.13)

We have shown that the sandwich variance is minimized at wpA,Xq “
σ2
0pA,Xq

πpA,Xq
. Thus, the

proof is complete.
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Proof of Proposition 1.2. Let lnpB˚q “ Pn

#

1

wpA,XqπpA,Xq

ˆ

K

K ´ 1
R ´ XJ

˚ B˚

˙2
+

, and

define the first and second derivatives of ln:

BlnpB˚q

BB˚

“ ´2Pn

"

1

wpA,XqπpA,Xq

ˆ

K

K ´ 1
R ´ XJ

˚ B˚

˙

X˚

*

, (A.14)

B2lnpB˚q

BB2
˚

“ 2Pn

"

1

wpA,XqπpA,Xq
X˚X

J
˚

*

. (A.15)

Assuming that xB˚
P
Ñ B˚ and using Taylor Series approximations similar to Proposition 1.1,

?
n
´

xB˚ ´ B˚

¯

“
?
nE

"

X˚X
J
˚

wpA,XqπpA,Xq

*´1 "

Pn
X˚

wpA,XqπpA,Xq

ˆ

K

K ´ 1
R ´ XJ

˚ B˚

˙*

` opp1q

“ E

"

X˚X
J
˚

wpA,XqπpA,Xq

*´1 "
?
nPn

ϵX˚

wpA,XqπpA,Xq

*

` opp1q, and

(A.16)

var
!?

n
´

xB˚ ´ B˚

¯)

“ E

"

X˚X
J
˚

wpA,XqπpA,Xq

*´1

E

"

X˚X
J
˚ σ

2
0pA,Xq

wpA,Xq2πpA,Xq2

*

E

"

X˚X
J
˚

wpA,XqπpA,Xq

*´1

` op1q.

(A.17)

The format of (A.17) is now very similar to that of Proposition 1.1. Taking a functional

derivative, as in the proof for Proposition 1.1, shows that the sandwich variance is minimized at

wpA,Xq “
σ2
0pA,Xq

πpA,Xq
. Thus, the proof is complete.

A.2 Proofs of Remarks and Theorems

This section includes proofs of Remark 1.1, Theorem 1.1, Theorem 1.2, and Theorem 1.3.

76



Proof of Remark 1.1. For the first case, linear regression, assume that ΦpA,Xq is a finite-dimensional

collection of features in pA,Xq and functions of the features. ΦpA,Xq includes main effects,

and can additionally include squared and intercept terms, cubic terms, etc. Assume that

E
␣

ΦpA,XqΦpA,XqJ
(

is bounded and positive definite and let pσ2
npA,Xq be a linear function

predicting the squared residuals, Z “

´

2AR ´ X 1
pβD
n

¯2

, from the features in the set ΦpA,Xq.

Standard methods from Tian et al. (2014) show that pβD
n is consistent for β0. Then, the prediction

function, pσ2
npA,Xq, is uniformly consistent for σ2

0pA,Xq, and moreover is a vector process

which belongs to a VC-class via Lemma 9.6 of Kosorok (2008). This implies that it is bounded

uniform entropy integrable (belongs to a BUEI class) and therefore in a Donsker class because of

the measurability conferred by Lemma 8.12 of Kosorok (2008).

For the second case, Assumptions 2-4 of Cho et al. (2020) specify basic conditions related to

the covariate distribution (weakly dependent features) and the random forest (terminal node size

growth rate and α-regular random split trees) under which it is established that the tree kernels of

the random forest are Donsker. Theorem 1 of Cho et al. (2020) demonstrates uniform consistency

of the resulting random forest.

Further, it is known that random forest predictions can be characterized by pσ2
npA,Xq “

ř8

j“1 αjcjI tpa,xq P Rju, where each Rj is a hyperrectangle, cj is the expected value of Y over

the region Rj , and
ř8

j“1 αj “ 1. The random forest prediction function, pσ2
npA,Xq, is therefore

a convex combination of expected values over hyperrectangular regions. Since the class of hy-

perrectangles of fixed dimensions is a VC-class and pσ2
npA,Xq is a convex combination of them,

pσ2
npA,Xq belongs to a convex hull class, C.

For a convex hull class, Corollary 9.5 of Kosorok (2008) applies and indicates that the cov-

ering number of C is bounded above by K

ˆ

1

ϵ

˙2´2{V

, where V is the VC-index of C. Taking the

square root results in ϵ´α where α ă 1, resulting in a bounded integral when integrated. There-

fore, pσ2
npA,Xq belongs to a BUEI class and can also be shown to be Pointwise Measurable (PM)

(see, e.g., Section 8.2 of Kosorok (2008)).
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We wish first to show that
1

pσ2
npA,Xq

also belongs to a class that is BUEI and PM. For gpxq “

1

x
,

B

Bx
gpxq “

´1

x2
ď

´1

c21
since x represents the quantity pσ2

npA,Xq. Therefore, gpxq is a Lipschitz

continuous function, and Lemma 9.17 (vi) of Kosorok (2008) shows that
1

pσ2
npA,Xq

is BUEI and

PM using c1 ă 8 as an envelope. Finally, using Lemma 9.17 (v),
Xϵ

pσ2
npA,Xq

also belongs to a

class which is BUEI and PM, using E p|Xϵ|q ď }X}σ0 as an envelope. Since
Xϵ

pσ2
npA,Xq

belongs

to a class which is BUEI and PM, by Theorem 8.19, the class is also Donsker.

