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ABSTRACT

Nikolai Dabney Lipscomb: Optimization of Stochastic Models in Health Care:
Appointment Scheduling and Disease Testing

(Under the direction of Vidyadhar G. Kulkarni and Serhan Ziya)

We consider two different problems: appointment scheduling and asymptomatic disease testing.

For the appointment scheduling problem, the goal is to assign appointment times to mini-

mize a weighted sum of patient wait times, doctor idle time, and clinic overtime. We make the

assumption that patients are unpunctual with respect to assigned appointment times and distri-

butional information on unpunctuality is available. We first consider a model with heterogeneous

patient distributions in both service time and unpunctuality. This is a complex system that re-

quires heuristic approaches. We are able to show the benefits of capturing patient heterogeneity

in addition to the superior performance of our heuristics. Our best methods do not scale well to

large patient systems; thus, we consider a second model that allows a large number of patients. For

large systems, we assume patient homogeneity; however, patient unpunctuality is permitted to be

time-heterogeneous. With this model, we examine the fluid limits of the queue processes to develop

a fluid control problem that seeks an asymptotically optimal appointment schedule in the form of

an RCLL function. This problem is difficult to solve analytically, so we propose a numerical scheme

that converts the control problem into a quadratic program. We examine asymptotically optimal

appointment schedules under various unpunctuality distributions, then the superior performance

of these schedules in discrete-event simulations.

For the asymptomatic disease testing problem, we consider the individual decision-maker prob-

lem of choosing when to use disease test kits from a limited supply. We assume an underlying

SIR Markov model with split states for asymptomatic and symptomatic states. As only symptoms

are directly observable, the decision process is modeled as a partially-observable Markov decision

process for deciding when to use tests. The goal is to produce simple instructions for the average

consumer to follow. We derive policies that do not require probability computations by the user.
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Under certain assumptions, we are able to prove that these policies are optimal. Last, we examine

a community simulation where infection probabilities are dependent on community infected. Our

methods are shown to outperform existing baselines.
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CHAPTER 1

Introduction

1.1 Introduction to Appointment Scheduling in Healthcare

Outpatient appointment scheduling is a topic examined since the 1950’s beginning with the

pioneering work of (Bailey, 1952). As healthcare costs increase and professionals in the industry

advocate for more preventative care to help avoid expensive treatments and overnight hospital stays,

a greater focus has been placed on outpatient healthcare services, a much cheaper alternative. In

order to boost the efficiency of these outpatient clinics, careful attention has been paid to the

scheduling approaches that are designed to avoid overloading clinic waiting rooms while similarly

seeking to maximize the utilization of the clinics’ healthcare providers (Cayirli and Veral, 2003;

Deceuninck and Vuyst, 2018). Many healthcare systems often see unacceptable wait times whether

due to oversights or inefficient design choices. The importance of reducing wait times have been

typically viewed by examining the opportunity and psychological costs associated with waiting

(Osuna, 1985; Kocas, 2015); however, in light of the COVID-19 pandemic, the health-related costs

of a busy waiting room have become even more pronounced (Thunstrom and Shogren, 2020).

Today’s clinics are in an excellent position to make decisions informed by historical data, as

online check-ins and electronically-assisted arrival questionnaires provide the means to gather not

just questionnaire responses themselves, but the time of patient check-in relative to scheduled

appointment time. Such information could be leveraged to examine the unpunctuality behavior

(lateness or earliness) of patients for use in scheduling decisions. With a goal of minimizing waiting-

room wait times for patients who arrive before they can enter service, unpunctuality has recently

become a topic of interest in outpatient appointment scheduling (Ahmadi-Javid and Klassen, 2017).

For patients that regularly visit a clinic, more data will naturally be available, making it much more

feasible to estimate both individual unpunctuality and service time distributions.
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For the first chapter, we first examine a UNC clinic dataset and gather some insights into

patient unpunctuality behavior and patient service times. We also provide justification for the

idea of individualized patient service and unpunctuality; that is, patients should not be treated

as homogeneous with respect to their service times nor their unpunctuality distributions. We

then consider the following appointment setup. We have a fixed set of patients that we need to

schedule for a given day. These patients are regularly returning patients and the clinic has accrued

a slew of historical data used to estimate their unpunctuality distributions; we treat patients are

heterogeneous with respect to their individual unpunctuality distributions. Patients may have

different types of service scheduled, meaning they are also heterogeneous with respect to their

service time distributions. The objective seeks an appointment to minimize a weighted sum of

total patient wait time, server idle time, and server overtime. The introduction of individualized

distributions and service disciplines different from first-come first-serve leads to a difficult nonconvex

problem. We propose various heuristics for solving this problem. More effective heuristics, however,

are computationally expensive in the number of patients to be scheduled, so this methodology is

reserved for low-capacity (few patient) systems.

The subsequent chapter has us examine the scheduling problem for a high-capacity system. As

discussed in the previous chapter, the heuristics perform poorly as the number of patients grows

large. We dispose of all patient heterogeneity assumptions–a reasonable assumption in high-capacity

settings such as vaccine clinics or dialysis centers. In this situation, however, we allow unpunctuality

to be heterogeneous with respect to time-of-day that the appointment is scheduled. We look at the

fluid limit of the queueing processes and formulate a fluid control problem that admits solutions

for the appointment schedule distribution, also referred to as an appointment profile. We are then

able to numerically solve the fluid control problem by using a time-discretization of the optimal

control problem; the discretized form is a quadratic program. Leveraging Lindley’s equations, this

quadratic program has a linear number of variables and constraints in the time-discretization. We

then proceed to evaluate schedules derived via our quadratic program in a discrete-event simulation

setting using our UNC clinic data.
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1.2 Literature Review for Appointment Scheduling Problems

(Bailey, 1952) is widely regarded as having published the first paper in the study of outpa-

tient appointment systems in the mid-1900s along with (Jansson, 1966). Several comprehensive

literature review papers exist. One by (Ahmadi-Javid and Klassen, 2017) provides a review of the

optimization approaches across outpatient appointment systems in healthcare. Another by (Gupta

and Denton, 2008) examines appointment systems in healthcare and discusses the difficulties of out-

patient appointment scheduling, including future research areas. (Cayirli and Veral, 2003) provide

a review of research in appointment scheduling in outpatient services.

We summarize outpatient scheduling papers that focus on multiple patient classes, patient un-

punctuality, data-driven & simulation-based appointment scheduling, and fluid modeling of relevant

queues. Note that, in most of the literature, when we refer to multiple patient classes, the classes

are referring to unique service time distributions; these are often aligned with the idea of different

surgeries, treatments, and consultation types.

When examining multiple patient classes, in addition to deciding the appointment times them-

selves, it is important to consider the sequence of patients within that schedule. (Heaney and Porter,

1991) examine 85 general practitioners and determine a large contribution to consultation time is

the number of patients awaiting service within a particular service class in addition to other oper-

ational findings. (Ho and Lau, 1992) evaluate various scheduling rules and determine the biggest

factors influencing patient and provider-centered costs are the no-show probability of patients, the

coefficient of variation of service times, and the number of patients per scheduling window, in de-

creasing importance. (Klassen and Rohleder, 1996) address the sequencing of scheduled patients

with respect to low-variance and high-variance service times. (Gerchak and Henig, 1996) examine

the issue of scheduling surgeries in the presence of both elective surgeries and emergency surgeries

using a stochastic dynamic programming formulation. (Dexter and Lubarsky, 1999) examine oper-

ating room scheduling strategies in the presence of variable surgery types; they perform computer

simulation of patient schedules and examine patient preferences when it comes to surgery waiting

time. (Denton and Gupta, 2003) examine a job scheduling system in the presence of different job

duration distribution classes by deriving a two-stage stochastic linear program and producing se-

quential upper bounds on the problem via sequentially finer partitions on the job duration support

3



space. (Cayirli and Rosen, 2006) examine appointment schedules, particularly with attention to

appointment sequencing when it comes to different service types by patient class. While testing

several sequencing rules and appointment schedules, they conclude that the sequence patients are

seen in can be just as important as the appointment schedule itself. (Kolisch and Sickinger, 2008)

examine admission rules for 3 classes of customers seeking radiology healthcare services at a hospi-

tal while incorporating no-shows. (Mancilla and Storer, 2012) develop stochastic integer program

solution algorithms for patient scheduling and sequencing rules with heterogeneous patients, with

the main result being a heuristic based on Bender’s decomposition. (Oh and Ptaszkiewicz, 2013)

examine different patient types in addition to multiple server types (nurses and doctors) in a pri-

mary care scheduling context; they develop a stochastic integer program model for scheduling and

sequencing of the heterogeneous patients in addition to a two-stage model that leverages the two

different types of servers. (Erdogan and Denton, 2015) examine the analytical solution to sequenc-

ing two patients in an outpatient system relative to service completion time and waiting time.

(Mak and Zhang, 2014) and (Kemper and Mandjes, 2014) derive results that support an ordered-

by-variance sequencing rule as preferable over other index rules, particularly so when the service

time distributions come from a single family of distributions with different scale parameters. (Berg

and Huschka, 2014) and (Erdogan and Denton, 2015) also recommended the ordered-by-variance

rule. (Tsai and Teng, 2014) examine a stochastic appointment scheduling procedure for physical

therapy clinics where multiple resources can be utilized by a single patient depending on therapy

type. (Kong and Zheng, 2016) determine the ordered-by-variance policy will perform well under

certain assumptions, but is not generally optimal and loses its advantages depending on service-

time distribution shape and size of the system. (Riise and Burke, 2016) develop a model for general

surgery scheduling problems in addition to a search algorithm for efficiently solving it. (Mansouri-

fard and Krishnamachari, 2018) derive a sequencing heuristic using a newsvendor formulation that

addresses the issue of asymmetric patient waiting and doctor idle costs not captured by the ordered-

by-variance rule. (Gocgun, 2018) examines dynamic scheduling within chemotherapy clinics, with

patients coming from multiple classes with respect to preferences and appointment-time windows;

an approximate dynamic programming technique is leveraged and performs better than myopic

baseline heuristics. (Li and Fung, 2018) examine a dynamic scheduling model with heterogeneous

patient preferences formulated as a Markov decision process; to address the curse of dimensional-
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ity, two approximate dynamic programming algorithms are proposed. (Mandelbaum and Bunnell,

2020) derive a heuristic approach for scheduling and sequencing problems in the context of multiple

servers, using an infinite-server approximation to derive a sequencing heuristic. (Jafarnia-Jahromi

and Jain, 2020) proved that there does not exist an index-based optimal sequencing policy for the

appointment scheduling problem. (Zhou and Yue, 2021) examine the customer wait and server

idle-time minimization problem over multiple service stages via a sample-average approximation

mathematical programming approach.

The effects of patient unpunctuality on appointment systems has been examined as early as

1964 by (White and Pike, 1964). However, the focus of incorporating unpunctuality in mathemat-

ical optimization models for appointment scheduling is a much more recent trend, likely due to

the increasing availability of data provided by electronic check-ins and pre-visit surveys. Further,

the complexity and analytical intractability induced by incorporating unpunctuality into appoint-

ment scheduling models has led to most studies keeping unpunctuality homogeneous (Klassen and

Yoogalingam, 2014) and not dependent on either individual patient characteristics or scheduled ap-

pointment time. (Dexter, 1999) provide managerial insights regarding the source and improvement

of large patient wait times in the presence of several factors, including patient unpunctuality and

no-shows, an extreme form of unpunctuality. (Ho and Lau, 1999) examine nine scheduling rules in

addition to the impact of several environmental factors on performance, such as no-show probability.

(Cayirli and Veral, 2003) draw attention to patient unpunctuality in the context of appointment

scheduling models. (Kim and Giachetti, 2006) develop a stochastic mathematical overbooking

model for determining the number of patients to schedule in the presence of no-shows and walk-ins.

(LaGanga and Lawrence, 2007) examine the overbooking problem with respect to improving patient

access and provider productivity; they examine several overbooking levels in simulation studies to

show the improvements from overbooking policies. (Alexopoulos and Wilson, 2008) examine the ar-

rival and tardiness (unpunctuality) behaviors in community clinics and propose a nonhomogeneous

Poisson process for modeling random patient arrivals. (Muthuraman and Lawley, 2008) examine the

sequential call-in problem with overbooking to account to patient no-shows; practical observations

and conditions on the unimodal evolution of the objective function are derived. (Lin and Lawley,

2011) develop a Markov decision process model of dynamic overbooking in the presence of no-shows

with can be solved to optimality in small cases and solved approximately for larger problems; their
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methods outperform myopic methods by exploiting information on the call-in process. (Tai and

Williams, 2012) examine the optimization of patient appointment schedules while incorporating a

new distribution for characterizing unpunctuality, known as the “F3” distribution. (Cheong and

Fontanesi, 2013) examine real infusion center data and determine a mixture-exponential distribu-

tion to be a better fit to patient unpunctuality than prior Normal-based fitting attempts. (Luo and

Guo, 2016) examine outpatient appointment scheduling with patient unpunctuality and develop a

simulation model for determining the best appointment scheduling rules. (Samorani and Ganguly,

2016) analytically solve the 2-patient problem of deciding whether to wait for an earlier scheduled

patient when patients arrive out of order (wait-preempt dilemma). (Deceuninck and Vuyst, 2018)

also examine the wait-preempt dilemma while also incorporating patient unpunctuality into a se-

quencing problem with 2 patient classes: low-variance and high-variance unpunctuality; using local

searches they find one of the best performing sequences involves putting low-variance patients to-

wards the beginning and end of the sequence, with the high-variance patients in the middle. (Zhu

and Liu, 2018) examine the multi-class patient scheduling problem with the addition of patient

unpunctuality; they develop an analytical two-patient model that motivates an easy-to-implement

heuristic policy. (Asadi and Yaghoobi, 2019) develop a stochastic mixed integer programming

model for appointment scheduling that incorporates homogeneous unpunctuality assumptions of

patient arrivals. (Deceuninck and Fiems, 2019) develop a variance-reduction technique to improve

evaluation times of a schedule for use in a simulation optimization approach; they examine the

change in the optimal schedule between punctual and unpunctual derivations. (Cayirli and Yang,

2019) examine the clinic performance metrics as a result of editing clinical environments such as

patient-doctor cost ratio, service time variability, and the no-show probability. (Jiang and Yan,

2019) develop a mathematical programming formulation that seeks to minimize a sample average

approximation of the system costs using Bender’s Decomposition while incorporating homogeneous

patient unpunctuality. Of particular interest is their in-depth analysis on how system performance

is dependent on unpunctuality parameters. (Jiang and Xu, 2019) examine a distributionally robust

optimization approach for appointment systems that incorporate no-shows. (Pan and Xie, 2019)

develop a two-stage stochastic programming model approximately solved via Bender’s decompo-

sition for the appointment scheduling problem with patient unpunctuality and multiple servers.

(Mandelbaum and Bunnell, 2020) develop a data-driven appointment scheduling and sequencing
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heuristic that is robust to systems with large servers. This method uses an infinite-server relaxation

to find a locally optimal appointment sequence that is able to handle individual patient character-

istics with respect to unpunctuality, service time, and no show probability. They further develop a

data-driven robust optimization approach via mathematical programming and Bender’s Decompo-

sition; however, this does not incorporate unpunctuality in its formulation. (Pan and Xie, 2021b)

develop a two-stage mixed-integer program model for managing patient wait and clinic overtime

in the presence of unpunctual patients, multiple servers, and no-shows and solve efficiently via a

stochastic approximation technique. (Pan and Xie, 2021a) then further examine real-time patient

sequencing in the presence of unpunctuality; that is, the prioritization of patients when multiple

are to be selected from within a queue. However, there is little work that examines heterogene-

ity between patients with respect to unpunctuality and no work when the individual patients fall

within their own distributional classes. (Moradi and Zolfagharinia, 2022) examine the difficulties

introduced by patient unpunctuality to radiotherapy centers, developing a mixed integer program

for determining the optimal sequence of patients for treatment. (Chen and Latina, 2023) simulate

a hospital ultrasound department and examine the effects of varying patient unpunctuality and

service discipline on system efficiency.

Data-driven and simulation-based optimization approaches are one of the most recent foci in the

outpatient appointment scheduling literature. Most datasets are used to estimate parametric dis-

tributions for use in optimization models, but recently researchers have sought to use data directly

in the optimization itself through both simulation-based and non-simulation-based approaches.

(Brahimi and Worthington, 1991) design a scheduling approach to the Royal Lancaster Infirmary

in the United Kingdom using queuing models. (Liu and Liu, 1998) examine a dynamic multi-server

job-assignment model which is extended to a static outpatient appointment scheduling problem;

Poisson approximation and simulation-based methods are used to compute the capacity distribu-

tion, with the latter method allowing for the incorporation of general service time distributions.

(Harper and Gamlin, 2003) simulate an ENT clinic that allows comparison of various schedules

for picking the best one based on patient and clinic factors. (Castaing and Weizer, 2016) develop

a two-stage stochastic mixed-integer programming result for chemotherapy center scheduling with

a single nurse serving several patients using real-world data for deriving managerial insights and

schedule performance. (Alvarado and Ntaimo, 2018) develop a mean-risk stochastic programming
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model for chemotherapy appointment scheduling under different appointment durations, acuity

levels, and nurse availabilities that outperform deterministic-based approaches significantly. (Kim

and Cha, 2018) provide a data-driven study on an appointment system using data provided by an

outpatient clinic. Their main contributions are not in developing an optimal schedule, but rather

to model and understand the arrival process and also provide some insight into what assumptions

are valid to make in mathematical models based on their data. (Jiang and Yan, 2019) examine a

single-server system with a fixed patient sequence that uses historical data to develop uncertainty

sets for stochastic optimization. Using a specific construction methodology, they are able to pro-

duce tractable models that provide good approximations to the more computationally intensive

stochastic programs. (Hribar and Chiang, 2019) collect electronic health record timestamp data

and design a new scheduling template based on 3 appointment lengths (short/medium/long). This

new template is tested on simulation models and compared to observed implementations. Overall,

the schedules are shown to improve clinical efficiency measures such as mean clinic volume, patient

wait times, and examination times. (Dogru and Melouk, 2019) develop a data-driven simulation-

optimization approach for outpatient appointment scheduling in a patient-centered medical home

setting that incorporates patient preferences, no shows, unpunctuality, and future appointment re-

quests. (Mandelbaum and Bunnell, 2020) provide a data-driven infinite-server heuristic and data-

driven robust optimization approach to problems involving potentially large numbers of identical

servers motivated by a chemotherapy infusion centre setting.

Fluid or diffusion models of appointment systems are often used when the underlying model

meets some kind of limiting condition on its parameters. These are often used as approximations

of actual processes that may be intractable if viewed through a discrete-event lens. An under-

standable and concise introduction to fluid and diffusion limits of queues is provided in Chapter 8

of (Gautam, 2012). (Whitt, 2006) examines deterministic fluid models of multiserver queues with

customer abandonment. (Lee and Zenios, 2009) examine regularly-visiting patients and address the

idleness induced by frequent hospitalization via the consideration of overbooking; local diffusion

approximations are used to derive closed-form expressions of the optimal capacity and overbook-

ing level. (Honnappa, 2015) provide the analytical framework for patients arriving to a queue

according to independent sampling from a common arrival distribution. Due to the intractability

of the discrete-event model, the fluid limit and diffusion limit of the queue are examined to provide
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tractable results. (Chen and Thomas, 2016) examine the fluid process of patient arrivals in complex,

network-like health care settings. (Lu and Ying, 2017) examine a fluid-approximation queueing net-

work on a large hospital system for the purpose of optimally allocating cashiers and pharmacists.

(Zacharias and Armony, 2017) examine the joint problem of determining panel size and number of

appointments per day with a diffusion approximation for evaluating performance. (Armony and

Honnappa, 2019) examine the asymptotically optimal appointment scheduling problem in the con-

text of fluid and diffusion limits and determine analytical results for optimal appointment schedules.

They do not, however, incorporate generalized patient unpunctuality in their work, incorporating

no-shows. (Lee and Zhang, 2021) examine a production queueing system with nonstationary de-

mand by developing a fluid-control problem that serves a lower bound for the performance of the

queueing formulation. (Mehrizi and Faradonbeh, 2022) examine the diffusion limits of multi-class

advance patient scheduling and formulate the optimal scheduling problem as a Brownian control

problem.

1.3 Introduction to Asymptomatic Disease Testing

Ever since the outbreak of the COVID-19 (SARS-CoV-2) pandemic, disease testing, quaran-

tining, and vaccination policies have drawn greater attention. While waiting for vaccinations to

become publicly available, testing and quarantining became of paramount concern for public health

officials. Individuals demonstrating mild to moderate symptoms would be encouraged to quarantine

themselves for a period of around 2 weeks whereas those with severe symptoms would check into

hospitals and remain separated from the general public until discharge. For symptomatic patients,

disease tests were generally used to confirm the disease itself as other potential diseases with similar

symptoms could be the culprit. In the absence of symptoms, however, there remains the risk that

an individual is in fact infected, infectious, and completely unaware of their ability to spread the

disease to others. Despite the lack of symptoms that can contribute to the spread of a disease

(coughing, sneezing, etc.), asymptomatic diseases can still be very transmissible, exacerbated by

the fact that a host is unaware and unlikely to take precautionary actions; further, official miscom-

munications lead to the underestimation of the transmissibility of asymptomatic cases (Lippi and

Plebani, 2020). Various case studies have shown the strong impact that asymptomatic cases have
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had on the global community: (Li and Shaman, 2020) estimated that almost 80% of SARS-CoV-2

infections were caused by asymptomatic individuals. A different study (Oran and Topol, 2020)

estimated that around 40-45% of SARS-CoV-2 infections resulted from asymptomatic individuals

and that the infectious period lasts for as many as 14 days. Further, (Chau and Tan, 2020) found

that the viral load in asymptomatic infections of SARS-CoV-2 is ultimately comparable to that in

symptomatic patients. In light of these facts, testing also provide an important function of helping

to detect an asymptomatic infection.

During the pandemic in the United States, free COVID-19 at-home tests were delivered to

households in limited quantities, providing a safe, convenient alternative to visiting crowded and

sometimes distant testing centers. However, these tests were in limited supply in the early stages

of the pandemic and guidelines were lacking on how to properly use them. The Center for Disease

Control (CDC) did provide the sage advice that tests should be used before visiting vulnerable peo-

ple (elderly, immunocompromised, etc.) and a few days after attending larger gatherings; however,

for people going about their daily lives, how should the tests best be used? As these tests tend to

expire in a matter of months, holding on to them in case of a special event may not be an option.

More advanced tests with medical-grade accuracy, such as the BINAXNOW COVID-19 Antigen

Self-Test, arrived; while supply would not be limited by manufacturing capabilities, the large price

tag on these tests equate to a very limited supply for the average person.

Our goal in Chapter 4 of this work is to develop guidelines for the average user to follow

when an asymptomatic infection is a real possibility. The ultimate goal is to minimize the number

of undetected days the individual experiences. We develop several analytical-backed policies for

individual test use, then proceed to examine the performance of these policies in a community-based

simulation.

1.4 Literature Review for Asymptomatic Disease Testing

We will examine relevant disease testing literature which generally falls into one of two classes:

community-based disease testing and economic analyses of disease testing procedures.

