
ANALYZING DATA-CENTER APPLICATION PERFORMANCE VIA
CONSTRAINT-BASED MODELS

Junhua Yan

A thesis submitted to the faculty at the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Computer Science.

Chapel Hill
2023

Approved by:

Jasleen Kaur

Van Jacobson

Colin Raffel

F. Donelson (Don) Smith

Kevin Jeffay

© 2023
Junhua Yan

ALL RIGHTS RESERVED

ii

ABSTRACT

Junhua Yan: Analyzing Data-center Application Performance Via Constraint-based Models
(Under the direction of Jasleen Kaur)

Hyperscale Data Centers (HDCs) are the largest distributed computing machines ever con-

structed. They serve as the backbone for many popular applications, such as YouTube, Netflix,

Meta, and Airbnb, which involve millions of users and generate billions in revenue. As the net-

working infrastructure plays a pivotal role in determining the performance of HDC applications,

understanding and optimizing their networking performance is critical.

This thesis proposes and evaluates a constraint-based approach to characterize the networking

performance of HDC applications. Through extensive evaluations conducted in both controlled

settings and real-world case studies within a production HDC, I demonstrated the effectiveness

of the constraint-based approach in handling the immense volume of performance data in HDCs,

achieving tremendous dimension reduction, and providing very useful interpretability.

iii

To my parents, Changhui Qi and Chao Sun,

whose unwavering love, support, and sacrifices have been the bedrock of my journey.

iv

ACKNOWLEDGEMENTS

Firstly, I would like to express my heartfelt gratitude to my parents, Chao Sun and Changhui.

They have consistently provided unwavering support throughout my doctoral journey.

I extend my sincere thanks to my advisors, Dr. Jasleen Kaur from UNC and Van Jacobson

from Google. Under your guidance, I learned invaluable lessons on problem-solving approaches,

solution formulation, idea execution, and effective communication. It is an immense honor to

have been your student. I am also grateful to my committee members for their time and dedica-

tion in discussing my research ideas, reviewing my drafts, and providing constructive feedback.

I would like to acknowledge my labmate at UNC, Hasan Faik Alan. His commitment to

research excellence has greatly influenced me, especially during our early interactions when I

began my PhD journey. Hasan has been immensely helpful in both coursework and research,

starting from the very first socket programming assignment in Prof. Kaur’s class.

A special thank you goes to the department staff, including Denise, Missy, Janet, Bil, and

numerous others. Your efforts have created an incredible environment within the department,

fostering support and guidance for all of us.

I am grateful to my mentors and teammates at Google: Van Jacobson, Yuchung Cheng,

Yousuk Seung, Mubashir Adnan Qureshi, Soheil Hassas Yeganeh, Neal Cardwell, David Wether-

all, Nandita Dukkipati. The design and implementation of Fathom have been instrumental in

enabling my work. I appreciate your willingness to address my inquiries, provide insightful guid-

ance for implementing the pipeline, and offer valuable feedback on my case studies. I consider

myself extremely fortunate to have become a part of the team since my initial internship in the

summer of 2019. Although interning for more than two years may not have been anticipated,

I consider it a stroke of luck. I extend my thanks to David and Nandita for their assistance in

reviewing and approving my dissertation, enabling me to share my work with you all today.

v

To my friends, I am grateful for your presence in my life. I would like to thank my room-

mates, Yi Li and Zhen Wei, for inspiring me to become a better cook. After all, there’s hardly

anything that can’t be solved with the magic of a delicious home-cooked meal. I express my

gratitude to Meng Zou, Weixing Zhou, and Qianwen Yin for joining me in new experiences, shar-

ing your thoughts, introducing me to captivating movies and books, and keeping me motivated

and inspired. Lastly, to all my friends, thank you for providing companionship throughout these

years.

The incredible support I received from those around me was an incredible source of motiva-

tion throughout my doctoral journey. I am truly grateful for their presence and encouragement.

Thank you.

vi

TABLE OF CONTENTS

LIST OF TABLES . xiii

LIST OF FIGURES . xvi

CHAPTER 1: INTRODUCTION . 1

1.1 Understanding the Network Performance of HDC Applications is Critical 1

1.1.1 The Significance of Understanding the Network Performance of HDC
Applications . 1

1.1.1.1 Task 1: Assessment . 2

1.1.1.2 Task 2: Planning . 3

1.1.1.3 Task 3: Diagnosis . 3

1.1.2 Common Characteristics of HDC Applications . 4

1.1.2.1 Distributed . 4

1.1.2.2 Diverse Application Workload & Requirements 5

1.1.2.3 Diverse Infrastructures . 6

1.1.2.4 Coupled . 6

1.1.3 Challenges in Understanding the Network Performance of HDC Ap-
plications . 7

1.2 Performance Monitoring in HDCs: State-Of-The-Art . 9

1.3 Our Approach: Analyzing HDC Application Network Performance Via Constraints-
based Models . 10

1.3.1 Our Goal . 10

1.3.2 Implementation . 11

1.3.3 GMM Evaluation . 11

1.3.4 Enhancements . 13

vii

1.4 Thesis Organization . 14

CHAPTER 2: RELATED WORK . 15

2.1 Performance Monitoring/Tracing . 15

2.2 Anomaly Detection and Characterization . 19

2.2.1 Time-series Based Approaches . 21

2.2.2 Performance Statistics/Traffic Features Based Approaches 23

2.2.2.1 Heuristic Rules . 24

2.2.2.2 Statistical Tools . 25

2.2.2.3 Learning-based Techniques . 26

2.2.2.4 Rollout Impact Anlysis . 28

2.2.3 Dependency-graph Modeling . 29

2.2.4 Limitations . 32

CHAPTER 3: OUR APPROACH: CONSTRAINT-BASED MODELS BASED ON
REMOTE PROCEDURE CALL TELEMETRY . 34

3.1 The Goal: Constraint-Based Modeling . 34

3.2 Performance Data: Remote Procedure Call Telemetry . 37

3.2.1 How Constraints Manifest in HDCs . 37

3.2.2 A Vantage Point for Observing Constraints: Remote Procedure Call 39

3.2.2.1 The RPC Workflow . 40

3.2.2.2 Potential Constraints for an RPC . 41

3.3 Interpretable Modeling: Gaussian Mixture Models (GMMs) . 44

3.3.1 Background: Gaussian Mixture Models . 44

3.3.2 Interpretable Modeling . 44

CHAPTER 4: THE MODELING PIPELINE . 48

4.1 GMM Modeling . 49

4.1.1 Feature Selection . 49

viii

4.1.2 Model Selection . 51

4.1.2.1 Goodness of Fit . 53

4.1.2.2 Goodness of Separation . 54

4.1.2.3 Goodness of Interpretation . 55

4.1.2.4 Model Selection Approach Summary . 61

4.1.3 Background Removal . 63

4.1.3.1 Our Approach . 66

4.1.3.2 Validation with a Public Dataset . 68

4.2 Analysis of GMM blobs . 72

4.2.1 Performance Characterization . 73

4.2.2 Categorical Composition Analysis . 74

4.2.3 Blob Matching . 76

4.3 Conclusion . 77

CHAPTER 5: EVALUATIONS ON THE CLOUDLAB EMULATION PLATFORM. 78

5.1 Experimental Methodology . 78

5.1.1 Traffic Characteristics . 78

5.1.2 Testbed Topology . 79

5.2 Performance Tracing on CloudLab . 80

5.2.1 Monitoring Tools . 80

5.2.1.1 SNMP (Switches) . 80

5.2.1.2 Ifconfig (Clients & Servers) . 81

5.2.1.3 Tcpdump (Clients & Servers) . 81

5.2.2 Performance Metrics . 81

5.2.2.1 Delay Metrics . 82

5.2.2.2 Rate Metrics . 83

5.2.2.3 Volume Metrics . 83

ix

5.2.2.4 Cross-traffic Information . 85

5.2.3 Performance Constraints on CloudLab . 85

5.3 Use Case 1: Understanding the Performance of Cache Application 86

5.3.1 What Can Be Learned from Traditional Approaches . 87

5.3.2 What Can Be Learned Using GMM Analysis . 92

5.3.3 Validating Constraints with Ground Truth Information . 93

5.3.4 GMMs vs. kMeans vs. DBSCAN . 98

5.4 Use Case 2: Analyzing the Impact of Configuration Factors on RPC Performance . . 100

5.4.1 Experiment 1: The Impact of Generic Segmentation Offloading (GSO) 100

5.4.1.1 Background: GSO . 101

5.4.1.2 What Can Be Learned from Traditional Analysis 101

5.4.1.3 What Can Be Learned Using GMM Analysis . 103

5.4.1.4 Validating Constraints Using Ground Truth Information 106

5.4.2 Experiment 2: The Impact of HTTP Persistence . 107

5.4.2.1 The Impact of HTTP Keep-Alive with Multiple Connections 109

5.4.3 Experiment 3: The Impact of Communication Patterns . 117

5.5 Use Case 3: Detecting Performance Anomalies . 118

5.6 Conclusion . 121

CHAPTER 6: CASE STUDIES FROM A PRODUCTION HDC . 123

6.1 RPC Performance Instrumentation: Fathom . 123

6.1.1 Performance Metrics Collected . 124

6.1.2 Categorical Attributes Collected . 126

6.1.3 RPC Sampling . 127

6.1.4 t-Digests: Aggregation that Preserves Distributions . 129

6.1.5 Training Features from Fathom . 130

6.2 Case Study 1: Simpson’s Paradox in RPC Telemetry . 131

x

6.2.1 How GMMs Help . 135

6.3 Case Study 2: Evaluating the Performance of a Major Service . 137

6.3.1 GMM Results . 138

6.3.1.1 GMM Distinguishes Performance Constraints 141

6.3.1.2 Categorical Attributes Influence the Performance Behav-
ior of a GMM Blob . 143

6.4 Case Study 3: Understanding Impact of Infrastructure Change: Congestion
Control . 145

6.4.1 Background: TCP Congestion Control . 146

6.4.2 The Picture Without GMM Analysis . 146

6.4.3 How Does GMM Help Understand Performance Before the Infras-
tructure Change? . 147

6.4.4 How Does newCC Impact Networking Constraints Experienced by
J in StoreService? . 149

6.4.5 Identifying a Needle in the Haystack . 151

6.5 Case Study 4: Infrastructure Upgrade Planning . 152

6.5.1 How Can GMM Inform Planning of Future Upgrades? . 154

6.5.2 Discussion. 154

6.6 Case Study 5: Root Cause Analysis of Performance Degradation 155

6.6.1 How Can GMM Analysis Help Separate Traffic With Degraded Net-
working Performance? . 156

6.6.2 How Can GMM Analysis Shed Light on the Root Cause? 157

6.6.3 Discussion. 158

6.7 Conclusion . 159

CHAPTER 7: DATA COLLECTION INSTRUMENTATION MODIFICATIONS
AND FOLLOW-UP CASE STUDIES . 160

7.1 Issue 1: The Impact of RPC Size on Performance . 160

7.1.1 The Network Performance of Small vs. Large RPCs . 160

7.1.1.1 Background: Bandwidth and Delay . 160

xi

7.1.1.2 Background: Physical Constraints Limiting the Performance
of Network Transfers . 162

7.1.1.3 What Is Relevant for Small vs. Large RPCs . 162

7.1.2 Potential Issues with Disproportional Ratios of Small and Large RPCs. 163

7.1.3 Modifications to Fathom . 164

7.2 Issue 2: Per-RPC vs. Per-Packet Delivery Rate . 166

7.3 Case Study 1: Assess the Impact of Protective Load Balancing (PLB) Deployment . 167

7.4 Case Study 2: Evaluate the Fleetwide Performance of Machine Learning Ser-
vice in HDCs. 170

7.4.1 Issue 1: Job Name Analysis . 171

7.4.2 Issue 2: Match GMM blobs in Different DataCenter Clusters 172

7.4.3 What Can Be Learned from the Fleet-Wide Analysis . 175

7.5 Conclusion . 180

CHAPTER 8: CONCLUSIONS AND FUTURE WORK . 181

8.1 Conclusions . 181

8.2 Role of Constraint-based Modeling in Achieving Different Network Health
Monitoring Goals . 181

8.3 Limitations and Future Work . 184

APPENDIX A: MONITORING TOOLS ON CLOUDLAB . 187

A.1 SNMP . 187

A.2 Ifconfig . 187

A.3 Tcpdump . 188

APPENDIX B: ADDITIONAL CASE STUDIES ON CLOUDLAB TESTBED. 189

B.1 Experiment 1: The Impact of HTTP Keep-Alive with a Single Connection 189

B.2 Experiment 2: The Impact of Communication Patterns . 193

REFERENCES . 199

xii

LIST OF TABLES

Table 3.1 – Constraint types and their associated performance metrics in Figures 3.1
and 3.2. 43

Table 4.1 – An example of two GMMs and their categorical attributes in each blob
(bn). 57

Table 4.2 – Percentages of RPCs for different destination users in blobs C, C1, and
C2. 61

Table 4.3 – Percentages of RPC measurements for different destination users in blobs
(A, A1, A2, B, B1 and B2) in Figure 4.9. 64

Table 4.4 – The Mahalanobis distance within/between blobs in Figure 4.12(a). 69

Table 4.5 – The Mahalanobis distance within/between blobs Figure 4.14(a). 71

Table 4.6 – The Mahalanobis distance between blobs in Figure 4.15(a). 71

Table 5.1 – A list of delay-related performance metrics extracted from pcap files. 83

Table 5.2 – Types of constraints each RPC may experience in the testbed. 86

Table 5.3 – The most distinguishing metric between GMM blobs based on the Wasser-
stein distance. 92

Table 5.4 – Types of constraints experienced by RPCs based on GMMs. 93

Table 5.5 – Average performance of RPCs in each blob. 104

Table 5.6 – Comparison of average performance with and without HTTP Keep-Alive
for multiple connections. 110

Table 5.7 – Distance measure of the 2-dimensional Wasserstein distance between blobs
in two GMMs. 110

Table 5.8 – Top 5 performance metrics that distinguish the blobs in each GMMs with
multiple connections. 111

Table 5.9 – Top 3 performance metrics that distinguish each blob in the GMM when
HTTP Keep-Alive is disabled. 111

Table 5.10 –Cross traffic and RPC size information for each blob when HTTP Keep-
Alive is disabled with multiple connections. 112

xiii

Table 5.11 –Average cross-traffic and RPC size of each blob when HTTP Keep-Alive
is enabled. 114

Table 5.12 –Top 5 distinguishing performance metrics for P0 with and without HTTP
Keep-Alive. 114

Table 6.1 – Description of key metrics collected in Fathom. 125

Table 6.2 – Fathom metrics and their snapshot collection. 126

Table 6.3 – Categorical attributes in Fathom. 128

Table 6.4 – Training features for GMMs. ("tx_latency_*_sec" represents different la-
tency buckets, as described in Table 6.1. In our analysis, we choose 1KB
and 8KB.) . 131

Table 6.5 – The most distinguishing metrics between blob pairs. 142

Table 6.6 – Categorical analysis of blobs. 143

Table 6.7 – The 2-Wasserstein distance between blobs . 149

Table 6.8 – Categorical Composition of Blobs . 153

Table 6.9 – Traffic volume matrix between top pairs of source (row) and destination
(column) pods for measurements in the “best” blob () and the “worst” blob
(). 157

Table 7.1 – The approach for determining size label for each RPC. 165

Table 7.2 – Cosine similarity between job names that appear in five blobs in different
GMMs based on the original and processed job names. 172

Table 7.3 – Blobs matched in the three GMMs based on the Wasserstein distance. 173

Table 7.4 – Cosine similarity of source jobs between GMM blobs in the HDC cluster. 176

Table A.1 – Information collected via SNMP on switches. 187

Table B.1 – A comparison of the average performance with and without HTTP Keep-
Alive. 189

Table B.2 – Top 5 distinguishing performance metrics among blobs in each GMMs. 190

xiv

Table B.3 – Distance measure of the 2-dimensional Wasserstein distance between blobs
in two GMMs. 190

Table B.4 – Top 5 distinguishing performance metrics for P0. 196

xv

LIST OF FIGURES

Figure 1.1 – An example of Simspon’s paradox: Boxplots of transfer latency overall
vs by RPC sizes (Small: [0, 8KB), Medium:[8 KB, 256 KB), Large: [256
KB, ∞)). 8