Proof of Theorem 1.1. Considering f optpXq P F , where f optpXq “ E

"

RA

πpA,Xq

ˇ

ˇ

ˇ

ˇ

X

*

“

2δpXq, let Y ˚ “ 2RA, and characterize the estimated variance function, pσ2
npA,Xq, as the matrix

pΣn P Rnˆn where pΣn “ diag tpσ2
n pa1,x1q , ..., pσ

2
n pan,xnqu. The least squares SD-Learning

estimate for β0 can be written as:

pβS
n “ pXJ

pΣ´1
n Xq

´1
pXJ

pΣ´1
n Y ˚

q

“ β0 `

ˆ

1

n
XJ

pΣ´1
n X

˙´1ˆ
1

n
XJ

pΣ´1
n ϵ

˙

.
(A.18)

We show that the second term in this equation converges to zero. Note that since σ2
0pA,Xq ě

c1 by Assumption 1.2 and pσ2
npA,Xq is uniformly consistent for σ2

0pA,Xq by Assumption 1.3,

there exists N for which pσ2
npA,Xq ě

c1
2

for all n ě N , with probability going to 1. Letting

t P Rp be an arbitrary vector on the unit sphere,

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

tJxix
J
i t

pσ2
npai,xiq

´
1

n

n
ÿ

i“1

tJxix
J
i t

σ2
0pai,xiq

ˇ

ˇ

ˇ

ˇ

ď
1

n

n
ÿ

i“1

`

tJxi

˘2

ˇ

ˇ

ˇ

ˇ

1

pσ2
npai,xiq

´
1

σ2
0pai,xiq

ˇ

ˇ

ˇ

ˇ

ď
1

n

n
ÿ

i“1

}xi}
2

¨
2

c21

›

›

pσ2
npA,Xq ´ σ2

0pA,Xq
›

›

A,X ` opp1q

“

"

2

c21

›

›

pσ2
npA,Xq ´ σ2

0pA,Xq
›

›

A,X

*

¨
1

n

n
ÿ

i“1

}xi}
2

` opp1q

“ opp1q ¨ Opp1q ` opp1q, and

(A.19)
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ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Xiϵi
pσ2
npai,xiq

´
1

n

n
ÿ

i“1

Xiϵi
σ2
0pai,xiq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Xiϵi

"

1

pσ2
npai,xiq

´
1

σ2
0pai,xiq

*

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Xiϵi

#

2 }pσ2
npA,Xq ´ σ2

0pXq}A,X

c21

+
ˇ

ˇ

ˇ

ˇ

ˇ

` opp1q

“
2 }pσ2

npA,Xq ´ σ2
0pXq}A,X

c21
¨

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Xiϵi

ˇ

ˇ

ˇ

ˇ

ˇ

` opp1q,

(A.20)

where n´1
řn

i“1 }xi}
2 is Opp1q because it converges to E

`

XXJ
˘

and
ˇ

ˇ

ˇ

ˇ

1

n

řn
i“1Xiϵi

ˇ

ˇ

ˇ

ˇ

converges

to |EpXiϵiq| “ 0. (A.19) shows that n´1XJ
pΣ´1

n X
P

ÝÑ n´1XJΣ´1
0 X , since it is true for arbi-

trary t on the unit sphere, and (A.20) shows that n´1XJ
pΣ´1

n ϵ
P

ÝÑ n´1XJΣ´1
0 ϵ. Since inversion

is a continuous operation when the limit is a positive definite matrix,
´

n´1XJ
pΣ´1

n X
¯´1

P
ÝÑ

`

n´1XJΣ´1
0 X

˘´1 by the Continuous Mapping Theorem. Since
`

n´1XJΣ´1
0 X

˘´1 is finite

and positive definite while n´1XJΣ´1
0 ϵ converges to zero using the Kolmogorov Law of Large

Numbers,
´

n´1XJ
pΣ´1

n X
¯´1 ´

n´1XJ
pΣ´1

n ϵ
¯

converges to zero, and pβS
n

P
Ñ β0.