(Tsay and Baldea, 2020) develop a partially-observable optimal control problem for sequencing

social distancing and testing events to minimize the number of infections. They find that quar-
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antine procedures are most effective when implemented early and “on-off” policies for quarantine

procedures can effectively flatten the infectious curve while maintaining a low socioeconomic cost.

(Sasmita and Chongsuvivatwong, 2020) develop mathematical control models with 5 strategies for

control: lockdowns, contact tracing, mass testing, case detection and treatment, and face mask

wearing. They determine a combination of lockdowns, contact tracing, case detection and treat-

ment, along with facemasks produces the best result for limiting the spread. (Madubueze, 2020)

examine time-dependent intervention strategies: quarantine, isolation, and public health education,

in the context of an optimal control problem. Time-dependent interventions were shown to outper-

form time-independent interventions, with implementation within the first 100 days of an outbreak

producing the best results. (Ghosh and Ghosh, 2021) examine complex, heterogeneous community

networks where test kits can be implement at specific nodes to impact the spread of an epidemic;

their numerical results confirm the reduction in spread by targeting well-connected nodes within

the network. Their work ends with a numerical study based on data from two real networks: the

global airport network and the transportation network of Kolkata, India. (Ely and Steiner, 2021)

propose an optimization model that works with a set of tests with varied sensitivities and specifici-

ties and seeks to optimally assign them to a heterogeneous set of individuals; they derive a simple

necessary condition for the optimality of test allocation among other structural insights. Last, they

characterize the marginal benefit of a test and provide an algorithm for solving the test-allocation

problem. (Choi and Shim, 2021) examine optimal strategies for social distancing and testing in

order to control the spread of COVID-19. They determine that testing alone will not affect the

overall spread, but will delay the peak of the pandemic. Combining social distancing with testing

will produce the best results, with the most testing occurring in the early phases of the pandemic

and after the peak and social distancing measures growing in intensity as the disease grows more

prevalent. (Vatcheva and Villalobos, 2021) examine data from the Rio Grande Valley of Texas

in 2019 to determine the optimal levels of social distancing and testing to slow virus spread at

the onset of the COVID-19 pandemic. A simulated 4-month period develops social distancing and

testing policies that consider heterogeneous classes of community members such as adults, children,

and seniors. (Lyng and Berke, 2021) examine various population settings for COVID-19 testing

along with testing goals. Using simulated data, they examine the performance of various testing

policies within a susceptible-infectious-recovered (SIR) model. Schools and businesses are chosen
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as the key population settings with more frequent testing correlating with reduced disease burden.

(Buhat and Mamplata, 2021) develop a nonlinear programming allocation model for COVID-19

test kits across 11 testing centers in the Philippines. Their model incorporates heterogeneity in

testing accessibility, population density of municipalities, and testing facility capacity. (Wells and

Galvani, 2021) develop a mathematical model for combining testing with quarantines in a COVID-

19 setting; they find discover what testing policies allow for shorter quarantine periods to maintain

the same effectiveness as longer periods, with testing-on-exit policies leading to 50% reductions on

a typical quarantine period. (Olivares and Staffetti, 2021) develop an optimal control model for

vaccination and disease testing with limited resources. Their controls are the daily vaccination and

testing rates; using a direct transcription technique, they are able to produce solutions that perform

well in various numerical experiments. (Piguillem and Shi, 2022) examine the economic improve-

ments provided by lockdowns (large-scale quarantines) and testing; they determine that testing is

a cost-efficient substitute for lockdowns that render the lockdowns almost unnecessary, allowing for

increased economic output. They further examine an economic-driven analysis of lockdown policy

types that show intensity and duration of the lockdowns are invariant to several parameters: the

weighting between lives and economic output and the aversion to GDP variability; instead, the

virus dynamics best dictate the optimal policy. (Aldila and Samiadji, 2022) develop an optimal

control model for rapid-test deployment and find, from their numerical experiments, that a time-

dependent rapid-test intervention can successfully suppress the spread of COVID-19 with a low

intervention cost. (Tatsuki and Igarashi, 2023) develop a SEIRD model that incorporates testing

characteristics and limited testing resources. Simulations studies saw that cumulative deaths could

range up to thousands less depending on the testing policies implemented.

In Section 4.4, we use model parameters influenced by the following papers. (Ma and Liu,

2021) examine asymptomatic infections of COVID-19 using data from PubMed, EMBASE, and

ScienceDirect and conducted several analysis of different strata within the population; their most

general infected-wide estimate of the asymptomatic infection rate was 40.50%. (Wells and Galvani,

2021) state that the recommended COVID-19 quarantine is 14 days, noting the mental health strain

of such a lengthy period of near-isolation.
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CHAPTER 2

Data-driven Scheduling and Sequencing of Unpunctual Patients in Health-care
Clinics

2.1 Motivation

In today’s environment, regularly visiting patients to a clinic can accrue large amounts of data

regarding their unpunctuality behavior. With sufficient data for multiple patients, their individual

distributions can be examined and leveraged for optimal scheduling of future appointments. We first

examine real UNC clinic data that provides insight into differing individual patient characteristics.

Considering the prospect of fully individualized distributions for patients in both unpunctuality and

service time, we develop several heuristic methods for solving the general appointment scheduling

problem. The most intensive heuristics are designed to improve upon the state-of-the-art by incor-

porating the individualized unpunctuality as a facet of the optimization process. Using our data

again, we perform several simulation studies that show the improvements introduced by incorporat-

ing individualized unpunctuality as opposed to the typical homogeneous assumption. Further, we

examine the performance of our heuristics against common-sense methods and the state-of-the-art.

2.2 UNC Clinic Data Analysis

In this section, we examine the unpunctuality behavior of patients using anonymized data

obtained from UNC health care clinics. The dataset consists of approximately 150,000 records

of patient appointments over a period of 2 years (730 days). Each record consists of data to

determine patient unpunctuality and their service times in addition to unique patient, doctor, and

clinic identifiers. Further details on the variables and their characteristics are presented in the

supplement.

Using this data, we examine two particular values of interest: patient unpunctuality and patient

service times. For each record, we use the appointment time and actual arrival time to determine
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Figure 2.1: Unpunctuality distribution across the full dataset.

unpunctuality and use the time the doctor entered the room and the patient’s check-out time to

determine the service time.

We define unpunctuality of a patient as the difference between their scheduled appointment

time and their actual arrival time. Thus, the patient unpunctuality is 0 if the patient is perfectly

on time for their appointment, positive if the patient is late for their appointment, and negative if

the patient is early for their appointment. We define the service time for a patient as the difference

between the actual completion time of the appointment and the time the doctor entered the room.

We perform a simple filter of the data: any appointment with either an unpunctuality of

magnitude greater than 4 hours or a service time less than 0.25 minutes or greater than 8 hours is

removed from the analysis. Such extreme values often occur due to data entry error.

Figure 2.1 shows the histogram of unpunctuality across all patient visits. From this figure we

see that the distribution appears to have two local modes, with the dominant mode being slightly

earlier than 0 and the second mode being around 2 hours early.

One important question is whether and how much unpunctuality behavior changes from patient

to patient. While our dataset does not provide the service or doctor types associated with certain

appointments and patients, we are able to use the anonymized doctor IDs, anonymized patient IDs,
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Figure 2.2: Unpunctuality distributions of 3 high-frequency patients on the left and 3 regular-frequency
patients on the right

and anonymized clinic IDs to track the unpunctuality of a given patient over several appointments

or cluster appointments and patients. We first divided the patients into two groups: those with

three or more appointments a week on average (high-frequency) and those with less than three

visits per week on average (regular-frequency). We picked three patients with the most visits

from each of the two groups, thus giving us six patients with non-sparse distributions for their

unpunctuality. We examined individual unpunctuality of these six patients. Figure 2.2 displays

the full distribution of unpunctuality of the high-frequency patients (the left side) and the three

regular-frequency patients (the right side).

As we can see from this figure, the idea of heterogeneous patients with respect to unpunctuality

distributions makes sense as we can see different types of unpunctuality behavior; for example, the

first high-frequency patient appears to be almost always early whereas the second high-frequency

patient tends to be late.
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Figure 2.3: Service time distribution across the full dataset.

We present the overall service time distribution across all patients in Figure 2.3, which appears

exponential in its general shape.

We also examined the individual patient distributions with respect to service times. Figure

2.4 examines the same six high-frequency and regular-frequency patients with respect to their

individual service time distributions.

2.3 Heterogeneous Patient Model

In this section we formulate the problem of optimally scheduling P patients indexed by i =

1, 2, · · · , P over [0, T ]. We split the problem into two pieces: one involving the determination of

appointment times:

a = [a1, a2, · · · , aP ]

such that

0 ≤ a≤a2 ≤ · · · ≤ aP ≤ T,
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Figure 2.4: Service time distributions of the usual 3 high-frequency patients on the left and 3 regular-
frequency patients on the right.

and the other determining a patient sequence vector:

q = [q1, q2, · · · , qP ]

that is a permutation of {1, 2, · · · , P}. Under a given schedule a and q, the patient with index qj

is scheduled for time aj for j = 1, . . . , P .

Let Ui be the unpunctuality and Si the service time of the ith patient. Then the patient

scheduled to arrive at time ak actually arrives at time

Ak = ak + Uqk ,

and their service time is given by Sqk . Note that the order in which patients arrive can be different

than the order of their scheduled appointment times.

We consider a cost structure that incorporates waiting costs for the patients, and idle-time and

overtime costs for the servers. We distinguish between the waiting time incurred by the patient

before their appointment times, and after their appointment times. Specifically, cb denotes the cost
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per patient per unit time for a patient waiting in the queue before their scheduled appointment

time, and ca denotes the cost per patient per unit time for a patient waiting in the queue after their

scheduled appointment time. We choose to separate these two types of waits as it is reasonable

to assess them differently. Patients expect to be seen in a timely manner and can be expected to

accrue a higher wait cost when waiting past their scheduled appointment time than when waiting

prior to the scheduled appointment time. Finally, cI denotes the cost per unit time per server that

is idle during the day (i.e., during [0, T ]), and co denotes the cost per unit time per server that is

working beyond time T ; i.e., when they are accruing overtime.

The presence of unpunctuality gives rise to the phenomenon of patients arriving out of order.

This creates a question: in what order should patients be served? We consider the following two

non-idling non-preemptive service disciplines:

1. Appointment-Based Priority (ABP). Under ABP, when a server completes service, he starts

serving the patient with the earliest appointment time.

2. Early/Late Hybrid (ELH). ELH maintains two queues: an early queue of patients with un-

punctuality less than or equal to 0, and a late queue of patients with unpunctuality greater

than 0. When a server completes service, and the early queue is nonempty, a patient in that

queue is selected according to ABP. If the early queue is empty, then the server takes a patient

from the late queue according to a first-come first-serve (FCFS) service discipline.

Our objective is to find a schedule that minimizes the total expected cost of our system,

assuming one of the above service disciplines is followed. Note that we are considering an ”offline”

setting where the schedule is to be set before the start of the day and cannot be changed during

the day.

To make this more precise, we introduce the following notation. Let Ti be the time when the

service of patient qi starts. Then the queueing time of customer qi prior to time aiis given by

Wb(i,a, q) = max(min(ai −Ai, Ti −Ai), 0),
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Figure 2.5: Wb and Wa values for 3 different scenarios.

and the queueing time of customer qi after time ai is given by

Wa(i,a, q) = max(min(Ti −Ai, Ti − ai), 0).

Let I(a, q) be the total idle time across all servers from time t = 0 until all customers have

entered service, and O(a, q) be the total overtime across all servers (summation of service times

beyond time t = T ). We also denote the set of all permutations of {1, 2, · · · , P} by Q.

Our general optimization problem is

min
a,q

E

[
cb

P∑
i=1

Wb(i,a, q) + ca

P∑
i=1

Wa(i,a, q) + cII(a, q) + coO((a, q))

]

s.t. 0 ≤ ai ≤ T ∀i = 1, 2, . . . , P

ai ≤ aj ∀i < j

q ∈ Q.

(2.1)

In full generality, the objective function is hard to evaluate. In simple cases, such as when

there is a single server and the service discipline is first-come first-serve, one can write recursive

formulas (Lindley’s Equations) which can be used to calculate successive wait times, overtime,

and idle times given a sample path of unpunctuality, service times, and an appointment schedule.
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However, for our system in its full generality, one cannot express these analytically and we must

rely on a simulation-type method for calculating these values. Therefore, we use a sample-average

approximation (SAA) in lieu of our original objective function.

Specifically, to approximate the objective function for a given a, q, and service discipline π, we

generate M sample paths. For sample path m ∈ {1, . . . ,M}, let

(
W (m)

a (i,a, q),W
(m)
b (i,a, q), I(m)(i,a, q), O(m)(i,a, q)

)

be the computed values of

(Wa(i,a, q),Wb(i,a, q), I(i,a, q), O(i,a, q))

respectively for the m-th sample path. We use these quantities to estimate the objective function

in the above optimization problem by defining

Φ(M)(a,q) =
1

M

M∑
m=1

[
P∑
i=1

[
caW

(m)
a (i,a, q) + cbW

(m)
b (i,a, q)

]
+ cII

(m)(a, q) + coO
(m)((a, q))

]

as the sample average approximation of the objective in Problem 2.1 across M sample paths. This

yields the following SAA minimization problem:

min
a,q

Φ(M)(a,q)

s.t. 0 ≤ ai ≤ T ∀i = 1, 2, . . . , P

ai ≤ aj ∀i < j

q ∈ Q.

(2.2)

This is a nonconvex optimization problem that is difficult to solve to global optimality; however,

we were able to produce high-performance appointment schedules using our heuristics.
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2.4 Analytical Sequencing Results

Classic results from job scheduling literature in manufacturing, such as by (Pinedo, 2012) have

established optimal sequencing rules for punctual jobs with heterogeneous stochastic completion

times. However, there are no analytical results for how heterogeneous unpunctual patients should be

sequenced. Due to the complexity of Problem 2.1, provable analytical results can only be established

under various restrictions. We will present some analytical results regarding the sequencing of

patients relative to their unpunctuality distributions.

Definition 2.1. A patient sequence q = (1, 2, . . . , P ) is said be a stochastically increasing unpunc-

tuality (SIU) sequence if U1 ≤st U2 ≤st · · · ≤st UP .

We can prove the following proposition.

Proposition 2.4.1. Consider an equally spaced appointment schedule a = (a1, · · · , aP ) with

ak = (k − 1)a. Suppose all service times Sk, k = 1, . . . , P are i.i.d. such that P (Sk ≥ a) = 1. The

patients are served in the order of appointments. Then the total patient wait time of the system is

stochastically minimized if q is an SIU sequence.

The proof of Proposition 2.4.1 is located in the appendix. This theorem follows the intuition

that, if we want to minimize overall wait-time, we should sequence in such a way that patients

arrive as spread out as possible. The idea that P (Sk ≥ a) = 1 corresponds to an overloaded clinic,

as patients cannot be served in their allotted times.

Definition 2.2. A patient sequence q = (1, 2, . . . , P ) is said be a stochastically decreasing un-

punctuality (SDU) sequence if U1 ≥st U2 ≥st · · · ≥st UP .

Proposition 2.4.2. Consider an equally spaced appointment schedule a = (a1, · · · , aP ) with

ak = (k − 1)a. Suppose all service times Sk, k = 1, . . . , P are i.i.d. such that P (Sk ≤ a) = 1.

The patients are served in the order of appointments. Then the total idle time of the system is

stochastically minimized if q is an SDU sequence.

The proof of this proposition follows an identical structure to Proposition 2.4.1 by using the

fact that the inter-patient idle time is the negative of the inter-patient wait time. This corollary

follows the intuition that, if we want to minimize the overall idle-time, we should sequence in such
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a way that patients arrive with the smallest gaps between them. The idea that P (Sk ≤ a) = 1

corresponds to an underloaded clinic, as the patients will finish faster than their allotted times.

2.5 Alternating Iterative Perturbation and Resequencing (AIPR) Heuristic

The objective function of Problem (2.2) is nonconvex and therefore standard gradient-descent

algorithms do not necessarily perform well. Further, the computation of a gradient is computation-

ally expensive for general systems that require simulation to compute the objective function. Hence,

in this section, we propose an alternative heuristic method. Specifically, we propose a two-phase

method that alternates between optimising with respect to a while keeping q fixed and vice-versa.

Phase-1 of the heuristic is based upon the local search method detailed by (Deceuninck and Vuyst,

2018). The Phase-1 algorithm seeks to improve only the appointment vector a while keeping the

sequence q fixed. The Phase-2 algorithm seeks to find a better sequence vector q, while keeping

the appointment vector a fixed. We will first define a τ−neighbourhood of appointment vector a.

Definition 2.3. Let N(τ,a) = {a+ τei | i ∈ {1, 2, . . . , P}} where ei is the ith column of the P×P

identity matrix. Then N(τ,a) is a τ−neighbourhood of a.

Using this definition, we will now describe our Phase-1 Heuristic.

Algorithm 2.5.1. Iterative Perturbation

Initial Input: a,q, τ1 > τ2 > · · · > τN > 0,M ∈ Z+

for τ in (τ1, τ2, . . . , τN ) do

Set Φ̂(a) = min
a′∈N(τ,a)

Φ(M)(a′, q)

if Φ̂(a) < Φ(M)(a,q) then

a← a′

Repeat for loop for current τ

else

if τ = τN then

Terminate algorithm

else

Proceed to next τ value in loop

end if
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end if

end for

In this algorithm, we repeatedly pick the best single-appointment perturbation of size τ . Such

a rule can be replaced with a different approach; for example, considering multiple appointment

perturbations at once. It is important to note that picking large τ means the algorithm will

likely converge quickly; however to increase accuracy and speed, it is recommended to repeat the

algorithm for a decreasing sequence of positive τ values defined by τ1 > τ2 > · · · > τN > 0. Iterative

Perturbation converges as the termination criteria is non-improvement and the step-sizes are a fixed

sequence.

Next we describe Phase-2, which keeps a fixed appointment vector a but adjusts the sequence

vector q. For this, we will define a swap-neighbourhood of sequence vector q.

Definition 2.4. Let q be a sequence vector and let

Ns(q) =
{
q′ | q′

i = qj ,q
′
j = qi for some i < j,q′

k = qk ∀k /∈ {i, j}
}
.

Then we call Ns(q) a swap-neighbourhood of sequence vector q.

Note that Ns(q) ⊂ Q created by interchanging a pair of elements in the original sequence q.

Algorithm 2.5.2. Iterative Resequencing

Initial Input: a,q,M ∈ Z+

Set Φ̂(q) = min
q′∈Ns(q)

Φ(M)(a, q)

if Φ̂(q) < Φ(M)(a,q′) then

q← q′

Repeat algorithm

else

Terminate algorithm

end if

Remark: One does not need to limit themselves to greedy pair-wise interchanges, other rese-

quencing approaches are equally as plausible.

Iterative Resequencing converges since the number of possible sequences is finite and thus we

will eventually find a sequence such that any pair-wise interchange will not lead to an improvement

in the objective function.
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Finally, we describe our 2-phase heuristic, alternating the iterative perturbation and iterative

resequencing processes.

Algorithm 2.5.3. Alternating Iterative Perturbation and Resequencing (AIPR)

Initial Input: a,q, τ1 > τ2 > · · · > τN > 0,M ∈ Z+

Perform Iterative Perturbation with Initial Input: a,q, τ1 > τ2 > · · · > τN ,M ∈ Z+

a′ = final output from Iterative Perturbation.

Perform Iterative Resequencing with Initial Input: a′,q,M ∈ Z+

q′ = final output from Iterative Resequencing.

if Φ(M)(a′,q′) < Φ(M)(a,q) then

a← a′

q← q′

Repeat algorithm

else

Terminate algorithm

end if

Note that computation of Φ(M)(a,q) can be expensive depending on service discipline, number

of patients P , and number of sample paths M .

2.6 Myopic Scheduling Heuristic

In this section we propose a computationally simpler alternative to AIPR. This method requires

a decided-upon sequence beforehand. The well-regarded rule of scheduling with shortest variance

service times first performs well in practice. We first analyze a two-patient system and then

heuristically generalize to more than two patients. Let cw be per unit cost of queueing (before or

after the appointment). Let Wi be the queueing time for patient i = 1, 2 and Ii be the idle time of

the server waiting on patient i = 1, 2 to arrive. We will assume that patients are seen in the order

of appointment, making W1 > 0 if and only if the patient arrives before the system start time of

0. Let g = a2 − a1, be the inter-appointment time. Given the system assumptions, we can express
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the wait times and idle times as follows:

W1 = max {0,−a1 − U1} , W2 = max {0, U1 + S1 − U2 − g} ,

I1 = max {0, a1 + U1} , I2 = max {0, g + U2 − U1 − S1} .

We choose a1 and g by solving the following optimization problem:

min
a1,g

E [cw(W1 +W2) + cI(I1 + I2)]

s.t. a1 ≥ 0, g ≥ 0.

(2.3)

Proposition 2.6.1. Let

a⋆1 = −F−1
U1

(
cw

cw + cI

)
, (2.4)

and

g⋆ = F−1
R1,2

(
cw

cw + cI

)
, (2.5)

where R1,2 = U1 +S1−U2, and FU1 is the CDF for U1 and FR1,2 is the CDF of R1,2. Then, a
⋆
1 and

g⋆ are optimal solutions to Problem 2.3.

The proof of this proposition is located in the appendix.

We now use this result to construct a heuristic to decide the appointment times ai (i =

1, 2, · · · , P ) in a system with P ≥ 2 patients with a given sequence q = (1, 2, · · · , P ). We de-

termine a1 a given by Equation 2.4 and determine ai for i = 2, . . . , P recursively as follows:

ai+1 = ai +max

{
0, F−1

Ri,i+1

(
kicw

kicw + cI

)}

for some integer ki ≥ 1 with

Ri,i+1 = Ui + Si − Ui+1.

In this recursion, the unit waiting cost is adjusted by ki to account for the fact that the waiting

cost to be incurred will be more than what would be incurred in a 2-patient system as assumed in

the simplified model.
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Specifically, we set ki as follows. Suppose appointments a1, . . . , ai have already been scheduled

and we seek to schedule appointment ai+1. Let ūj be the expected unpunctuality of the patient

scheduled in the j−th appointment slot for j ≤ i. Similarly, let s̄j be the expected service time of

the patient scheduled in the j−th appointment slot for j ≤ i. Using these deterministic values, one

can calculate the arrival times Ãj and departure times D̃j of patients j = 1, . . . , i using Lindley’s

equations:

D̃j = Ãj + W̃j + s̄j ,

where Ãj = aj + ūj , W̃1 = −min{0, Ã1}, W̃j = max{0, D̃j−1 − Ãj} for j = 2, . . . , i.

If we define

Ni =
i∑

j=1

I{Ãj ≤ ai}I{D̃j > ai},

then Ni is the number of people in the system at time ai under the deterministic unpunctuality and

service times. We then set ki = Ni + 1 as the weighting factor for scheduling appointment ai+1.