Figure 3.1 – RPC workflow: Client Side . 39

Figure 3.2 – RPC workflow: Server Side . 40

Figure 4.1 – Modeling Pipeline . 48

Figure 4.2 – Probability density plot of transfer latency in one data center. Values on
the x-axis are hidden due to proprietary reasons. 50

Figure 4.3 – Elbow detection for an example BIC curve (x-axis: number of blobs in
a GMM; y-axis: BIC score). 53

Figure 4.4 – Comparison of two GMMs with different number of blobs. For goodness
of separation, GMM1 (a) is preferred. 55

Figure 4.5 – Example GMMs. For goodness of interpretation, GMM2 (b) is preferred. 56

Figure 4.6 – An example of goodness of interpretation analysis with RPC measure-
ments in a production HDC. 60

Figure 4.7 – An example of model selection with a production dataset: the 2D distri-
bution of 95th percentile pacing rate (x-axis) and delivery rate (y-axis)
when the number of blobs in GMM is 5 (left), 6 (middle), and 7 (right)
respectively (actual values are proprietary and hidden). 61

Figure 4.8 – The results of elbow detection and impurity analysis in example 1. The
number of blobs in GMMs ranges from 3 to 17. 62

Figure 4.9 – An example of model selection with a production dataset: the 2D distri-
bution of the median congestion window (x-axis) and the 95th percentile
delivery rate (y-axis) when the number of blobs in GMM is 4 (left), 5 (mid-
dle), and 6 (right) respectively (actual values are proprietary and hidden).
. 63

Figure 4.10 –An example of how an outlier distorts the GMM result. The inner small
circles illustrate the scatter plots of measurements in a 2D dimension, with
the outer circles representing the contour plot of the 2D distribution for
measurements in each blob. 64

xvi

Figure 4.11 –Time series plot of latency in 95th percentile from Y1. 69

Figure 4.12 –Probability distributions of latency from Y1 in Figure 4.11. 70

Figure 4.13 –Time series plot of latency in 95th percentile in the modified Yahoo dataset. 70

Figure 4.14 –Probability distribution of latency in the modified Yahoo data set in Fig-
ure 4.13. 71

Figure 4.15 –Probability distribution of latency in the modified Yahoo data set in Fig-
ure 4.13. 72

Figure 5.1 – Caption for LOF . 79

Figure 5.2 – Network topology on CloudLab. 80

Figure 5.3 – Delay information extracted using tcpdump. 82

Figure 5.4 – SACK visualization: cumulative ACK=21 and SACK=31-51,61-71 84

Figure 5.5 – Time series of multiple performance metrics. 88

Figure 5.6 – Kde plots of multiple performance dimensions in the experiment. The
unit of the y-axis in a kde plot is probability density. This means that the
height of the curve at a particular point on the x-axis represents the prob-
ability of a randomly selected data point falling within a very small in-
terval around that point. It is important to note that probability density
is not the same as probability. Probability density is a measure of how
likely a data point is to fall within a particular range, while probability
is a measure of how likely a data point is to have a particular value. 89

Figure 5.7 – Studying the correlation of multiple performance metrics using brush-
ing and linking with 10% of RPCs collected in the experiment. 90

Figure 5.8 – Delay information for each blob in the GMM. 93

Figure 5.9 – Kde plots of maximal client delay, 95th percentile of network delay, through-
put, and 95th percentile of bytes-in-flight in each blob based on GMMs. 94

Figure 5.10 –Time sequence graph of one example RPC with a size of 3,171,683 bytes
in each blob based on pcap files captured on the server end. 95

Figure 5.11 –Time sequence graph of client delay for the example RPC in Figure 5.10(a)
based on pcap files captured on the client end. 97

xvii

Figure 5.12 –Scatter plots in throughput and 50th bytes-in-flight with different clus-
tering algorithms. Note that DBSCAN uses the value -1 to indicate out-
liers that do not belong to any cluster. This suggests that DBSCAN is not
effective in this case, as it is unable to cluster all of the data points. 99

Figure 5.13 –Performance comparison in the 95th percentile network delay, through-
put and 95th percentile bytes-in-flight with and without GSO. 102

Figure 5.14 –Cumulative probability of multiple performance metrics of each blob with
and without GSO. 103

Figure 5.15 –Delay breakdown in each blob with and without GSO. 105

Figure 5.16 –Cumulative distribution of RPC sizes of each GMM blob when GSO is
on. 106

Figure 5.17 –Cross-traffic information of each GMM blob when GSO is on. 106

Figure 5.18 –Time sequences of bytes-in-flight and RTT for sample traces in blobs 0
and 2. 108

Figure 5.19 –TCP time-sequence graph without (left) and with (right) HTTP Keep-Alive.
Note that the time in (a) corresponds to a single request, while the time
in (b) is for a later request sent after the establishment of a keep-alive con-
nection. 109

Figure 5.20 –Breakdown of delay on end-hosts and network for each blob in GMMs
with multiple connections. 110

Figure 5.21 –Kde plots of each blob in throughput and bytes-in-flight when HTTP Keep-
Alive is disabled (Disabled: left column) and enabled (Enabled: right
column). 112

Figure 5.22 –Number of concurrent RPCs and completion rate with and without HTTP
Keep-Alive. 115

Figure 5.23 –Sample time sequence plots of bytes-in-flight and RTTs of example traces
in P0 and P2. 116

Figure 5.24 –Delay breakdown of each GMM blob. 118

Figure 5.25 –The ratio of RPCs from each machine in each blob. "s_" in the machine
name indicates servers. 119

Figure 5.26 –The ground truth statistics based on ifconfig and tcpdump. 120

Figure 5.27 –KDE plots of delay, rate and volume without GMMs. 121

xviii

Figure 6.1 – Boxplots of the overall transfer latency (left) and receive queueing latency
(right) for the application. 132

Figure 6.2 – Boxplots of transfer latency (top left), receive queueing latency (top right),
RPC transmit queueing latency (bottom left), and RPC size (bottom right)
for the application after aggregating based on RPC sizes. 133

Figure 6.3 – Boxplots of transfer latency (top left), receive queueing latency (top right),
app queueing latency (bottom left), and pacing latency (bottom right) for
10 different source jobs in this application. 134

Figure 6.4 – Boxplots of transfer latency, receive queueing latency and TCP queue-
ing latency for RPCs from 200 jobs. 135

Figure 6.5 – Boxplots of transfer latency (left), RPC transmit queueing latency (mid-
dle), and RPC size (right) for the application after aggregating based on
RPC sizes. 136

Figure 6.6 – StoreService: Time-series of normalized 95th percentiles of minimum
RTT, cwnd, and delivery rate . 137

Figure 6.7 – GMM Modeling: 95th percentiles of delivery rate, congestion window
size, and minimum RTT. 139

Figure 6.8 – Q-Q plot of measurements in each blob (from left to right: O, F and S). 140

Figure 6.9 – Boxplots for the three most distinguishing metrics. 142

Figure 6.10 –Time series plots of the median delivery rate one week before and after
deploying newCC. 147

Figure 6.11 –3D scatter plots of RPCs from job J in StoreService in the three weeks
before and after the deployment of newCC. 148

Figure 6.12 –Boxplots for the most distinguishing metrics. 149

Figure 6.13 –StoreService: 3D scatter plot—before and after . 150

Figure 6.14 –Distribution of 5th percentile of cwnd with new_cc. 151

Figure 6.15 –MonitorService: GMM blobs . 153

Figure 6.16 –Boxplots for the most distinguishing metrics. 153

Figure 6.17 –DatabaseService: Time-series of normalized 95th percentile minimum
RTT and 5th percentiles of cwnd and delivery rate across six days. 156

xix

Figure 7.1 – The comparison between the original per-packet delivery rate and the
modified per-RPC delivery rate in Fathom. 167

Figure 7.2 – Time series of the normalized 99th percentile (blue), 95th percentile (green),
and 50th percentile (red) of transfer latency and delivery rate of the stor-
age service RPCs before and after the deployment of PLB. 168

Figure 7.3 – Latency for small (<=1KB) RPCs of storage workload. 169

Figure 7.4 – Latency for large (2MB+) RPCs of storage workload. 169

Figure 7.5 – 2D distribution of each GMM blob for RPCs in MLService from two three
clusters (x-axis: normalized delivery rate, y-axis: normalized transfer la-
tency). 173

Figure 7.6 – Hierarchical clustering dendrogram of the GMM blobs in Figure 7.5. 174

Figure 7.7 – Distance between GMM blobs and the breakdown of average latency in
each blob for large RPCs. 177

Figure 7.8 – Distance between GMM blobs and the breakdown of average latency in
each blob for medium-sized RPCs. 178

Figure 7.9 – The breakdown of average latency in each GMM blob for small-sized
RPCs. 179

Figure 8.1 – Analysis Pipelines Adopted in Key Prior Work . 182

Figure 8.2 – A General Network Monitoring Framework—GMM analysis informing
network health monitoring and planning, general rollout impact analy-
sis, anomaly detection, and anomaly classification. 183

Figure A.1 – Example output of ifconfig. 187

Figure A.2 – An example trace captured by tcpdump. 188

Figure B.1 – Breakdown of delay on end-hosts and network for each blob with and
without HTTP Keep-Alive in the GMMs with a single connection. 190

Figure B.2 – Kernel density plots of throughput, bytes-in-flight, and network delay
for multiple connections when HTTP Keep-Alive is disabled (Disabled:
left column) and enabled (Enabled: right column). 192

Figure B.3 – Time sequence plots of bytes-in-flight and round-trip times (RTTs) of
selected traces from blobs P0 and P2 using multiple connections. 194

xx

Figure B.4 – Ground truth information from pcap files. 194

Figure B.5 – TCP tuple information from one server during experiments with differ-
ent communication patterns. 195

Figure B.6 – Delay breakdown for blobs in each GMM with different communication
patterns. 196

Figure B.7 – KDE plots of P0 with different communication patterns: 1 to 1 vs. 1 to
5. 197

Figure B.8 – The ratio of RPCs in each blob with different communication patterns. 197

xxi

CHAPTER 1: INTRODUCTION

Hyperscale Data Centers (HDCs) (1) are among the largest distributed computing machines

ever constructed. These HDCs, such as Amazon AWS (2), Microsoft Azure (3), and Google

Cloud (4) contain tens of thousands of servers deployed in each of more than a dozen mega-scale

data centers throughout the world (5; 6). HDCs simultaneously host thousands of applications

that provide different types of services for a wide range of purposes, including education (e.g.,

Google translation and Zoom), travel (e.g., Airbnb, Google Maps), finance (e.g., Bank of Amer-

ica, Capital One), shopping (e.g., Amazon, Walmart), and entertainment (e.g., Youtube, Face-

book). Most HDC applications are business-critical and performance-sensitive, serving millions

of enterprise customers and generating billions of dollars in revenue.

As the demand for new applications such as artificial intelligence, Internet-of-Things (IoT),

and game streaming (e.g., Stadia (7)) continues to rise, the workload in HDCs has been increas-

ing rapidly. As a result, the network bandwidth requirements in HDCs have roughly doubled

every 9 months in recent years, outpacing other infrastructure components (8). Due to the signifi-

cant dependence of HDC applications on the network infrastructure, it is essential to monitor the

network performance of HDC applications.

1.1 Understanding the Network Performance of HDC Applications is Critical

1.1.1 The Significance of Understanding the Network Performance of HDC Applications

The performance received from the underlying network infrastructure is a major determinant

for the overall performance of HDC applications. The importance of the network infrastructure in

HDCs is highlighted by the fact that network bandwidth requirements have almost doubled every

9 months for the past several years, a rate of growth that surpasses that of other infrastructure

1

components (8). A thorough understanding of HDC application network performance is impor-

tant for performing three fundamental tasks: assessment, planning, and diagnosis. As discussed

below, these three tasks not only help to evaluate the health of HDCs and applications running

inside them, but also ensure satisfactory performance in the long term.

1.1.1.1 Task 1: Assessment

Assessment helps to determine whether HDC applications are performing optimally given

existing HDC infrastructure. If not, engineers can identify solutions to better utilize the HDC

infrastructure and improve the network performance of HDC applications. For example, when

assessing the performance of applications that primarily generate small transfers (e.g., monitoring

services), we can compare their network latency with the propagation delay calculated based on

the maximum physical distance between the end hosts. If the latency is close to the propagation

delay, the applications may be performing at their best. However, if the latency is significantly

larger, it could indicate that there is a high volume of cross-traffic along the network path, which

is taking up a large share of network resources and introducing a noticeable queuing delay. In

this case, the applications may be able to improve their performance by scheduling their applica-

tion processess in different locations to reduce bandwidth sharing, or advocating for a better load

balancing policy.1 Similarly, when assessing the performance of applications with bulk transfers

(e.g., streaming services), comparing their transmission rate with the available bottleneck band-

width on the network path can reveal whether they are fully utilizing the available resources. It is

important to have a good understanding of the network performance of applications in order to

conduct a useful assessment.

1Distributed application processes are the processes that run on the different computers that make up a distributed
application. These processes communicate with each other to coordinate the execution of the application.

2

1.1.1.2 Task 2: Planning

Planning ensures that HDC infrastructures continue to meet the requirements of evolving

service and customer demands in a cost-effective way, as newer applications emerge and traffic

workloads increase. Good planning is important for avoiding revenue loss, reduced productivity,

or unacceptable customer experience. A thorough understanding of application’s network per-

formance is valuable in this decision-making process because it can help identify which parts of

the infrastructure will significantly improve performance if upgraded, or reduce operating costs

without degrading performance if removed. For example, if HDC applications are not typically

bandwidth limited (e.g., they are CPU limited), operators can reduce the bandwidth to reduce

costs with little impact on application performance. On the other hand, if network operators

anticipate increasing traffic demands, they may consider deploying more bandwidth resources to

meet those demands.

1.1.1.3 Task 3: Diagnosis

Diagnosis involves identifying the underlying causes and finding remedies for performance-

related anomalies. Performance anomalies are common in HDCs. For example, Microsoft Azure

reports thousands of virtual machine-down events daily (9). There are several potential causes of

performance anomalies, such as buggy software, hardware, or network configurations. Each of

these issues may require a different solution from a different engineering team. Therefore, it is

important to first identify the component(s) responsible for abnormal performance. For example,

is the issue due to insufficient computing power on local hosts, or is it caused by bugs in the

application code? In the former case, distributing computations to more machines with better

configurations may alleviate the issue.

Having a good understanding of application performance can significantly assist engineers

in resolving performance-related issues in at least two ways. First, it can help to reveal where

anomalies occur. For example, do the anomalies affect traffic from a single application, or do

they span multiple applications? Are these applications running in the same locations in HDCs,

3

possibly sharing switches or links, in which case the source of the anomaly can be localized?

Second, it can help to understand why anomalies occur. For instance, knowing that all anomalous

traffic experiences increased latency on remote hosts, rather than over the network, can point the

investigation towards resources on remote ends (e.g., CPU, memory, storage). This information

can help narrow the scope of the investigation and can accelerate the debugging process.

In conclusion, a comprehensive understanding of the network performance of applications

in HDCs is essential for network operators and engineers to efficiently assess the health of the

HDC infrastructure and applications, plan for future evolutions and upgrades, and diagnose per-

formance anomalies. However, building a comprehensive understanding of HDC application

network performance is challenging due to their characteristics described next.

1.1.2 Common Characteristics of HDC Applications

Unlike single-enterprise data centers and supercomputers, which concurrently run a relatively

few applications, HDCs host thousands of applications simultaneously. These applications may

differ in service types and customer bases, but they share three common characteristics: They are

distributed, diverse, and coupled.

1.1.2.1 Distributed

HDC applications are designed to be distributed for scalability and flexibility. Each appli-

cation may consist of tens to thousands of distributed application processes that communicate

and coordinate through multi-Gbps links of multi-Tbps network configurations, consuming and

producing terabytes of storage data in the process (10; 11). The overall performance of these

distributed processes is highly dependent on the performance of their network transfers from the

underlying infrastructure. There are three main entities that influence the behavior of network

transfers: the local host, the remote host, and the network. The local host generates the data to

be sent and initiates the communication, the remote host receives and processes the data, and the

network transmits the data between the local and remote hosts. For transferring data between

4

local and remote hosts, Remote Procedure Call (RPC) is a fundamental protocol and is used by

most applications in HDCs. It allows an application program to call a procedure regardless of

whether it is local or remote. RPC uses the request/reply paradigm, in which a client sends a

request message to a server and the server responds with a reply message, with the client suspend-

ing execution while waiting for the reply. In this thesis, the term RPC is used to represent both

actual RPC protocols (e.g., gRPC (12)) and generic request/response protocols (e.g., HTTP (13)).