Proof of Theorem 1.2. We show that the preconditions are met for Lemma 4.4 of Kosorok

(2008). Assumptions 1.1 and 1.2 guarantee that U0 is positive definite. Additionally, pβS
n

P
Ñ β0

based on Theorem 1.1. Pn

"

XX 1

pσ2
npA,Xq

´
XX 1

σ2
0pA,Xq

*

Ñ 0 was shown by (A.19). Now, consider
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the following:

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

„

tJxiϵi

"

1

pσ2
npai,xiq

´
1

σ2
0pai,xiq

*ȷ2ˇ
ˇ

ˇ

ˇ

“
1

n

n
ÿ

i“1

ptJxiq
2σ2

0pai,xiq

"

1

pσ2
npai,xiq

´
1

σ2
0pai,xiq

*2

` opp1q

ď
c2
n

n
ÿ

i“1

ptJxiq
2

"

1

pσ2
npai,xiq

´
1

σ2
0pai,xiq

*2

ď
4c2
c41

¨
1

n

n
ÿ

i“1

ptJxiq
2
›

›

pσ2
npai,xiq ´ σ2

0pai,xiq
›

›

2

A,X ` opp1q

ď
4c2
c41

›

›

pσ2
npA,Xq ´ σ2

0pA,Xq
›

›

2

A,X ¨
1

n

n
ÿ

i“1

}xi}
2

` opp1q

“ opp1q ¨ Opp1q ` opp1q.

(A.21)

Therefore, Pn

"

Xϵ

pσ2
npA,Xq

´
Xϵ

σ2
0pA,Xq

*2
P
Ñ 0, and the conditions for the Lemma 4.4 of

Kosorok (2008) are met. Note the following two facts:

pβS
n “ Pn

"

XX 1

pσ2
npA,Xq

*´1

Pn

"

XY ˚

pσ2
npA,Xq

*

ùñ
?
n
´

pβS
n ´ β0

¯

“

«

Pn

"

XX 1

pσ2
npA,Xq

*´1
ff

¨
?
nPn

"

Xϵ

pσ2
npA,Xq

*

, and
(A.22)

?
n

„

Pn

"

Xϵ

pσ2
npA,Xq

*

´ E

"

Xϵ

σ2
0pA,Xq

*ȷ

Ñ N

„

0, E

"

XX 1

σ2
0pA,Xq

*ȷ

ùñ
?
nPn

"

Xϵ

pσ2
npA,Xq

*

Ñ N

„

0, E

"

XX 1

σ2
0pA,Xq

*ȷ

,

(A.23)

where E

"

Xϵ

σ2
0pA,Xq

*

“ 0 in (A.23) stems from Assumption 1.4. With the combination of

(A.22) and (A.23), we can now establish:

?
n
´

pβS
n ´ β0

¯

Ñ E

"

XX 1

σ2
0pA,Xq

*´1

¨ N

„

0, E

"

XX 1

σ2
0pA,Xq

*ȷ

“ N

«

0, E

"

XX 1

σ2
0pA,Xq

*´1
ff

.

(A.24)
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Proof of Theorem 1.3. Since the SD-Learning framework is unified between the binary and

multi-arm case, this proof is identical to the proofs of Theorems 1.1 and 1.2, with X˚ P RppK´1q

instead of X P Rp and B˚ P RppK´1q instead of β0 P Rp.

A.3 Extension to Observational Data

It was assumed in the development of the methodology that the data stem from an RCT

setting. In practice, however, it is often the case that drug efficacy is evaluated retrospectively

through observational data. In this case, treatment assignment probabilities are not known. If

the conditional exchangeability assumption holds, the SD-Learning methodology remains intact,

but πpA,Xq must be estimated given the observed covariates. As discussed in Chen, Zeng, and

Kosorok (2016), the estimate pπpA,Xq could be obtained by a parametric model such as logistic

regression (multinomial regression in the multi-arm case), or a nonparametric method such as

boosting, random forests, or support vector regression (SVR).

A.4 Heteroscedasticity Analysis

Here, we analyze the heteroscedasticity present in the ACTG175 dataset after fitting a linear

model to predict change in CD4 cell count from covariates and treatments (using treatment Z as

the reference). We first implement the Studentized Score χ2 Test, proposed by Koenker (1981),

which tests whether the variance of errors from a linear regression model is dependent on the

values of the independent variables. Similarly to the SD-Learning methodology, the Studentized

Score Test does not rely on an assumption of normally distributed errors. Testing the null hy-

pothesis that errors are independent and identically distributed (homoscedasticity) resulted in

χ2
15 “ 69.2 (p ă 0.0001), indicating the presence of heteroscedasticity.

Let W represent absolute residuals from the aforementioned linear model. Having confirmed

heteroscedasticity through the score test, we fit a new regression model predicting W from co-
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variates and treatments, in order to determine the variables responsible for heteroscedasticity. To

account for multiple variables being tested, we perform false discovery rate-based (FDR) adjust-

ment of the resulting p-values (Benjamini and Hochberg (1995)) and find that three variables are

significantly associated with absolute residuals at the α “ 0.05 level: baseline CD4 (p ă 0.0001),

treatment ZD (p ă 0.0001), and treatment D (p “ 0.0148).