Using our above methodology, we propose the following Myopic Scheduling Heuristic that uses

a fixed patient sequence q = (q1, q2, . . . , qP ):

Algorithm 2.6.1. Myopic Scheduling Heuristic

Initial Input: q = (q1, q2, . . . , qP )

Set a1 = max
{
0,−F−1

Uq1

(
cw

cw+cI

)}
for i=2, . . . , P do

Calculate ki = Ni + 1

Set ai = ai−1 +max
{
0, F−1

Rqi−1,qi

(
kicw

kicw+cI

)}
end for

2.7 Data-driven Numerical Studies

We use the clinic dataset to develop several scenarios for testing. In particular, we use individual

patient distributions for generating unpunctuality and service times for generating schedules and

testing our heuristics. Patients are selected as the 12 patients with the most amount of available

data post-filtering. The filtering process involves removing any observations with unpunctuality

with magnitude greater than 2 hours or service times beyond 3 hours as well as observations missing
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Patient No. U Mean U SD S Mean S SD

1 -22.8274 29.5802 59.7859 45.3275
2 -44.4541 42.4770 52.0795 46.3084
3 -14.7445 37.0057 64.2493 46.6515
4 -37.4505 31.0536 55.3563 48.1651
5 -2.4112 19.5408 68.5667 49.6875
6 -22.4285 36.9639 55.2124 50.9274
7 -22.6192 31.3403 46.3822 53.6960
8 -35.0116 31.6447 41.0520 54.1557
9 -41.9465 25.9345 59.6438 54.6848
10 -20.0375 29.5642 61.5680 56.6795
11 -15.6299 31.6945 68.7111 57.2360
12 34.8698 46.2589 81.8488 58.5234

Table 2.1: Summary statistics of 12 patients used in the numerical studies.

Figure 2.6: Empirical CDFs of the unpunctuality and service time distributions of the 12 patients used in
the numerical studies.

either an unpunctuality or a service time. We present the means and standard deviations for the

unpunctuality (U Mean and U SD, respectively) and service times (S Mean and S SD, respectively)

of these 12 patients in Table 2.1, listed in the order of increasing variance of the service time. Figure

2.6 presents the empirical distributions of the unpunctuality and service times of the patients in

the table. All time representations are in minutes.

The purpose of these scenarios is to picture how well we can perform when scheduling and se-

quencing patients by leveraging information on each of the patients’ unpunctuality and service time

distributions. In terms of scheduling methodologies, we propose several baseline heuristics in addi-
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tion to our Myopic Scheduling heuristic and AIPR. The performance of the different appointment

schedules is evaluated via simulation and presented with confidence intervals.

These scenarios cover different cost parameter values and service disciplines using a shared time

horizon of T = 720 minutes. The different heuristics are listed below:

• Expected Service (ES): an appointment schedule derived from the heuristic that spaces out

appointments according to expected service time: a1 = 0 and ai+1 = ai + E(Sqi) for i =

1, . . . , P − 1.

• Expected Service and Expected Unpunctuality (ESEU): an appointment scheduled derived

from the heuristic that spaces out appointments according to their expected service time,

then additionally perturbs them by the expected unpunctuality: a1 = −E(Uq1) and ai+1 =

ai+E(Sqi)−E(Uqi+1) for i = 1, . . . , P−1. Note: any negative appointment times are rounded

up to 0 and any appointments beyond T are rounded down to T to keep all appointments

within the scheduling window.

• Myopic Scheduling (MS): an appointment schedule derived via the Myopic Scheduling heuris-

tic.

• Iterative Perturbation (IP): an appointment schedule derived via Iterative Perturbation.

• Alternating Iterative Perturbation and Resequencing (AIPR): an appointment schedule de-

rived using the AIPR heuristic.

Each heuristic is associated with a single schedule per scenario. The different scenarios lead

to different schedule outcomes for MS, IP, and AIPR as, even if the same heuristic was used, the

heuristics depend on the cost parameters and/or service discipline unique to each scenario. Using

IP (Iterative Perturbation) is presented as a separate scheduling method as it is simply a type

of local search heuristic commonly used to solve these types of problems (Deceuninck and Vuyst,

2018). All simulation-optimization methods (IP and AIPR methods) have schedules derived using

2000 sample paths independently drawn from the patient distributions.

The only scheduling rules that did not incorporate the cost parameters into the derivation are

ES and ESEU. However, these methods were incorporated as they are simple, easily justifiable
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rules. ES acted as our baseline for examining percent improvements, as it was the most simple,

“obvious” policy we could use.

2.7.1 Performance of the Heuristics

We first compared heuristics in the fully individualized patient characteristics setting. In this

situation, we examined 4 cases for comparing heuristics:

Case 1: cb = ca = 1, cI ∈ {1, 2, 5, 10}, 1.5cI = co, ABP service discipline.

Case 2: cb = 0, ca = 1, cI ∈ {1, 2, 5, 10}, 1.5cI = co, ABP service discipline.

Case 3: cb = ca = 1, cI ∈ {1, 2, 5, 10}, 1.5cI = co, ELH service discipline.

Case 4: cb = 0, ca = 1, cI ∈ {1, 2, 5, 10}, 1.5cI = co, ELH service discipline.

Case 1 is the most basic scenario, which follows the “fair” ABP service discipline and does not

distinguish between before-appointment wait time and after-appointment wait time. Case 2 keeps

the ABP service discipline, but assigns zero cost to the before-appointment wait times. Case 3 and

4 mirror Case 1 and 2 respectively in terms of the cost structure, but switch to the ELH service

discipline.

We evaluated the appointment schedules derived via various heuristics across 100,000 simula-

tions per case. Mean total cost and their confidence intervals are presented across several tables.

The acronym ESPI stands for the percent improvement over ES which will be presented with

respect to mean values.

Tables 2.2 and 2.3 summarize Cases 1 and 2 respectively. We saw that the AIPR heuristic

performed the best, but only marginally better than IP. That improvement gap appeared to increase

as the idle cost of the system increased. This was, however, the simplest scenario and we expected

patient sequences to play a much bigger role as we added further complication to the system. The

MS heuristic provided modest improvements on ES; however, it should be noted that while the

derivation of the MS heuristic does not incorporate overtime costs, the actual scenarios themselves

do include overtime calculations.

Tables 2.4 and 2.5 present results from Cases 3 and 4 respectively. It is interesting to note

that, in spite of the fact that MS’s derivation is a serious departure from the service discipline used
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cI Method Mean TC (ESPI) 95% CI

1 ES 1178.2 (0%) (1173.9, 1182.6)
ESEU 1154.2 (2.04%) (1149.8, 1158.6)
MS 1114.5 (5.41%) (1111.7, 1117.3)
IP 1024.8 (13.02%) (1021.7, 1027.9)

AIPR 1019.7 (13.45%) (1016.7, 1022.7)

2 ES 1467.4 (0%) (1462.5, 1472.2)
ESEU 1464.8 (0.18%) (1459.7, 1469.9)
MS 1440.9 (1.81%) (1435.8, 1445.9)
IP 1402.6 (4.42%) (1398.0, 1407.3)

AIPR 1396.8 (4.81%) (1392.2, 1401.4)

5 ES 2331.4 (0%) (2324.4, 2338.4)
ESEU 2372.9 (-1.78%) (2365.4, 2380.4)
MS 2328.1 (0.14%) (2318.5, 2337.6)
IP 2098.0 (10.01%) (2090.2, 2105.9)

AIPR 2087.7 (10.45%) (2079.8, 2095.7)

10 ES 3779.1 (0%) (3767.7, 3790.6)
ESEU 3901.8 (-3.25%) (3889.5, 3914.1)
MS 3514.7 (7.00%) (3499.5, 3530.0)
IP 2959.0 (21.70%) (2946.0, 2971.9)

AIPR 2915.4 (22.85%) (2902.0, 2928.7)

Table 2.2: Simulation Results for Heuristic Comparison for Case 1: even wait costs and ABP service
discipline.
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cI Method Mean TC (ESPI) 95% CI

1 ES 942.3 (0%) (938.3, 946.4)
ESEU 956.2 (-1.48%) (952.0, 960.3)
MS 974.5 (-3.42%) (971.9, 977.1)
IP 833.2 (11.58%) (830.3, 836.1)

AIPR 829.0 (12.02%) (826.2, 831.8)

2 ES 1235.2 (0%) (1230.5, 1239.9)
ESEU 1262.4 (-2.20%) (1257.6, 1267.2)
MS 1229.6 (0.45%) (1224.8, 1234.5)
IP 1178.6 (4.58%) (1174.1, 1183.1)

AIPR 1178.6 (4.58%) (1174.1, 1183.1)

5 ES 2108.9 (0%) (2101.3, 2115.3)
ESEU 2171.8 (-2.98%) (2164.4, 2179.2)
MS 2047.4 (2.92%) (2037.9, 2056.8)
IP 1841.5 (12.68%) (1833.6, 1849.5)

AIPR 1832.8 (13.09%) (1824.9, 1840.8)

10 ES 3557.6 (0%) (3546.1, 3569.1)
ESEU 3712.8 (-4.36%) (3700.4, 3725.1)
MS 3206.8 (9.86%) (3191.6, 3222.0)
IP 2703.1 (24.02%) (2690.3, 2716.0)

AIPR 2646.3 (25.62%) (2632.9, 2659.7)

Table 2.3: Simulation Results for Heuristic Comparison for Case 2: uneven wait costs and ABP service
discipline.
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cI Method Mean TC (ESPI) 95% CI

1 ES 881.9 (0%) (879.0, 884.9)
ESEU 840.1 (4.74%) (837.2, 843.1)
MS 929.7 (-5.42%) (927.6, 931.8)
IP 805.2 (8.70%) (802.5, 807.9)

AIPR 805.2 (8.70%) (802.5, 807.9)

2 ES 1172.4 (0%) (1168.9, 1175.9)
ESEU 1145.8 (2.27%) (1142.2, 1149.4)
MS 1132.8 (3.38%) (1129.0, 1136.5)
IP 1053.1 (10.18%) (1049.3, 1056.8)

AIPR 1046.7 (10.72%) (1042.9, 1050.6)

5 ES 2035.4 (0%) (2029.6, 2041.3)
ESEU 2058.4 (-1.13%) (2052.2, 2064.7)
MS 1649.4 (18.96%) (1641.9, 1656.9)
IP 1603.0 (21.24%) (1596.5, 1609.5)

AIPR 1485.7 (27.01%) (1479.0, 1492.4)

10 ES 3487.8 (0%) (3477.3, 3498.3)
ESEU 3589.9 (-2.93%) (3578.6, 3601.1)
MS 2534.7 (27.33%) (2521.7, 2547.8)
IP 2338.8 (32.94%) (2327.6, 2350.0)

AIPR 2125.9 (39.05%) (2114.2, 2137.5)

Table 2.4: Simulation Results for Heuristic Comparison for Case 3: even wait costs and ELH service
discipline.

in Cases 3 and 4 (ELH), the MS heuristic performs extremely well as the idle cost grew larger.

However, in low idle cost cases, such as cI = 1, the MS heuristic performs quite poorly, in one

case performing approximately 20% worse than the ES heuristic (Case 4, cI = 1). This was an

unexpected development and it warrants caution for testing to determine what types of service

disciplines might work well with the MS heuristic.

As expected, however, the IP and AIPR heuristic performed the best. It is also interesting to

note that in this service discipline, as idle cost increases, the performance improvement gap between

IP and AIPR became significant, which captures the importance of the resequencing aspect of

the optimization process in more complicated systems, such as when an unpunctuality-dependent

prioritization scheme is implemented.

2.7.2 Significance of Unpunctuality

As we discussed in Section 1.1, prior work on appointment scheduling has largely ignored

unpunctuality and an investigation of how it should be taken into account is one of the main
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cI Method Mean TC (ESPI) 95% CI

1 ES 656.7 (0%) (654.1, 659.4)
ESEU 650.3 (0.97%) (647.6, 653.0)
MS 790.7 (-20.41%) (788.8, 792.6)
IP 592.5 (9.78%) (590.0, 594.9)

AIPR 592.5 (9.78%) (590.0, 594.9)

2 ES 947.7 (0%) (944.4, 951.0)
ESEU 957.1 (-0.99%) (953.7, 960.5)
MS 927.1 (2.17%) (923.6, 930.6)
IP 786.5 (17.01%) (782.9, 790.2)

AIPR 786.5 (17.01%) (782.9, 790.2)

5 ES 1813.7 (0%) (1807.9, 1819.5)
ESEU 1873.1 (-3.28%) (1866.9, 1879.2)
MS 1372.3 (24.34%) (1365.0, 1379.6)
IP 1319.5 (27.25%) (1313.2, 1325.9)

AIPR 1230.1 (32.18%) (1223.4, 1236.8)

10 ES 3258.1 (0%) (3247.7, 3268.6)
ESEU 3401.7 (-4.41%) (3390.5, 3413.0)
MS 2216.6 (31.97%) (2203.7, 2229.6)
IP 2077.9 (36.22%) (2066.8, 2088.9)

AIPR 1863.1 (42.82%) (1851.5, 1874.6)

Table 2.5: Simulation Results for Heuristic Comparison for Case 4: uneven wait costs and ELH service
discipline.
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contributions of this paper. In Section 2.7.1, we found the the methods we developed significantly

improve upon the simple alternatives. However, this does answer the question of whether capturing

unpunctuality is worthwhile in the first place because one could have also used the IP and AIPR

heuristics without taking into account patients’ unpunctuality behavior. To investigate the worth of

incorporating unpunctuality, in this section, we run the IP and AIPR methods under three different

settings: one that assumes all patients are punctual, one that assumes patients are unpunctual, but

the behavior is homogeneous across all patients, and one that assumes that each patient has their

own unique unpunctual behavior that can be estimated based on their own historical behavior.

Specifically, in the following we present the performances under six different heuristics. IP-ZU,

IP-HU, and IP-IU all use the IP heuristic, but respectively under the assumptions of “zero unpunc-

tuality”, “homogeneous unpunctuality”, and “individual unpunctuality”. AIPR-ZU, AIPR-HU,

and AIPR-IU make the same respective assumptions on unpunctuality but use the AIPR heuristic

instead. Note that going from ZU to HU and then to IU, unpunctuality is captured at increasingly

more granular levels. What is mainly of interest here is how much can we improve upon ZU policies

using HU or IU policies, which would reveal the potential benefits of capturing unpunctuality, and

how much one can improve upon HU policies by using IU policies, which would reveal the potential

benefits of using unpunctuality data at the individual level.

Table 2.6 summarizes the mean and the 95% confidence intervals (CI) of the total costs (TC)

associated with the 3 different treatments of unpunctuality for Case 1. ZUPI stands for “zero

unpunctuality percent improvement”, which is the percent cost improvement relative to the ZU

schedule derived under the matching heuristic.

It is important to note that, under AIPR-ZU and AIPR-HU, resequencing is still performed

relative to the individualized service distributions; however, unpunctuality is treated as homoge-

neous in both cases. This leads to AIPR methods under-performing relative to IP in the true

heterogeneous setting. This is important because most prior research assumes homogeneous un-

punctuality and, if resequencing is done strictly with respect to service times without accounting

for heterogeneous unpunctuality, a worse solution may be reached as an incorrect distributional

assumption is driving the optimization.

Case 2 results are provided in Table 2.7. As with Case 1, we saw improvements of around 2-3

percent when accounting for heterogeneous unpunctuality.
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cI Method Mean TC (ZUPI) 95% CI

1 IP-ZU 1054.8 (0%) (1051.6, 1058.1)
IP-HU 1047.7 (0.67%) (1044.5, 1050.9)
IP-IU 1024.8 (2.84%) (1021.7, 1027.9)

2 IP-ZU 1455.1 (0%) (1450.5, 1459.8)
IP-HU 1425.6 (2.03%) (1421.2, 1430.0)
IP-IU 1402.6 (3.61%) (1398.0, 1407.3)

5 IP-ZU 2164.2 (0%) (2156.2, 2172.2)
IP-HU 2122.0 (1.95%) (2114.0, 2129.9)
IP-IU 2098.0 (3.06%) (2090.2, 2105.9)

10 IP-ZU 3084.1 (0%) (3071.7, 3096.4)
IP-HU 2996.3 (2.85%) (2983.7, 3008.9)
IP-IU 2959.0 (4.06%) (2946.0, 2971.9)

1 AIPR-ZU 1057.4 (0%) (1054.1, 1060.6)
AIPR-HU 1061.6 (-0.40%) (1058.5, 1064.6)
AIPR-IU 1019.7 (3.57%) (1016.7, 1022.7)

2 AIPR-ZU 1457.0 (0%) (1452.3, 1461.6)
AIPR-HU 1424.8 (2.21%) (1420.3, 1429.2)
AIPR-IU 1396.8 (4.13%) (1392.2, 1401.4)

5 AIPR-ZU 2168.8 (0%) (2160.7, 2176.9)
AIPR-HU 2111.0 (2.67%) (2103.1, 2119.0)
AIPR-IU 2087.7 (3.74%) (2079.8, 2095.7)

10 AIPR-ZU 3002.5 (0%) (2989.0, 3015.9)
AIPR-HU 2982.3 (0.67%) (2969.0, 2995.6)
AIPR-IU 2915.4 (3.35%) (2902.0, 2928.7)

Table 2.6: Simulation Results for Unpunctuality Comparison for Case 1: even wait costs and ABP service
discipline.
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cI Method Mean TC (ZUPI) 95% CI

1 IP-ZU 846.9 (0%) (844.0, 849.9)
IP-HU 854.0 (-0.84%) (851.0, 856.9)
IP-IU 833.2 (1.62%) (830.3, 836.1)

2 IP-ZU 1215.4 (0%) (1211.0, 1219.8)
IP-HU 1213.6 (0.15%) (1209.2, 1218.0)
IP-IU 1178.6 (3.03%) (1174.1, 1183.1)

5 IP-ZU 1889.4 (0%) (1881.6, 1897.3)
IP-HU 1859.1 (1.60%) (1851.2, 1866.9)
IP-IU 1841.5 (2.54%) (1833.6, 1849.5)

10 IP-ZU 2797.9 (0%) (2785.7, 2810.1)
IP-HU 2732.2 (2.35%) (2719.7, 2744.6)
IP-IU 2703.1 (3.39%) (2690.3, 2716.0)

1 AIPR-ZU 854.0 (0%) (851.0, 857.0)
AIPR-HU 850.4 (0.42%) (847.5, 853.4)
AIPR-IU 829.0 (2.93%) (826.2, 831.8)

2 AIPR-ZU 1212.4 (0%) (1208.0, 1216.8)
AIPR-HU 1208.4 (0.33%) (1208.0, 1216.8)
AIPR-IU 1178.6 (2.79%) (1174.1, 1183.1)

5 AIPR-ZU 1899.8 (0%) (1891.8, 1907.8)
AIPR-HU 1852.2 (2.51%) (1844.0, 1860.5)
AIPR-IU 1832.8 (3.53%) (1824.9, 1840.8)

10 AIPR-ZU 2709.0 (0%) (2695.6, 2722.3)
AIPR-HU 2662.8 (1.71%) (2649.6, 2675.9)
AIPR-IU 2646.3 (2.31%) (2632.9, 2659.7)

Table 2.7: Simulation Results for Unpunctuality Comparison for Case 2: uneven wait costs and ABP
service discipline.
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cI Method Mean TC (ZUPI) 95% CI

1 IP-ZU 875.4 (0%) (873.1, 877.6)
IP-HU 862.7 (1.45%) (860.0, 865.4)
IP-IU 805.2 (8.02%) (802.5, 807.9)

2 IP-ZU 1183.9 (0%) (1180.6, 1187.2)
IP-HU 1108.0 (6.41%) (1104.1, 1111.8)
IP-IU 1053.1 (11.05%) (1049.3, 1056.8)

5 IP-ZU 1730.1 (0%) (1723.7, 1736.4)
IP-HU 1635.0 (5.50%) (1628.5, 1641.5)
IP-IU 1603.0 (7.35%) (1596.5, 1609.5)

10 IP-ZU 2619.4 (0%) (2608.6, 2630.2)
IP-HU 2405.9 (8.15%) (2394.9, 2417.0)
IP-IU 2338.8 (10.71%) (2327.6, 2350.0)

1 AIPR-ZU 875.4 (0%) (873.1, 877.7)
AIPR-HU 851.2 (2.76%) (848.5, 853.8)
AIPR-IU 805.2 (8.02%) (802.5, 807.9)

2 AIPR-ZU 1179.0 (0%) (1175.7, 1182.4)
AIPR-HU 1123.9 (4.67%) (1119.8, 1127.9)
AIPR-IU 1046.7 (11.22%) (1042.9, 1050.6)

5 AIPR-ZU 1725.8 (0%) (1719.4, 1732.2)
AIPR-HU 1599.5 (7.32%) (1592.5, 1606.5)
AIPR-IU 1485.7 (14.91%) (1479.0, 1492.4)

10 AIPR-ZU 2375.3 (0%) (2363.9, 2386.6)
AIPR-HU 2221.1 (6.49%) (2209.3, 2232.9)
AIPR-IU 2125.9 (10.50%) (2114.2, 2137.5)

Table 2.8: Simulation Results for Unpunctuality Comparison for Case 3: even wait costs and ELH service
discipline.

Case 3 and Case 4 scenarios used the ELH service discipline. Their unpunctuality comparison

results are presented in Table 2.8 and Table 2.9. Since this discipline changed the cost structure

depending on whether a patient is early or late, we found that using individualized unpunctuality

leads to higher improvements against homogeneous unpunctuality than in Cases 1 and 2. That said,

optimization with respect to homogeneous unpunctuality still lead to significant improvements.

In summary, we concluded that incorporating homogeneous unpunctuality is better than not

including it and including individualized unpunctuality provides the best results, if that data is

available.

A plot of the inter-appointment gaps from three appointment schedules derived via differ-

ent unpunctuality types for Case 1, cI = 5, can be seen in Figure 2.7. For all heuristics, the

intra-appointment gaps seem to alternate between large and small values. In particular, for fully-

37



cI Method Mean TC (ZUPI) 95% CI

1 IP-ZU 673.2 (0%) (671.2, 675.2)
IP-HU 654.0 (2.85%) (651.5, 656.4)
IP-IU 592.5 (11.99%) (590.0, 594.9)

2 IP-ZU 950.4 (0%) (947.3, 953.5)
IP-HU 816.7 (14.07%) (813.1, 820.4)
IP-IU 786.5 (17.25%) (782.9, 790.2)

5 IP-ZU 1471.3 (0%) (1465.1, 1477.5)
IP-HU 1406.4 (4.41%) (1400.0, 1412.8)
IP-IU 1319.5 (10.32%) (1313.2, 1325.9)

10 IP-ZU 2358.0 (0%) (2347.2, 2368.7)
IP-HU 2183.2 (7.41%) (2172.2, 2194.3)
IP-IU 2077.9 (11.88%) (2066.8, 2088.9)

1 AIPR-ZU 677.5 (0%) (675.5, 679.5)
AIPR-HU 646.6 (4.56%) (644.1, 649.0)
AIPR-IU 592.5 (12.54%) (590.0, 594.9)

2 AIPR-ZU 949.7 (0%) (946.5, 952.8)
IP-HU 816.7 (14.07%) (813.1, 820.4)

AIPR-IU 786.5 (17.18%) (782.9, 790.2)

5 AIPR-ZU 1463.1 (0%) (1456.8, 1469.3)
AIPR-HU 1323.0 (9.58%) (1316.1, 1329.8)
AIPR-IU 1230.1 (15.93%) (1223.4, 1236.8)

10 AIPR-ZU 2121.6 (0%) (2110.3, 2133.0)
AIPR-HU 1994.3 (6.00%) (1982.3, 2006.2)
AIPR-IU 1863.1 (12.18%) (1851.5, 1874.6)

Table 2.9: Simulation Results for Unpunctuality Comparison for Case 4: uneven wait costs and ELH service
discipline.
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individualized unpunctuality, some of the gaps are at or near zero, implying small blocks of patients.