For understanding the overall performance of distributed application processes, it is essential

to understand their performance at each of the three stages. For instance, how quickly can a 1

kilobyte packet be generated on the local host? How long does it take for the packet to traverse

the network and reach the remote host? How long does the packet remain in the receive buffer on

the remote host before being processed?

1.1.2.2 Diverse Application Workload & Requirements

HDC applications exhibit significant diversity. They range from production services such as

video streaming, social networks, email, search, and enterprise cloud services (14; 15; 16; 17; 2;

18), to support services such as storage, computation, and performance monitoring services (with

multiple versions of each service to support different requirements for access latency, resolution,

accuracy, and priorities) (19; 20; 21). These applications have vastly different traffic workloads,

resulting in diverse network performance. The emergence of new technologies, such as artificial

intelligence, Internet-of-Things (IoTs), and game streaming (e.g., Stadia (7)), continually adds

to the diversity of applications and workloads in HDCs. Additionally, their performance may

vary geographically and temporally (daytime vs. evening on different continents). HDC applica-

tions also differ in their performance requirements for latency, bandwidth, and loss (22; 23). For

example, interactive services (e.g., panning a map) typically have a latency requirement of 100

ms or less (24), while less interactive ones (e.g., emails, downloading documents) may have an

acceptable latency range of 1-16 seconds (25; 26; 27).

5

1.1.2.3 Diverse Infrastructures

HDC infrastructures can also be fairly diverse. HDCs are structured hierarchically for scal-

ability and efficiency, with servers hosted in racks that are interconnected through top-of-rack

(ToR) switches. Multiple racks are grouped into pods, and multiple pods are grouped into clus-

ters. Each pod contains only servers in one cluster, while a cluster may span several pods. Mul-

tiple clusters are interconnected within a metro region. Each level of this hierarchy may have

different hardware (CPU, memory, and disk), software (kernel versions, libraries), and network

configurations (bandwidth, network interface controller (NIC), and transport protocols). For in-

stance, switches can have different NIC speeds, ranging from 10 Gbps to 200 Gbps, and buffer

sizes, varying from 6 MB to 12 MB. These differences can impact the serialization and queueing

latency experienced by applications in the network. For a comprehensive overview of a produc-

tion datacenter infrastructure and its evolution over time, please see references (28) and (29).

In addition, HDC infrastructure is continually being re-engineered for improving performance

and meeting increasing demands. Given the scale of HDCs, it can take months to years to com-

plete a global software/hardware rollout (30; 31), and multiple versions can co-exist in different

parts of an HDC. The diverse network infrastructures can lead to different network performance

even for the same application. All of these factors contribute to significant variations in appli-

cation network performance, making it difficult to model using a small number of application

behavioral models or a uniformly-applicable set of heuristics (32).

1.1.2.4 Coupled

The performance of different HDC applications is coupled. HDC applications share infras-

tructure resources, such as computing, network, and storage resources, which are managed dy-

namically based on demand and controlled by operator-specified policies. Competition for these

shared resources creates a complex coupling between applications and adds a significant non-

determinism in their performance. Additionally, HDC applications rely on each other. For exam-

ple, a web application A that allows users to create and manager their profiles relies on services

6

provided by a database application B for storing data, which may in turn rely on a web server

C that host application B. Therefore, failures in application C also degrades the performance of

applications A and B. In summary, a poorly performing application can have a cascading effect

on multiple other applications, which may be difficult to model due to complex interdependencies

(33; 34; 35).

Furthermore, the usage of HDC resources is coupled. For example, increasing network band-

width resources may put additional pressure on local CPU and memory resources, since these

will need to handle a larger volume of requests and responses. Similarly, an uneven distribution

of workload across storage resources can create hotspots in the network and cause severe conges-

tion on specific links and switches. These couplings can make it a lengthy and challenging task

to understand the performance of applications, requiring close cooperation between teams that

manage different services and resources (36; 33).

1.1.3 Challenges in Understanding the Network Performance of HDC Applications

Monitoring and understanding the network performance of HDC applications can be challeng-

ing due to the enormous scale, tremendous diversity, and complex couplings. With the number

of applications at scale, HDCs can generate tens of terabytes of performance data per day. There-

fore, it is impractical to manually analyze the performance of each network transfer for each

application worker. Analyzing the behavior of network transfers from a few applications provides

only partial information and can lead to biased conclusions, as performance can vary significantly

across HDC applications. Additionally, performance anomalies can occur unexpectedly at any

time and place, making it critical but challenging to promptly identify and troubleshoot them due

to the massive scale.

In addition, the numerous variations in HDCs may result in a partial or even misleading un-

derstanding of applications’ network performance due to Simpson’s paradox (37; 38). Simpson’s

paradox suggests that a trend visible in multiple groups may be hidden, or even reversed, when

those groups are aggregated. To illustrate this pitfall, Figure 1.1 shows the distributions of trans-

7

Overall Small Medium Large
0

2

4

6

8

10

Tx
. l

at
en

cy
 (

m
s)

Figure 1.1: An example of Simspon’s paradox: Boxplots of transfer latency overall vs by RPC
sizes (Small: [0, 8KB), Medium:[8 KB, 256 KB), Large: [256 KB, ∞)).

fer latency for a storage service in a production HDC. Transfer latency is the interval from when

the RPC data hits the wire until it is fully acknowledged in TCP. Transfer latency increases with

RPC size, with the highest latency for large RPCs. However, as can be seen from the overall dis-

tribution, it is difficult to tell how transfer latency varies across different-sized RPCs. In HDCs,

a common approach for scalable performance monitoring is to focus on aggregated performance

metrics from large groups of application instances, such as the 95th/99th percentile of transfer

latency over a 1-minute interval (19). However, in a diverse HDC environment with different

applications characterized by different volumes of traffic, service types, and infrastructures, it

is important to carefully aggregate performance metrics to avoid Simpson’s paradox (37; 38).

Aggregating traffic based on heuristic rules derived from external information, such as applica-

tion names, job names, or locations, may not be effective because even traffic generated by the

same application may experience different performance based on factors such as time, location,

configuration, customer demand, and service type. Therefore, finding an aggregation approach

that reduces the analysis and storage overhead while avoiding Simpson’s paradox is a critical but

challenging task.

Finally, the performance metrics of HDC applications can be independent or coupled depend-

ing on the underlying HDC infrastructure. There are three main types of metrics that collectively

describe an application’s network performance: the rate (how fast traffic can be delivered), the la-

tency (how long it takes to deliver the traffic in different stages), and the volume (how much traf-

fic is being transferred). For instance, the delivery rate can be improved by increasing the sending

rate without affecting end-to-end latency, but only up to a limit that is defined as bandwidth-

8

delay product and is calculated as the product of a link’s capacity and the round-trip delay time.

Bandwidth-delay product represents the maximum amount of data on the network circuit at any

given time, i.e., data that has been transmitted but not yet acknowledged. Beyond the limit, the

delivery rate stays constant and latency increases. Therefore, when monitoring and analyzing

application performance, it is important to consider multiple performance metrics simultaneously

because each of them provides only partial information. In production HDCs, consequently, en-

gineers may need to examine tens of performance metrics manually for each of thousands of

applications, which can be both tedious and prone to errors.

In summary, HDC applications are distributed, diverse, and coupled. A thorough understand-

ing of their performance in the underlying HDC infrastructure is crucial for facilitating assess-

ment, planning, and diagnosis tasks. These tasks are essential for evaluating the health of HDCs

and the applications running within them, as well as for ensuring satisfactory long-term perfor-

mance. However, the large scale of HDCs makes it difficult to analyze performance metrics with

manageable overhead. The diversity and coupling in HDCs also complicate analysis due to Simp-

son’s paradox and inherent non-determinism.

1.2 Performance Monitoring in HDCs: State-Of-The-Art

In recent decades, researchers have made significant efforts to understand the performance of

applications and different components in HDCs. Previous studies have focused mainly on three

directions: performance monitoring/tracing, anomaly detection, and anomaly characterization.

Performance monitoring/tracing develops tracing systems for collecting detailed performance

data covering different components in HDCs with manageable overhead (39; 20; 19; 21). Despite

the availability of performance data in HDCs, extracting interpretable information remains a

challenge due to the scale, diversity, and coupling. For analyzing performance data in HDCs,

prior research has focused mainly on two tasks: anomaly detection and anomaly characterization

(19; 40; 21; 35; 41; 31). Anomaly detection aims to promptly flag anomalous performance, that

is, when and where anomalies occur, while anomaly characterization focuses on classifying and

9

localizing anomalous behavior, that is, what network component is most likely to be responsible.

The challenges of scale and complexity are addressed mainly using learning-based techniques.

For example, advanced deep neural networks, such as convolutional neural networks (CNN (42)),

recurrent neural networks (RNN (43)), and long short-term memory networks (LSTM (44)), have

been used to capture complex temporal dependence across multivariate time series performance

data (45; 46; 47; 35). A detailed summary of related work is represented in Chapter 2.

While these approaches are successful in detecting when a performance anomaly occurs and

even localizing it, they cannot explain why or how an anomaly occurs and how it should be re-

solved due to the black-box nature of learning-based algorithms. Furthermore, these approaches

do not provide interpretable insight into the normal performance of applications, which is neces-

sary for general assessment and planning tasks.

1.3 Our Approach: Analyzing HDC Application Network Performance Via Constraints-based
Models

1.3.1 Our Goal

In this thesis, our objective is to understand the network performance of HDC applications

by identifying the constraints that limit their performance. Specifically, we propose a constraint-

based approach for modeling the network performance of HDC applications using Gaussian

Mixture Models (GMMs) (48). This approach enables us to achieve two objectives:

• Interpretability HDC applications are designed to run as fast as possible by using all

available resources (49; 50). As a result, the performance of their application processes is

always determined by constraints that bound “possible”. By understanding the constraints

that limit their performance, we can make informed decisions on how to improve it, such as

increasing or decreasing the network bandwidth.

• Dimension Reduction Analyzing application network performance in HDCs is chal-

lenging due to the enormous volume of performance data generated. This data includes

10

hundreds of metrics relating to billions of application processes from thousands of dif-

ferent types of applications running on diverse infrastructures. The scale of the data can

be overwhelming, making it difficult to analyze and interpret. However, despite the large

number of metrics, there are only a few possible constraints that may limit the network

performance of application processes. Furthermore, groups of application processes per-

forming similar tasks in similar parts of the infrastructure are likely to encounter similar

constraints. By focusing on these constraints instead of individual performance metrics, we

can effectively characterize the network performance of a large number of processes.

1.3.2 Implementation

To achieve our objective, we have developed a pipeline for modeling and analyzing the net-

work performance of HDC applications using GMMs. The pipeline consists of two main com-

ponents: GMM modeling and GMM analysis. The GMM modeling component takes RPC per-

formance data as input and generates a GMM that accurately characterizes different observed

behavior in RPC network performance. By considering multiple performance dimensions and

their correlations, it groups RPCs with similar performance into a blob and separates these with

divergent performance into different blobs. The GMM analysis component employs statistical

techniques to analyze the results generated by the modeling pipeline. It extracts meaningful infor-

mation from the GMMs, which can be used to understand different performance experienced by

RPCs in each blob and to inform future actions.

The pipeline has been implemented in one of the largest production HDCs at Google, and

has been used for modeling the network performance of real-world applications for the past three

years.

1.3.3 GMM Evaluation

We evaluate the effectiveness of GMM-based analysis through several controlled experiments

on the Cloudlab emulation platform (51) and real-world applications in the production HDC.

11

On Cloudlab, we employ a hierarchical network topology (see Figure 5.2 in Section 5 for

details) and use traffic patterns that follow the distribution of a representative application in the

Facebook data center (52). Performance data is collected from both switches and end hosts us-

ing Simple Network Management Protocol (SNMP (53)), ifconfig (54), and tcpdump (55). The

performance data is either used as input for modeling GMMs or as ground-truth information for

validating GMM results. Through several controlled experiments, we demonstrate that GMMs

are capable of identifying different types of performance experienced by RPCs, evaluating the

impact of different configuration factors on the network performance of RPCs, and detecting

performance anomalies and pinpointing their most likely causes.

In the production HDC, we use an existing RPC instrumentation system (Fathom) developed

in the production HDC for collecting RPC telemetry. Through several case studies, we demon-

strate the efficiency of our modeling approach in the following areas:

• Evaluating the performance of a major storage infrastructure service. This service accounts

for nearly 20% of the entire traffic inside the datacenter, which runs multiple jobs, commu-

nicates with several other clients and backend servers, and transmits over multiple transmis-

sion priorities (QoS classes). Our GMM analysis revealed how QoS classes and RPC sizes

leads to different network performance experienced by the service.

• Understanding the impact of a Transmission Control Protocol (TCP) congestion control

algorithm (Section 6.4.1) change (ccold vs. ccnew) on application network performance. We

used RPC measurements from over 80 million sampled RPCs collected three weeks before

and three weeks after the change. Our GMM-analysis suggested that ccold allowed RPCs

with higher-priority QoS classes to occupy a larger share of bandwidth resources, leading

to significant performance gaps among RPCs with different QoS classes. By comparing the

GMMs before and after the change, we verified that ccnew effectively reduces the perfor-

mance gap. Besides, it reduced packet losses and queueing latency for RPCs across all QoS

classes.

12

• Planning for future infrastructure upgrades. We evaluated the network performance of a

global monitoring service that operates on a datacenter with heterogeneous switch-port

speeds. Our GMM analysis, which used RPC measurements aggregated over a million

sampled RPCs, revealed that a particular subset of RPCs would see performance improve-

ments from increased bandwidth capacity, as their performance was still limited by band-

width even with fast-speed ports. On the other hand, a distinct set of RPCs was primarily

constrained by host resources. Therefore, increasing the network bandwidth would not

improve their performance, but upgrading the processing resources on the end hosts could

be more beneficial.

• Troubleshooting performance degradation. By modeling RPC measurements aggregated

over 40 million sampled RPCs after the start of a performance outage, GMM identified

a GMM blob experiencing significantly poor network performance due to more severe

network constraints, which are hard to recognize from the time-series performance data.

GMM analysis revealed that these RPCs were heavily skewed toward communications

between two datacenter locations. Further analysis confirmed that these two locations were

improperly configured and had insufficient bandwidth for the amount of storage deployed

inside.

1.3.4 Enhancements

We identified two potential issues with Fathom that could affect the accuracy of GMM mod-

eling: Simpson’s paradox in performance data caused by the disproportionate ratio of small and

large RPCs, and the volatility of per-packet delivery rate. To address these issues, we introduced

an additional categorical attribute in Fathom to describe RPC size and modified the way Fathom

collects delivery rate. After implementing these modifications, we present two additional case

studies. The first case study illustrates how GMMs can be used to assess the impact of an en-

gineering change in load balancing on application performance in the HDC (56). The second

case study assesses the network performance of a machine learning service across the fleet of

13

HDCs. To gain deeper insights from the GMM results, we improve the GMM analysis pipeline

in two ways. Firstly, we preprocess the job names associated with the ML service using Time

Frequency-Inverse Document Frequency (TF-IDF (57)). This enables us to uncover distinct job

information associated with RPCs in different GMM blobs. Secondly, we use hierarchical ag-

glomerative clustering (58) to group GMM blobs based on their modeling results. This approach

helps us to efficiently identify blobs that experience different performance across the fleet with

diverse infrastructure, and facilitates further analysis to understand the underlying causes of the

performance variations.

Through extensive controlled experiments on the Cloudlab and several case studies based

on real-world applications in the production HDC, we have demonstrated the efficacy of our

constraint-based approach in modeling the network performance of HDC applications.