We thus find enough evidence of heteroscedasticity in the ACTG175 data to justify incorpo-

rating SD-Learning as an ITR estimation approach.
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APPENDIX B: SUPPORTING MATERIALS FOR CHAPTER 2

B.1 Proofs of Theorems

This section includes proofs to Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Since we assume compactness of the parameters θ “ tβ,σ2, ρu, it

remains to show that the first derivative of the log-likelihood is bounded, which would ensure

continuity. Note the following:

log
␣

Lpβ,σ2, ρq
(

“

m
ÿ

p“1

log

«

ż

#

cp
ź

q“1

ppspq|β, bpq

+

¨ ppbp|σ2, ρqdbp

ff

. (B.1)

Denoting the inside of the summation by lp, we establish that:

Blp
Bθ

“

ş

!

ścp
q“1 ppspq|β, bpq

)

¨ ppbp|σ2, ρq ¨ sθpSpqdbp
ş

!

ścp
q“1 ppspq|β, bpq

)

¨ ppbp|σ2, ρqdbp
, (B.2)

where sθpSpq “ rsβpSpq sσ2pSpq sρpSpqs
J

“ B

Bθ
log

”!

ścp
q“1 ppspq|β, bpq

)

¨ ppbp|σ2, ρq

ı

, the

score of the inside of the integral. Say |sθpSpq| ă cθ. Then:

Blp
Bθ

ď

ş

!

ścp
q“1 ppspq|β, bpq

)

ppbp|σ2, ρq ¨ |sθpSpq| ¨ dbp
ş

!

ścp
q“1 ppspq|β, bpq

)

ppbp|σ2, ρq ¨ dbp

ď

ş

!

ścp
q“1 ppspq|β, bpq

)

ppbp|σ2, ρq ¨ cθ ¨ dbp
ş

!

ścp
q“1 ppspq|β, bpq

)

ppbp|σ2, ρq ¨ dbp

“ cθ

ş

!

ścp
q“1 ppspq|β, bpq

)

ppbp|σ2, ρqdbp
ş

!

ścp
q“1 ppspq|β, bpq

)

ppbp|σ2, ρqdbp

“ cθ,

(B.3)
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and Bl
Bθ

“
řm

p“1
Blp
Bθ

ď
řm

p“1 cθ “ mcθ. Therefore, showing that the elements of sθpSpq are

bounded completes the proof and establishes boundedness.

We now derive sβpSpq, sσ2pSpq, and sρpSpq, and show the boundedness of each. We begin

with sβpSpq:

sβpSpq “
B

Bβ
log

«#

cp
ź

q“1

ppspq|β, bpq

+

¨ ppbp|σ2, ρq

ff

“
B

Bβ

#

cp
ÿ

q“1

log ppspq|β, bpq

+

`
B

Bβ

␣

log ppbp|σ2, ρq
(

“

cp
ÿ

q“1

B

Bβ
log ppspq|β, bpq

“

cp
ÿ

q“1

B

Bβ
log

#

ˆ

eUβ,p

1 ` eUβ,p

˙spq ˆ

1 ´
eUβ,p

1 ` eUβ,p

˙1´spq
+

“

cp
ÿ

q“1

B

Bβ
log

"

espqUβ,p

1 ` eUβ,p

*

“

cp
ÿ

q“1

B

Bβ

␣

spqUβ,p ´ log
`

1 ` eUβ,p
˘(

“

cp
ÿ

q“1

#

spq 9Uβ,p ´
9Uβ,pe

Uβ,p

1 ` eUβ,p

+

“

cp
ÿ

q“1

9Uβ,p

"

spq ´
eUβ,p

1 ` eUβ,p

*

,

(B.4)

In (B.4),
´

Spq ´ e
Uβ,b

1`e
Uβ,b

¯

is bounded by 1, thus we work on showing boundedness of 9Uβ,p:

BUβ,p

Bβl

“

´

1 `
řL

l“2 e
βJ
l x`bpl

¯!

xeβ
J
l x`bpl pRAl ´ RBlq

)

´

1 `
řL

l“2 e
βJ
l x`bpl

¯2

´

!

pRAl ´ RBlq `
řL

l“2 e
βJ
l x`bpl pRAl ´ RBlq

)´

xeβ
J
l x`bpl

¯

´

1 `
řL

l“2 e
βJ
l x`bpl

¯2 . (B.5)
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The denominator is ě 1, thus it suffices to look at the numerator terms:

BUβ,b

Bβl

ď ||X||max
2ďlďL

p|RAl| ` |RBl|q ` ||X||max
2ďlďL

p|RAl| ` |RBl|q

“ 2||X||max
2ďlďL

p|RAl| ` |RBl|q .