This is different than the dome-shaped curves expected in the literature without unpunctuality.

A plot of the inter-appointment gaps for three appointment schedules derived from different

unpunctuality types for Case 3, cI = 2, can be seen in Figure 2.8. We noticed a similar trend to

our earlier inter-appointment plot in that using individualized unpunctuality tended the schedule

towards a more block-ish appearance, with higher and lower peaks than the other schedules.

2.8 Conclusion

In this chapter we developed several heuristic methods for cost-effective scheduling of patients

under several cost models and service disciplines. In particular we considered two service disciplines

and five different heuristics. We used real data to evaluate and compare these heuristics under

various appointment scheduling scenarios. Since our highest-performing method is simulation-

based, it can easily be extended to further patient heterogeneous characteristics such as no-show

probabilities and late-cancellation probabilities by generalizing the simulation code. The most

effective algorithm for reducing the total expected cost of the system was the AIPR heuristic that

involves a local search (IP) heuristic paired with a separate resequencing heuristic that leverages

the individual characteristics of patients. However, just using the IP heuristic alone still lead to

high-performing solutions. Our MS heuristic also performed surprisingly well on complex systems,

even if those systems do not resemble the analytical formulation used to derive MS. However, we

caution practitioners to first examine how the MS heuristic performs via simulation on complex

scheduling systems before implementation. We demonstrated that our simulation optimization

heuristics can perform quite differently depending on the service discipline used for the system,

with the resequencing heuristic likely playing a greater part in producing better solutions if priority

classes are involved in the service discipline.

Our last conclusion is that incorporating individualized unpunctuality can lead to significant

cost benefits. Of course, incorporating individualized unpunctuality requires availability and access
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Figure 2.7: Inter-appointment plots for Case 1, cI = 5 for appointments derived via IP and AIPR methods
across 3 unpunctuality cases.
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Figure 2.8: Inter-appointment plots for Case 3, cI = 2 for appointments derived via IP and AIPR methods
across 3 unpunctuality cases.
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to a large amount of patient-specific data. If there is not enough data to estimate the individual

unpunctuality distributions, one can pool the data and estimate a patient-independent homoge-

neous unpunctuality distribution. Regardless, incorporating homogeneous unpunctuality is better

than ignoring the unpunctuality altogether.
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CHAPTER 3

Asymptotically Optimal Appointment Schedules in the Presence of Unpunctu-
ality Using Fluid Limits

3.1 Motivation

In the previous chapter, we developed various heuristics for solving a complex, nonconvex

optimization problem. The best performing heuristics, however, do not scale well as the number of

patients increase. In high-capacity clinic settings, such as vaccine clinics, the number of patients

seen within a single day can be in the hundreds, making our simulation-based heuristics take far too

long to run. However, in a high-capacity clinic, we can expect certain things: patients are more-or-

less the same, allowing us to treat them as homogeneous in both unpunctuality and service time.

Further, since service times will be shorter, a first-in first-out (FIFO) service discipline will generally

be deemed acceptable by visiting patients. In light of these assumptions, we consider a method for

deriving high-performance schedules when the number of patients is large. This method depends on

the fluid limits of the arrival, departure, queueing, and idle-accumulation processes associated with

an appointment system. Upon developing a method for finding asymptotically optimal appointment

schedules in the fluid limit, we examine the performance of these schedules by using real clinic data.

3.2 The Model

We consider a clinic that operates over [0, T ] and schedules p patients to be seen over this time

horizon. Let ai be the scheduled appointment time of the i-th patient. Without loss of generality,

assume

0 ≤ a1 ≤ a2 ≤ · · · ≤ ap ≤ T.

Due to patient unpunctuality the ith scheduled patient actually arrives at time

Ti = ai + Ui, 1 ≤ i ≤ p, (3.1)
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where Ui is a random variable representing the unpunctuality of the ith patient. If Ui < 0, the

patient arrives early for the scheduled appointment, if Ui > 0, the patient is late, and if Ui = 0,

the patient is on time. The unpunctuality values {Ui}pi=1 are assumed to be independent random

variables, and Ui has a distribution given by

F (t, a) = P (Ui ≤ t|ai = a), t ∈ .

Thus, the unpunctuality of patient i can depend on its scheduled appointment time ai. Let T(1) ≤

T(2) ≤ · · · ≤ T(p) be the order statistics of the p actual arrival times. We observe that T(i) is the

time of the ith arrival to the clinic.

We note that the arrival times could be negative, i.e., Ti < 0 with nonnegative probability. This

happens when patients arrive before the clinic opens at time t = 0. Let E(t) be the cumulative

number of arrivals over (−∞, t], which can be formulated as

E(t) =

p∑
i=1

1{Ti≤t}, t ∈ .

All patients are served by a single doctor in the order of their arrivals (i.e., FIFO service discipline).

Let νi be the service time of patient i. We assume that {νi, i ∈} is an i.i.d. sequence with common

mean 1/µ and standard deviation σ, and a CDF G with support [0,∞). Let {S(t), t ≥ 0} be the

renewal process generated by {νi, i ∈}, i.e.,

S(t) =

p∑
i=1

1{νi≤t}, t ≥ 0.

We note that S(t) is the total number of departures over [0, t] if the doctor is always busy. For

t ≤ 0, we define S(t) = 0. We will also denote µT as the capacity of the system; however, depending

on a choice of p, a system can be booked over or under capacity.
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Let Q(t) be the number of customers in the system at time t ∈ . We assume that the patients

who arrive after time T will not be allowed to enter the system. Then we have that for t ∈,

Q(t) =


E(t ∧ T )− S(B(t)), t ≥ 0,

E(t), t < 0,

(3.2)

where for t ≥ 0,

B(t) =

∫ t

0
1{Q(s)>0}ds

representing the cumulative busy time of the server over [0, t]. The idle time of the server over [0, t]

can then be formulated as

I(t) = t−B(t), t ≥ 0.

Finally, let V (t) denote the queueing time of a customer (time spent in the system before starting

service) who happens to arrive at time t. The process {V (t); t ≥ 0} is referred to as the virtual

queueing time process. Under the FIFO service discipline, we have

V (t) =


∑E(t)

j=1 νj −B(t) 0 ≤ t ≤ T,∑E(t)
j=1 νj − t t < 0.

(3.3)

Let O be a nonnegative random variable representing the amount of overtime it takes to empty

the system, i.e.,

O(T ) = inf{t ≥ T : Q(t) = 0} − T

Our goal is to determine the number of patients p and an optimal sequence of appointment

times {ai}pi=1 to maximize the profit of the clinic. Let r denote the reward of serving each patient,

cw the waiting time cost rate of each patient, ci the idle time cost rate, and co the overtime cost
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rate. Our optimization problem is:

max J(p, {ai}pi=1) = rE(T )− cw
∫∞
0 Q(t)dt− ciI(T )− coO(T )

subject to p ∈ Z+

0 ≤ a1 ≤ a2 ≤ · · · ≤ ap ≤ T.

(3.4)

This is a highly non-linear optimization problem, and solving it to optimality is intractable, as

demonstrated in the previous chapter.

3.3 Heavy Traffic Fluid Limit

In this section, we study the asymptotic behavior of the system described in Section 3.2 under

fluid scaling. To be precise, we consider a sequence of systems indexed by natural number n as

follows. The service times in the nth system are iid random variables with mean 1/µn and variance

σn. All other parameters remain the same as in the previous section. We assume that the system

capacity in the nth system approaches infinity as n approaches infinity. To be precise, we assume

that

lim
n→∞

µn

n
= µ, and lim

n→∞

σn

n
= σ, (3.5)

where µ and σ are positive constants. We consider the following processes defined in Section 3.3

under fluid scaling:

Q̄n(t) = Q(nt)/n, Ēn(t) = E(nt)/n, S̄n(t) = S(nt)/n, V̄ n(t) = V (nt)/n, (3.6)

Bn(t) =
1

n

∫ nt

0
1Q(s)>0ds,

and

In(t) =
nt−Bn(t)

n
.
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Next, we define the relative frequency process for the appointment times:

Ān(t) =


0, t < 0,

1
n

∑n
i=1 1{ai≤t}, t ∈ [0, T ],

1, t > T.

(3.7)

Assumptions: We make the following mathematical assumptions for our model:

1. We assume that 0 is in the interior of the convex hull for the support of the unpunctuality

random variable for any patient. That is, 0 < F (0, a) < 1 for any a ∈ [0, T ].

2. We assume that the function F (t, a) is piecewise continuous in a and for each piece it is

continuous uniformly for t ∈. More precisely, there exists a finite (deterministic) partition

0 = τ0 < τ1 < · · · < τK < τK+1 = T such that supt∈ |F (t, a1)− F (t, a2)| → 0 as |a1 − a2| → 0

when a1 and a2 are within any partition interval [τi, τi+1), i = 0, . . . , k − 1 or [τK , τK+1].

3. We assume there exists a deterministic function A(t), t ∈ [0, T ] such that

sup
t∈[0,T ]

∣∣Ān(t)−A(t)
∣∣→ 0.

Let A(t) = 0 for t < 0 and A(t) = 1 for t > T . Then Ān(t) → A(t) uniformly for t ∈ and

{A(t), t ∈} is a CDF (see the proof of Lemma 3.3.1).

Finally, we introduce the following Stieltjes-convolution of F (·, ·) and A(·):

H(t) =

∫ ∞

−∞
F (t− s, s)dA(s) =

∫ T

0
F (t− s, s)dA(s), t ∈ . (3.8)

We have the following fluid limits.

Lemma 3.3.1. As n→∞,

sup
t∈
|Ēn(t)−H(t)| → 0, almost surely. (3.9)
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Proposition 3.3.1. As n→∞, for any τ > 0,

sup
t≤τ
|(Q̄n(t), In(t))− (q(t), i(t))| → 0, almost surely,

where {(q(t), i(t)), t ≥ 0} is defined as follows.

(i) For t ≤ 0, (q(t), i(t)) = (H(t), 0).

(ii) When t ∈ [0, T ], {(q(t), µi(t)), t ∈ [0, T ]} is the unique solution to a Skorokhod problem

associated with {H(t) − µt, t ∈ [0, T ]}. More precisely, {(q(t), µi(t)), t ∈ [0, T ]} satisfies, for

t ∈ [0, T ],

q(t) = H(t)− µt+ µi(t),

and i(0) = 0, i(t) is nondecreasing, and it increases only when q(t) = 0. Equivalently, we have

i(t) = µ−1 sup
0≤s≤t

max{−H(s) + µs, 0}, q(t) = H(t)− µt+ µi(t), t ∈ [0, T ].

(iii) For t ≥ T ,

(q(t), i(t)) =


(q(T )− µ(t− T ), i(T )), t ∈ [T, T + q(T )/µ],

(0, i(T ) + (t− T − q(T )/µ)), t > T + q(T )/µ.

Remark 3.3.1. From Proposition 3.3.1, in the fluid limit, when t < 0, the server hasn’t started

to work, so the idle time process has value 0 and the queue length is increasing according to the

CDF H(·). When 0 ≤ t ≤ T , the fluid limit is a fluid Gt/GI/1 queue with initial value H(0),

time-varying cumulative arrivals H(t)−H(0), and service rate µ. When t > T , there are no more

external arrivals. The queue length is now decreasing linearly with rate µ till it becomes zero at

time T + q(T )/µ and stays zero from then on. Further, we note that q(t) and µi(t) represent the

Skorokhod map for RCLL function H(t)− µt.
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3.4 Fluid Control Problem (FCP)

We construct the FCP that is the deterministic counterpart of the original stochastic control

problem. Parallel to the stochastic control problem in (3.4) and using the fluid limits derived in

Section 3.3, for a given service rate µ, the FCP is to choose an appointment profile A = {A(t), t ∈

[0, T ]} that optimizes the following optimal control problem:

max J(A) = rH(T )− cw
∫ ∞

0
q(t)dt− cii(T )− co

q(T )

µ
, (3.10)

subject to

H(t) =

∫ T

0
F (t− s, s)dA(s), t ∈, (3.11)

(q(t), i(t)) =



(H(t), 0), t < 0,

(Φ(H − µι)(t),Ψ(H − µι)(t)), t ∈ [0, T ],

(q(T )− µ(t− T ), i(T )), t ∈ (T, T + q(T )/µ],

(0, i(T ) + (t− T − q(T )/µ)), t > T + q(T )/µ,

(3.12)

A(0) = 0 and A(t) is RCLL nondecreasing over [0, T ], (3.13)

where

Φ(H − µι)(t) = H(t)− µt+ µi(t) (3.14)

and

Ψ(H − µι)(t) = 1

µ
sup
0≤s≤t

max{µs−H(s), 0}. (3.15)

The constraints (3.11) and (3.12) are derived from (3.8) and Proposition 3.3.1. We note that

in the constraint (3.13) the control A(t) is not required to be a CDF. This relaxation combines the

two control variables n and {ani }ni=1 of the stochastic control problem into a single control variable

{A(t); t ∈ [0, T ]}. The terminal value A(T ) would represent the number of appointments, and the

normalized control A(t)/A(T ) provides the distribution of the appointment times. Equation (3.14)

and Equation (3.15) represent the Skorokhod map associated with H(t)− µt.
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From Proposition 3.3.1 (ii), for t ∈ [0, T ],

i(t) =
1

µ
(q(t) + µt−H(t)). (3.16)

Using (3.12) and (3.16), the objective function (3.10) becomes

J(A) = rH(T )− cw
∫ T

0
q(t)dt− cw

∫ ∞

T
q(t)dt− ci

µ
(q(T ) + µT −H(T ))− co

q(T )

µ

=

(
r +

ci
µ

)
H(T )− cw

∫ T

0
q(t)dt− cw

2µ
q(T )2 − ci + co

µ
q(T )− ciT.

Consequently, the FCP is equivalent to select a function A = {A(t), t ∈ [0, T ]} to maximize

J̃(A) =

(
r +

ci
µ

)
H(T )− cw

∫ T

0
q(t)dt− ci + co

µ
q(T )− cw

2µ
q(T )2 (3.17)

subject to

H(t) =

∫ T

0
F (t− s, s)dA(s), t ∈, (3.18)

q(t) = Φ(H − µι)(t), t ∈ [0, T ], (3.19)

A(0) = 0 and A(t) is RCLL nondecreasing over [0, T ]. (3.20)

3.4.1 Special case: No unpunctuality

We consider the special case when all patients arrive at their scheduled appointment times

with zero unpunctuality. Here H(t) = A(t) for all t ∈ and the FCP is simplified to choose a RCLL

nondecreasing function H = {H(t), t ∈ [0, T ]} satisfying H(0) = 0 to maximize

J(H) = rH(T )− cw
∫ ∞

0
q(t)dt− cii(T )− co

q(T )

µ
,

subject to the constraint (3.19). Using the properties of the Skorokhod map, this control problem

can be solved explicitly (Honnappa, 2015; Armony and Honnappa, 2019).

Proposition 3.4.1. The FCP with no unpunctuality is equivalent to the variational problem that

selects a RCLL nondecreasing function H = {H(t); t ≤ T} satisfying H(0) = 0 and H(t) ≥ µt for
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t ∈ [0, T ] to maximize

J̌(H) = (r − co/µ+ cwT )H(T )− cw
2µ
H(T )2 − cw

∫ T

0
H(t)dt, (3.21)

and it admits the following optimal solution: For t ∈ [0, T ],

H∗(t) =


µt, if r ≤ co/µ,

µt+ µ(r−co/µ)
cw

1{t=T}, if r > co/µ.

(3.22)

The corresponding optimal state process and the FCP optimal value J∗ = max
H

J(H) are given

as follows:

(i) When r ≤ co/µ, q∗(t) = 0 for all t ≥ 0, and J∗ = rµT.

(ii) When r > co/µ,

q∗(t) =


0, t ∈ [0, T )

µ(r−co/µ)
cW

− µ(t− T ), t ∈ [T, T + (r−co/µ)
cw

],

0, t > T + (r−cO/µ)
cW

,

and J∗ = rµT − µ[(r−c0/µ)+]2

2cW
.

Remark 3.4.1. H⋆(t) follows the intuition that, over [0, T ), if the rate of patient arrivals matches

the rate of patient departures, the system is in perfect equilibrium, accruing no wait costs nor idle

costs over this time horizon. The only time a wait cost and overtime cost would occur is if the

reward is sufficiently high relative to the overtime and wait cost. As the wait cost of the system

grows quadratically in q(T ), a finite amount of overbooking is guaranteed for finite r.

3.4.2 Special case: uniform unpunctuality

Recall that if r ≤ co/µ, then H∗(t) = µt is an optimal solution of the FCP without considering

unpunctuality. One possibility for finding the optimal control A analytically is to have the control

satisfy
∫ T
0 F (t− s)dA(s) = µt. The following corollary is a direct result of Proposition 3.4.1.
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Corollary 1. Suppose r ≤ co/µ and there exists RCLL A such that
∫ T
0 F (t − s)dA(s) = µt for

t ∈ [0, T ]. Then A is an optimal control to the FCP.

We consider the situation where the unpunctuality is uniformly distributed over the interval

[−a, b] for each patient, where a, b > 0, independent of their arrival time. Our goal is to construct

an RCLL nondecreasing function A such that H∗(t) =
∫ T
0 F (t− s)dA(s), where F (t) = (t+a)/(b+

a), t ∈ [−a, b], is the CDF of the uniform unpunctuality time. This will be optimal since H⋆(t) = µt

will accrue a cost of 0.

Motivated from the numerical experiments, we consider piecewise constant A similar to the

CDF of a discrete random variables. Note that if A puts some positive mass m at a time point s,

in the convolution

F (t− s)dA(s) =


0, if t− s < −a,

1, if t− s > b,

(t−s+a)m
b+a , if − a ≤ t− s ≤ b,

(3.23)

which says the influence of the mass m at time s is spread uniformly over the interval [s− a, s+ b].

Following this observation, we consider an A function that jumps at points a, 2a+b, 3a+2b, . . . , Na+

(N−1)b, where N = max{n ≥ 1 : T−[na+(n−1)b] < a+b}, and the mass at each point is set to be

µ(a+ b). Then when T = N(a+ b), one can check that H∗(t) =
∫ T
0 F (t− s)dA(s) = µt, 0 ≤ t ≤ T.

For general F (t), the FCP is difficult to solve to optimality with the exception of a few special

cases of unpunctuality (zero unpunctuality, or certain types of uniform distributions). However, it

can be solved numerically to arbitrary accuracy, if we discretize the time. We give the details in

the next section.

3.5 Quadratic Programming Formulation

Suppose we discretize [0, T ] into K segments, with end points t0, t1, · · · , tK , where tk = kT
K

for k = 0, 1, . . . ,K. We call K the resolution of the discretization. Let pk = A(tk+1) − A(tk),

k = 0, 1, · · · ,K − 1, and define

p = [p0, p1, · · · , pK−1].
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We replace the continuous convolution H(t) by its the discrete convolution

Ĥ(t) =
K∑
k=1

pkF (t− tk−1, tk−1) = F (t)Tp.

We also discretize the Skorokhod map on [0, T ] as follows:

î(k) =
1

µ
max

i∈{0,1,...,k}
max{µti − Ĥ(ti), 0}

and

q̂(k) = Ĥ(tk)− µtk + µî(tk)

for k = 0, 1, . . . ,K.

Lemma 3.5.1. The discrete Lindley’s recursion


qk+1 = max

{
0, qk + Ĥ(tk)− Ĥ(tk−1)− µT

K

}
for k = 0, . . . ,K − 1

Ik = 1
µ max

{
0, µTK − (Ĥ(tk)− Ĥ(tk−1))− qk

}
for k = 0, . . . ,K

(3.24)

with q0 = Ĥ(0) satisfies the discretized Skorokhod map on [0, T ]; i.e., qk = q̂(k) and

k∑
j=0

Ij = î(k)

for k = 0, 1, . . . ,K.

Note that qk corresponds to the fluid queue length at time tk and Ik corresponds to the idle

time over the period (tk−1, tk].
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Using the discretized convolution and Lindley’s recursion for the Skorokhod map, we are able

to discretize the FCP as a quadratic program:

max
p

Ĵ(p) r
K−1∑
i=0

F (T − ti, ti)pi −
cw
2µ
q2K −

co
µ
qK −

K−1∑
i=0

(
cwT

K
qi + cIIi

)

subject to I0 = 0, q0 =
K−1∑
i=0

F (−tk, tk)pk

qk = qk−1 − µT
K +

K−1∑
i=0

pi (F (tk − ti, ti)− F (tk−1 − ti, ti)) , k = 1, . . . ,K

Ik = T
K −

1
µqk−1 − 1

µ

K−1∑
i=0

pi (F (tk − ti, ti)− F (tk−1 − ti, ti)) , k = 1, . . . ,K

Ik ≥ 0, qk ≥, k = 0, . . . ,K.

(3.25)

This quadratic program has a linear number of variables and constraints in the resolution K.

The quadratic component comes from the wait cost of qK patients remaining in queue at time T

as the queue length decreases linearly to 0 at rate µ. It is important to note that the quadratic

program’s optimal objective converges to the FCP’s optimal objective as K → ∞ which can be

observed by examining the error bound between J(A) and Ĵ(p) in Proposition 3.5.1.

Proposition 3.5.1. Let J(A⋆) be the value of Equation (3.10) at optimality and let Ĵ(p⋆) be the

objective value of Problem (3.25) at optimality. Let f̄ be the maximum value of the derivative of

F on [0, T ], let h̄ be the maximum derivative of H⋆(t) over [0, T ], and let Ā(T ) <∞ be the optimal

control for the fluid control problem at time T . Then,

|J(A⋆)− Ĵ(p⋆)| ≤ T
K

(
rf̄Ā(T ) + cw(h̄T + f̄T Ā(T ) + (µ+ 1)T )

)

+ T
K

(
cw
2µ

(
2Ā(T ) + 1 + (µ+1)f̄ Ā(T )

µ

)(
1 + (2µ+1)f̄ Ā(T )

µ

))

+ T
K

(
cI

(
1 + f̄ Ā(T )

µ

)
+ co

µ

(
1 + (µ+1)f̄ Ā(T )

µ

))
.

(3.26)
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Thus, |J(A⋆)− Ĵ(p⋆)| → 0 as K →∞.