1.4 Thesis Organization

The thesis is organized as follows: Chapter 2 summarizes the approaches and limitations of

prior work in performance monitoring/tracing, anomaly detection, and anomaly characteriza-

tion; Chapter 3 introduces our approach for modeling the network performance of applications

in HDCs based on their bottleneck constraints using GMMs; Chapter 4 illustrates the detailed

implementations of our GMM modeling and GMM analysis pipeline; Chapter 5 evaluates the

effectiveness of using GMMs on the Cloudlab testbed with controlled experiments; Chapter 6

implements the pipeline in a production HDC and demonstrates its efficiency with real-world ap-

plications through several case studies, Chapter 7 summarizes the modifications made to further

improve the pipeline in the production HDC and presents additional case studies, and Chapter 8

discusses limitations and furture directions of this work.

14

CHAPTER 2: RELATED WORK

For many years, researchers have been working to improve the resource utilization and per-

formance of HDCs by studying the performance of their different components. Prior work in

this area has focused on three main topics: performance monitoring/tracing, anomaly detection,

and anomaly characterization. Performance monitoring/tracing provides an overview of how

different components in HDCs perform by collecting fine-grained performance data with man-

ageable overhead. Anomaly detection analyzes performance data for flagging anomalous HDC

performance that deviates from historical behavior or expectations based on domain knowledge.

Anomaly characterization focuses on locating the root causes of the identified anomalous per-

formance.

This chapter summarizes prior work in these three areas and elaborates on how these are

addressed in this dissertation. Section 2.1 introduces distributed monitoring/tracing systems

developed for HDCs. Section 2.2 discusses different techniques for anomaly detection and char-

acterization, as most research in this field aims to address both goals jointly.

2.1 Performance Monitoring/Tracing

To understand the performance of HDC components and the applications running on top of

these, large-scale monitoring and tracing systems have been developed for continually collecting

fine-grained performance data for further analysis (59; 39; 60; 61; 62; 20; 19). A key focus of

these systems is achieving complete coverage with manageable overhead given the enormous

scale and the sheer amount of traffic in data centers. Prior work includes systems that log major

events within monitored distributed calls (e.g., Remote Procedure Calls), systems that perform

15

packet-level network telemetry, and systems that proactively launch low-overhead probes to

measure latency. Below, we describe some representative systems deployed in production HDCs.

Modern HDC applications are typically implemented in a distributed manner. These are con-

structed from collections of software modules that may run on thousands of machines located in

multiple physical facilities. Tracing the performance of such distributed systems is essential for

understanding behavior and performance issues. Sigelman et al. (39) designed Dapper, a large-

scale distributed system tracing infrastructure at Google. Given the size of Google’s services and

data centers, Dapper is designed to meet three requirements: low overhead, application-level

transparency, and scalability. For low overhead and scalability, Dapper applies adaptive sampling

and demonstrates that sampling less than 0.1% of requests provides sufficient information for

many tracing purposes, including tracking application performance, identifying performance

issues, and testing impact of changes. For application-level transparency, Dapper restricts its

core tracing instrumentation to a sufficiently low level in the software stack Remote Procedure

Call (RPC) library, including a small corpus of ubiquitous threading, control flow, and RPC li-

brary code. Therefore, no additional annotations are needed to trace even large-scale distributed

systems such as Google web search. Dapper logs start times, end times, and RPC timing infor-

mation (such as Client Send, Client Recv, Server Recv, and Server Send) associated with each

sampled RPC. Since being implemented at Google, Dapper has been quite useful for develop-

ers and operations teams and has evolved from a self-contained tracing tool into a monitoring

platform that enables the creation of many analysis tools. Similar to Dapper, Twitter designed

Zipkin (62), Uber introduced Jaeger (61), and Facebook built Canopy (63) for distributed trac-

ing. More recently, Las-Casas et al. (64) proposed Sifter to sample traces in a biased approach

that weighs how “interesting” their content is to catch edge-traces, infrequent request types, and

anomalous executions. Compared to redundant, pervasive common-case execution traces col-

lected with uniform random sampling, the corner cases presented above are often more useful for

analysis and troubleshooting tasks. Sifter assigns each event a unique label based on the origin of

the event and models the conditional probability of a label occurring given its immediate causal

16

predecessors and successors with a neural network. It then identifies uncommon traces based on

prediction loss. Sifter has been demonstrated to bias effectively towards anomalous and outlier

executions after being integrated into several open-source tracing systems.

Ren et al. (60) designed a continuous profiling infrastructure called Google Wide Profiling

(GWP) to provide performance insights of machine resources consumed by cloud applications

at Google. GWP samples across machines in multiple data centers and collects events such as

stack traces, hardware events, lock contention profiles, heap profiles, and kernel events. It al-

lows cross-correlation with job scheduling data, application-specific data, and other information.

GWP collects both whole-machine and per-process profiles. Whole-machine profiles capture all

activities on the machine, such as user applications, the kernel, kernel modules, daemons, and

other background jobs, and include hardware performance monitoring (HPM) event profiles,

kernel event traces, and power measurements. Per-process profiles include heap allocation, lock

contention, wall time, CPU time, and other performance metrics. GWP shows how cloud applica-

tions consume machine resources over time and helps developers design, evaluate, and calibrate

their applications.

Zhu et al. (20) presented Everflow, a packet-level network telemetry system. For each packet

trace, Everflow maintains one copy of the full packet content and a set of per-hop information,

including the IP address of the switch where the packet is mirrored, the timestamp, Time to Live

(TTL), the source MAC address, and the explicit congestion notification (ECN) (65). This infor-

mation can help to remedy common faults in data centers, including packet drops, loops in rout-

ing paths, inflated end-to-end latency, load imbalance, and protocol bugs. Considering that packet

drops can happen for several reasons, such as software bugs or faulty hardware on switches,

passive tracing alone may not be sufficient to identify the problem. Therefore, Everflow also sup-

ports guided probing to replay a packet trace by injecting test packets into target switches and

tracing the behavior of the injected packets to help identify the culprit. Everflow is demonstrated

to be effective after running for 6 months in Microsoft’s data centers.

17

Guo et al. (19) developed Pingmesh for network latency measurement and analysis. Network

latency between servers in HDCs is a critical performance metric. It can be used to (1) deter-

mine if an application’s perceived latency issue is caused by the network or not, (2) define and

track network service level agreement (SLA), and (3) troubleshoot network issues automatically.

Pingmesh is designed to be always on and provide network latency data for all servers. It lever-

ages all servers to launch TCP or HTTP pings and records the round-trip time (RTT) between

each of these.1 To achieve as large coverage as possible, Pingmesh maintains a complete graph

at three different levels: (1) within a data center pod, where all servers under the same ToR (top-

of-rack) switch form a complete graph; (2) intra-data center, where each ToR switch is treated

as a virtual node and all ToR switches form a complete graph; and (3) inter-data center, where

each data center acts as a virtual node and all data centers form a complete graph. Pingmesh has

been running in Microsoft’s data centers for more than four years. It helps to better identify net-

work latency and packet drops, define and track the network service level agreement (SLA), and

determine whether or not a live-site incident occurs because of network issues.

Several monitoring systems have been developed to track resource utilization or application

performance in HDCs from different perspectives, and aid in the design of efficient techniques

for managing the tracing and storage overhead required by the traffic volume in data centers.

Although all of them reveal critical performance information, some are not adequate for compre-

hensively evaluating the performance of applications in HDCs. For example, GWP only collects

machine resources consumed by applications and does not cover their performance over the net-

work, while Pingmesh and Everflow only indicate what applications may experience over the

network, but not on the end hosts. The overall performance of HDC applications is determined by

their experience throughout the entire operation. Thus, we have to collect performance data from

the local host (CPU, memory, and application data generation), the remote peer (CPU, memory,

and application data consumption), and the network that is used to communicate (links, buffers,

processing, and switching fabric). Moreover, working with packet traces alone is inadequate be-

1RTT is defined as the time interval from the time a message is sent from one server to the time it receives the
acknowledgment from the receiver.

18

cause that cannot help differentiate the performance of one application from another. One point

where metrics associated with both end hosts and network can be observed is the application’s

Remote Procedure Call (RPC) library (discussed in detail in Chapter 3). Since the vast majority

of applications in HDCs use RPCs, tracing systems that are based on RPCs, such as Dapper, are

better suited for monitoring the performance of HDC applications.

2.2 Anomaly Detection and Characterization

Performance anomalies are common in HDCs and can occur anywhere, anytime, unexpect-

edly, and with severe impact. For instance, Microsoft Azure reports on the order of thousands

of VM down events daily (9). CBS All Access crashed during the Super Bowl due to increased

workloads (66). A failure in Amazon’s AWS service lasted hours in November 2020 and had a

cascading impact on the performance of many applications, services, and websites, including

Autodesk, Capital Gazette, Roku, Glassdoor, and The Washington Post (67). Thus, detecting or

even predicting when and where anomalous performance may occur is essential for preventing

massive performance degradation given the cascading effects.

Although comprehensive high-resolution performance data are available through monitoring/-

tracing systems (Section 2.1), the sheer amount of data in data centers makes it quite difficult to

detect and analyze abnormal performance. Additionally, performance anomalies can occur for

several reasons, including software failures, hardware failures, and misconfigurations (33; 36).

Different types of anomalies, such as hardware misconfigurations, software issues, and network

congestion, can affect the performance of applications in different ways in HDCs. These anoma-

lies are typically assigned to different teams (server, client, or network) for resolution. Indeed,

network engineers may encounter millions of “alerts” about performance anomalies each day (9)

and may have to spend days or weeks investigating just a small selection from these. Diagnosing

issues can be a time-consuming and complex process that involves reviewing history logs and

data from multiple sources, forming hypotheses, collaborating with different teams, and possibly

going through multiple rounds of finger-pointing before the responsible components are identi-

19

fied (40; 36; 33). This approach is neither scalable nor sustainable. Characterizing the anomalous

performance in order to understand the cause and potential solutions is crucial for effective de-

bugging and troubleshooting.

Prior work that addresses these challenges can be classified into two main categories: anomaly

detection and anomaly characterization. Anomaly detection relies mainly on representative his-

torical data collected over a long period of time or heuristic rules developed by domain experts

for pointing out “anomalous” performance that deviates from past experience or violates the rules.

In anomaly detection, one direction pursued in the past has been change-point detection based

on high-resolution time series data (68; 69; 70; 71; 72). Most recently, advanced deep neural net-

works have been used to capture complex temporal and spatial dependence of multivariate time-

series performance data in HDCs (Section 2.2.1). Others have considered performance statistics

and/or traffic features and applied heuristic rules, co-clustering, or learning-based techniques

for distinguishing “normal” from “anomalous” (Section 2.2.2). Existing anomaly detection ap-

proaches are accurate and efficient in detecting abnormalities based on historical data. However,

they are inherently limited in interpretability because most are black-box techniques that can only

point out differences. For resolving anomalies, it is critical to also describe what applications

experience in HDCs, reveal the bottlenecks in resources/components that limit performance, and

provide hints about the causes of anomalies.

Anomaly characterization focuses on identifying common symptoms (e.g., high latency, sig-

nificant packet losses), responsible entities (e.g., CPU, memory, network), or shared attributes

(e.g., routing links/switches, geographical locations, applications) among the detected perfor-

mance anomalies to facilitate the debugging process. To this end, some efforts characterize the

type/location of factors responsible for an anomaly. For instance, some consider large sets of

anomalous events and aim at identifying components in HDCs that should be responsible for

a large fraction of anomalies, such as links, switches, virtual machines, or applications/micro-

services. Others explicitly model dependency/connectivity between components in HDCs and

20

apply probability propagation or inference analysis to identify root cause components that explain

most of the anomalies.

Next, we discuss in more detail related work on anomaly detection and characterization in

HDCs.

2.2.1 Time-series Based Approaches

One extensively studied approach for anomaly detection has been the detection of abrupt

changes in time-series data, that is, change-point detection (68; 69; 70; 71). For time-series per-

formance data, the idea is to model stable behavior from the past as normal performance and

flag deviations as abnormal. With advances in machine learning in recent years, both supervised

(73; 74; 75; 76; 77) and unsupervised approaches (78; 79; 70; 45; 46; 47) have been explored to

achieve this goal. In this section, we discuss three recent anomaly detection studies built upon

advanced neural networks, which have great competence in uncovering temporal and/or spa-

tial dependence among multidimensional performance data over a long period. Reference (71)

provides an extensive survey in this field.

Su et al. (46) proposed OmniAnomaly, a stochastic recurrent neural network (RNN) that

models temporal dependencies between multivariate time-series data for anomaly detection. For

multivariate time-series performance data, OmniAnomaly follows three steps: (1) capture the

normal patterns of multivariate time-series, (2) reconstruct the input data from their representa-

tions, and (3) use the reconstruction probability to determine anomalies. It encompasses three key

techniques: Gated Recurrent Units (GRU, a variant of RNN), planar Normalizing Flows (NF),

and stochastic variable connection to learn robust latent representations that encode both the

temporal dependence and stochasticity of multivariate time-series. Finally, it applies an adjusted

Peaks-Over-Threshold method to fit the tail portion of a probability distribution with a gener-

alized Pareto distribution in order to automatically learn the threshold of anomaly scores. To

interpret the detected anomalies, OmniAnomaly annotates each anomaly with the top few univari-

ate time series ranked by their reconstruction probabilities, which may provide sufficient clues

21

for troubleshooting. OmniAnomaly has been evaluated in three data sets. Compared to existing

approaches that fail to capture temporal correlations between multivariate performance data, it

achieves better precision, recall, and F1 score.

Zhang et al. (47) introduced a Multi-Scale Convolutional Recurrent Encoder-Decoder (MS-

CRED) for anomaly detection and diagnosis with multivariate time-series data. MSCRED aims

to jointly resolve three tasks: anomaly detection based on reconstruction probabilities, root cause

identification according to the anomaly score of each time series, and interpretation of the sever-

ity of the anomaly based on its duration. It first constructs multiscale (resolution) signature ma-

trices for characterizing multiple levels of system statuses in different time steps. Given the sig-

nature matrices, a convolutional encoder is used to encode correlations between multiple time

series, and an attention-based Convolutional Long-Short-Term Memory (ConvLSTM) network is

developed to capture the temporal pattern. Finally, a convolutional decoder is used to reconstruct

the input signature matrices, and the residual signature matrices are used for detecting and diag-

nosing anomalies. In extensive empirical studies, MSCRED achieved better precision, recall, and

F1-score than state-of-the-art baseline methods on a synthetic data set and a power plant data set.

The improvements ranged from 13.3% to 30.0%, depending on the data set and settings..

Ren et al. (45) developed an anomaly detection pipeline that continuously monitors time

series data and alerts potential incidents. The algorithm, called SR-CNN, combines a Spectral

Residual (SR) model with a Convolutional Neural Network (CNN) by applying the CNN directly

to the output of the SR model. The SR model uses Fourier transforms to identify anomalies in

the original time series data, while the CNN develops a more sophisticated method for detecting

performance anomalies by replacing the single threshold used by the original SR solution. To

train the discriminator, synthetic data is generated by randomly selecting points in the time series,

calculating the injection value to replace the original point, and obtaining its saliency map. The

algorithm was evaluated on two public datasets and an internal production dataset at Microsoft. It

consistently demonstrated better accuracy, efficiency, and generalizability than the state-of-the-art

approaches. For example, on the Microsoft dataset, the F1-score increased from 0.443 to 0.537.

22

The above techniques for flagging and ranking anomalous metrics can be applied to multi-

dimensional time-series data that describe the performance of different components/applications

in HDCs. However, they entail significant computing overhead and require a long time to train

and periodically retrain neural networks given the massive volume of traffic, the diverse types of

application, and constant evolution in HDCs. Thus, their usage may be limited to only a subset of

components or applications. Furthermore, time-series data may be subject to Simpson’s paradox

(Section 6.2), which can lead to a decrease in detection accuracy. For example, if only 1% of

the traffic from an application experiences degraded performance, it may not be noticeable in

time-series data. In addition, ranking anomalous performance metrics alone may not provide

enough information for differentiating between different outages or issues in HDCs, as they may

exhibit similar trends in certain performance metrics. For example, prolonged network latency

could be caused by problems on a local host (e.g. insufficient write buffer), within the network

(e.g. network congestion), or on a remote host (e.g. insufficient receive buffer). Therefore, further

analysis is often necessary for identifying correlations between anomalous performance metrics

or shared attributes among detected anomalous events.