(B.6)

Thus, with Assumption 2.1, 9Uβ,b is bounded with respect to βl for all l P t2, ..., Lu. Since 9Uβ,p

and
!

spq ´ e
Uβ,p

1`e
Uβ,p

)

are bounded,
řcp

q“1
9Uβ,p

!

spq ´ e
Uβ,p

1`e
Uβ,p

)

is also bounded. Denote the bound

as |sβpSpq| ă cβ.

We now move to sσ2pSpq:

sσ2
l
pSpq “

B

Bσ2
l

log

«#

cp
ź

q“1

ppspq|β, bpq

+

¨ ppbp|σ2, ρq

ff

“
B

Bσ2
l

log ppbp|σ2, ρq

“
B

Bσ2
l

log

"

p2πq
´pL´1q{2

|Σ|
´1{2 exp

ˆ

1

2
bJ
pΣ

´1bp

˙*

“
B

Bσ2
l

"

´
1

2
log

`

|D|
2

|Apρq|
˘

´
1

2
bJ
pΣ

´1bp

*

“
B

Bσ2
l

"

´
1

2
log |D|

2
´

1

2
bJ
pΣ

´1bp

*

“ ´
1

2σ2
l

´
1

2

B

Bσ2
l

␣

bJ
pD

´1A´1
pρqD´1bp

(

,

(B.7)

where the fourth equality stems from the fact that the determinant of a matrix product is equal

to the product of the determinants. In order to determine A´1pρq, note that by the Sherman-

Morrison formula (Press and Teukolsky (2007)), A´1pρq “
1

1 ´ ρ
¨I´

tρ{p1 ´ ρq2u

1 ` tρ{p1 ´ ρqu jJj
¨jjJ “

1

1 ´ ρ

"

I ´
ρ

1 ` ρpL ´ 2q
jjJ

*

. Let the diagonal and non-diagonal entries of A´1pρq be repre-

sented by cd and cn, respectively, where:

cd “
1 ` ρpL ´ 3q

p1 ´ ρq t1 ` ρpL ´ 2qu
, (B.8)

cn “ ´
ρ

p1 ´ ρq t1 ` ρpL ´ 2qu
. (B.9)
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Thus, with some linear algebra:

bJ
pD

´1A´1
pρqD´1bp “

L
ÿ

j“2

L
ÿ

i“2

bpibpj
σiσj

tcd1pi “ jq ` cn1pi ‰ jqu , (B.10)

and it can be seen that:

B

Bσ2
l

␣

bJ
pD

´1A´1
pρqD´1bp

(

“
1

2

L
ÿ

i“2

bpibpl
σiσ3

l

tcd1pi “ lq ` cn1pi ‰ lqu . (B.11)

Therefore:

sσ2
l
pSpq “ ´

1

2σ2
l

´
1

4

L
ÿ

i“2

bpibpl
σiσ3

l

tcd1pi “ lq ` cn1pi ‰ lqu . (B.12)

Note that cd and cn ă 8 if ρ ă 1 and ρ ą ´ 1
L´2

, which is guaranteed by Assumption 2.2.

In combination with Assumption 2.1, which guarantees σ2
l to be nonzero for all l, sσ2

l
pSpq is

bounded, which can be denoted by
ˇ

ˇ

ˇ
sσ2

l
pSpq

ˇ

ˇ

ˇ
ă cσ2

l
, and thus |sσ2pSpq| ă cσ2 .

Finally, we move to sρpSpq:

sρpSpq “
B

Bρ
log

«#

cp
ź

q“1

ppspq|β, bpq

+

¨ ppbp|σ2, ρq

ff

“
B

Bρ

␣

log ppbp|σ2, ρq
(

“
B

Bρ
log

"

p2πq
´pL´1q{2

|Σ|
´1{2 exp

ˆ

1

2
bJ
pΣ

´1bp

˙*

“
B

Bρ

"

´
1

2
log

`

|D|
2

|Apρq|
˘

´
1

2
bJ
pΣ

´1bp

*

“
B

Bρ

"

´
1

2
log |Apρq| ´

1

2
bJ
pΣ

´1bp

*

.

(B.13)

To find |Apρq|, we perform an eigenvalue decomposition. Let v1 “ j{
?
L ´ 1. Then:

Apρqv1 “
␣

p1 ´ ρqI ` ρjjJ
(

v1

“ p1 ´ ρqv1 ` ρpL ´ 1qv1,

(B.14)
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and setting Apρqv1 “ λ1v1, we find that λ1 “ 1 ` pL ´ 2qρ. Now, let v2 be such that vJ
1 v2 “ 0

and vJ
2 v2 “ 1. Then:

Apρqv2 “ p1 ´ ρqv2 ` ρjjJv2

“ p1 ´ ρqv2 ` ρ
?
L ´ 1jvJ

1 v2

“ p1 ´ ρqv2,

(B.15)

and setting Apρqv2 “ λ2v2, we find that λ2 “ 1 ´ ρ, with multiplicity L ´ 2 since the space

orthogonal to v1 has rank L ´ 2. Therefore, since the determinant of a matrix is equal to the

product of its eigenvalues, |Apρq| “ t1 ` pL ´ 2q ρu p1 ´ ρq
L´2, and we can continue deriving

sρpSpq:

sρpSpq “
B

Bρ

˜

´
1

2
log

”

t1 ` pL ´ 2q ρu p1 ´ ρq
L´2

ı

´
1

2

L
ÿ

j“2

L
ÿ

i“2

bpibpj
σiσj

tcd1pi “ jq ` cn1pi ‰ jqu

¸

“ ´
1

2

«

L ´ 2

1 ` pL ´ 2q ρ
´

L ´ 2

1 ´ ρ
`

L
ÿ

j“2

L
ÿ

i“2

bpibpj
σiσj

"

Bcd
Bρ
1pi “ jq `

Bcn
Bρ
1pi ‰ jq

*

ff

.

(B.16)

Taking the necessary derivatives:

Bcd
Bρ

“
p1 ´ ρq t1 ` ρpL ´ 2qu pL ´ 3q ´ t1 ` ρpL ´ 3qu tpL ´ 3q ´ 2ρpL ´ 2qu

rp1 ´ ρq t1 ` ρpL ´ 2qus
2 , (B.17)

Bcn
Bρ

“ ´
p1 ´ ρq t1 ` ρpL ´ 2qu ´ ρ tpL ´ 3q ´ 2ρpL ´ 2qu

rp1 ´ ρq t1 ` ρpL ´ 2qus
2 . (B.18)

It can be seen that every term in sρpSpq has nonzero denominator for ρ corresponding to Assump-

tion 2.2 and σ2
l for all l P L corresponding to Assumption 2.1. Therefore, sρpSpq is bounded,

which we denote by |sρpSpq| ă cρ.

We have thus shown that all elements of sθpSpq are bounded, and therefore, the first deriva-

tive of the log-likelihood is bounded. This proves consistency of the estimator.
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Proof of Theorem 2.2. The consistency of the maximum likelihood estimator (MLE), along with

differentiability of the log-likelihood, was proven in Theorem 2.1. By inspection, the components

of the score vector are smooth and all second derivatives exist. Thus, under mild regularity con-

ditions, standard MLE theory applies, and
?
m
´

pθ ´ θ0

¯

is asymptotically normal with mean 0

and covariance equal to the joint Fisher Information, I pθ0q
´1. Given the calculations of the score

in the proof of Theorem 2.1, I pθ0q
´1 can be calculated as the inverse of the expected outer prod-

uct of the score vector, E
"

´

Bl
Bθ0

¯´

Bl
Bθ0

¯J
*´1

. The details for this calculation follow standard

arguments.

Proof of Theorem 2.3. Here, we sketch a proof that Ippθq´1 P
Ñ I pθ0q

´1.

Let the score, Bl
Bθ

, be reflected by spθq. Additionally, let Θϵ “ tθ : }θ ´ θ0} ď ϵu, where

ϵ ą 0 is small enough that Θϵ P Θ0, and F “ tspθq : θ P Θϵu. Let PnpXq “ n´1
řn

i“1 xi

denote the empirical average (e.g. PnpXq “ n´1
řn

i“1 xi, where x1, ...,xn are realizations of the

random variable, X).

It is not difficult to verify that F is Glivenko-Cantelli with square integrable envelope, de-

noted by F . Now, Glivenko-Cantelli preservation results verify that F ¨ F is also Glivenko-Cantelli

with integrable envelope F 2. Therefore:

sup
θPΘϵ

ˇ

ˇPn

␣

spθqspθq
J
(

´ Eθ0

␣

spθqspθq
J
(ˇ

ˇ

a.s.
Ñ 0. (B.19)

By continuity of the map θ ÞÑ Eθ0

␣

spθqspθqJ
(

along with consistency of pθ, Ippθq
P
Ñ Ipθ0q. By

continuity of matrix inversion at a positive definite matrix, positive-definiteness of Ipθ0q, and the

Continuous Mapping Theorem, it holds that Ippθq´1 P
Ñ Ipθ0q

´1.

Proof of Theorem 2.4. The goal of this proof is to show consistency of pV
pUpdq for the true value

function, V pdq (i.e., pV
pUpdq

P
Ñ V pdq). It is already known that pV pdq

P
Ñ V pdq (Qian and Murphy
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(2011)). Thus, proving that pV
pUpdq