Remark 3.5.1. Proposition 3.5.1 assumes Lipschitz continuity on the unpunctuality CDF F (t, a)

and optimal arrival profile H⋆(t). The left-Riemann sum approximation error of a Lipschitz con-

tinuous function F (t) over [0, T ] with resolution K has error bound

∣∣∣∣∣
K−1∑
i=0

tiF (ti)−
∫ T

0
F (t)dt

∣∣∣∣∣ ≤M1
T 2

K

where |F ′(t)| ≤M1 at all points F is continuous. However, for RCLL functions with a countable set

of jump discontinuities, such as CDFs for discrete random unpunctuality, the error bound changes

as follows: ∣∣∣∣∣
K−1∑
i=0

tiF (ti)−
∫ T

0
F (t)dt

∣∣∣∣∣ ≤M1
T 2

K
+
dT

K

where S =

{
t ∈ R : lim

x↑t
F (x) ̸= F (t)

}
is the countable set of jump discontinuities point on the

domain of F and d =
∑
t∈S

(
F (t)− lim

x↑t
F (x)

)
is the total height across all jump discontinuities. If

F is a CDF, we know that d ≤ 1. We redefine the error bound as

∣∣∣∣∣
K−1∑
i=0

tiF (ti)−
∫ T

0
F (t)dt

∣∣∣∣∣ ≤M2
T 2

K

where M2 = M1 +
1
T if F is a CDF and M2 = M1 +

d
T if F (t) = H⋆(t) with d ≤ H⋆(T ) < ∞

by Equation (3.10). Such a substitution can be made in the error-bound formula to account for

jump-discontinuities induced by discrete random variables.

3.6 Numerical Results

We present our numerical results in two sections. The first section will focus on initial insights

with respect to two questions:

1. How do appointment profiles change relative to different types of unpunctuality distributions.

2. How do these appointment schedules change as we incorporate time-heterogeneous unpunc-

tuality?
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The second section of the numerical results will look at a real dataset from several clinics. In

particular, we will look at a single doctor who sees a large number of patients in a single day (at

least 60 patients), as we wish to motivate the asymptotically optimal schedule as high performing

for systems in which a large number of patients need to be seen. The dataset provides us with

actual appointment times throughout a day and each is associated with an actual unpunctuality

for the patient provided via the check-in time of the patient and its difference from the scheduled

appointment time. Reliable service times are not provided, so we consider 3 parametric cases for

service time distribution: deterministic, exponential, and log-Normal distributions.

3.6.1 Preliminary Insights

We examine the optimal appointment schedules derived from various parametric unpunctuality

distributions. We consider 3 classes of parametric distributions in this section: Uniform on (a, b),

denoted U(a, b), Normal with mean µ and standard deviation σ, denoted N(µ, σ), and Generalized

Laplace, denoted L(µ, π, λl, λr). The first two have well-known density curves. The generalized

Laplace distribution has the following mixture density curve:

f(x;µ, π, λl, λr) =


πλle

λl(x−µ), if x ≤ µ

(1− π)λre−λr(x−µ), if x > µ.

For all appointment schedules in this subsection, we use cw = 1, cI = 5, co = 7.5, r = 0, µ = 100,

and T = 1. For the numerical discretization, we use K = 1000.

We will use the following sets of mean-variance pairs across the three distributions: (µ, σ2)

of (−0.1, 0.0025), (−0.05, 0.01), (0, 0.04). From left to right, the mean unpunctuality is increasing

along with the variance. This means, for Normally distributed unpunctuality, we have the follow-

ing distributions: N(−0.1, 0.0025), N(−0.05, 0.01), and N(0, 0.04). Figure 3.1’s left plot shows the

appointment profile A(t) over [0, T ] outputted by our quadratic program with the Normal unpunc-

tuality distributions. It is interesting to note that Normal unpunctuality produces block-schedules.

Upon close examination, we saw that
∑K−1

i=0 pif(x− ti;µ, σ), where f(x;µ, σ) is the density curve

for a N(µ, σ) distribution, would approximate a uniform-type density better and better for smaller
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Figure 3.1: Left: appointment profiles derived for 3 different Normal unpunctuality distributions. Right:
appointment profiles derived for 3 different Uniform unpunctuality distributions.

σ values. Thus, the solution to our quadratic program acted as a series of mixture densities for a

Normal series approximation to a uniform distribution.

For the uniform unpunctuality case, we consider 3 distributions: U(−0.1866,−0.0134),

U(−0.2232, 0.1232), and U(−.3464, 0.3464). These parameters ensure that our mean and vari-

ances match the Normal cases. Figure 3.1’s right plot shows the appointment profile A(t) over

[0, T ] outputted by our quadratic program with the uniform unpunctuality distributions.

For the generalized Laplace distribution, we consider three distributions.

L(−0.1211, 0.35, 45, 22.5),

L(−0.05, 0.5, 14.15, 14.15), and L(0.085, 0.65, 5.59, 11.18). These parameters are once again chosen

to match the same mean and variance as in the uniform and Normal distribution scenarios;

however, the generalized Laplace distribution allows for skewness to be incorporated. Figure 3.2’s

left plot shows the PDFs associated with each of the parameter cases, whereas the right plot shows

the associated appointment profiles A(t) derived from our quadratic program.

It is interesting to note that the generalized Laplace distribution leads to appointment schedules

that appear closer to uniform in distribution plus a shift relative to the expected unpunctuality. For

example, the L(−0.1211, 0.35, 45, 22.5) distribution has a high probability of arriving early and leads
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Figure 3.2: Left: PDFs for 3 different generalized Laplace unpunctuality distributions. Right: appointment
profiles derived for the same 3 generalized Laplace unpunctuality distributions.

to appointments not being scheduled until around time 0.15 with a small block of patients to start;

the schedule increases relatively uniformly until a block schedule at the end of the appointment

profile.

We also considered the impact of time-heterogeneity when scheduling and how it impacted the

appointment profiles. We consider two types of time-heterogeneity: a midday split scenario, which

has a single distribution for the first half of the scheduling horizon and a different distribution for

the second half of the horizon, and a parametric drift scenario where a single parametric family is

picked for the distribution of unpunctuality, but its parameters change continuously over the time

horizon [0, 1].

For the midday split, we use the following unpunctuality distribution:

Ui|ai =


Ui,e ∼ N(0, 0.04), if ai ≤ 1

2

Ui,l ∼ N(−0.1, 0.0025), otherwise.

This causes patients scheduled in the earlier half of the horizon to arrive on time, on average, but

with greater variance. If they are scheduled later in the day, they arrive earlier on average with

less variance. These parameter choices match two of the earlier scenarios.

For the parametric drift, we have

Ui|ai ∼ N(µ(ai), σ
2(ai)),
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Figure 3.3: Left: appointment profiles derived with midday split and parametric drift time-heterogeneous
unpunctuality based on Normal distributions with homogeneous-derived schedules for comparison (dotted
lines). Right: appointment profiles derived with midday split and parametric drift time-heterogeneous
unpunctuality based on generalized Laplace distributions with homogeneous-derived schedules for comparison
(dotted lines).

where µ(t) = −0.1t and σ(t) = 0.2− 0.15t reflecting a constant linear drift in mean and standard

deviation over the scheduling horizon.

The left plot of Figure 3.3 shows the schedules resulting from the midday split and para-

metric drift Normal distribution scenarios. To compare, the schedules derived from homogeneous

N(0, 0.04) and N(−0.1, 0.0025) are presented as dotted lines for comparison.

We complete a similar analysis for the generalized Laplace distribution, with both a midday

split and parametric drift scenario. The midday split is as follows:

Ui|ai =


Ui,e ∼ L(0.085, 0.65, 5.59, 11.18), if ai ≤ 1

2

Ui,l ∼ L(−0.1211, 0.35, 45, 22.5), otherwise.

The parametric drift case again is a continuously evolving distribution setup as follows:

Ui|ai ∼ L(µ(ai), π(ai), λ1(ai), λ2(ai)),

with µ(t) = 0.085− 0.2061t, π(t) = 0.65− 0.3t, λ1(t) = 5.59 + 39.41t, and λ2(t) = 11.18 + 11.32t.

The left plot of Figure 3.3 shows the schedules resulting from these two time-heterogeneous

generalized Laplace scenarios with homogeneous-derived schedules for comparison.
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Figure 3.4: Left: Empirical CDFs for full data (FU), largest-booking clinic data (CU), and largest-booking
doctor data (DU) Right: appointment profiles derived for the same 3 unpunctuality distributions. Unpunc-
tuality is rescaled such that T = 1.

It can be seen that, on either side of a midday split, the schedules reflect the respective ap-

pointment schedules from the reference distributions with the dotted lines. In the parametric drift

scenarios, the schedules vary their behavior throughout the day: in the Normal case, the blocks

grow closer and closer together as the variance decreases in time; in the generalized Laplace case,

the slope of the schedule appears to be shallower than the reference schedules; however, the schedule

starts with a sizeable block near the beginning to make up for it.

3.6.2 Data-driven Experiments

We examined a new dataset that contains patient unpunctuality and appointment schedules.

The data is across several clinics and each data point corresponds to a single appointment. An

appointment includes anonymized clinic ID, anonymized doctor ID, in addition to scheduled ap-

pointment times and actual arrival times, from which we can derive the unpunctuality associated

with the appointment. We examined the full data in addition to data for the single clinic and

single doctor with the highest booking frequency. Figure 3.4 presents the empirical CDFs for

unpunctuality across the 3 different subsets of the data.

We now examine how a schedule derived from our quadratic program performs relative to a

baseline in a discrete event simulation setting. As we have access to the scheduled appointment
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times in our data, we can set our baseline to be the actual schedules used by these clinics in the

past. Each system will be a single-server queue following a FIFO service discipline. Due to this

system setup, given an appointment schedule and a sample path of unpunctuality and service time

values, we can easily calculate the components of the objective function using Lindley’s equations.

Sample paths for unpunctuality can be drawn from the data and service times will be generated as

either deterministic, exponential, or log-Normal random variables. Looking at the largest-booking

doctor, we can examine a particular day. However, the scheduling window of a day is not consistent

across several days. To simplify things, we normalize a day’s appointment schedule so it falls within

the range [0, 1]–this is based off the desire to set T = 1. Suppose there are P patients scheduled

for a single day and ai is the time of the appointment for the ith patient for i = 1, . . . , P . We

normalize ai as follows:

ãi =

ai − min
i=1,...,P

{ai}

max
i=1,...,P

{ai} − min
i=1,...,P

{ai}

As appointments are being rescaled, we must similarly rescale unpunctuality. If ui is the unpunc-

tuality of the ith patients for i = 1, . . . , P , we rescale ui as follows:

ũi =
ui

max
i=1,...,P

{ai} − min
i=1,...,P

{ai}
.

We have several days of data for the highest-booking doctor. However, not all days have the

same number of patients, with some days having very few bookings. We wish to compare how our

QP-based appointment scheduling compares to the existing schedules in the data. As our model is

based off an asymptotically optimal formulation, we will consider only days where the number of

bookings is on the large-side: the day must have at least 60 patients. This leaves us with 492 days

to compare schedules to. Another issue to note is that, in the data, the number of patients seen on

a particular day varies greatly; however, we have no indication of the cost structure used to derive

these schedules. To address this, we keep cI = 10 and co = 15 fixed, but vary cw within the set

{1, 2, 5, 10}. Also, we only need to solve a single quadratic program to produce an appointment

schedule as we employ scalar multiplication of p in order to match the correct number of patients

to be scheduled with data on a particular day.
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As correct values for service times are not provided by the data, we instead simulate service

times. Let P be the number of patients scheduled on a particular day. Service times are drawn

from 3 different distributions:

1. Det
(
1
P

)
: service times are deterministic with fixed value 1

P .

2. Exp(P ): service times are exponential with rate P .

3. log−N(µ, 2): service times are log-Normally distributed with logarithmic standard deviation

σ = 2 and logarithmic mean µ = − log(P )− σ2

2 .

The parameters of these distributions are chosen such that the expected value of the sum of the

service times is equal to T = 1, meaning the clinic is neither overbooked nor underbooked relative

to the service time durations.

Table 3.1 provides 95% bootstrap confidence intervals for the mean value of the objective

function for each schedule across the 492 days with deterministic service times. We compare

several schedules:

• Actual refers to using the actual schedule recorded in the dataset.

• ZU refers to an optimal schedule under zero unpunctuality according to Proposition 3.4.1.

• QP-HMG refers to a data-driven schedule derived from using the quadratic program with

time-homogeneous unpunctuality.

• QP-Hour refers to a data-driven schedule derived from using the quadratic program with

time-heterogeneous unpunctuality according to an hourly partition.

cw Actual ZU QP-HMG QP-Hour

1 (34.18, 35.71) (31.92, 33.39) (29.28, 30.67) (28.53, 29.89)
2 (67.88, 71.05) (63.45, 66.35) (57.99, 60.86) (55.20, 57.85)
5 (169.19, 177.05) (157.98, 165.37) (144.33, 151.58) (138.11, 145.00)
10 (338.29, 353.87) (315.69, 330.38) (288.13, 302.56) (272.18, 285.77)

Table 3.1: Bootstrap mean confidence intervals of objective value and relative improvement across different
cost structures with deterministic service times.
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Table 3.2 provides the same results for the case that service times are exponentially distributed.

We notice that switching from deterministic to exponential does not seem to have a strong impact

on the mean values of the objective function for the different cost structures.

cw Actual ZU QP-HMG QP-Hour

1 (34.93, 36.82) (32.73, 34.50) (30.05, 31.79) (28.31, 30.02)
2 (68.83, 72.60) (64.39, 67.96) (58.99, 62.48) (55.52, 59.13)
5 (170.53, 179.96) (159.41, 168.33) (145.93, 154.65) (134.99, 143.61)
10 (340.03, 358.89) (317.76, 335.55) (290.70, 308.13) (269.83, 288.11)

Table 3.2: Bootstrap mean confidence intervals of objective value and relative improvement across different
cost structures with exponential service times.

Table 3.3 similarly provides the same simulation results, but with log-Normal simulated service

times. In this case, we see that the log-Normal distribution leads to a more noticeable increase in

objective function as opposed to switching from deterministic to exponential.

cw Actual ZU QP-HMG QP-Hour

1 (37.33, 50.32) (35.67, 48.59) (33.54, 46.43) (32.57, 45.22)
2 (70.38, 94.45) (67.05, 90.85) (62.66, 86.35) (60.15, 83.17)
5 (169.52, 226.52) (161.16, 217.39) (150.08, 206.11) (147.24, 198.29)
10 (334.95, 447.32) (317.94, 428.42) (295.73, 405.80) (286.36, 390.93)

Table 3.3: Bootstrap mean confidence intervals of objective value and relative improvement across different
cost structures with log-Normal service times.

We can see that, in general, the incorporation of unpunctuality will produce the best results,

with the factoring-in of time-heterogeneous unpunctuality producing the best overall schedules.

3.7 Conclusion

In this paper, we developed a framework for computing asymptotically optimal appointment

schedules with generalized patient unpunctuality that also considers the under/overbooking of pa-

tients in the form of a fluid control problem. As the general problem is not analytically solvable,

we provided a time-discretized quadratic programming approximation that converges to the fluid

control problem as the time-discretization grows finer and finer. We then finished with a numer-

ical study that first examined the appointment profiles associated with several different types of

unpunctuality. It was interesting to note that even in the Normal case, multi-block-type schedules

were optimal under our model. However, other types of unpunctuality, such as generalized Laplace,
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may lead to more fluid-arrival-type appointment profiles that appear shifted relative to expected

unpunctuality. Further, we discovered that time-heterogeneous unpunctuality can lead to signifi-

cant differences in the character of appointment schedules from the homogeneous case. In our final

section of the numerical studies, we compared schedules derived from the FCP or QP against a real

dataset with real schedules and unpunctuality values across several hundred days. We saw that

the time-heterogeneous assumption performed the best on the real data and that, in general, it is

better to use some form of unpunctuality, whether it be time-homogeneous or time-heterogenous,

rather than assume zero unpunctuality.
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CHAPTER 4

Optimal Asymptomatic Disease Testing Under Limited Test Supply

4.1 Motivation

In this chapter, we wish to develop easy-to-understand guidelines for the average person to

follow when it comes to using a finite set of disease tests in a mathematically optimal manner. We

develop an analytically tractable model that allows us to develop optimal policies and heuristics

for a variety of individual-focused decision scenarios. While we make the modeling choice of using

partially-observable Markov decision processes, which generally require state-probability knowledge

for making decisions according to a policy, we choose a class of policies that allow us to instruct

a decision-maker to behave optimally without knowledge of these probabilities, given an initial

condition. Next, we examine how these policies perform in a community-based simulation. As the

policies are derived based on an individual’s decision-making process, our wish is for it to perform

well as a heuristic for a community-wide optimal policy.

4.2 The Model

Our objective is to minimize the number of days an individual stays in an infected state un-

detected. If the individual is asymptomatic, they will not be able to detect the disease without

the help of test kits. We developed a partially-observable Markov decision process (POMDP) for

determining the optimal timing for using tests with the presence of both symptomatic and asymp-

tomatic infections. For this model, we will need an underlying Markov model with state space S

and transition probability matrix T that models the state of the individual; however, this model

will not be fully-observable to the individual. We will also need action space A and a cost function

c : S ×A → R.

For modeling an individual’s state, we assume a discrete-time Markov chain (DTMC) where

each state corresponds to the current health status of the individual. The DTMC is a variation
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Figure 4.1: Underlying SIR model with symptomatic and asymptomatic infected states.

on a susceptible-infected-recovered (SIR) model; that is, the individual can fall into one of three

categories: susceptible, infected, and recovered. However, the key difference is that due to the

possibility of being asymptomatic, we split the infected state into two separate states: asymptomatic

infected and symptomatic infected. Thus, our state space is defined as S = {S, Ia, Is, R}, where

S stands for susceptible, Ia stands for infected-asymptomatic, Is stands for infected-symptomatic,

and R stands for recovered. Further, the DTMC is non-stationary in its infection probabilities.

That is, at any time t, the probability of transitioning from S to either Ia or Is is pt which may vary

depending on the value of t–this is designed to capture the state of the world at time t. Figure 4.1

is the transition probability diagram for the DTMC. From this, we also see the average infection

time is 1
q and α is the probability of an infection being asymptomatic.

Letting Xn ∈ S represent the state the individual is in at time n, we must note that Xn cannot

be directly observed by the individual as the model is not full-observable. Instead, we separately

define the observation set O = {0, 1}. Letting θn ∈ O represent the observation the individual

makes at time n, if θn = 0 then symptoms are not observed at time n and if θn = 1, the opposite is

true. This information can be used to determine the probability of being in particular states. We

define bn = (b(S), b(Ia), b(Is), b(R)) ∈ [0, 1]4 as the belief state at any time n. If we know b on day

n and observe θ on the following day, we can determine b′, the update belief on the following day,
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as follows:

b′(j|θ,b) =
Θ(θ|j)
P (θ|b)

∑
i∈S

Ti,jb(i) (4.1)

where

Θ(θ|j) =


1, if θ = 1, j = Is

1, if θ = 0, j ∈ {S, Ia, R}

0, otherwise.

is the probability of observation θ upon arriving in state j and

P (θ|b) =
∑
j∈S

Θ(θ|j)
∑
k∈S

Tk,jb(k).

Note that {bn : n ≥ 0} is a Markov process as bn depends only on bn−1 and θn.

Our above description describes the evolution of the individual’s knowledge in the absence of

tests. Now we will consider the effects of having access to K tests. This expands the information

state space of the POMDP to {(b, k) : b ∈ [0, 1]4, k ∈ {0, 1, . . . ,K} where b is the current belief

state induced by θ and k is the number of remaining tests. Tests allow us to make a binary decision

each day: to test or not to test. We represent the action space as A = {u, c} where u represents

the action of using a test and c represents the action of not using a test and continuing to the next

day. For a POMDP model, we also need costs associated with each state. If we choose to continue

on a day when we are infected-asymptomatic, then we accrue a unit cost for the day. Note that

we do not accrue a cost if infected-symptomatic as we automatically detect the disease and the

problem is effectively over. This means that, if we use up all our tests too early, we will accrue the

full cost associated with being infected-asymptomatic. In expectation this is simply α
q .

We will define Vπ(b, k) as the expected cost of following policy π starting from state (b, k) with

Vπ(eS , 0) =
α
q . We can express the state-action-dependent cost function c : S × Z≥0 ×A → [0,∞)

as follows:

c(i, k, a) =


1, if i = Ia, a = c

0, otherwise,

(4.2)

for i ∈ S, k ∈ Z≥0, a ∈ A.
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Using a test is not guaranteed to produce a perfect result as they can produce both false

negatives and false positives. We will define the probability of false negatives and false positives as

follows:

P (−|Xn = Ia, An = u) = ζ, P (+|Xn ∈ {S,R}, An = u) = η .

As our primary goal is the detection of a disease, the result of a false positive proves to be less of

a risk than a false negative. We will make the following assumption about how the decision-maker

handles a positive results:

1. A positive test results at time n causes the decision maker to immediately seek a professional

healthcare provider that reveals whether the patient is infected-asymptomatic or not at time

n.

2. If Xn ∈ {Ia, Is}, the positive test was correct and the decision problem is over as the patient

remains quarantined. If Xn ∈ {S,R}, then the positive test was incorrect and the patient

restarts the problem with their beliefs updated on the conditional knowledge that they are

either in state S or state R.

Last, we define V ⋆(b, k) as the optimal value function under the optimal policy.

4.3 Analytical Results

Under various regularizations on the model, we are able to determine the optimal testing policy

analytically. Since our main goal is detection, observing θt = 1 at any time t results in the problem

ending due to having detected the disease and does not require the use of tests. However, using a

test when θ = 0 will update our belief state based on the current belief state and the values for ζ

and eta.

4.3.1 Perfect Tests

To start, let us assume that an individual’s false positive and false negative rates are zero.

In this case, we will consider two subcases: stationary infection probabilities and nonstationary

infection probabilities.
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4.3.1.1 Stationary Infection Probabilities

For this, we assume that neither false negative nor false positives may occur. Under these

assumptions, if we use a test and test positive, then the problem is over as tests are perfect. If we

instead test negative when in state b, since tests are perfect, we update our belief state to b′ as

follows:

b′ =

(
b(S)

b(S) + b(R)
, 0, 0,

b(R)

b(S) + b(R)

)
.

The negative test then leads us into a k − 1 test, infinite horizon problem with starting state b′.

However, there is no cost associated with state R and R cannot return into earlier states, so we

make the observation that

V ⋆(b′, k − 1) = b′(S)V ⋆(eS , k − 1) =
b(S)

b(S) + b(R)
V ⋆(eS , k − 1),

where V ⋆(eS , k) can be solved recursively, starting with V ⋆(eS , 0) =
α
q .

Proposition 4.3.1. Assume an initial belief state of b ∈ {x : x = γeS +(1−γ)eR, γ ∈ [0, 1]} and

k tests remain. If pt = p ∀t and ζ = η = 0, then the optimal policy is to use a test if

b(S) ≤ b(Ia)

pV ⋆(eS , k − 1)
(4.3)

for the first time, with V ⋆(eS , 0) =
α
q . Moreover, if symptoms are never observed, all tests will be

used in a finite amount of time.

This type of policy is what we call a one-step look-ahead (OSLA) policy. Such a policy allows

us easily determine the optimal time to use tests given some initial starting start b0. Define τk as

the time we would use the first of k tests under the optimal policy if we never observe symptoms

and X0 = S. Using the Equation System (5.24) from the proof of Proposition 4.3.1 allows us to

derive a recursive method for calculating τk and V ⋆(eS , k) for k = 0, 1, . . . .