2.2.2 Performance Statistics/Traffic Features Based Approaches

In addition to using time-series data, another approach for detecting performance anoma-

lies in HDCs involves using distribution statistics and applying heuristic rules, statistical tools,

and learning-based classification/clustering techniques. Further analysis is then conducted for

characterizing the detected anomalies and identifying the source of the problem, such as links,

switches, virtual machines, applications/microservices, or rollouts. Some recent studies have

used this approach for anomaly detection in HDCs and have implemented strategies for anomaly

characterization.

23

2.2.2.1 Heuristic Rules

Yu et al. (33) introduced a network application profiler, called SNAP, with low computation

and storage overhead for classifying performance problems that occur in different stages of data

delivery. It passively collects TCP statistics, including the total number of timeouts, the number

of bytes in the send buffer, and the current congestion window, and the socket call logs, includ-

ing the time and number of bytes whenever the socket makes a read/write call. With the above

information, SNAP uses a set of heuristic rules derived by experts to identify four different per-

formance problems: Sender application limited (the sender application may not generate the data

fast enough, either by design or because of bottlenecks elsewhere), send buffer limited, network

limited (including fast retransmission and timeouts), and receiver limited. SNAP can not only

detect anomalous events, but it can also distinguish between different performance problems.

After detecting individual connections that experience anomalous performance based on collected

information, SNAP further characterizes them as resource constraints if they exist only among

specific links/hosts/switches, or as application issues if they occur only within certain applica-

tions but on different machines and at different times. In order to do this, SNAP obtains topology

and routing data to learn which connections share resources such as host, link, top-of-rack switch,

or aggregator switch, and correlates performance problems across these connections. Specifically,

it calculates the Pearson correlation coefficient (80) between performance problems of connec-

tions in the same application or sharing a host, link, or switch, aggregated over a correlation

interval t, and reports correlated performance problems if the average correlation coefficient is

above a predefined threshold. Through validations, SNAP correctly distinguished faulty servers

and switches with injected problems from the performance of connections on other machines in

a data center. After being deployed in a production data center with more than 8,000 servers and

700 applications (including MapReduce (81), storage, database and search services) over a week,

SNAP finds 15 major performance problems in the application software, the server network stack,

and the underlying network, greatly speeding up the debugging process.

24

2.2.2.2 Statistical Tools

Roy et al. (21) detected and located faulty links and switches in data centers based on full-

path routing information and TCP metrics collected on end hosts, including the number of re-

transmitted packets, congestion window (cwnd), slow start threshold (ssthres), and smoothed

round-trip time (srtt). They hypothesize that every observed value of a given metric under test

can be treated as a sample of the same underlying distribution that characterizes a fault-free link.

Given this hypothesis, during a particular time period with a given workload, faulty links will

exhibit substantially different distributions from non-faulty ones. Therefore, determining a faulty

link reduces to determining whether the samples collected on that link are part of the same distri-

bution as fault-free links. The detection process contains four steps. First, the path that a packet

traverses is identified and the statistics for the above TCP metrics along each link are calculated

over successive fixed-length sampling periods. Second, samples of each TCP metric are assigned

into per-link and per-direction buckets. Third, the distribution for each link is compared with

the aggregate distribution for all other links for each metric with statistical analysis techniques

(e.g., student’s t-test (82) and KS test (83)). According to their hypothesis, non-faulty links are

likely to have similar distributions in performance metrics with small variations. Hence, if the test

distribution is sufficiently skewed to the right, the test link is considered as faulty and a verdict is

issued to a centralized controller. Finally, the verdict results are analyzed and the faulty links are

determined using the chi-square test (84) with the null hypothesis that, in the absence of faults,

all links will have relatively similar numbers of hosts flagged as non-faulty. Hence, links/switches

are considered as faulty if the number of guilty verdicts along specific links/switches is suffi-

ciently large over a fixed accumulation period. The proposed technique is evaluated with induced

packet losses and delay in a production Facebook front-end data center and a small private test

bed. In both cases, it identifies faulty links/routers with high sensitivity and accuracy.

Although statistical analysis techniques have low overhead, obtaining full-path routing in-

formation for each flow can be complex, and the probing overhead increases exponentially as

the number of hops and routing choices per hop increase. In addition, the threshold for issuing

25

verdicts may need to be adjusted to be more sensitive/conservative for detecting certain outliers.

This may add more complexity as new outliers continue to arise with new computing paradigms

and upgrades in data centers.

2.2.2.3 Learning-based Techniques

Gan et al. (35) developed Seer, an online cloud performance debugging system, to predict

upcoming Quality of Service (QoS) violations as cloud services shift from complex monoliths

to hundreds of loosely coupled microservices for meeting performance requirements and facili-

tating frequent application updates. Microservices is a software design approach that structures

an application as a collection of small, independent services. Each service is responsible for a

specific business capability and is developed, deployed, and scaled independently of the other

services. Seer uses distributed RPC-tracing to monitor per-microservice latency and the number

of requests queued in each microservice, and it learns spatial and temporal patterns from the large

amount of tracing data generated by the microservices. To identify imminent QoS violations,

Seer applies advanced neural networks, which are effective in pattern recognition and do not

require prior knowledge of dependencies between individual microservices (85).

In Seer, each input and output neuron corresponds to a microservice, arranged in topologi-

cal order. The back-end microservices are placed at the top, and the front-end microservices are

placed at the bottom. The input describes the latency and number of queued packets for each

microservice, and the output generates the probability of QoS violations. The neural network

consists of a set of convolution layers, which are especially effective at reducing the dimension-

ality of large datasets and finding patterns in space, followed by a set of long-short-term memory

(LSTM (44)) layers, which are particularly effective at finding patterns in time. Experimenting

with five end-to-end services (social network, banking system, media services, hotel reservation

site, and e-commerce service) and open-loop workload generators, Seer succeeds in foresee-

ing and avoiding 84 out of 89 QoS violations. Furthermore, Seer provides information on how

to better design microservices for predictable performance by analyzing detailed statistics on

26

low-level hardware monitoring. It identifies problematic resources and detects recurring patterns

that lead to violations of quality of service (QoS). Specifically, Seer examines CPU, memory

capacity and bandwidth, network bandwidth, cache contention, and storage I/O bandwidth (35)

to identify saturated resources. When this information is inaccessible, Seer instead uses a set

of 10 tunable contentious microbenchmarks, each of them targeting a different shared resource

(86), to determine resource saturation. Using this method, application developers can not only

anticipate upcoming QoS violations, but also better understand bugs and design features of mi-

croservices that lead to hotspots. Examples of these hotspots include microservices with a lot of

back-and-forth communication, microservices that form cyclic dependencies, and microservices

that use blocking primitives. However, the training process may take several hours up to a day

for week-long traces collected on a 20-server cluster, which may greatly limit its application in

production HDCs, which host thousands of servers and hundreds of applications. Additionally,

constant retraining is required, especially when there are major changes to the microservices.

Arzani et al. (40) introduced NetPoirot, which uses learning-based techniques to identify

the responsible entity (server, client, or network) for failures at individual endpoints in data cen-

ters, rather than relying on hand-crafted heuristic rules. The network is often unfairly blamed

when performance failures occur in data centers, leading to long and expensive debugging pro-

cesses that involve many engineers and developers in different organizations. By revealing the

most likely source of the failure within the infrastructure, the team (client, network, or remote

service) responsible for the failure can provide a timely response, rather than having the task of

troubleshooting pass around within organizations. To achieve this goal, NetPoirot monitors an

extensive set of raw TCP statistics from each socket (e.g., number of flows, maximum conges-

tion window, number of bytes sent by TCP). These statistics are aggregated based on destination

IP/port in TCP connections, which are then used as input to the supervised learning algorithm

known as random forest (87). In order to construct representative training samples for learning

purposes, known failures are injected into endpoints from time to time and the corresponding

TCP statistics are captured into endpoints together with the faulty entity as ground truth. To im-

27

prove performance, NetPoirot uses the random forest algorithm and multiround classification

to first identify the failed network, then the failed server, and finally the failed client. The effec-

tiveness of NetPoirot is evaluated using two test applications (a duplex application and a simplex

application with diverse communication patterns) and two real-world applications. It showes

promising performance with high precision and recall. Compared to neural networks, the comput-

ing overhead and training time of random forests are smaller.

However, each application with a different communication pattern and reacting mechanism

must maintain a separate model that is trained with injected faults to ensure its performance.

Additionally, supervised learning approaches require a representative labeled dataset, which

can be costly to create and may quickly become outdated. This is because these approaches are

limited to prior knowledge and cannot detect unseen events in evolving HDCs.

2.2.2.4 Rollout Impact Anlysis

Modern data centers undergo constant changes as systems evolve. However, these changes

can unexpectedly degrade the performance of applications (88; 31). For example, Google reports

that 68% of the failures occur during network changes (88). To prevent widespread performance

outages during upgrades in cloud-scale infrastructures such as Azure (3), Li et al. (31) introduced

Gandalf, a tool that assesses the impact of software roll-outs on application performance. Gan-

dalf follows three steps: (1) Obtain faulty signals from raw telemetry data (e.g., OS events, log

messages, and API call statuses) and detect anomalies based on the occurrences of each fault

signature. Ambient faults, such as hardware and network glitches, are common in a large-scale

cloud system. Gandalf estimates baseline fault occurrences from past data using Holt-Winters

prediction (89) and marks samples that deviate from the expected value by more than 4 standard

deviations as anomalies. (2) Correlate each fault signal with ongoing rollouts spatially and tempo-

rally to determine which rollout may have caused the fault signals. Rollout are more likely to be

responsible for a fault if they occur approximately together on the same nodes in the system. (3)

Train a Gaussian discriminant classifier (90) to assess the impact of the fault. The results decide

28

whether the rollout should be stopped or continued, based on the training data generated from

historical deployment cases with feedback from component teams. After being deployed in Mi-

crosoft Azure for more than 18 months, Gandalf achieves 92.4% precision and 100% recall for

data-plane rollouts, and 94.9% precision and 99.8% recall for control-plane rollouts, effectively

blocking bad rollouts and preventing catastrophic service outage and customer impact. However,

after faulty rollouts are paused, more analysis is still required to understand why they may have

caused abnormal behavior and how to address it.

2.2.3 Dependency-graph Modeling

Research in this area explicitly models the dependency/connectivity between components in

HDCs using dependency graphs, and then applies probability propagation or inference analysis to

identify the root-cause components that explain most of the anomalies.

Paramvir et al. (91) introduced an Inference Graph model (92) to represent dependencies of

packet traces and designed Sherlock to create Inference Graphs and localize performance prob-

lems in large enterprise networks. The Inference Graph model is a labeled, directed graph that

provides a unified view of the dependencies in an enterprise network, spanning services and net-

work components, and is based on packet traces collected at agents/routers. Components in the

network are classified into three types: root-cause nodes that correspond to physical components

and can cause end-users to experience failures, observation nodes that model a user’s experience

when using services in the network and can be measured by Sherlock, and meta-data nodes that

act as glue between root-cause nodes and observation nodes. Each node has three potential states:

up (services work normally), down (services that experience a fail-stop failure), and troubled (a

subset of services experience failure). To explain how the state of a parent node influences the

state of a child node, Sherlock introduces three types of meta-nodes: noisy-max, selector, and

failover. These meta-nodes model the dependencies between root causes and observations. For

noisy-max, if any of the parents are in the down state, then the child is also down. The selector

and failover meta-nodes are used to model load balancers and failover redundancy, respectively.

29

Sherlock also introduces an algorithm called Ferret to identify root-cause nodes. Ferret measures

the agreement between the measurements collected from the observation nodes and the propa-

gated probability calculated by exploring different state assignments to each root-cause node of

being up, down, or troubled. For example, Ferret can specify that link1 is troubled, server2 is

down, and all other root cause nodes are up. Taking the Inference Graph and the measurements

(e.g., response times) associated with the observation nodes as input, Ferret generates a ranked

list of assignment vectors ordered by a confidence value that represents how well they explain the

observations. During a 5-day period in an organization’s production network, Sherlock identifies

more than 1,029 network performance problems. Moreover, it effectively traces more than 87%

out of 350 potential blames to just 16 root causes.

Based on (91), Kandula et al. (93) introduced multiple variables to describe each component

of the network, rather than a single abstract variable. These multiple variables capture differ-

ent aspects of behavior in each component, including resource consumption, response time for

queries, and application-specific aspects such as the fraction of responses with error codes. In

addition, they allow components to interact with each other in complex ways, depending on their

state, in order to observe and diagnose a rich set of failure modes. With these improvements,

Kandula et al. (93) build NetMedic, which uses the joint behavior of two components in the past

to estimate the likelihood of them impacting each other in the present. Specifically, NetMedic

searches the history of component states for time periods in which the state of the source compo-

nent is “similar to” to its current state. If during those periods the destination component is often

in a state similar to its current state, it is likely that the source component in the current state is

impacting the destination component. Hence, given a component whose visible state has changed

relative to some period in the past, NetMedic is able to identify the components that are likely

responsible for the change. The deployed prototype effectively diagnosed faults through a chain

of dependency edges injected into a live environment with roughly 1,000 components and 3,600

edges, with each component populated by roughly 35 state variables. The faulty component is

30

correctly identified as the most likely culprit in 80% of the cases and is almost always on the list

of the top five culprits.

The performance of previous fault location algorithms varies significantly in terms of run

time and accuracy for different networks, especially for those with distinct characteristics. Un-

fortunately, there is no algorithm that provides both high localization accuracy and low compu-

tational overhead. Mysore et al. (34) devised Gestalt, a new algorithm that combines the best

features of existing fault localization algorithms and includes a new technique for exploring fault

hypotheses. Gestalt is capable of achieving good performance in many networks and conditions

with reduced computational cost by navigating a continuum between the extremes of greedy fail-

ure hypothesis exploration (94) and combinatorial exploration (91) to explore the space of fault

hypotheses. By running experiments on three real, diverse networks, Gestalt achieves either a

significantly higher localization accuracy or an order of magnitude lower running time compared

to three existing fault localization algorithms.

Zhang et al. (9) designed Deepview for virtual hard disk (VHD) failure localization. VHD

failure is caused by the separation of virtual machines (VMs) and their VHDs and has become

a frequent failure that severely reduces VM availability. For example, among thousands of VM

down events every day in Microsoft Azure, 52% of them are caused by VHD failures. Deepview

gathers VHD failure events, VHD paths between VMs and their storage as input and constructs

a bipartite model to connect the compute, storage, and network components together. With the

bipartite model, an algorithm that integrates Lasso regression (95) is designed to select a small

subset of components as faulty candidates and apply hypothesis testing (96) for deciding which

component among compute, storage, and network is most likely to be responsible for VHD fail-

ures. Specifically, if a component’s Lasso estimate is much worse than the average, it is likely

to be a real failure and is flagged. Once the location of the failure is confirmed, the responsible

team often has standard procedures for quick mitigation. After being deployed on Microsoft

Azure, Deepview succeeds in reducing the number of unclassified VHD failure events from tens

of thousands to several hundreds, and the time-to-detection for incidents to less than 10 min-

31

utes. In addition, Deepview reveales new patterns related to VHD failures, including unplanned

top-of-rack switch (ToR) reboots and storage gray failures.

Although dependency graph-based modeling approaches are effective in localizing faulty

components in data centers, they require explicit modeling of dependencies/connectivity, making

these less scalable in large, adaptive, and evolving HDCs (35).

2.2.4 Limitations

These anomaly detection and characterization systems/algorithms can be quite successful in

detecting abnormal performance based on historical data and aggregating large sets of anomalies

into groups emanating from the same application/material/link, helping to reduce the scope of

diagnostics for network engineers. However, the analysis techniques used are either black-box

learning approaches, which are inherently uninterpretable, or require explicit modeling of depen-

dencies/connectivity, which is not scalable in large, adaptive, and evolving HDCs. In an HDC

environment, consequently, it may still take days or even weeks to determine the root cause of

performance problems or the potential impact of a planned infrastructure change.

Moreover, current systems do not provide insight into normal performance data, which is

necessary for understanding the network performance of HDC applications and infrastructure

components for assessment and planning purposes. For example, what are the ratios of traffic

from an application constrained by compute, storage, or network resources? What is the average

latency incurred for applications on end hosts and over the network? Answering these questions

allows us to create a performance profile for HDC applications that can be used not only for

anomaly detection and characterization, but also for application design, job allocation, and net-

work upgrades. For example, bandwidth-constrained and computation-constrained applications

may be placed in the same cluster to maximize HDC resource utilization and reduce resource

contention. If the performance of most applications is constrained by computing resources, more

CPU resources can be deployed to alleviate this constraint. Rather than relying on black-box tech-

32

niques, such analysis requires dimension reduction approaches that retain the physical semantics

and interpretability of performance data.