P
Ñ pV pdq would be sufficient. First,

ˇ

ˇ

ˇ

pV
pUpdq ´ pV pdq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

řn
i“1

pUi¨1tAi“dpXiqu

πpAi|Xiq
řn

i“1
1tAi“dpXiqu

πpAi|Xiq

´

řn
i“1

Ui¨1tAi“dpXiqu

πpAi|Xiq
řn

i“1
1tAi“dpXiqu

πpAi|Xiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

i“1

wi

ˇ

ˇ

ˇ

pUi ´ Ui

ˇ

ˇ

ˇ

ď max
i

ˇ

ˇ

ˇ

pUi ´ Ui

ˇ

ˇ

ˇ
,

(B.20)

where wi “
1 tAi “ dpXiqu {πpAi|Xiq

řn
i“1 1 tAi “ dpXiqu {πpAi|Xiq

and the last inequality is because
řn

i“1wi “ 1. So

it remains to show that
ˇ

ˇ

ˇ

pUi ´ Ui

ˇ

ˇ

ˇ

P
Ñ 0, which would complete the proof. Observe that:

ˇ

ˇ

ˇ

pUi ´ Ui

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ri1 `
řL

l“2 exp
´

pβJ
l xi

¯

Ril

1 `
řL

l“2 exp
´

pβJ
l xi

¯ ´
Ri1 `

řL
l“2 exp

`

βJ
l xi

˘

Ril

1 `
řL

l“2 exp pβJ
l xiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (B.21)

and let
ˇ

ˇ

ˇ

pUi ´ Ui

ˇ

ˇ

ˇ
be denoted by

ˇ

ˇ

ˇ

ˇ

a1
b1

´
a2
b2

ˇ

ˇ

ˇ

ˇ

, where:

a1 “ Ri1 `

L
ÿ

l“2

exp
´

pβJ
l xi

¯

Ril, (B.22)

a2 “ Ri1 `

L
ÿ

l“2

exp
`

βJ
l xi

˘

Ril, (B.23)

b1 “ 1 `

L
ÿ

l“2

exp
´

pβJ
l xi

¯

(B.24)

b2 “ 1 `

L
ÿ

l“2

exp
`

βJ
l xi

˘

. (B.25)

Using the equality,
a1
b1

´
a2
b2

“
a1 ´ a2

b1
´

a2pb1 ´ b2q

b1b2
, the fact that pβl converges to a bounded

quantity, and that the covariates are bounded, we inspect individual parts:

1

b1
“

1
řn

i“1

!

exp
´

´pβJ
l xi

¯) ď
1

řn
i“1

!

exp
´

´

›

›

›

pβl

›

›

›
}xi}

¯) “ Op p1q , (B.26)
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1

b1b2
“ Opp1qOpp1q “ Opp1q (B.27)

a2 “ Opp1q, (B.28)

where Opp1q is universal over all i. This leads to:

ˇ

ˇ

ˇ

pUi ´ Ui

ˇ

ˇ

ˇ
ď |Opp1qpa1 ´ a2q ` Opp1qpb1 ´ b2q| . (B.29)

Inspecting a1 ´ a2, we see that:

exp
´

pβJ
l xi ´ βJ

l xi

¯

ď

ˇ

ˇ

ˇ
exp

´

pβJ
l xi ´ βJ

l xi

¯ˇ

ˇ

ˇ

ď exp
`

βJ
l xi

˘

ˇ

ˇ

ˇ
exp

!

ppβl ´ βlq
Jxi

)

´ 1
ˇ

ˇ

ˇ
.

(B.30)

Here, exp
`

βJ
l xi

˘

is bound by universal constant exp p}βl} }xi}q, and
ˇ

ˇ

ˇ

ˇ

´

pβl ´ βl

¯J

xi

ˇ

ˇ

ˇ

ˇ

ď opp1q }xi} “

opp1q. Given that |exp topp1qu ´ 1| “ opp1q, a1 ´a2 “ opp1q, and showing b1 ´ b2 “ opp1q follows

similarly. This leads to:

ˇ

ˇ

ˇ

pUi ´ Ui

ˇ

ˇ

ˇ
ď |Opp1qopp1q ` Opp1qopp1q|

ď |opp1q ` opp1q| “ opp1q.

(B.31)

With
ˇ

ˇ

ˇ

pUi ´ Ui

ˇ

ˇ

ˇ

P
Ñ 0, the proof is complete, and pV

pUpdq
P
Ñ V pdq.

For πpAi|Xiq estimated such that pπpAi|Xiq
P
Ñ πpAi|Xiq, it is also known that pV

pπpdq
P
Ñ

V pdq (Jiang (2020)). In this case, the proof for pV
pU,pπpdq

P
Ñ pV

pπpdq would follow the exact same

steps as above, with pπpAi|Xiq replacing πpAi|Xiq.
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APPENDIX C: SECONDARY ANALYSES FOR CHAPTER 3

C.1 Optimal Decision Rule for Secondary Outcome

For the outcome of change in hypoglycemia, interestingly, the optimal decision rule was

found to be a policy tree algorithm with a depth of just 1 (Table C.1). The rule suggests that study

participants with baseline %CV ą34% would experience a greater reduction in hypoglycemia

using CGM compared to BGM.
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Table C.1: Training and validation set value estimates of potential decision rules, along with test
set evaluation of final rule, for the secondary outcome (% reduction of time in hypoglycemia).
The “optimal method” was decided as the method with optimal (highest) inner validation set
value; only that method was evaluated on the held-out test set in order to ensure honest cross
validation.