Proposition 4.3.2. For k ≥ 1,

τk =


inf
{
t ∈ Z+ : t ≥ log(α−V ⋆(eS ,k−1)(q−p))−log(α)

log(1−q)−log(1−p)

}
, if p ̸= q

inf
{
t ∈ Z+ : t ≥ (1−p)V ⋆(eS ,k−1)

α

}
, if p = q,
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V ⋆(eS , k) = V ⋆(eS , k − 1)(1− p)τk

+I{τk≥2}

τk−1∑
j=1

jαp

(
(1− p)τk−j−1(1− q)j + q(1− q)j−1

τk−j−1∑
i=0

(1− p)i
)
,

and V ⋆(eS , 0) =
α
q .

We also have the following structural properties of the optimal value function and the τk values:

Corollary 4.3.1. The optimal value functions from initial state eS have the following ordering

relative to k, the number of tests:

V ⋆(eS , k) ≤ V ⋆(eS , k − 1) ≤ · · · ≤ V ⋆(eS , 1) ≤
α

q
.

It follows that

τk ≤ τk−1 ≤ · · · ≤ τ1 <∞.

The ordering of the τk values translates into the following insight: as we start to run low on

tests, we use them more sparingly.

4.3.1.2 Nonstationary Infection Probabilities

The prior assumption that p is nonstationary in time does not capture the fluctuating nature of

a pandemic at different points in time. Often, in population-level SIR models, dI
dt = f(I(t), S(t));

i.e., the infection rate is a function of the total number of infected and the remaining number

of people who remain susceptible to infection. This usually corresponds to slow infection rates

when the number of infected is low and high infection rates when the number of infected are high,

tempered by the available pool of susceptibles. Often when a disease first surfaces, there is a chance

of a pandemic which, in its early stages, will lead to both daily increase in cases and in turn a daily

increase in the infection rate. Towards the end of a pandemic, we would expect the opposite to

occur: the number of infections decreases day to day along with the infection rate. One of the main

goals of this research is to produce easy-to-follow guidelines for the average person to follow and
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Figure 4.2: Left: plot of LHS = ϕs(t) against RHS = q
αpt

ϕa(t) for different values of q. Right: Plot of
monotone nondecreasing pt for t = 0, 1, . . . , 50.

we have leveraged optimal OSLA policies in order to easily compute what time to take the tests.

However, in the nonstationary case, we make the following observation.

Remark 4.3.1. Suppose the SIR DTMC is nonstationary with infection probability sequence

{pt}∞t=0. Let b0 = eS . The criterion for an OSLA policy being optimal does not unconditionally

hold. Further, even if the sequence is monotone, the criterion for an OSLA policy being optimal

does not unconditionally hold.

Let us define the following terms:

ϕs(t) =

t−1∏
i=0

(1− pt), ϕa(t) =

t−1∑
i=0

pi(1− q)t−1−i
i−1∏
j=0

(1− pj). (4.4)

In the nonstationary, perfect test case with b0 = eS , an OSLA policy is equivalent to stopping

when ϕs(t) ≤ q
αpt

phia(t) for the first time. It can be shown via counterexample that there are cases

where this may be true for some ta, but not true for some tb where tb > ta. This is demonstrated in

Figure 4.2 by looking at the q = 0.0125 case which visibly reverses the inequality between ϕs(t) and

q
αpt

ϕa(t) three times instead of once. The infection probability sequence in this case is monotone

nondecreasing.

However, under certain regularizing conditions on {pt}∞t=0, an OSLA policy will remain optimal.

For now, we will assume perfect tests.
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Proposition 4.3.3. Let ζ = η = 0 and suppose t = t0 is the first time ϕs(t) ≤ q
αpt

ϕa(t) when

starting from initial belief state es. Then using the test at time t = t0 is optimal if

(
1− pt
pt

− 1− q
pt+1

)
ϕa(t) ≤

pt
pt+1

ϕs(t) (4.5)

for all t ≥ t0.

Note that this condition appears quite complicated; however, there is a simpler sufficient, yet

tougher, condition that makes an OSLA policy optimal.

Corollary 2. Let ζ = η = 0 and suppose t = t0 is the first time ϕs(t) ≤ q
αpt

ϕa(t) when starting

from initial belief state es. Then using the test at time t = t0 is optimal if

pt+1(1− pt)
pt

≤ (1− q) (4.6)

for all t ≥ t0.

Example functions that satisfy the Condition (4.6) include: the right half of a sigmoid function,

pt =
A

1 + e−t/L

where A ≤ 1− q, L >> 0, and q < 0.5.

Note that this condition is not equivalent to concavity. A counterexample to demonstrate this

is:

pt =


1− qt/L, if 0 ≤ t ≤ L

1− q, if t > L.

for L >> 0.

4.3.2 Imperfect Tests

We will now assume that ζ > 0 and η > 0. Unlike before, we need to consider how to update

the belief state as the result of a potential false negative or a false positive. In the case of a false

negative when asymptomatic, we know there is a ζ probability of a negative result despite being in

state Ia. Upon receiving a negative test result when in state bn = (bn(S), bn(Ia), bn(Is) = 0, bn(R))
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leads to the updated belief b−
n = (b−n (S), b

−
n (Ia), b

−
n (Is), b

−
n (R)) where

b−n (S) = bn(S)
bn(S)+ζbn(Ia)+bn(R) ,

b−n (Ia) = ζbn(Ia)
bn(S)+ζbn(Ia)+bn(R) ,

b−n (Is) = 0,

b−n (R) = bn(R)
bn(S)+ζbn(Ia)+bn(R) .

For positive results, we make the following assumption: the patient, acting cautious, will con-

sult with a medical professional upon receiving a positive test. If the result is in fact a true

positive, then the patient successfully detected the disease and the problem is over. If it

is a false positive, that information is revealed and the patient updates their belief state to

b+
n = (b+n (S), b

+
n (Ia), b

+
n (Is), b

+
n (R)) where

b+n (S) = bn(S)
bn(S)+bn(R) ,

b+n (Ia) = 0,

b+n (Is) = 0,

b+n (R) = bn(R)
bn(S)+bn(R) .

The long-run expected cost of using a test when in state bn with k ≥ 1 tests remaining and

following policy π from then on is

c(bn, k, u) = bn(S)ζV
π(b+n , k − 1) + (bn(S)(1− ζ)bn(Ia)η)V π(b−n , k − 1), (4.7)

where V π(b, 0) = α
q b(S) +

1
q b(Ia) regardless of policy π. Note that knowledge of the value space

beyond state eS is needed to calculate these costs, a major departure from the simplicity introduced

by perfect tests.
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It is important to note that in this case, we should consider a general starting belief state that

allows b0(i) > 0 for all i ∈ S. In particular, we are interested in the case that b0(Ia) > 0. For a

single test, we have a more generalized result of the OSLA policy.

Proposition 4.3.4. Assume an initial belief state of b0 such that b0(S) > 0, b0(Ia) ≥ 0, b0(R) ≥ 0,

and b0(S) + b0(Ia) + b0(R) = 1. Suppose we have a single test, pt = p ∀t, ζ, η > 0 and if p < q

then b0(Ia) ≤ p
q−pb0(S). Then the optimal policy is to use the test after t days have elapsed where

t satisfies:

b0(S)

(
1− p
1− q

)t
(
1− q(1− αζ

(1− p)α(1− ζ)

t−1∑
i=0

(
1− q
1− p

)i
)
≤ b0(Ia)

(
q(1− αζ)
αp(1− ζ)

)
. (4.8)

In general, it is difficult to show an OSLA policy is optimal for k ≥ 2 tests in the presence of

both false negative and false positives. However, the computation of a one-step look-ahead policy

is still possible for any k ≥ 2 which allows us to develop it as a heuristic. This requires us to be able

to approximate V π(b, k− 1) for b in a nontrivial belief space. Fortunately, since costs only depend

on knowing beliefs associated with states S and Ia, we can restrict ourselves to a 2-D interpolation

grid for the value function with search space

b(S) + b(Ia) ≤ 1,

0 ≤ b(S) ≤ 1,

0 ≤ b(Ia) ≤ 1,

as demonstrated in Figure 4.3.

4.4 Simulation Study

Our POMDP-based methods present optimization problems on an individual scale and treat

infection probabilities as exogenous to the system. However, in a community, infection probabilities

are also dependent on the number of infected and susceptibles remaining within the community

itself, as seen in common population-wide SIR models. For this section, we examine the performance

of our POMDP-based approaches in a community-based setting by simulating a community of a few

thousand agents over a finite time horizon and examining how different policies affect the number
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Figure 4.3: Search space for interpolation with imperfect tests.

of detected asymptomatic infections, the number of people who got infected over the time horizon,

and the total number of undetected asymptomatic days across the community during the year.

For a single policy, we perform s i.i.d. simulations of a community with N identical people in it

over a period of T days. Initial states are chosen for each member of the community for the beginning

of the simulation out of susceptible, asymptomatic infected, symptomatic infected/quarantined,

and recovered. Note that, when an asymptomatic infected successfully detects the disease, they

are effectively the same as a symptomatic infected: their contributions to infections is treated the

same as a symptomatic infected as both are now quarantining.

All N people follow the same policy; however, for the i-th person, there is a random testing

delay Di such that no tests are available until day Di is reached for that individual. This means

that people will not necessarily be testing on the same day across the population–the only patients

who test on the exact same days as each other are patients with the same testing delay. Testing

delay corresponds to the random roll-out of tests to the community caused by random shipping

times and varied reaction speeds to the availability of tests by the public.

The most important part of this simulation is how infection probabilities are determined. For

this, we use a discrete-time SIR model with the following day-to-day governing equations:

Sn+1 = Sn −
ρ

N
Sn(In + e)

Ĩn+1 = Ĩn +
ρ

N
Sn(In + e).

(4.9)
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Sn is the number of susceptibles on day n, In is the number of infected on day n, Ĩn is the cumulative

number of infections that have occurred by day n, N is the number of people in the community,

and e is a constant corresponding to the exogenous contribution to infections. ρ is a parameter

that determines how quickly the infection spreads and can be tuned to account for many different

disease scenarios. We use the Ĩn so that we do not need to incorporate a governing equation for the

number of recovered. As this is a deterministic model, we use it to produce infection probabilities as

follows: on day n, the infection probability is pn = In+1−In
Sn

. We must also address how Ĩn handles

both asymptomatic and symptomatic infected. If asymptomatic and symptomatic infected are

both treated the same, then there is zero point to testing as detecting the disease carries no benefit.

The whole premise of this work is that people that have detected their symptoms will behave in

a manner that limits their exposure to the remaining susceptibles in the system by quarantining

and behaving more cautiously in general. Let Ia,n and Is,n be the number of asymptomatic and

symptomatic infected at time n, respectively. For Equation (4.9), we set In = ωIs,n + Ia,n where

0 ≤ ω < 1 is a weighting on symptomatic individuals corresponding to how their quarantining

behavior reduces risk.

The simulation proceeds on a day-by-day basis as follows:

1. On day n, determine which people are taking tests that day. There is a ζ probability of a test

failing to detect an asymptomatic infection. Asymptomatic infected that successfully detect

their infections have their state updated to quarantined.

2. Each susceptible individual has their state updated independently of each other according to

infection probability pn, asymptomatic probability α, and recovery probability q.

3. Update n→ n+ 1 and repeat until the time horizon is exhausted.

We are interested in three metrics of success:

1. End Susceptibles (ES): the number of susceptibles remaining in the system at the end of the

time horizon. This tells us how many individuals became infected. A larger value is better

as that means the spread of the infection was slowed.
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2. Total Detected Asymptomatic Infections (TDAI): the total number of asymptomatic infec-

tions that were detected via using tests. A larger value is better as this means we successfully

detected more infections.

3. Total Undetected Days (TUD): the total number of undetected days per person across the

entire horizon. A smaller value is better as that means that the disease was detected earlier

as opposed to later in individuals’ infected periods.

The TUD metric has the closest relationship to the costs in our POMDP models. Note that

the TDAI can be a misleading metric as a large number of asymptomatic cases can be detected;

however, those detected cases may be towards the end of the infected periods, in which case a large

TUD would still occur. On a related note, a low number for ES can boost the value for TDAI, as

more infections lead to a larger number of potential detections.

For our first experiment we consider the following configuration: the simulation horizon is T =

90 days, the community has N = 10, 000 individuals in it with K = 6 tests available per person and

tests behave perfectly. The asymptomatic rate is α = 0.41 and the average recovery time is 1
q = 14

days. The delay distributions are i.i.d. discrete uniform from 3 to 7 days; i.e., Di
i.i.d.∼ Ud(3, 7).

There are zero infected and recovered at time 0; however, the exogenous contribution to infections is

e = 100, which is 1% of our community population. The symptomatic weighting factor is ω = 0.05,

meaning infected only contribute one-twentieth the weight of an asymptomatic individual due to

quarantining procedures. The infection parameter is ρ = 0.25; Table 4.1 shows the expected ES,

TDAI, and TUD values of the system after the 90 days have elapsed without the presence of tests.

In Experiment 1, we consider several policies and conduct 1000 independent simulations per

policy. OSLA corresponds to our MDP-derived policy with a static infection probability estimated

by averaging the infection probabilities from a 30-day warm-up period with no tests; this can be

treated as the community observing the spread in a different community for 30 days and using

that data to inform their decisions. Policies of form Dx for some integer x refer to policies that

evenly space the test uses every x days. For example, the D15 policy has a user using a test

every 15 days until depletion. For each policy, we provide Bonferroni corrected simultaneous 95%

confidence intervals for our three metrics of interest in Table 4.1. We note that, while the Opt-S

policy performs the best, it is statistically on-par with the D14 policy. However, the D14 policy is
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rather arbitrary and coming up with that particular value is not particularly intuitive: one could

perhaps take the mean delay, subtract it from 90, and then divide by the number of tests to get

approximately 14 days for every test.

Table 4.1: Experiment 1 Results: 95% Simultaneous Confidence Intervals by Method

Method ES TDAI TUD

No Tests 3035.56± 11.38 0.00± 0.00 36114.27± 122.92
OSLA 6442.31± 7.07 832.073± 2.99 7734.99± 27.86
D15 6385.89± 7.09 894.50± 3.17 8014.08± 27.69
D14 6433.43± 7.41 848.96± 3.25 7754.85± 28.22
D13 6431.82± 6.73 804.52± 3.01 7805.46± 26.49
D12 6378.34± 7.00 754.45± 2.92 8152.74± 28.92
D7 5313.49± 11.69 466.41± 2.14 15264.05± 73.44

In Experiment 2, we once again conduct 1000 independent simulations per policy. We will use

the exact same parameters are Experiment 1 with the single change that now, false negative results

can occur with probability ζ = 0.1. Table 4.2 displays the Bonferroni corrected simultaneous 95%

confidence intervals for our three metrics of interest for Experiment 2. Note that, the No Tests case

is identical to Experiment 1, so we simply repeat the same confidence intervals for that “policy”.

Table 4.2: Experiment 2 Results: 95% Simultaneous Confidence Intervals by Method

Method ES TDAI TUD

No Tests 3035.56± 11.38 0.00± 0.00 36114.27± 122.92
OSLA 6244.92± 7.88 815.24± 3.13 8923.37± 33.89
D15 6158.11± 8.10 880.68± 3.33 9403.04± 35.52
D14 6209.05± 7.78 840.84± 3.11 9087.38± 33.78
D13 6225.44± 7.83 796.47± 3.04 9006.63± 32.83
D12 6190.70± 7.75 748.33± 2.99 9274.92± 34.65
D7 5228.49± 12.09 463.65± 2.15 15852.13± 76.50

As opposed to Experiment 1, our OSLA policy outperforms the fixed-spacing policies signifi-

cantly. It is interesting to note that D14 is still the best performing of the fixed-spacing policies in

spite of the fact that tighter OSLA policies result from larger values of the false negative rate ζ.

4.5 Conclusion

Our main goal was to develop easy-to-follow guidelines for the average test user that still have

a model-based analytical backing. This was achieved by deriving one-step look-ahead (OSLA)

policies which, under certain model conditions, are provably optimal. An OSLA policy allows test
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use times to be determined given an initial condition, allowing for the decision maker to follow a

list of dates to use tests, as opposed to calculating their day-to-day state probabilities. In cases

where OSLA optimality is not guaranteed, the rule can still be implemented to provide a heuristic

policy. These rules are derived via an individual-scale model of an SIR model, where infection

probabilities are exogenous factors. However, in a community-based setting where both exogenous

factors (tourism, business, shipping, etc.) and endogenous factors (number of infected within the

community itself) play a role, our individual-based rule systems still outperform common-sense

based heuristics such as “every X days” rules.
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CHAPTER 5

Future Work and Appendices

Potential future work for the scheduling problem could include multiple patient classes that

demonstrate unique unpunctuality distributions and service time distributions in the fluid model.

An approach to this would likely involve independent arrival processes for each patient class with

a distinct schedule for each class. Further research can also be done on the highly heterogeneous

model–currently the best performing methods are random search-type heuristics; more efficient

heuristics or new analytical developments could be found in certain scenarios.

For the optimal disease testing problem, future work can consider transitions from the recovered

state back to the susceptible state in the SIR model. This is more reflective of real life where

individuals can contract diseases such as COVID-19 multiple times throughout their lives. This

extension, however, will introduce much difficulty into determining the optimal policy as, due to the

cyclic nature of the new Markov chain, the evolution of belief states is unlikely to allow a one-step

look-ahead policy to be optimal, so the search for an optimal policy will be complicated. It may, in

fact, not be possible to develop an n-step look-ahead policy, which may prevent us from developing

the simple guidelines we have in the non-relapsing Markov chain.
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APPENDIX 1: SUPPLEMENTS TO CHAPTER 1

5.1 UNC Clinic Dataset Description

We will provide further details on the clinic dataset in this appendix.

UNC Clinic Dataset Variables

Name Description

Appointment Status Takes on the following categorical values: cancelled, com-

pleted, left without seen, no show.

Encounter ID A numerical label for appointments, each observation has a

unique label.

Patient ID A serial number that identify the patient being seen during

the appointment.

Doctor ID A numerical label that identifies the doctor associated with

the appointment.

Encounter Scheduled Date A numerical variable that states which of the 729 days this

appointment was scheduled for.

Encounter Scheduled Time A numerical variable that states the time during the day the

appointment was scheduled to start in hours.

Encounter Scheduled Duration A numerical variable that states the scheduled appointment

duration in minutes.

Actual Arrival Time A numerical variable that states the actual arrival time of

the patient in hours.

Doctor Entered Room A numerical variable that states the actual time the doctor

started seeing the patient in hours.

Actual Completion Time A numerical variable that states what time the patient com-

pleted service with the doctor.

The original dataset contains an additional appointment status category called “arrived”; how-

ever, this data appears to be blank and only accounts for 6 observations, so it was excluded from

the dataset. There are additional variables that state actual arrival date and what date the doctor
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entered the room–if these differ from the actual scheduled dates, they are disregarded as data-entry

errors–we do not expect any day-transitions to occur between arrival and being seen.

The dataset is fully anonymized; this is an important issue to deal with when examining medical

records. The anonymization consists of the following:

• Patient IDs are randomly generated serial numbers and do not link up to any actual database

systems, they are only useful for matching the same patient to multiple appointments.

• Encounter Scheduled Dates are anonymized by undergoing a simple transformation. However,

this transformation still preserves the order and spacing of the days; that is, encounter sched-

uled dates that have a difference of n occured n days apart. The range of encounter scheduled

dates is 42736 to 43465. We subtract 42735 to rescale all dates to the set {1, 2, . . . , 730}.

• Doctor IDs are randomly generated numbers that also do not link up to any actual database

systems, they are only useful for matching the same doctor to multiple appointments.

The dataset does not provide any patient or doctor characteristics that may act as identifiers.

Further, we have no notion of the type-of-visit for each appointment, we can only infer from the

data given; for example, very long service times may correspond to certain types of procedures.
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APPENDIX 2: SUPPLEMENTS TO CHAPTER 2

5.2 Mathematical Details

Proof of Proposition 2.4.1. Suppose we have a patient sequence s⃗ = (s1, s2, . . . , sP ) that is not an

ELS. Then, there must exist two consecutive patients in positions k and k + 1 such that Usk ≥st

Usk+1
. Now consider the alternative schedule ⃗̂s = (s1, s2, . . . , sk−1, sk+1, sk, sk+2, . . . , sP ) which is

identical to s⃗ with the exception that the values of the k-th and (k+1)-th components are switched.

We will consider the total patient wait between these two sequences. We determine the wait time

of the i-th patient under an appointment-based priority discipline via Lindley’s Equation to be

Wi+1 = max{0,Wi + Si + Ui − Ui+ 1− a} (5.1)

for i ≥ 0, with W0 = 0.

Let W̄ =
∑P

i=1 W̄i be the total sum of wait times under sequence s⃗ and Ŵ =
∑P

i=1 Ŵi be the

total sum of wait times under sequence ⃗̂s. We will show that Ŵ ≤st W̄ . Assume, without loss of

generality, that Usk+1
= Ui and Usk = Uj for some i < j, so Ui ≤st Uj .

Clearly W̄i = Ŵi for i = 1, . . . , k−1 since the patient sequence is identical up until position k; so,

for i = 1, . . . , k−1 letWi := W̄i = Ŵi. We will now define Ŵ ∗ := Ŵk+Ŵk+1 and W̄
∗ := W̄k+W̄k+1.

If Ui ≤ Uj implies Ŵ ∗ ≤ W̄ ∗, then Ŵ ∗ ≤st W̄
∗. Let Q = Sk−1− a+Wk−1+Usk−1

and R = Sk− a,

then we can write

Ŵ ∗ = max{0, Q− Ui}+max{0, R+ Ui − Uj , R+Q− Uj} (5.2)

and

W̄ ∗ = max{0, Q− Uj}+max{0, R+ Uj − Ui, R+Q− Ui} (5.3)

We have six possibilities for Ŵ ∗ and six possibilities for W̄ ∗. We will consider which combinations

are feasible and proceed to show that Ŵ ∗ ≤ W̄ ∗ in all feasible cases.

1. Ŵ ∗ = 0; we do not need to evaluate this case; if it is true, there is nothing to show since

Ŵ ∗ ≥ 0.
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2. Ŵ ∗ = R+Ui−Uj ; this is feasible if Q < Ui and R+Ui−Uj > 0. We must now consider the

cases for W̄ ∗

• W̄ ∗ = 0 requires Q < Uj and R+Uj −Ui < 0; however, 0 < R+Ui −Uj < R+Uj −Ui

so this possibility is not feasible.

• W̄ ∗ = R+ Uj − Ui ≥ Ŵ ∗ = R+ Ui − Uj since Ui ≤ Uj .

• W̄ ∗ = R+Q−Ui requires Q < Uj and R+Uj−Ui > R+Q−Ui which is a contradiction.

• W̄ ∗ = Q− Uj requires Q > Uj but this contradicts the fact that Q < Ui ≤ Uj .

• W̄ ∗ = Q−Uj +R+Uj −Ui = Q+R−Ui requires Q > Uj but this also contradicts the

fact that Q < Ui ≤ Uj .

• W̄ ∗ = Q−Uj +R+Q−Ui requires Q > Uj but is contradictory as with the above case.

3. Ŵ ∗ = R + Q − Uj requires Q < Ui but also R + Q − Ui > R + Uj − Ui, which gives us a

contradiction.

4. Ŵ ∗ = Q− Ui requires Q > Ui and R+Q− Uj < 0.