Our goal is to develop interpretable models for understanding the network performance of

applications in HDCs. These models can aid in the assessment, planning, and diagnosis tasks in

HDCs. In next chapters, we will discuss our approach (Chapter 3) and implementation (Chapter

4) in detail.

33

CHAPTER 3: OUR APPROACH: CONSTRAINT-BASED MODELS BASED ON
REMOTE PROCEDURE CALL TELEMETRY

In this chapter, we describe our approach for creating a modeling tool to understand the net-

work performance of applications in HDCs. Our tool is designed to handle the enormous scale,

tremendous diversity, and complex couplings present in HDCs, and to assist assessment, plan-

ning, and diagnosis tasks.

The structure of this chapter is as follows. In Section 3.1, we motivate the use of a constraint-

based modeling approach for analyzing the network performance of HDC applications. In Sec-

tion 3.2, we describe the performance data that should be collected for identifying potential con-

straints experienced by these applications. In Section 3.3, we present the modeling technique we

have chosen for modeling performance constraints.

3.1 The Goal: Constraint-Based Modeling

Analyzing and understanding the network performance of applications in HDCs is a major

challenge due to the massive scale of the performance data involved. Firstly, this data represents

billions of network transfers from thousands of applications running in different parts of an HDC.

Even when focusing on only a few applications or only a small portion of the HDC infrastructure,

engineers may need to consider performance data for tens of millions of daily network transfers,

which can be overwhelming. Secondly, multiple performance metrics are associated with each

network transfer, such as latencies, rates, volumes, and losses. The statistical derivatives of these

metrics alone can easily number in the hundreds. These metrics are measured at different vantage

points, such as senders, receivers, and network subsystems, further increasing the scale of the

analysis. Thirdly, HDCs host thousands of applications that provide different types of services,

34

have diverse workloads and service level objectives (SLOs), and may run on differently config-

ured parts of the HDC infrastructure. Each of these aspects may impact performance analysis.

For a comprehensive understanding of network performance, it is essential to collect performance

data from a wide range of applications running on diverse infrastructures. This further increases

the scale of the data that needs to be analyzed.

Analyzing the performance of billions of distributed workers in HDCs is a challenging task

because the performance of these workers is influenced by numerous factors. It is impossible to

gain a comprehensive understanding of the network performance of an application by analyzing

the performance of a single application worker alone. Therefore, we focus on understanding the

distribution of performance across different dimensions, using statistical measures such as the

mean to represent average performance and the spread to indicate variability. By analyzing per-

formance distributions aggregated over a larger number of network transfers, rather than examin-

ing each transfer individually, we can also effectively and succinctly summarize the performance

of thousands of workers.

Despite the significant reduction in the number of network transfers required for analysis,

there are still two challenges that must be addressed when analyzing performance distributions.

The first challenge is selecting an appropriate aggregation approach for grouping together net-

work transfers to study using distributions. The second challenge is the complexity of having

to analyze the distributions of hundreds of performance metrics. To overcome these challenges,

we propose characterizing network performance of applications by focusing on the bottleneck

constraints that limit their performance. As explained below, this approach allows us to group

network transfers experiencing similar network performance, reduce the number of performance

metrics that need to be analyzed individually (dimension reduction), and make our analysis more

interpretable (interpretability), which are crucial for addressing the scale, diversity, and complex-

ity present in HDCs.

Dimension Reduction In HDCs, there are billions of distributed workers, each with hundreds

of performance metrics. However, only a small number of possible bottleneck constraint types

35

can limit the network performance of application workers. For example, the bottleneck could

be limited processing or transmission capacity at the sender, receiver, or network switches; or it

could be sluggish mechanisms in the transport protocol; or it could be limitations in application’s

data-generation behavior itself. Groups of application workers engaged in similar computations

in similar parts of the infrastructure are likely to experience similar bottleneck constraints. By

characterizing the performance of HDC application workers based on their bottleneck constraints

instead of individual performance metrics, we can simultaneously characterize the representa-

tive performance of a large number of workers. This offers intrinsic and significant dimension

reduction, and allows us to “see the forest” rather than focus on individual leaves and trees, as we

demonstrate later.

It is important to note that the bottleneck constraints determine how different performance

metrics are coupled and how these metrics are simultaneously impacted by certain factors. Hence,

analyzing constraints boils down to simultaneously analyzing multiple performance metrics,

which is important for understanding the network performance of applications.

Interpretability Interpretability allows engineers to glean meaningful insights from perfor-

mance data, which plays a crucial role in facilitating assessment, planning, and diagnosis tasks.

Since HDC applications are designed to run as fast as possible by fully utilizing available re-

sources (49; 50), the performance of their application workers is always determined by con-

straints that bound what is “possible”. Understanding these bottleneck constraints can lead to

useful insights and inform decision-making. For example, determining whether the performance

of most applications in one part of a data center is limited by bandwidth resources can suggest

whether the fabric bandwidth should be increased to improve performance or reduced to save cost

(assessment and planning). Additionally, understanding how the bottleneck constraints change af-

ter a planned upgrade or during an unexpected performance outage can help identify the cause or

solution for anomalies (diagnosis), since resolving a performance issue often involves alleviating

a bottleneck constraint.

36

In summary, our goal is to use a constraint-based modeling approach to characterize the

network performance of HDC applications in a way that achieves both dimensional reduction

and interpretability. In the following sections, we will discuss the data collection and modeling

techniques that allow us to achieve this goal.

3.2 Performance Data: Remote Procedure Call Telemetry

In production HDCs, several high-level application performance metrics are routinely col-

lected, such as queries per second (QPS), delivery rate, and response times. While these metrics

are efficient for detecting anomalies (19; 21), they often only provide partial information, which

hinders thorough investigations and better interpretability. For example, a significant reduction

in QPS could be caused by several factors, such as exhausted resources on end hosts, insufficient

bandwidth along routing paths, misconfigured transport protocols, or even bugs in applications.

Each of these issues must be addressed differently for resolving the problem. Other network

telemetry, such as link utilization or queueing latency, provides information about the aggre-

gate network load but does not distinguish the performance of one application from another. To

improve interpretability at the application level, it is necessary to use lower-level performance

metrics that are related to HDC application workers and can reflect their bottleneck constraints.

3.2.1 How Constraints Manifest in HDCs

In HDCs, there are three main subsystems that can constrain the network performance of

distributed application workers: the local host, which can be limited by CPU, memory, and ap-

plication data generation; the remote peers and resources with which they communicate, which

can be limited by CPU, memory, and application data consumption; and the network infrastruc-

ture, which can be limited by link capacities, buffer sizes, processing powers, and switch fabric

architectures. Constraints manifest themselves mainly in three types of performance metrics ob-

served within these subsystems: (1) Rate, which is influenced by link capacities, cross-traffic, and

processing speeds. Examples of rate metrics include delivery rate (throughout of a connection)

37

and pacing rate (the speed at which congestion control algorithms send packets). (2) Latency,

which includes queueing delay, serialization delay, propagation delay, and processing latency.

The queueing delay is upper bounded by the maximum buffer size on switches and routers along

network paths and affected by the volume of cross-traffic. The serialization delay depends on

traffic volumes and NIC speeds. The propagation delay is determined by the physical propagation

distance between the local and remote host. The processing latency is primarily influenced by

the availability of CPU and memory resources. (3) Volume, which describes the amount of data

transferred by the sender. Examples of volume metrics include RPC sizes, congestion window

sizes, and bytes-in-flights. Volume metrics are largely determined by the data generation behavior

of applications and the underlying network transport protocols, such as Transmission Control Pro-

tocol (TCP) (97) and User Datagram Protocol (UDP) (98). Physical constraints in HDCs impose

hard limits on one or more of these performance metrics. For example, the minimum delay a net-

work transfer can achieve is limited by the propagation delay, as nothing can travel faster than the

speed of light. Similarly, the maximum delivery rate one can obtain is limited by the bottleneck

NIC speed.

Because performance metrics are often coupled, each of the metric types listed above only

provides partial information about constraints. For fully understanding bottleneck constraints, it

is necessary to consider these types of metrics simultaneously. For instance, the delivery rate can

be improved by increasing the sending rate and congestion window without affecting end-to-end

latency, but only up to a limit (the bandwidth-delay product). Beyond this limit, the delivery rate

remains constant and latency increases. In the first case, the constraint is the sending application

worker (the application is not generating enough data to fully utilize the available bandwidth

along the network path). In the second case, the constraint is the network (the available band-

width is fully utilized and queues form along the network path) (99). Therefore, for revealing

constraints, we need to measure rate, latency, and volume metrics in these three subsystems si-

multaneously.

38

3.2.2 A Vantage Point for Observing Constraints: Remote Procedure Call

Remote Procedure Call (RPC) is a protocol that enables efficient communication between

services within and across data centers. It allows an application program to call a procedure

regardless of whether it is local or remote. RPC uses the request/reply paradigm, in which a

client sends a request message to a server and the server responds with a reply message, with the

client suspending execution while waiting for the reply. RPC is a commonly used mechanism for

building distributed systems and is a fundamental component of many applications in HDCs (12).

A good vantage point for observing performance metrics related to rate, latency, and volume

in all three subsystems (the local host, the remote host, and the network) is applications’ RPC

library. For example, metrics such as the RPC request inter-arrival time and sender queueing la-

tency (such as latency in the TCP buffer and queueing discipline layer) can be used to quantify

local host constraints. The response service time can be used to quantify remote constraints, and

metrics such as transport RTT and delivery rate can be used to quantify network constraints. By

recording these performance metrics through instrumentation of the network stack on a per-RPC

basis using the application’s RPC library, we can gain a comprehensive view of applications’ net-

work performance and determine which subsystem is the most constrained and why, as explained

below.

RPC
request Client

Channel
Queue

Client
Channel
Buffer

2. Serialize
RPC request

Bytes

3. Written
to socket

4. Add rate
limiter delay:
D(r)

1. Enqueue
RPC request

TCP Buffer

NIC

7.
Transmit
over
network

ACK

5. Add
pacing delay:
D(p) 6. Sent

to NIC
EDT = max(D(r), D(p))

Client Side

Figure 3.1: RPC workflow: Client Side

39

3.2.2.1 The RPC Workflow

Figure 3.1 illustrates the procedure for sending an RPC request from a local host in one of the

largest production HDCs. This process generally consists of six steps on the local host:

1. Enqueue the RPC request into the client channel queue;

2. Serialize the RPC request into bytes and store it in the client channel buffer;

3. Write the serialized bytes in the TCP buffer;

4. Add rate limiter latency D(r) to enforce different transmission priorities (Differentiated

Services Code Point (100) priority) for each user (101);

5. Add pacing latency D(p) to smooth out the traffic and avoid network congestion (99);

6. Send the bytes to the NIC based on its earliest departure time (EDT), which may depend on

the maximum values of D(r) and D(p).

The bytes then leave the local host and traverse the network. Upon reaching the server side, the

received bytes are stored in the TCP recv buffer, and an acknowledgment (ACK) is sent back

to the client to notify the successful receipt of the data. The RPC request is then enqueued into

the server buffer before being deserialized and processed further (Figure 3.2). After the server

generates the responses, it repeats the steps 1-6 as shown in Figure 3.1 to send responses back to

the client over the network.

TCP Recv
Buffer

network
Server
Channel
Buffer

Deserialize
RPC
request

Server Side

ACK

Enqueue
RPC
request

Figure 3.2: RPC workflow: Server Side

40

3.2.2.2 Potential Constraints for an RPC

Neal et al. (99) study the network subsystem and identify three potential constraints that

could affect the network performance of applications: the data generation rate of the applica-

tion, the bottleneck network bandwidth, and the buffer space at the bottleneck link. If the data

generation rate is low, the application network performance is constrained by its own data gen-

eration rate, as there is not enough data to transmit. However, if the data generation rate is high,

the application network performance becomes constrained by the bottleneck network bandwidth,

leading to a queue at the bottleneck and a linear dependence of Round-Trip Time (RTT) on the

amount of data in flight (data that has been sent but not acknowledged). As the queue length con-

tinues to increase and exceeds the buffer capacity, packets start to drop and performance becomes

constrained by available buffer space. These constraints can be identified by simultaneously

analyzing trends in delivery rate, RTT, amount of data in flight, and packet loss rate.

However, further examination of the stages involved in sending and receiving RPCs on hosts

(illustrated in Figures 3.1 and 3.2) reveals additional potential bottlenecks that can limit the net-

work performance of HDC applications:

• Local CPU/memory-limited constraint. The processing delay for enqueueing and serial-

izing RPC requests depends on the availability of CPU/memory resources on local ma-

chines. Therefore, this delay can increase if these resources are insufficient on the client

side (stages 1 and 2 in Figure 3.1);

• Rate limiter-limited constraint. The rate limiter enforces different transmission priorities

among applications on a shared network by maintaining multiple queues with different pri-

orities. Traffic in different queues is served in a round-robin fashion, each with a different

allocated ratio. For instance, in each round, it may serve four packets from a high-priority

queue, but only one packet from a low priority queue. Therefore, if an application has a low

transmission priority when competing for shared bandwidth or is overwhelmed by volumes

41

of traffic from other applications with the same priority, it may experience high rate limiter

latency (stage 4 in Figure 3.1) ;

• TCP congestion control algorithm-limited constraint. There are two main transport proto-

cols, TCP and UDP, in data center networks. Most data center traffic is TCP-based (102).

TCP congestion control algorithms are used by each sender for determining how much

capacity is available in the network and how many packets can be safely in transit without

causing congestion (stage 5 in Figure 3.1). Therefore, the network performance of applica-

tions can be limited on end hosts if the TCP congestion control algorithm is not well-suited

to the HDC environment and traffic patterns. For example, a too conservative TCP conges-

tion control algorithm may not send data fast enough to fully utilize available bandwidth

resources.

New TCP congestion control algorithms have been developed to better handle the evolving

traffic patterns in data centers, such as CUBIC (103), Data Center TCP (DCTCP) (104),

and BBR (99). In this work, we focus on BBR (99), a recent algorithm that has been shown

to achieve high performance with HDC traffic and has been adopted by Google, one of the

largest production HDCs in the world. BBR controls two main parameters for avoiding

congestion: the congestion window size, which determines how much data can be in transit

at a given time, and the pacing rate, which decides how fast data can be sent out. Therefore,

the constraint can be further divided into a limited congestion window constraint (stage 3 in

Figure 3.1), or a pacer-limiting constraint (stage 5 in Figure 3.1);

• Remote CPU/memory-limited constraint. Similar to the client side, the server-side pro-

cessing delay may increase if the workload of enqueueing and deserializing RPC requests

exceeds the capacity of the available CPU/memory resources (Figure 3.2).

Given the RPC workflow in Figures 3.1 and 3.2, there are a total of seven types of constraints

that an RPC can encounter in these three subsystems. Each constraint is associated with at least

one of the rate, latency, and volume metrics, as shown in Table 3.1. Measuring these metrics in

42

the RPC library can help identify constraints and provide insight into the network performance of

HDC applications.

Constraint Type Performance Metrics
Application-limited delivery rate, RTT
Network bandwidth-limited delivery rate, RTT
Buffer capacity-limited packet loss rate
Local CPU/memory-limited sender queueing latency
Rate limiter-limited rate limiter latency
TCP congestion control algorithm-limited pacing latency, congestion control window size
Remote CPU/memory-limited receiver queueing latency

Table 3.1: Constraint types and their associated performance metrics in Figures 3.1 and 3.2.

Constraint Types Are Application-Agnostic Given a fixed RPC workflow, the set of potential

constraint types that can limit the network performance of RPCs are consistent across different

applications. Therefore, when analyzing performance constraints from RPC telemetry data, it is

not necessary to consider the specific applications that generate RPCs or the dynamics among

different applications. Furthermore, once the constraint type has been identified, application-

level information such as workload, service types, transmission priority, and locations, can be

used to understand the cause of the constraint. For example, a low transmission priority in the

network can explain why the network performance of RPCs is constrained by the higher rate

limiter latency (stage 4 in Figure 3.1).