Policy Tree - Parameter Tuning Final Evaluation (of optimal method)

Depth Training Set Value Inner Validation Set Value on Held-Out Test Set

1 3.64 3.51 3.68
2 3.98 3.21 –
3 4.30 3.14 –

Decision List - Parameter Tuning

Depth Training Set Value Inner Validation Set Value

1 3.48 3.49 –
2 3.49 3.44 –
3 3.53 3.49 –

*Note, for comparison, that the estimated value of “CGM-only” rule on the held-out test set was
3.50%.

C.2 Evaluation of Decision Rule

Figure C.1 visualizes the differential treatment effects of CGM and BGM in terms of es-

timated decrease in hypoglycemia across varying levels of the moderating marker, %CV. The

decision rule suggests greater benefit of CGM for 173 (89%) WISDM participants and greater

benefit with BGM for 21 (11%) WISDM participants (Table C.2). The mean %CV in the CGM

group was 42% compared with 30.9% in the BGM group. The participants for whom CGM was

of greater benefit than BGM had higher baseline time spent in hypoglycemia (hypoglycemia

(7.3% versus 1.7%; pă0.0001), in addition to higher baseline daily insulin doses (0.056 units/kg

versus 0.44 units/kg; pă0.05), baseline HbA1c (7.59% versus 7.26%; pă0.10), earlier age at

diagnosis (31.4 years versus 40.1 years; pă0.01), and higher percent with undetectable C-peptide

levels (79% versus 57%); pă0.10) compared to BGM (n=21). The optimal decision rule was

estimated to reduce hypoglycemia by an average of 3.68% (SEM 0.27%) across the full study

population, compared to 3.50% (SEM 0.26%) with the “CGM-only” rule. For context, use of

“BGM-only” was estimated to reduce hypoglycemia 0.43% (SEM 0.37%).
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Figure C.1: Differences in treatment effect of CGM vs BGM by %CV, among WISDM study
participants. The outcome depicted is reduction in hypoglycemia. Curves reflect polynomial fits
(degree 2): Y “ β0 ` β1 ˚ %CV ` β2 ˚ %CV 2. For the CGM treatment group, estimated
parameters for β0, β1, and β2, respectively, are 0.035, 0.285, and 0.081; for the BGM group,
estimated parameters are 0.005, 0.026, 0.006.
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Table C.2: Characteristics of study participants, stratified by decision rule subgroup. P-values for
differences in means were calculated with a 2-sample t-test and differences in proportions with a
2-proportion Z-test. Abbreviations: SD, standard deviation.

Decision Rule Subgroup

Characteristic, n (%) or mean (SD) CGM BGM P-value
(n=173) (n=21)

Moderating Marker
Coefficient of variation, % 42.9 (5.3) 30.9 (3.1) ă.0001a

Demographic Characteristics
Age, years 67.9 (5.7) 69.8 (6.0) .19
Diabetes duration, years 36.5 (15.4) 29.8 (18.7) .12
Age at diagnosis, years 31.4 (16.5) 40.0 (19.3) .06*
Male sex 83 (48.0%) 10 (47.6%) 1
Non-Hispanic ethnicity 157 (90.8%) 21 (100%) .30
White race 162 (93.6%) 21 (100%) .49
Highest education
Less than a bachelor’s degree 70 (40.5%) 5 (23.8%) .21
Bachelor’s degree 55 (31.8%) 7 (33.3%) 1
Graduate or professional degree 48 (27.7%) 9 (42.9%) .24

Health insurance
Private 49 (28.3%) 3 (14.3%) .27
Private and Medicare 58 (33.5%) 9 (42.9%) .54
Medicare/other 66 (38.2%) 9 (42.9%) .86

Clinical Characteristics
Insulin pump use 93 (53.8%) 9 (42.9%) .48
Screening HbA1c, % 7.59 (0.91) 7.26 (0.79) .09*
Detectable C-peptide 37 (21.4%) 9 (42.9%) .06*
Total daily insulin dose, units/kg 0.561 (0.211) 0.441 (0.217) .03**
Body mass index, kg/m2 26.51 (4.30) 26.89 (4.34) .84
ě 1 severe hypoglycemia event in the past 12 months 27 (15.6%) 1 (4.8%) .31
ě 1 diabetic ketoacidosis event in the past 12 months 8 (4.6%) 0 (0%) .67
Hypoglycemia (time w glucose ă70 mg/dL), % 7.3 (5.0) 1.7 (1.6) ă.0001a

Time with glucose in range of 70-180 mg/dL, % 55.6 (12.7) 60.9 (21.5) .28
aSignificance expected since decision rule is based on this marker.
*P ă .1, **P ă .05
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