• W̄ ∗ = 0 requires Q < Uj and R + Uj − Ui < 0. This means R < Ui − Uj ≤ 0 which

contradicts with the fact that R ≥ 0 since Sk ≥ a.

• W̄ ∗ = R + Uj − Ui requires Q < Uj and R + Uj − Ui > 0. We note that W̄ ∗ − Ŵ ∗ =

R+ Uj −Q ≥ 0 since R ≥ Q− Uj since R must be nonnegative.

• W̄ ∗ = R+Q− Ui has the same contradiction as in Case 2.

• W̄ ∗ = Q − Uj needs Q > Uj and R + Q − Ui < 0. However, we derive a contradiction

from the fact that R < Ui −Q ≤ 0, but R must be nonnegative.

• W̄ ∗ = Q−Uj +R+Uj−Ui = R+Q−Uj requires Q > Uj and R+Uj−Ui > R+Q−Ui

which is a contradiction.

• W̄ ∗ = Q− Uj +R +Q− Ui = 2Q+R − Uj − Ui requires Q > Uj and R +Q− Ui > 0.

Examining W̄ ∗− Ŵ ∗ = R+Q−Uj ≥ if R > Uj −Q which will be guaranteed by R ≥ 0.

5. Ŵ ∗ = Q−Ui+R+Ui−Uj = R+Q−Uj is infeasible since Q > Ui and R+Ui−Uj > R+Q−Uj

which is a contradiction.
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6. Ŵ ∗ = Q− Ui +R+Q− Uj = 2Q+R− Ui − Uj requires Q > Ui and R+Q− Uj > 0.

• W̄ ∗ = 0 needs Q < Uj and R + Uj − Ui < 0, but this means R < Ui − Uj ≤ 0 so it is

infeasible.

• W̄ ∗ = R + Uj − Ui needs Q < Uj and R + Uj − Ui > 0. Then, W̄ ∗ − Ŵ ∗ = R + Uj −

Ui − 2Q−R+ Ui + Uj = 2Uj − 2Q > 0 since Q < Uj .

• W̄ ∗ = R+Q− Ui has the same contradiction as in Case 2.

• W̄ ∗ = Q− Uj needs Q > UjandR +Q− Ui < 0. So, Ŵ ∗ = (R +Q− Ui) + (Q− Uj) <

Q− Uj = W̄ ∗.

• W̄ ∗ = Q− Uj +R+ Uj − Ui = R+Q− Uj has the same contradiction as in Case 3.

• W̄ ∗ = Q− Uj +R+Q− Ui = 2Q+R− Uj − Ui = Ŵ ∗, so there is nothing to show.

Given the above cases, we have Ŵ ∗ ≤ W̄ ∗. This means

k+1∑
i=1

Ŵi ≤st

k+1∑
i=1

W̄i.

It remains to show that
P∑

i=k+2

Ŵi ≤st

P∑
i=k+2

W̄i.

To show this is the case, we consider the terms

Ŵk+2 = max{0, Sk+1 + Ŵk+1 − a+ Uj − Usk+2
} (5.4)

and

W̄k+2 = max{0, Sk+1 + Ŵk+1 − a+ Ui − Usk+2
}. (5.5)

To show
∑P

i=k+2 Ŵi ≤st
∑P

i=k+2 W̄i, it is sufficient to show Ŵk+2 ≤st W̄k+2 by Equation (5.1) and

the fact that the two patient sequences are identical for components k+2, . . . , P . We note that by

Equation (5.4) and Equation (5.5), Ŵk+2 ≤st W̄k+2 if and only if Ŵk+1 + Uj ≤st W̄k+1 + Ui. We

note that

Ŵk+1 + Uj = max{0, R+ Ui − Uj , R+Q− Uj}+ Uj
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and

W̄k+1 + Ui = max{0, R+ Uj − Ui, R+Q− Ui}+ Ui.

We now consider nine possible cases. If for all feasible cases Ŵk+1 + Uj ≤ W̄k+1 + Ui for Ui ≤ Uj ,

we can say Ŵk+1 + Uj ≤st W̄k+1 + Ui. Let A = Ŵk+1 + Uj and B = W̄k+1 + Ui = Ui.

1. A = Uj and B = Ui requires R < Uj − Ui for Q ≤ Ui, R < Ui − Uj for Q ≤ Uj , R < Uj −Q

for Q > Ui, and R < Ui −Q for Q > Uj . However, this situation is infeasible since R ≥ 0.

2. A = Uj and B = R+ Uj , since R ≥ 0, we have A ≤ B.

3. A = Uj and B = R+Q requires Q > Uj and since R ≥ 0, A < B.

4. A = R + Ui and B = Ui requires Q < Ui < Uj and R < Ui − Uj from Equations (5.2–5.3),

which contradicts R ≥ 0, so this case is infeasible.

5. A = R+ Ui and B = R+ Uj does not require further inspection.

6. A = R+ Ui and B = R+Q requires Q < Ui and Q > Ui which is contradictory.

7. A = R+Q and B = Ui requires Q > Ui and R > Uj −Q along with R < Ui −Q which leads

to a contradiction.

8. A = R +Q and B = R + Uj requires Q > Ui, R > Uj −Q, Q < Uj , and R > Ui − Uj . Since

Q < Uj , A < B.

9. A = R+Q = B leaves nothing to be shown.

So, we have Ŵk+1 + Uj ≤st W̄k+1 + Ui and by our earlier argument, we have

P∑
i=k+2

Ŵi ≤st

P∑
i=k+2

W̄i,

giving us the desired result that
P∑
i=1

Ŵi ≤st

P∑
i=1

W̄i.
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Lemma 5.2.1. Let X be a continuous random variable with a support set S ⊂ R and let g ≥ 0

be a constant. Let F (·) be the cumulative distribution function of X. Define Y = min{g,X} and

Z = max{g,X}, then

E(Y ) =

∫ g

0
(1− F (x))dx−

∫ 0

−∞
F (x)dx

and

E(Z) = g +

∫ ∞

0
(1− F (x))dx−

∫ g

0
(1− F (x))dx.

Proof. First we derive E(Y ),

E(Y ) =

∫ ∞

0
Pr(Y ≥ x)dx−

∫ 0

−∞
Pr(Y ≤ x)dx

=

∫ ∞

0
Pr(X ≥ x ∩ g ≥ x)dx−

∫ 0

−∞
Pr(X ≤ x ∪ g ≤ x)dx

=

∫ ∞

0
Pr(X ≥ x)I{g ≥ x}dx−

∫ 0

−∞
Pr(X ≤ x)dx

=

∫ g

0
(1− F (x))dx−

∫ 0

−∞
F (x)dx.

Similarly, for E(Z),

E(Z) =

∫ ∞

0
Pr(Z ≥ x)dx−

∫ 0

−∞
Pr(Z ≤ x)dx

=

∫ ∞

0
Pr(X ≥ x ∪ g ≥ x)dx−

∫ 0

−∞
Pr(X ≥ x ∩ g ≤ x)dx

=

∫ ∞

0
[Pr(X ≥ x) + Pr(g ≥ x)− Pr(X ≥ x ∩ g ≥ x] dx

=

∫ ∞

0
(1− F (x))dx+ g −

∫ g

0
(1− F (x))dx.
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Proof of Proposition 2.6.1. We notice that this can be separated as a minimization of two pieces

with respect to a1 and g separately. We use Lemma 5.2.1 when minimizing with respect to a1 and

g and rewrite

cwE(W1) + cIE(I1) = cIE(max{0, a1 + U1})− cwE(min{0, a1 + U1})

= cI(a1 − E(min{a1,−U1}))− cw(a1 − E(max{a1,−U1}))

= a1(cI − cw)− cI
[∫ a1

0
(1− F−U1(x))dx−

∫ 0

−∞
F−U1(x)dx

]

−cw
[∫ a1

0
(1− F−U1(x))dx− a1 −

∫ ∞

0
(1− F−U1(x))dx

]

where F−U1(x) is the cumulative distribution function for −U1. Taking the derivative of the above

expression, we get

d

da1
(cwE(W1) + cIE(I1)) = cI − (cI + cw)(1− F−U1(a1)) = cI − (cI + cw)FU1(−a1).

Setting this equal to zero and solving for a1 yields the optimal value for a1,

a⋆1 = −F−1
U1

(
cw

cw + cI

)
.

Thus, the first patient’s appointment time should only depend on the patient’s unpunctuality

distribution. However, when determine the optimal inter-appointment gap between two patients,

we have to consider both their unpunctuality distributions and the service time distribution of the

first patient. Let Ri,j = Ui + Si −Uj and FRi,j (x) be the cumulative distribution function for Ri,j .
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The remaining portion of our objective function can be rewritten as

cwE(W2) + cIE(I2) = cwE(max{0, U1 + S1 − U2 − g}) + cIE(max{0, g + U2 − U1 − S1})

= cw(E(max{g,R1,2})− g)− cI(E(min{g,R1,2})− g)

= cIg + cw

[∫ ∞

0
(1− FR1,2(x))dx−

∫ g

0
(1− FR1,2(x))dx

]

−cI
[∫ g

0
(1− FR1,2(x))dx−

∫ 0

−∞
FR1,2(x)dx

]
.

Taking the derivative of the above expression, setting it equal to zero, and solving for g, we get

g⋆ = F−1
R1,2

(
cw

cw + cI

)
. (5.6)
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APPENDIX 3: SUPPLEMENTS TO CHAPTER 3

5.3 Mathematical Details

We introduce the one-dimensional Skorokhod problem based on the lecture notes of (Dai and

Williams, 2017). First, let D+ be the set of all RCLL functions x : [0,∞)→ R with the restriction

that x(0) ≥ 0.

Definition 5.1 One-dimensional Skorokhod Problem. Let x ∈ D+. A pair of functions

(z, y) ∈ D+ × D+ is a solution of the one-dimensional Skorokhod problem for x if the following

conditions holds:

1. z(t) = x(t) + y(t), t ≥ 0,

2. z(t) ≥ 0, t ≥ 0,

3. y satisfies the following:

(a) y(0) = 0,

(b) y is nondecreasing,

(c)
∫∞
0 z(t)dy(t) = 0.

Note: (z, y) is called a regulation of x where y behaves as the regulator and z is the regulated

path. The regulated path is made nonnegative and is comparable to the queuing process from our

fluid model. The regulator ensures the boundary reflection property of the regulated path and is

comparable to the µi(t) process from our fluid model. The x(t) is comparable to H(t)− µt in our

model.

(Dai and Williams, 2017) next prove that for each x ∈ D+, there exists a unique solution to the

Skorokhod problem, defining a Skorokhod map (ϕ, ψ) : D+ → D+ × D+ such that (ϕ(x), ψ(x)) =

(z, y), where (z, y) is the unique solution of the Skorokhod problem for x. The theorem is formally

stated as follows:
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Theorem 5.3.1. Let x ∈ D+. Then there exists a unique solution (z, y) ∈ D+ × D+ of the

Skorokhod problem for x given by

y(t) = sup
0≤s≤t

max{−x(s), 0}, t ≥ 0,

z(t) = x(t) + y(t), t ≥ 0.

(5.7)

Further, if x is continuous, then both y and z are continuous.

For one of our numerical proofs, we require Theorem 5 from (Dragomir, 2000) as stated below:

Theorem 5.3.2. Suppose u : [a, b] → R be a mapping of bounded variation on [a, b] and f :

[a, b]→ R be a p-H-Hölder mapping; i.e., |f(x)− f(y)| ≤ H|x− y|p ∀x, y ∈ [a, b]. Let In : a = x0 <

x1 < · · · < xn−1 < xn = b be a partition of the interval [a, b], hi = xi+1 − xi (i = 0, . . . , n − 1),

ξi ∈ [xi, xi+1] (i = 0, . . . , n− 1), and ν(h) = max{hi|i = 0, . . . , n− 1}. Then

∫ b

a
f(t)du(t) =

n−1∑
i=0

f(ξi)[u(xi+1)− u(xi)] +R(f, u, In, ξ)

where

R(f, u, In, ξ) ≤ H

[
ν(h)
2 + max

i=0,...,n−1

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣]p V b
a (u)

≤ H(ν(h))pV b
a (u),

where V b
a (u) is the total variation of u over [a, b].

Proof of Lemma 3.3.1. We first show that {a(t), t ∈} is a CDF. It suffices to show that a(t) is right

continuous. Using the Moore-Osgood theorem on exchanging limits, we have

lim
t↓s

a(t) = lim
t↓s

lim
n→∞

Ān(t) = lim
n→∞

lim
t↓s

Ān(t) = lim
n→∞

Ān(s) = a(s),

where the first and last equalities follow from the condition that an(t)→ a(t) for each t, the second

equality is from Moore-Osgood theorem, and the third equality is from the right continuity of Ān(t).

This shows that {a(t), t ∈} is a CDF, and consequently, {H(t), t ∈} is also a CDF.
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To prove (3.9), we define

Hn(t) =

∫ T

0
F (t− s, s)dĀn(s) =

1

n

n∑
i=1

F (t− ani , ani ), t ∈ . (5.8)

Then we have the following decomposition.

Ēn(t)−H(t) = [Ēn(t)−Hn(t)] + [Hn(t)−H(t)], t ∈ .

We first focus on Hn(t) − H(t). Fix ϵ > 0. Recall that for any CDF F̃ , there exists a simple

function G̃ such that supt∈ |F̃ (t)− G̃(t)| ≤ ϵ. Thus for each s ∈ [0, T ], there exists a simple function

G(t, s) =
∑K(s)

k=1 ck(s)1Bk(s)(t), t ∈ such that supt∈(F (t, s)−G(t, s)) ≤ ϵ/2, where K(s) is a positive

integer, ck(s), k = 1, . . . ,K(s) are positive constants and Bk(s), k = 1, . . . ,K(s) are disjoint subsets

of . Now noting that F (t, s) is piecewise continuous in s uniformly for t over each piece, there exists

δ > 0 such that when |s1 − s2| ≤ δ and s1 and s2 are in any partition interval,

sup
t∈
|F (t, s1)−G(t, s2)| ≤ sup

t∈
|F (t, s1)− F (t, s2)|+ sup

t∈
|F (t, s2)−G(t, s2)| ≤ ϵ.

This yields that there exists a finite collection of 0 = s0 < s1 < · · · < sm = T such that for

i = 1, . . . ,m,

sup
s∈[si−1,si)

sup
t∈
|F (t, s)−G(t, si−1)| ≤ ϵ. (5.9)
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Thus we have

sup
t∈
|Hn(t)−H(t)| = sup

t∈

∣∣∣∣∫ T

0
F (t− s, s)d[Ān(s)− a(s)]

∣∣∣∣
= sup

t∈

∣∣∣∣∣
m∑
i=1

∫ si

si−1

F (t− s, s)d[Ān(s)− a(s)]

∣∣∣∣∣
= sup

t∈

∣∣∣∣∣
m∑
i=1

∫ si

si−1

[F (t− s, s)−G(t− s, si−1)]d[Ā
n(s)− a(s)]

∣∣∣∣∣
+ sup

t∈

∣∣∣∣∣
m∑
i=1

∫ si

si−1

G(t− s, si−1)d[Ā
n(s)− a(s)]

∣∣∣∣∣
≤ sup

t∈

m∑
i=1

∫ si

si−1

sup
s∈[si−1,si)

sup
t∈
|F (t, s)−G(t, si−1)|d[Ān(s) + a(s)]

+
m∑
i=1

K(si)∑
k=1

ck(si) sup
s∈[si−1,si)

|Ān(s)− a(s)|

≤ ϵT (Ān(T ) + a(T )) +

m∑
i=1

K(si)∑
k=1

ck(si) sup
s∈[0,T ]

|Ān(s)− a(s)|,

which yields that

lim
n→∞

sup
t∈
|Hn(t)−H(t)| = lim

ϵ→0
lim
n→∞

sup
t∈
|Hn(t)−H(t)| = 0 (5.10)

We now consider

Ēn(t)−Hn(t) =
1

n

n∑
i=1

[1{Ui+ani ≤t} − F (t− ani , ani )], t ∈ .

For ϵ > 0, we can find a partition of : −∞ < t0 < t1 < · · · < tL−1 < tL <∞ such that

H(tj+1−)−H(tj) ≤ ϵ, j = 0, . . . , L− 1,
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where L is a positive integer that depends on ϵ. For each t ∈, there exists k = 0, . . . , L − 1 such

that t ∈ [tk, tk+1). We then have

Ēn(t)−Hn(t)

=
1

n

n∑
i=1

[1{Ui+ani ≤t} − F (t− ani , ani )]

≥ 1

n

n∑
i=1

[1{Ui+ani ≤tk} − F ((tk+1 − ani )−, ani )]

=
1

n

n∑
i=1

[1{Ui+ani ≤tk} − F (tk − a
n
i , a

n
i )]−

1

n

n∑
i=1

[F ((tk+1 − ani )−, ani )− F (tk − ani , ani )]. (5.11)

On the other hand,

Ēn(t)−Hn(t)

≤ 1

n

n∑
i=1

[1{Ui+ani <tk+1} − F (tk − a
n
i , a

n
i )]

=
1

n

n∑
i=1

[1{Ui+ani <tk+1} − F ((tk+1 − ani )−, ani )] +
1

n

n∑
i=1

[F ((tk+1 − ani )−, ani )− F (tk − ani , ani )].

(5.12)

We note that {1{Ui+ani <tk+1} − F ((tk+1 − ani )−, ani )}ni=1 and {1{Ui+ai,n≤tk} − F (tk − a
n
i , a

n
i )}ni=1 are

independent sequences with common mean 0 and are uniformly bounded by 2. From the strong

law of large numbers (SLLN) for triangular arrays,

1

n

n∑
i=1

[1{Ui+ani <tk+1} − F ((tk+1 − ani )−, ani )]→ 0, almost surely. (5.13)

Similarly, we have

1

n

n∑
i=1

[1{Ui+ani ≤tk} − F (tk − a
n
i , a

n
i )]→ 0, almost surely. (5.14)
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We next note that the same second term in (5.12) and (5.11) has the following estimate.

∣∣∣∣∣ 1n
n∑

i=1

[F ((tk+1 − ani )−, ani )− F (tk − ani , ani )]

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

[lim
δ↓0

F (tk+1 − ai,n − δ, ani )− F (tk − ai,n, ani )]

∣∣∣∣∣
=

∣∣∣∣limδ↓0 Hn(tk+1 − δ)−Hn(tk)

∣∣∣∣
≤ lim

δ↓0
|(Hn(tk+1 − δ)−H(tk+1 − δ))|+ |(Hn(tk)−H(tk))|+

∣∣∣∣limδ↓0 H(tk+1 − δ)−H(tk)

∣∣∣∣
≤ 2 sup

t∈
|Hn(t)−H(t)|+ [H(tk+1−)−H(tk)]

≤ 2 sup
t∈
|Hn(t)−H(t)|+ ϵ. (5.15)

Using (5.12) and (5.11), we have

sup
t∈
|Ēn(t)−Hn(t)|

≤ max
0≤k≤L−1

∣∣∣∣∣ 1n
n∑

i=1

[1{Ui+ani <tk+1} − F ((tk+1 − ani )−, ani )]

+
1

n

n∑
i=1

[F ((tk+1 − ani )−)− F (tk − ani , ani )]
∣∣

+ max
0≤k≤L−1

∣∣∣∣∣ 1n
n∑

i=1

[1{Ui+ani ≤tk} − F ((tk − a
n
i ))]−

1

n

n∑
i=1

[F ((tk+1 − ani )−, ani )− F (tk − ani , ani )]

∣∣∣∣∣
≤ max

0≤k≤L−1

∣∣∣∣∣ 1n
n∑

i=1

[1{Ui+ani <tk+1} − F ((tk+1 − ani )−, ani )]

∣∣∣∣∣
+ max

0≤k≤L−1

∣∣∣∣∣ 1n
n∑

i=1

[1{Ui+ani ≤tk} − F (tk − a
n
i , a

n
i )]

∣∣∣∣∣
+ 4 sup

t∈
|Hn(t)−H(t)|+ 2ϵ

From (5.13), (5.14), and (5.10), we finally have

lim
n→∞

sup
t∈
|Ēn(t)−Hn(t)| = lim

ϵ→0
lim
n→∞

sup
t∈
|Ān(t)−Hn(t)| ≤ lim

ϵ→0
2ϵ = 0.

This completes the proof.
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Proof of Proposition 3.3.1. We now consider the fluid scaled queue length process Q̄n(t), t ∈, and

note that for t ∈ [0, T ],

Q̄n(t) = Ēn(t)− S̄n(Bn(t))

= [Ēn(t)−H(t)]− [S̄n(Bn(t))− µBn(t)] +H(t)− µBn(t)

= [Ēn(t)−H(t)]− [S̄n(Bn(t))− µBn(t)] + [H(t)− µt] + µIn(t),

where In(0) = 0, In(t) is nondecreasing in t, and it increases only when Q̄n(t) = 0. Thus (Q̄n, µIn)

is the unique solution to the one-dimensional Skorokhod problem associated with

Xn(t) = [Ēn(t)−H(t)]− [S̄n(Bn(t))− µBn(t)] + [H(t)− µt], t ≥ 0.

We also note that for t ≥ T , letting s = t− T,

Q̄n(s+ T ) = Ēn(T )− S̄n(Bn(s+ T ))

= Q̄n(T )− [S̄n(Bn(s+ T ))− S̄n(Bn(T ))]

= Q̄n(T )− [S̄n(Bn(s+ T ))− S̄n(Bn(T ))− µ(Bn(s+ T )−Bn(T ))]− µs

+ µ(In(s+ T )− In(T )).

Define for s ≥ 0,

X̃n(s) = Q̄n(T )− [S̄n(Bn(s+ T ))− S̄n(Bn(T ))− µ(Bn(s+ T )−Bn(T ))]− µs,

and

Q̃n(s) = Q̄n(s+ T ), Ĩn(s) = In(s+ T )− In(T ).

Then Ĩn(0) = 0, and Ĩ(s) is decreasing in s and increases only when Q̃n(s) = 0, which yields that

(Q̃n, µĨn) is the unique solution to the one-dimensional Skorokhod problem associated with X̃n.

At last, for t < 0,

Q̄n(t) = Ēn(t).
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From Lemma 3.3.1 and the SLLN for renewal processes, we have for τ > 0,

sup
t∈[0,τ ]

|Xn(t)− [H(t)− µt]| → 0, almost surely, (5.16)

sup
t∈[0,τ ]

|X̃n(t)− Q̄n(T ) + µt| → 0, almost surely. (5.17)

Using the Lipschitz continuity of the one dimensional Skorokhod map, we have the following fluid

limit of (Q̄n, In).

Proof of Proposition 3.4.1. Under a given H = {H(t); t ≤ T}, the fluid queue length process is

given as

q(t) =



H(t), t ≤ 0,

H(t)− µt+ µi(t), t ∈ [0, T ],

q(T )− µ(t− T ), t ∈ [T, T + q(T )/µ],

0, t ≥ T + q(T )/µ,

where the boundary reflection process i(0) = 0, and i(t) is nondecreasing and increasing only when

q(t) = 0 for t ∈ [0, T ]. From Lemma 1 in [Armony, Atar, and Honnappa, 2017], consider

H̃(t) =


H(t), t ≤ 0,

H(t) + µi(t), t ∈ [0, T ].