To summarize, by collecting telemetry data from RPC, we can gain a comprehensive under-

standing of the network performance of applications in HDCs, as most applications rely on RPCs

to fulfill their services. However, analyzing hundreds of rate, latency, and volume metrics for bil-

lions of RPCs from thousands of applications in HDCs can be a challenging task due to the sheer

scale of the data involved. In order to effectively address this challenge, modeling techniques that

can reduce the dimensionality of performance data while still preserving crucial information for

interpreting performance constraints are needed. In the following section, we introduce our mod-

eling approach for identifying constraints based on per-RPC performance metrics. This approach

provides both dimension reduction and interpretability.

43

3.3 Interpretable Modeling: Gaussian Mixture Models (GMMs)

3.3.1 Background: Gaussian Mixture Models

Gaussian mixture models (GMMs) (48) are powerful probabilistic models used for describing

the distribution of data, assuming that the data is generated from a mixture of a finite number

of Gaussian distributions. Each of these Gaussian distributions, known as a “blob”, represents

a subset of data that exhibits distinct characteristics. GMMs are useful for identifying patterns

and structures in data, and have a wide range of applications in fields such as machine learning,

data mining, and pattern recognition. In our case, we use GMMs to analyze RPC telemetry data

in HDCs. Each blob in the GMM corresponds to a subset of RPCs with similar performance char-

acteristics, which are different from that of RPCs in other blobs. The number of blobs in a GMM

is typically predefined. Each blob is characterized by three parameters: mean, covariance, and

mixing probability. The means and covariances describe the location (center), shape (width), and

orientation (correlation between multiple dimensions) of the blob, while the mixing probability

indicates the contribution of each blob to the overall mixture model. The parameters of the GMM

can be estimated using the expectation-maximization (EM) algorithm (105). By analyzing the

GMM, we can understand patterns and structures in the RPC telemetry data and gain insight into

the network performance of HDC applications.

3.3.2 Interpretable Modeling

Our approach is inspired by (106), which argues that to achieve interpretability, a model

should “ . . . obey structural knowledge of the domain, such as monotonicity, causality, structural

constraints, additivity, or physical constraints that come from domain knowledge.” Therefore,

the key question is what is the appropriate physical model for the network performance of aggre-

gates of distributed HDC workers?

The performance measurements of the rate, latency, and volume of each RPC are each lim-

ited by different physical constraints. For example, the delivery rate can only increase up to the

44

bottleneck link capacity, the end-to-end latency can never be smaller than the propagation delay

based on the physical distance between end hosts and the speed of light, and the traffic volume

can never exceed what applications generate. If we consider the multi-dimensional space defined

by these metrics, then coexisting physical constraints can be represented as a high-dimensional

polytope. Each vertex on the polytope sets a limit beyond which at least one physical constraint

is violated and is unlikely to occur in reality. Therefore, distributed application workers are only

able to operate within specific regions in the multidimensional constrained space, depending

on their service types and implementations, as well as the underlying hardware, software, and

network configurations in HDCs.

Different constraints interact because the usage of HDC resources is coupled as discussed

in Section 1.1.2. For instance, a relief in the application-limited constraint (an application is not

generating enough data to fill the pipe along the routing path) may lead to the bandwidth-limited

constraint and increase the end-to-end latency, while an increase in bandwidth may put more

pressure on the remote end and result in the remote CPU/mem-limited constraint. Given that

distributed application workers are usually designed to run as fast as possible to maximize re-

source utilization, their network performance will be constrained by one or more factors in local,

network, and remote systems. Optimizing performance under these different and interacting con-

straints is essentially a linear programming problem. The steady-state solutions are located at the

vertices of the multidimensional polytope described above, which is defined by constraints. That

is, the performance of workers eventually converges to a steady-state point, as they fully exploit

the bottlenecked resources.

HDC applications scale their computations by spawning a large number of distributed work-

ers. Therefore, there will be a large number of application workers that perform similar process-

ing (in different data slices), share a common transmission priority, and run in similar parts of

the HDC infrastructure (10; 11). Such a group of workers is likely to be constrained in the same

way. As a result, application workers experiencing similar constraints will operate near the same

45

vertex in the multidimensional polytope in an independent1 and identically distributed (IID) man-

ner. Based on the central limit theorem, the sum of multivariate IID distributions is multivariate

normal (Gaussian) (108) — with the mean representing the average behavior of these workers

and the spread describing the degree of variations they may experience due to noise and temporal

dynamics in HDCs. Workers in different applications (e.g., monitoring service or streaming ser-

vice) or performing different operations within the same application (e.g., MapReduce (81; 109)

or Spark (109)) may be constrained in different ways and will operate near different vertices in

the multidimensional polytope. Because high-dimensional polytopes are spiky, the vertices are

expected to be well separated (110). Therefore, a multidimensional Gaussian mixture model

(GMM) (48) is an appropriate physical model for characterizing the underlying distributions of

workers constrained by different bottlenecks in the multidimensional metric space.

Based on the above discussion, we propose using GMMs to model the network performance

of HDC applications, by utilizing per-RPC performance metrics about rate, latency, and volume.

Such a GMM-based modeling approach offers three key advantages:

1. Tremendous dimension reduction. GMMs automatically distill measurements of thousands

of HDC application workers, each with hundreds of performance statistics, into a handful

of multivariate Gaussians (referred to as blobs). Each blob represents a unique network per-

formance experienced by applications under different constraints. This provides a concise

summary and greatly reduces analysis overhead.

2. Application- and topology-agnostic. GMMs can separate application workers experiencing

different network performance into different blobs, without requiring prior knowledge or

assumptions about the applications or the underlying HDC infrastructure. This greatly

reduces the manual effort needed to determine the appropriate level of aggregation for

1For achieving optimal performance and avoiding correlated failures, HDCs are designed to minimize interference
between application workers. For example, the use of a multistage non-blocking Clos topology provides substantial
in-built path diversity and redundancy (28). Duplicated hardware, such as power supplies, servers, and cooling
systems, are leveraged in HDCs to support jobs running in every part of the data center. Scheduling policies that
spread tasks of a job across failure domains, such as machines, racks, and power domains, are employed to further
increase resilience (107). These efforts help minimize spatial correlations among application workers, leading to
independent performance for each.

46

the large number of performance metrics from billions of RPCs, and eliminates potential

negative impacts of Simpson’s paradox (38) introduced by human interventions.

3. Interpretability. GMMs preserve the physical semantics of each performance metric and

help to interpret bottleneck constraints through the joint distributions of metrics within

each blob. In contrast, previous studies that applied black-box approaches, such as ad-

vanced neural networks (45; 46; 47), lost the semantics and physical interpretability of

the original performance metrics when the original high-dimensional feature space was

projected onto a low-dimensional latent space.

In summary, our approach involves utilizing a multidimensional Gaussian mixture model

(GMM) based on RPC telemetry data for modeling the bottleneck constraints that limit the net-

work performance of HDC applications. This approach effectively reduces the dimensionality

of the data, increases stability, and improves interpretability, making it suitable for handling the

large scale, diversity, and complex couplings often present in HDCs.

Our work consists of four main stages: (1) Implementing a modeling pipeline that takes bil-

lions of RPC telemetry entries as input and generates a GMM for describing different network

performance experienced by these RPCs. (2) Interpreting the modeling results through statistical

tools. (3) Validating the effectiveness of our approach on a controlled test bed. (4) Implementing

our approach in production HDCs and evaluating its efficacy in facilitating assessment, planning,

and troubleshooting tasks. The subsequent chapters provide more detailed information on each of

these stages.

47

CHAPTER 4: THE MODELING PIPELINE

In this chapter, we introduce the pipeline for modeling and analyzing the network perfor-

mance of HDC applications based on bottleneck constraints. The pipeline takes RPC telemetry

data as input and consists of two main components: GMM modeling and GMM analysis, as

shown in Figure 4.1.

Figure 4.1: Modeling Pipeline

The GMM modeling component takes RPC telemetry data as input and generates a GMM

that characterizes different observed behaviors in RPC network performance. Its focus is on

producing accurate modeling results from the input data. The component includes three main ele-

ments: feature selection, model selection, and background removal. Feature selection determines

which performance metrics are used for building GMMs. Model selection chooses the number

of blobs in the GMM. Background removal eliminates any noises/outliers from the performance

data. The GMM analysis component employs statistical techniques to analyze the results of

GMM modeling. This analysis aims to characterize the performance associated with each blob

and to identify their constraints. The analysis component is composed of three elements: per-

formance characterization, categorical composition analysis, and blob matching. Performance

characterization identifies key performance metrics and constraints of each blob in a GMM. Cat-

egorical composition analysis analyzes shared attributes of RPCs in each blob for understanding

which services and jobs are constrained and what factors may be causing these impacts. Blob

48

matching ensures an “apples-to-apples” comparison between multiple GMMs for evaluating the

impacts of infrastructure or upgrades on the network performance of HDC applications.

4.1 GMM Modeling

The GMM modeling component takes RPC telemetry data as input and produces accurate

modeling results through three main tasks: feature selection, model selection, and background

removal. These three tasks are crucial for producing accurate modeling results, which are used to

gain insight into the network performance of RPCs. In the following section, we delve into each

task in more detail.

4.1.1 Feature Selection

The total number of performance metrics gathered from RPC telemetry can be quite large,

potentially numbering in the hundreds. These metrics include the distribution of different per-

formance metrics such as rate, latency, and volume, captured across a wide range of percentiles,

from the 1st to the 99th percentile, for an aggregated interval. Additionally, the telemetry system

records several scalar metrics, such as the number of lost packets, the size of the RPCs, and the

total number of RPCs.

Using a large number of performance metrics for building a GMM can lead to increased

computational complexity, as the cost of modeling increases exponentially with the number of

features. This phenomenon is known as the curse of dimensionality (111). For reducing compu-

tational expense, it is necessary to limit the number of performance metrics used in the modeling

process. Techniques such as PCA (112), t-SNE (113) and UMAP (114) can be used to efficiently

reduce the dimensionality of higher-dimensional data points by projecting them onto a lower-

dimensional space. However, these techniques can result in the loss of interpretable semantics

of the original dimensions after projection. Other techniques that rely on validation data with

ground-truth information about how many blobs are needed and which measurements should

be grouped in same/different blobs, such as those proposed in (115), may not be applicable in

49

(a) Without log transformation (b) With log transformation

Figure 4.2: Probability density plot of transfer latency in one data center. Values on the x-axis are
hidden due to proprietary reasons.

this research due to the absence of such information. In our research, we select the performance

metrics for modeling by relying on both domain knowledge to identify metrics that are relevant to

network performance constraints, and statistical analysis to assess them for normality using sta-

tistical tests (116). This approach allows us to select a set of performance metrics that accurately

characterize the network performance of RPCs and can be effectively modeled using GMMs with

manageable computational complexity.

GMMs assume that the data being modeled is generated from a mixture of several Gaussian

distributions, which may not always hold true for metrics collected in RPC telemetry. For exam-

ple, the distribution of RPC sizes may be influenced by the characteristics of the applications,

such as their type of service, workload, and implementation, rather than conforming to a mix-

ture of Gaussian distributions. Including non-Gaussian performance metrics for building GMMs

may decrease the effectiveness of accurately identifying patterns and structures across multiple

performance dimensions. For identifying and excluding such metrics, we use quantile-quantile

(Q-Q) plots to assess the normality of the metrics. We consider the following three distributions

as appropriate for modeling with GMMs: normal, multimodal, and log-normal.

Performance constraints in HDC applications are typically reflected in three types of per-

formance metrics: rate, volume, and latency. Therefore, these metrics should be included when

modeling GMMs for identifying constraints. By analyzing performance metrics collected in a

production HDC, we find that volume and rate-related metrics often conform to normal or multi-

50

modal distributions, while latency-related metrics often follow log-normal distributions with long

tails, due to the additive nature of latency. Specifically, if packet A is queued after packet B, A

inherits the latency experienced by B due to packets queued ahead of B, in addition to the latency

introduced by B. Therefore, we apply a logarithmic transformation to latency-related metrics

to make their distributions conform to normality, making them more suitable for modeling with

GMMs. Figure 4.2 shows probability density plots of transfer latency for an application in the

production HDC. The logarithmic transformation leads to a better conformity to normality in the

distribution, as seen in Figure 4.2(b), compared to the distribution in Figure 4.2(a).

For reducing the dimensionality of the input performance data, we use the Pearson correlation

coefficient (80) (Eq. 4.1) to group highly correlated performance metrics and select a representa-

tive metric from each group (117).

r =

∑
(xi − x)(yi − y)√∑
(xi − x)2(yi − y)2

(4.1)

where xi and yi represent values of two performance variables, and x and y are their respective

mean values. Our observations indicate that, for a given performance metric, the correlation

between lower percentiles is generally higher than that between higher percentiles. For instance,

we may notice significant differences between the 75th and 95th percentiles of delivery rate, but

not between the 5th and 25th percentiles. We found that our correlation-based selection ended up

including more performance statistics from higher percentiles as input when constructing GMMs.

4.1.2 Model Selection

GMMs group input performance data into a predefined number of blobs, each with distinct

performance characteristics. A key challenge in probabilistic modeling is to determine the “cor-

rect” number of blobs in a GMM that best fits the input data and generalizes well to new data.

This process, known as model selection, often requires external ground-truth information. When

ground-truth information is unavailable, model selection can be based on intrinsic probabilis-

51

tic statistical metrics for evaluating the goodness of fit of the data to the model, including the

Bayesian Information Criterion (BIC) (118), Akaike Information Criterion (AIC) (119), or Sil-

houette Score (120). These intrinsic metrics use maximum likelihood estimation (MLE) (121) to

determine the probability distribution and its parameters that best explain the input data. How-

ever, we find that relying solely on MLE for model selection with RPC telemetry data is insuffi-

cient due to the large variations and significant overlaps in RPC statistics caused by the inherent

diversity in HDCs. Therefore, additional information is required for assisting in model selection,

as discussed below.

Model selection can be also informed by using categorical attributes associated with each

RPC measurement. These attributes — such as source and destination job and user name, conges-

tion control algorithm, and QoS priority — each characterizes a specific aspect of the RPC that

can have a significant impact on its network performance. Therefore, these attributes can be used

to assist in model selection for better interpretability1. Specifically, when comparing two GMMs

with similar BIC scores, it may be beneficial to select the one that demonstrates better separation

of categorical attributes among different blobs. This enhances the interpretability of the model, as

demonstrated in the examples later.

In summary, our model selection algorithm considers both categorical attributes and proba-

bilistic statistical metrics, and evaluates the following three aspects: goodness of fit, goodness

of separation, and goodness of interpretation. Next, we examine each of these aspects in more

detail.

1For ensuring unbiased modeling results, however, it is crucial to avoid using categorical attributes as the sole basis
for model selection or as input for building GMMs. This is because RPCs with the same categorical attributes may
have different performance, while those with different attributes may have similar performance. For example, the
congestion control algorithm affects how RPCs utilize bandwidth resources and respond to network congestion.
Larger RPCs can result in differing delivery rates and performance with different algorithms, such as CUBIC (103)
and BBR (99). However, the effect of the congestion control algorithm on performance may be insignificant for
small RPCs that can fit in a single packet.

52

(a) Original BIC curve (b) After convex hull

(c) After linear segmentation

Figure 4.3: Elbow detection for an example BIC curve (x-axis: number of blobs in a GMM;
y-axis: BIC score).

4.1.2.1 Goodness of Fit

Goodness of fit measures how well (the likelihood) a GMM fits the input data. Increasing

the number of blobs in a GMM can improve the likelihood of the model, but it can also cause

overfitting, where the model focuses on fitting the noise or random variations in the data rather

than the underlying stable patterns. To balance the trade-off between fitting the data well and

generalizing to new data, we use the Bayesian Information Criterion (BIC) score for evaluating

GMMs with different numbers of blobs. BIC considers both the model’s likelihood given the

data and its complexity, with a greater penalty for increased complexity as the number of blobs

increases (122). Generally, the model with the lowest BIC score is considered the best. However,

as shown in Figure 4.3(a), the decrease in BIC slows as the number of blobs increases past the

“elbow” point on the curve, indicting a loss of generalizability. Therefore, models that are near

the elbow on the BIC curve are preferred as they balance the trade-off between fit and complexity.

Our objective is to identify the elbow point along the BIC curve.