(5.18)

Then under the control H̃ = {H̃(t); t ≥ T},

q̃(t) =



H(t), t ≤ 0,

H̃(t)− µt+ µĩ(t), t ∈ [0, T ],

q̃(T )− µ(t− T ), t ∈ [T, T + q̃(T )/µ],

0, t ≥ T + q̃(T )/µ,
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However, we note that since H̃(t) − µt = H(t) + µi(t) − µt ≥ 0 for all t ∈ [0, T ], ĩ(t) = 0 for

t ∈ [0, T ], which yields that

q̃(t) = q(t), t ∈, and 0 = ĩ(t) ≤ i(t), t ∈ [0, T ], (5.19)

From (5.18) and (5.19), we conclude that

J(H̃;µ) ≥ J(H;µ). (5.20)

Therefore, the optimal control is to make the idle time process equal to zero during the time interval

[0, T ]. We now only consider the controls H = {H(t); t ≤ T} under which i(t) = 0, t ∈ [0, T ], i.e.,

H(t) ≥ µt for t ∈ [0, T ]. We note that

J(H;µ) = r(q(T ) + µT )− cw
∫ ∞

0
q(t)dt− coq(T )/µ

= (r − co/µ)q(T )− cw
∫ ∞

0
q(t)dt+ rµT

= (r − co/µ)q(T )− cw
∫ T

0
q(t)dt− cw

∫ T+q(T )/µ

T
[q(T )− µ(t− T )]dt+ rµT

= (r − co/µ)q(T )− cw
∫ T

0
q(t)dt− cw

2µ
q(T )2 + rµT (5.21)

= (r − co/µ)(H(T )− µT )− cw
∫ T

0
(H(t)− µt)dt− cw

2µ
(H(T )− µT )2 + rµT

= (r − co/µ)H(T )− cw
∫ T

0
H(t)dt− cw

2µ
(H(T )2 − 2µTH(T )) + C0

= (r − co/µ+ cwT )H(T )− cw
2µ
H(T )2 − cw

∫ T

0
H(t)dt+ C0,

where C0 is a constant. From (5.21), when r ≤ co/µ, the optimal q∗(t) = 0 and H∗(t) = µt for

t ∈ [0, T ].

Generally, the FCP is now formulated to choose H = {H(t); t ≤ T} satisfying H(t) ≥ µt for

t ∈ [0, T ] to maximize

J̃(H;µ) = (r − co/µ+ cwT )H(T )− cw
2µ
H(T )2 − cw

∫ T

0
H(t)dt. (5.22)
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From Lemma 1 in [Armony, Atar, and Honnappa, 2017], the FCP is equivalent to choose {H(t); t ≤

T} satisfying H(t) ≥ µt for t ∈ [0, T ] to maximize (5.21). Assuming r ≤ co/µ, we note that the

objective function in (5.21) is less than or equal to 0, and it is equal to 0 when H(t) = µt for

t ∈ [0, T ]. Thus if r ≤ co/µ, an optimal solution is given by H(t) = µt for t ∈ [0, T ] and the optimal

state process q(t) = 0 for t ∈ [0, T ].

Now assume r > co/µ. We consider the equivalent objective function in (5.22). Introduce the

terminal cost/reward function

ϕ(x) = (r − co/µ+ cwT )x−
cw
2µ
x2.

It is easily seen that

arg max
x≥µT

ϕ(x) = µT +
µ(r − co/µ)

cw
. (5.23)

For an arbitrary control process {H(t); t ∈ [0, T ]} satisfying H(t) ≥ µt for t ∈ [0, T ], we observe

that

J̃(H∗;µ)− J̃(H;µ) =

[
ϕ

(
µT +

µ(r − co/µ)
cw

)
− ϕ(H(T ))

]
− cw

∫ T

0
(µt−H(t))dt ≥ 0,

on noting that the term in the brackets is nonnegative because of (5.23), and the integral is

nonpositive because H(t) ≥ µt for t ∈ [0, T ]. This shows that H∗ is optimal when r > cO/µ.

Proof of Corollary 1. This result easily follows from the proof of Proposition 3.4.1 that if H(t) ≥ µt

with r ≤ co
µ , then the objective function in (5.21) is less than or equal to 0 and it is equal to 0

if and only if H(t) = µt. Similarly, for H(t) < µt, nonzero idle cost will be accrued leading to a

negative objective value.

Proof of Lemma 3.5.1. For k = 0, î(0) = 1
µ max{−H(0), 0} = 0 and thus q̂(0) = Ĥ(0). Thus,

q0 = q̂(0) = Ĥ(0) and I0 = î(0) = 0.

Now, assuming qk = q̂(k) and

k∑
j=0

Ij = î(k) for k = 0, 1, . . . , n− 1 < K, we must now show that

this holds for n.
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To show that qn = q̂(n), we note that by the induction hypothesis,

qn = max{0, q̂(n− 1) + an − µ T
K }

= max{0, Ĥ(tn−1)− µ (n−1)T
K + µî(n− 1) + Ĥ(tn)− Ĥ(tn−1)− µ T

K }

= max{0, Ĥ(tn)− µnT
K + µî(n− 1)}

= max

{
0, Ĥ(tn)− µnT

K + max
i∈{0,...,n}

max

{
0, µ

iT

K
− Ĥ(ti)

}}

= Ĥ(tn)− µnT
K + µî(n)

= q̂(n).

To show that
∑n

j=0 Ij = î(n), we note that by the induction hypothesis,

∑n
j=0 Ij = î(n− 1) + 1

µ max{0, µ T
K − (Ĥ(tn) + Ĥ(tn−1))− qn}

= 1
µ

(
max

i∈{0,...,n−1}
max

{
0, µ

iT

K
− Ĥ(ti)

}
+max

{
0, µ

T

K
− (Ĥ(tn) + Ĥ(tn−1))− qn

})

= 1
µ max

i∈{0,...,n}
max

{
0, µ

iT

K
− Ĥ(ti)

}

= î(n).

Proof of Proposition 3.5.1. Since patients are not accepted into the system if arriving after time

T , we have ∫ ∞

0
q(t)dt =

∫ T

0
q(t)dt+

cw
2µ
q(T )2.
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Using the triangle inequality, we have

|J(a⋆)− Ĵ(p⋆)| ≤ r|H(T )− Ĥ(T ) + cw

∣∣∣ TK ∑K−1
i=0 qi −

∫ T
0 q(t)dt

∣∣∣
+ cw

2µ

∣∣q2K − q(T )2∣∣+ cI

∣∣∣i(T )−∑K−1
i=0 Ii

∣∣∣
+ co

µ |qk − q(T )| .

We will examine the individual terms:

1.
∣∣∣H(T )− Ĥ(T )

∣∣∣,
2.
∣∣∣i(T )−∑K−1

i=0 Ii

∣∣∣,
3. |qK − q(T )|,

4.
∣∣∣ TK ∑K−1

i=0 qi −
∫ T
0 q(t)dt

∣∣∣, and
5.
∣∣q2K − q(T )2∣∣.

For the first term, we refer to Theorem 5.3.2. We first note that F is a 1-f̄ -Hölder type mapping

where f̄ is the maximum value the derivative of F achieves on [0, T ]. Further, a(t) is a nondecreasing

function on [0, T ] and is thus of bounded variation with V b
a (a) = ā(T ) <∞ which is guaranteed if

0 is within the convex hull. Thus,

∣∣∣H(T )− Ĥ(T )
∣∣∣ ≤ T

K
rf̄ ā(T ).

For the second term, by Lemma 3.5.1, we have

∣∣∣i(T )−∑K−1
i=0 Ii

∣∣∣ =
∣∣∣i(T )− î(K)

∣∣∣
= µ−1

∣∣∣∣∣ sup
0≤s≤T

max {µs−H(s), 0} − max
i∈{0,1,...,K}

max
{
µti − Ĥ(ti)

}∣∣∣∣∣
≤ T

K

(
1 + f̄ ā(T )

µ

)
.
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For the third term, we have

|qK + q(T )| =
∣∣∣Ĥ(T ) + µî(K)− (H(T ) + µi(T ))

∣∣∣
≤

∣∣∣Ĥ(T )−H(T )
∣∣∣+ µ

∣∣∣̂i(K)− i(T )
∣∣∣

≤ T
K

(
f̄ ā(T ) + 1 + f̄ ā(T )

µ

)

= T
K

(
1 + (µ+1)f̄ ā(T )

µ

)
by using our results for the first 2 terms.

For the fourth term, we have

∣∣∣ TK ∑K−1
k=0 qi −

∫ T
0 q(t)dt

∣∣∣ =
∣∣∣ TK ∑K−1

k=0

(
Ĥ(tk)− µtk + µî(k)

)
−
∫ T
0 (H(t)− µt+ µi(t)) dt

∣∣∣
≤

∣∣∣ TK ∑K−1
k=0 Ĥ(tk)−

∫ T
0 H(t)dt

∣∣∣+ ∣∣∣ TK ∑K−1
k=0 µtk −

∫ T
0 µtdt

∣∣∣
+
∣∣∣ TK ∑K−1

k=0 µî(k)−
∫ T
0 µi(t)dt

∣∣∣ .
We will examine these 3 components below and using the approximation error of a left Riemann-

sum, we have:

∣∣∣ TK ∑K−1
k=0 Ĥ(tk)−

∫ T
0 H(t)dt

∣∣∣ =
∣∣∣ TK ∑K−1

k=0 Ĥ(tk)−
∫ T
0 Ĥ(t)dt+

∫ T
0 Ĥ(t)dt−

∫ T
0 H(t)dt

∣∣∣
≤

∣∣∣ TK ∑K−1
k=0 Ĥ(tk)−

∫ T
0 Ĥ(t)dt

∣∣∣+ ∣∣∣∫ T
0 Ĥ(t)dt−

∫ T
0 H(t)dt

∣∣∣
≤ h̄T 2

K + f̄ T 2

K ā(T )

= T
K

(
h̄T + f̄T ā(T )

)
,

∣∣∣∣∣ TK
K−1∑
k=0

µtk −
∫ T

0
µtdt

∣∣∣∣∣ = T

K
µT,
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and ∣∣∣∣∣ TK
K−1∑
k=0

µî(k)−
∫ T

0
µi(t)dt

∣∣∣∣∣ ≤ T 2

K
.

For the final and fifth term, we have

∣∣q2K − q(T )2∣∣ = |(qK − q(T ))(qK + q(T ))|

≤ |qK + q(T )|
(∣∣∣Ĥ(T )−H(T )

∣∣∣+ µ
∣∣∣̂i(K)− i(T )

∣∣∣)

≤ |qK + q(T )| TK
(
f̄ ā(T ) + 1 + (µ+1)f̄ ā(T )

µ

)

≤ T
K

(
1 + (2µ+1)f̄ ā(T )

µ

)(
2ā(T ) + 1 + (µ+1)f̄ ā(T )

µ

)
.

Combining the five terms gives us our desired result.
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APPENDIX 4: SUPPLEMENTS TO CHAPTER 4

5.4 Mathematical Details

Proof of Proposition 4.3.1. First, we will prove the case for k = 1 test when starting in state eS .

We need to show that a one-step look-ahead policy is optimal. By (Ross, 1983), we need only

determine that the θ = 0 process is stable and that the set of states where it is optimal to use the

test immediately rather than move ahead by single step before using the test exists as a closed set.

Note the belief state space is countable, as we start in state eS and evolve according to a DTMC.

Since our costs are bounded, we have a stable system by (Ross, 1983).

Suppose we have never observed symptoms and have not used the test yet. We define bθ=0
t as

the belief state vector at time t given that θ = 0 has been observed at times t ∈ {0, 1, . . . , t}. Let

bθ=0
0 = eS , we can derive the following time-evolution equations for each component in bθ=0

t for

t ≥ 0:

bθ=0
t (S) = 1∏t−1

i=0 β(bθ=0
i )

(1− p)t ,

bθ=0
t (Ia) =

1∏t−1
i=0 β(bθ=0

i )
αp
[∑t−1

i=0(1− p)t−1−i(1− q)i
]
It≥1,

b
(θ=0)
t (Is) = 0,

bθ=0
t (R) = 1∏t−1

i=0 β(bθ=0
i )

αpq
[∑t−2

i=0

∑i
j=0(1− p)i(1− q)i−j

]
It≥2,

(5.24)

where β(b) = b(S)(1− (1− α)p) + b(Ia) + b(R) = P (θ|b, c).

Note that we only need the equations for bθ=0
t (S) and bθ=0

t (Ia) as they are the only states

associated with nonzero costs.

To verify closedness, it is sufficient to verify that if bθ=0
t (S) ≤ q

αpb
θ=0
t (Ia) holds true for some

t ≥ 0, then bθ=0
t+1 (S) ≤

q
αpb

θ=0
t+1 (Ia) follows. Using the Equation System (5.24), we assume our

sufficient condition is true and rewrite it as

(1− p)t ≤ q

[
t−1∑
i=0

(1− p)t−1−i(1− q)i
]
.
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Multiply by (1− p) on both sides gives us

(1− p)t+1 ≤ q(1− p)

[
t−1∑
i=0

(1− p)t−1−i(1− q)i
]

= q
t−1∑
i=0

(1− p)t−i(1− q)i

≤ q
t∑

i=0

(1− p)t−i(1− q)i.

We note that (1− p)t+1 ≤ q
t∑

i=0

(1− p)t−i(1− q)i is simply

bθ=0
t+1 (S) =

1∏t
i=0 β(b

θ=0
i )

(1− p)t+1 ≤ q

αp

(
αp∏t

i=0 β(b
θ=0
i )

)
t∑

i=0

(1− p)t−i(1− q)i = q

αp
bθ=0
t+1 (Ia).

We must now show that (1 − p)t ≤ q
t−1∑
i=0

(1 − p)t−1−i(1 − q)i occurs for some finite t ≥ 0. We

write

q
t−1∑
i=0

(1− p)t−1−i(1− q)i − (1− p)t = q(1− p)t−1
t−1∑
i=0

(
1− q
1− p

)i

− (1− p)t

= q(1− p)t−1

[
t−1∑
i=0

(
1− q
1− p

)i

− 1− p
q

]
.

We want the above term to be greater than 0 for some finite number t. This requires us to only

look at the term inside the square brackets. That is, if

t−1∑
i=0

(
1− q
1− p

)i

− 1− p
q

> 0 (5.25)

for some finite t, we are done. We note that
∑t−1

i=0

(
1−q
1−p

)i
is a geometric series that, if we take the

limit as t → ∞, will diverge if p ≥ q, guaranteeing (5.25) to be true. Suppose p < q which means

the infinite geometric series converges to a finite sum. In order for (5.25) to hold true for finite t,

we need
t−1∑
i=0

(
1− q
1− p

)i

=
1

1− 1−q
1−p

=
1− p
q − p

>
1− p
q

.

We can see this is clearly true when simplified.
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Now suppose we have k ≥ 2 tests. We wish to show that the set of states{
bθ=0
t : bθ=0

t (S) ≤ bθ=0
t (Ia)

pV ⋆(eS ,k−1) ,b0 = eS

}
is a closed set of states. Recall Equation System (5.24)

and the k = 1 case where we showed if bθ=0
t (S) ≤ q

pb
θ=0
t (Ia) holds true, then b

θ=0
t+1 (S) ≤

q
αpb

θ=0
t+1 (Ia)

also holds true. If we substitute 1
V ⋆(eS)

for α
q , the induction still holds and we have shown that{

bt : bt(S) ≤ bt(Ia)
pV ⋆(eS ,k−1) ,b0 = eS

}
is a closed set of states.

Suppose k ≥ 2. To show that the optimal stopping criterion will be met in a finite amount of

time, we need

(1− p)t ≤ 1

V ⋆(eS , k − 1)

t−1∑
i=0

(1− p)(t−1−i)(1− q)i

for some finite t. We rewrite the above expression as

(1− p)t
[

1

1− p

t−1∑
i=0

(1− q)i

(1− p)i
− V ⋆(eS , k − 1)

]
≥ 0,

which will hold true if

1

1− p

∞∑
i=0

(1− q)i

(1− p)i
> V ⋆(eS , k − 1).

If p ≥ q, this is trivially true as the sum diverges. Suppose p < q, then

1

1− p

∞∑
i=0

(1− q)i

(1− p)i
=

1

q − p
>

α

q − p
>
α

q
≥ V ⋆(eS , k − 1).

Proof of Corollary 4.3.2. Using Equation System (5.24) and the condition for using a test from

Equation (4.3), we find

τk = inf

{
t ∈ Z+ :

α

1− p

t−1∑
i=0

(
1− q
1− p

)i

≥ V ⋆(eS , k − 1)

}
.

Using the partial sum identity

n−1∑
k=0

rk =


n, if r = 1

1−rn

1−r , otherwise,
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allows us to simplify to the expression in the corollary. Also, the expression for V ⋆(eS , k) is simply

the expected cost of following the τk policy for the first test and performing optimally onwards.

Proof of Corollary 4.3.1. Suppose the agent starts from eS with i+1 tests. They can wait one day

and immediately use the test, then follow the optimal policy when i tests remain. This results in an

expected cost of (1−p)V ⋆(eS , i). If we call this policy π, then we have V ⋆(eS , i+1) ≤ V π(eS , i+1) <

V ⋆(eS , i). The ordering of the τk values easily follows from the closed-form expression for τk.

Proof of Proposition 4.3.3. We need to show that ϕs(t) ≤ q
αpt

ϕa(t) implies ϕs(t+1) ≤ q
αpt+1

ϕa(t+1)

for all t ≥ t0. Rewriting the first inequality and multiplying by (1− pt), we get

ϕs(t)(1− pt) = ϕs(t+ 1)

≤ q(1−pt)
αpt

ϕa(t).
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If we can show q(1−pt)
αpt

ϕa(t) ≤ q)
αpt+1

ϕa(t + 1) under our condition, we are done. We consider the

difference

1−pt
pt

ϕa(t)− 1
pt+1

ϕa(t+ 1)

= 1−pt
pt

(
p0(1− q)t−1 + (1− p0)p1(1− q)t−2 + · · ·+ pt−1

∏t−2
j=0(1− pj)

)

− 1
pt+1

(
p0(1− q)t + (1− p0)p1(1− q)t−1 + · · ·+ pt−1(1− q)

∏t−2
j=0(1− pj)

)

− pt
pt+1

∏t−1
j=0(1− pj)

=
(
1−pt
pt

p0(1− q)t−1 − 1−q
pt+1

p0(1− q)t−1
)

+
(
1−pt
pt

p1(1− p0)(1− q)t−2 − 1−q
pt+1

p1(1− p0)(1− q)t−2
)

+ · · ·+
(
1−pt
pt

pt−1
∏t−2

j=0(1− pj)−
1−q
pt+1

pt−1
∏t−2

j=0(1− pj)
)

− pt
pt+1

∏t−1
j=0(1− pj)

=
(
1−pt
pt
− 1−q

pt+1

)
ϕa(t)− pt

pt+1
ϕs(t),

which is nonpositive under our condition.

Proof of Corollary 2. (
1− pt
pt

− 1− q
pt+1

)
ϕa(t)−

pt
pt+1

ϕs(t)

is strictly negative if (
1− pt
pt

− 1− q
pt+1

)
≤ 0,

since pt
pt+1

ϕs(t) is strictly positive.

Proof of Proposition 4.3.4. We note that Equation (4.8) is a one-step look-ahead (OSLA) policy

for the optimal stopping problem associated with a single test. Thus, we will follow the same
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schematic based upon (Ross, 1983) as we did in the proof of Proposition 4.3.1, we must prove that

the set of OSLA states is closed and can be reached in a finite amount of time. We will redefine

System (5.24 to handle starting in a possibly asymptomatic-infected belief state. Let the initial

belief state be b0, then

bθ=0
t (S) =

b0(S)∏t−1
i=1 β(b

θ=0
i )

(1− p)t,

bθ=0
t (Ia) =

b0(Ia)(1− q)t + b0(S)p(1− p)t−1
∑t−1

i=0

(
1−q
1−p

)i
∏t−1

i=0 β(b
θ=0
i )

.

(5.26)

Note that we will not explicitly state beliefs for state Is and R as they are not associated with

costs. Suppose we have a single test. The OSLA condition is to stop at time t if

α

q
bθ=0
t (S) +

αζ

q
bθ=0
t (Ia) ≤

(
q + αζ(1− q)

q

)
bθ=0
t (Ia) +

α

q
(1− p(1− ζ)) bθ=0

t (S),

which can be simplified to

bθ=0
t (S) ≥ q(1− αζ)

αp(1− ζ)
bθ=0
t (Ia).

Substituting in our values for bθ=0
t (S) and bθ=0

t (Ia) from System (5.26), we have

b0(S)(1− p)t ≤
(
q(1− αζ)
αp(1− ζ)

)(
b0(Ia)(1− q)t + b0(S)p(1− p)t−1

t−1∑
i=0

(
1− q
1− p

)i
)
,

which can be rewritten as

b0(S)

(
1− p
1− q

)t
(
1− q(1− αζ)

(1− p)α(1− ζ)

t−1∑
i=1

(
1− q
1− p

)i
)
≤ b0(Ia)

(
q(1− αζ)
αp(1− ζ)

)
. (5.27)

This expression allows us to examine the left side of the inequality as the right side is constant in

t and must be a nonnegative quantity. We wish to show the set of states for which this inequality

holds is closed; that is, once this inequality holds for some time t = t0, it also holds for all t > t0

and that this inequality holds true after a finite amount of time. If p ≥ q, this is trivially true as

the LHS of 5.27 is strictly decreasing towards −∞.
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If p < q, we note that

lim
t→∞

(
1− p
1− q

)t

=∞

and

lim
t→∞

(
1− q(1− αζ)

(1− p)α(1− ζ)

t−1∑
i=0

(
1− q
1− p

)i
)

=

(
1− q(1−αζ)

(1−p)α(1−ζ)

(
1

1−
(

1−q
1−p

)
))

= α(1−ζ)(q−p)−q(1−αζ)
α(1−ζ)(q−p)

< 0.

This only shows that the inequality holds true after a finite amount of time, but does not guarantee

closedness. For closedness, we assume an induction hypothesis that the inequality holds true at

time t and consider t+ 1.

b0(S)

(
1− p
1− q

)t+1

1− q(1− αζ)
(1− p)α(1− ζ)

1−
(
1−q
1−p

)t+1

1−
(
1−q
1−p

)



=

(
1− p
1− q

)(
b0(S)

(
1− p
1− q

)t
(
1− q(1− αζ)

(1− p)α(1− ζ)

t−1∑
i=0

(
1− q
1− p

)i

− q(1− αζ)
(1− p)α(1− ζ)

(
1− q
1− p

)t
))

≤
(
1− p
1− q

)(
b0(Ia)

q(1− αζ)
αp(1− ζ)

− b0(S)
q(1− αζ)

(1− p)α(1− ζ)

)
.

We note that

(
1− p
1− q

)(
b0(Ia)

q(1− αζ)
αp(1− ζ)

− b0(S)
q(1− αζ)

(1− p)α(1− ζ)

)
≤ b0(Ia)

q(1− αζ)
αp(1− ζ)

if and only if

b0(Ia) ≤
p

q − p
b0(S),

which is our required condition.
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