Manual visual analysis of elbow detection can lead to subjective results, which poses a sig-

nificant challenge. Furthermore, as shown in Figure 4.3(a), the BIC curve may not consistently

53

decrease as the number of blobs increases, making it more difficult to identify the elbow. There-

fore, our approach must account for fluctuations in the BIC curve and accurately locate the elbow

point, without introducing any subjectivity. To achieve this, our approach consists of two steps, as

illustrated in Figure 4.3. First, we apply the convex hull method (123) to remove “inner” nodes

along the curve that do not reflect the stable changing trend of the BIC score (as shown in Fig-

ure 4.3(b)). These inner nodes are typically anomalies and can be ignored. Next, we use linear

segmentation to further reduce the number of nodes on the curve. Specifically, we calculate the

area of each triangle formed by three consecutive nodes on the curve and iteratively eliminate

the middle node of the triangle with the smallest area (Figure 4.3(c)). This approach results in

three points along the BIC curve: the minimal, maximum, and middle point that indicates the el-

bow. Models beyond the elbow are filtered out for generalizability. In this way, we can accurately

locate the elbow point, which represents the optimal number of blobs in the GMM.

4.1.2.2 Goodness of Separation

Goodness of separation measures the separability of RPC performance measurements in

different blobs within a GMM. GMMs adopt “soft clustering” and assign each measurement i to

a blob n with probability pin, where the sum of all probabilities is 1 (
∑

n pin = 1). We calculate

the entropy of each measurement i based on the probabilities assigned by the GMM using the

following equation (Eq. 4.2).

Entropyi = −
∑
n

pin log pin (4.2)

The entropy represents the degree of uncertainty of the measurement; a lower entropy value

indicates a higher confidence that the model is accurately assigning the measurement to a single

blob.

Figure 4.4 illustrates an example of two GMMs for the same input measurements, with two

or three blobs. As shown in GMM1 (Figure 4.4(a)), measurement ma is located in the center

of the upper blob. The probability vector of ma assigned to the lower and upper blob in GMM1

54

(a) GMM1 (b) GMM2

Figure 4.4: Comparison of two GMMs with different number of blobs. For goodness of separa-
tion, GMM1 (a) is preferred.

is <0, 1>, since these two blobs are well separated. However, as seen in Figure 4.4(b) when the

number of blobs increases to three, measurement ma can be assigned to one of the two upper

blobs in GMM2 since these two blobs are close and overlap significantly. In the worst case, the

probability vector of ma in GMM2 is <0, 0.5, 0.5>, resulting in an increase of entropy from 0 in

GMM1 to 0.3 (log2) in GMM2. Thus, GMM1 is preferred for better separation of blobs.

To assess the separability of measurements within a GMM, we compute the entropy for each

measurement and calculate the average value. When comparing multiple GMMs with differ-

ent numbers of blobs, a GMM with a lower average entropy value is considered to have better

separability and is preferred.

4.1.2.3 Goodness of Interpretation

Goodness of interpretation evaluates the degree to which the modeling results can be eas-

ily understood and interpreted in relation to categorical attributes. Each RPC measurement is

annotated with a set of categorical attributes that distinguish it based on factors such as the ap-

plications it belongs to (e.g., users or jobs), the locations in which it runs (e.g., clusters), and the

network protocols it uses (e.g., congestion control algorithms or transmission priorities). These

attributes can greatly impact the network performance of RPCs in HDCs. By analyzing the at-

tributes that are most consistent among RPCs within the same blob or most different among

55

RPCs in different blobs, we can gain insight into the effects of these attributes on different net-

work performance, as seen in the modeling results.

For measuring interpretability, we use impurity analysis and focus on two main aspects:

uniformity and spread. Uniformity evaluates the consistency of categorical attributes within a

blob, while spread assesses the distribution of measurements with the same categorical attributes

among different blobs. There is a trade-off between these two aspects: When each measurement

data point forms an individual blob, it is optimal for uniformity but worst for spread; when all

measurements are grouped in a single blob, it is optimal for spread but worst for uniformity.

For optimal interpretability, we aim for models that group measurements with similar categori-

cal attributes together in the same blob (uniformity) and separate measurements with different

attributes in different blobs (spread). As an example, consider two GMMs constructed from mea-

surements with three different transmission priorities: AF1, AF2, and AF3 (Figure 4.5). GMM1

contains two blobs: one blob contains only AF3 RPCs, and the other has a combination of AF1

and AF2 RPCs (Figure 4.5(a)). GMM2 contains three blobs, each composed of RPCs with a

unique priority (Figure 4.5(b)). Compared to GMM1, GMM2 is preferred because the transmis-

sion priority of RPCs in each blob is more uniform, providing clearer insight into how different

transmission priorities are associated with different performance.

(a) GMM1 (b) GMM2

Figure 4.5: Example GMMs. For goodness of interpretation, GMM2 (b) is preferred.

For evaluating the interpretability of the modeling results, we calculate the information gain

(124) with categorical attributes from these two perspectives described above as (IGuniform −

56

IGdiverse). IGuniform measures the decreases in impurity after clustering (Eq. 4.3), and IGdiverse

measures the increases in impurity after clustering (Eq. 4.4). For optimal interpretability, we

want IGuniform to be as large as possible to maximize consistency of categorical attributes within

blobs, and IGdiverse to be as small as possible to minimize spread among different blobs. There-

fore, a higher value of (IGuniform − IGdiverse) is preferred.

IGuniform = −
∑
ci

p(ci) log p(ci) +
∑
bj

Nbj

N
{
∑
c′i∈bj

p(c′i) log p(c
′
i)} (4.3)

IGdiverse = −
∑
ci

∑
b′j∈ci

pb′j log pb′j (4.4)

ci : categorical attribute i

bj : blob j in a GMM

c′i ∈ bj : categorical attribute i′ in blob j

b′j ∈ ci : blob j′ contains measurements with categorical attribute i

b1 b2 b3 b4
GMMa 20 c1 30 c2 30 c3 20 c3
GMMb 20 c1, 20 c2 10 c2, 20 c3 30 c3 –

Table 4.1: An example of two GMMs and their categorical attributes in each blob (bn).

Let us calculate these two metrics with an example. Consider 100 measurements with three

unique categorical attributes: 20 measurements with c1, 30 measurements with c2, and 50 mea-

surements with c3. We construct two GMMs (GMMa and GMMb) using these 100 measure-

ments. GMMa consists of 4 blobs, with 20 measurements having attribute c1 in blob ba1, 30 mea-

surements having attribute c2 in blob ba2, 30 measurements having attribute c3 in blob ba3, and 20

measurements having attribute c3 in blob ba4. GMMb consists of 3 blobs, with 20 measurements

having attribute c1 and 20 measurements having attribute c2 in blob bb1, 10 measurements having

attribute c2 and 20 measurements having attribute c3 in blob bb2, and 30 measurements having

57

attribute c3 in blob bb3 as shown in Table 4.1. We can calculate IGuniform and IGdiverse for each

GMM blob using Eq. 4.3 and Eq. 4.4:

{IGuniform}a = {−
∑
ci

p(ci) log p(ci)}+ {
∑
bj

Nbj

N
{
∑
c′i∈bj

p(c′i) log p(c
′
i)}a

= {− 20

100
∗ log 20

100
− 30

100
∗ log 20

100
− 50

100
∗ log 50

100
}

+ {{ 20

100
∗ 1 ∗ log 1}b1 + { 30

100
∗ 1 ∗ log 1}b2+

+ { 30

100
∗ 1 ∗ log 1}b3 + { 20

100
∗ 1 ∗ log 1}b4}

≈ 0.447 + 0 = 0.447

{IGdiverse}a = −
∑
ci

∑
b′j∈ci

pb′j log pb′j

= −{ 20

100
∗ (20

20
∗ 1 ∗ log 1)}c1

− { 30

100
∗ (30

30
∗ 1 ∗ log 1)}c2

− { 50

100
∗ (30

50
∗ log 30

50

+
20

50
∗ log 20

50
)}c3

≈ 0.146

{IGuniform − IGdiverse}a = 0.447− 0.146 = 0.301 (4.5)

58

{IGuniform}b = {−
∑
ci

p(ci) log p(ci)}+ {
∑
bj

Nbj

N
{
∑
c′i∈bj

p(c′i) log p(c
′
i)}b

= {− 20

100
∗ log 20

100
− 30

100
∗ log 20

100
− 50

100
∗ log 50

100
}

+ {{ 40

100
∗ (20

40
∗ log 20

40
+

20

40
∗ log 20

40
)}b1

+ { 30

100
∗ (10

30
∗ log 10

30
+

20

30
∗ log 10

30
)}b2

+ {{ 30

100
∗ 1 ∗ log 1}b3}

≈ 0.447− 0.120− 0.083 = 0.244

{IGdiverse}b = −
∑
ci

∑
b′j∈ci

pb′j log pb′j

= −{ 20

100
∗ (20

20
∗ 1 ∗ log 1)}c1

− { 30

100
∗ (20

30
∗ log 20

30
+

10

30
∗ log 10

30
))}c2

− { 50

100
∗ (20

50
∗ log 20

50
+

30

50
∗ log 30

50
)}c3

≈ 0.083 + 0.146 = 0.229

{IGuniform − IGdiverse}b = 0.244− 0.229 = 0.015 (4.6)

Based on the values of (IGuniform − IGdiverse) calculated for these two models, GMMa is

determined to have better interpretability and is preferred due to its higher (IGuniform − IGdiverse)

value.

Next, we consider an example from a production HDC. In this example, we want to decide

which model better interprets the network performance of RPCs for an application that stores

larger binary data in a cluster of production HDCs. Before evaluating the interpretability of the

59

Figure 4.6: An example of goodness of interpretation analysis with RPC measurements in a
production HDC.

models, we filter out models with more than 8 blobs, as they tend to lack generalization based on

the BIC curve analysis. As shown in Figure 4.6, among models with no more than 8 blobs, the

GMM with 6 blobs has the highest information gain ((IGuniform − IGdiverse)) and is therefore

selected as the preferred model. To better understand the trend of information gain in Figure

4.6, we analyze the categorical attributes of each blob in GMMs with 5, 6, or 7 blobs. Figure 4.7

shows the 2D distribution of the pacing rate and the delivery rate of RPC measurements at the

95th percentile for GMMs with 5 (GMM5: left), 6 (GMM6: middle), or 7 (GMM7: right) blobs.

As the number of blobs increases from 5 to 6, blob C in GMM5 is split into two blobs, C1 and

C2 in GMM6. The results of the categorical analysis indicate that RPCs in blob C in GMM5

are related to three main destination users: u1, u2, and u3. Table 4.2 shows the percentage of

RPCs attributed to each destination user in blob C in GMM5, and in C1 and C2 in GMM6. The

results show that in GMM6 the RPCs related to u3 are separated from the other two users and

grouped in blob C1, leading to a more uniform categorical composition in blobs C1 and C2, thus

improving interpretability. Comparing the information gain of RPCs in blob C in GMM5 to

blobs C1 and C2 in GMM6, {IGuniform}5 − {IGdiverse}5 = 0 − 0 = 0 and {IGuniform}6 −

{IGdiverse}6 = 0.26− 0 = 0.26. The calculations suggest that GMM6 is preferred, as indicated

by the higher value of ({IGuniform} − {IGdiverse})6 and is consistent with the categorical analysis.

As the number of blobs increases to 7 in GMM7, RPCs in blobs C1 and C2 merge into a single

blob again, similar to that in GMM5, resulting in a decrease in information gain.

60

Figure 4.7: An example of model selection with a production dataset: the 2D distribution of 95th
percentile pacing rate (x-axis) and delivery rate (y-axis) when the number of blobs in GMM is 5
(left), 6 (middle), and 7 (right) respectively (actual values are proprietary and hidden).

blob dst_user ratio

C
u1 39.63%
u2 30.73%
u3 29.63%

blob dst_user ratio
C1 u3 100%

C2
u1 51.01%
u2 48.99%

Table 4.2: Percentages of RPCs for different destination users in blobs C, C1, and C2.

4.1.2.4 Model Selection Approach Summary

Model selection can be a difficult task without external ground-truth information as a refer-

ence. To overcome this limitation, our model selection approach evaluates the goodness of fit, the

goodness of separation, and the goodness of interpretation for GMMs with different numbers of

blobs, based on both probabilistic statistical metrics and categorical attributes for the given RPC

telemetry data. Specifically, we follow the following steps for model selection:

1. First, we evaluate the goodness of fit of the models using the BIC score and eliminate

models that fall beyond the elbow of the BIC curve. This ensures a good balance between

model fitness and generalization.

2. Next, we select the top N models that demonstrate better separation based on the average

entropy calculated from the clustering probability.

61

3. Lastly, among the top N models, we choose the one that has the most informative inter-

pretation, as determined by the highest information gain calculated from the categorical

attributes.

We have evaluated our model selection approach using several real-world case studies in a

production HDC. Below, we present one such example of these evaluations. As we do not have

ground-truth information, our approach for assessing the performance of our model selection

mainly relies on categorical analysis and feedback from domain experts. In this specific example,

we model the network performance of a storage service in one cluster of the production HDC

using GMMs. For model selection, we incrementally increase the number of blobs in the GMM

from 3 to 14, and apply our approach to determine the best model.

(a) BIC curve after elbow detection. (b) IGuniform − IGdiverse

Figure 4.8: The results of elbow detection and impurity analysis in example 1. The number of
blobs in GMMs ranges from 3 to 17.

• Goodness of Fitness Figure 4.8(a) shows the BIC curve after applying the elbow detection

algorithm to the original curve (Figure 4.3(a)). The results indicate that, as the number of

blobs increases beyond 9, the model’s ability to generalize to unseen data decreases.

• Goodness of Separation Based on the clustering probability, GMMs with 4, 3, 5, 7, and 8

blobs have the lowest entropy. Figure 4.9 shows the 2D distribution of the 50th percentile

of congestion window size (x-axis) and the 95th percentile of delivery rate (y-axis) for

GMMs with 4 (left), 5 (middle), or 6 (right) blobs. The figure illustrates that when the num-

ber of blobs increases from 5 (middle) to 6 (right), blob B is divided into two overlapping

blobs (B1 and B2), resulting in an increase in entropy.

62

Figure 4.9: An example of model selection with a production dataset: the 2D distribution of
the median congestion window (x-axis) and the 95th percentile delivery rate (y-axis) when the
number of blobs in GMM is 4 (left), 5 (middle), and 6 (right) respectively (actual values are
proprietary and hidden).

• Goodness of Interpretation Figure 4.8(b) shows the values of (IGuniform − IGdiverse)

for GMMs with different numbers of blobs. The model with 5 blobs has the highest value,

indicating a better interpretation in terms of categorical attributes. Specifically, when the

number of blobs increases from 4 to 5, blob A is divided into two blobs, A1 and A2, as

shown in Figure 4.9. A closer examination of the categorical attributes, as presented in

Table ??, reveals that the measurements in A1 and A2 are from different destination users.

Therefore, the division of the measurements in A into A1 and A2 leads to a more uniform

categorical composition and better interpretation in each blob. However, when the number

of blobs increases to 6, the measurements of destination user u4 are moved from blob B

to two overlapping blobs (B1 and B2), which leads to a larger increase in impurity and a

smaller information gain.

Based on the aforementioned evaluation criteria, our modeling selection approach selects the

GMM with 5 blobs, as depicted in the middle of Figure 4.9. This model provides the best balance

between goodness of fit, goodness of separation, and goodness of interpretation.

4.1.3 Background Removal

Noise and outliers are inevitable when tracing performance data in production HDCs, as no

tracing system can be completely fault-free. These faulty measurements can greatly affect the

63

blob dst_user ratio

A
u1 59.38%
u2 27.43%
u3 13.19%

B u4 100%

blob dst_user ratio

A1
u2 82.92%
u3 17.08%

A2 u1 100%
B1/B

u4 100%
B2/B

Table 4.3: Percentages of RPC measurements for different destination users in blobs (A, A1, A2,
B, B1 and B2) in Figure 4.9.

modeling results when using GMMs, as GMMs attempt to assign every measurement, including

noise and outliers, to one of the specified blobs. This can result in distorted means and covari-

ances, negatively impacting the usefulness of the modeling results by obscuring actual patterns

and structures in the input data. Figure 4.10 illustrates an example of how an outlier can dis-

tort mean and covariance in a modeling result. In this case, the GMM has two blobs, A and B,

each representing a different performance. When an outlier is introduced to the input data with-

out changing the number of blobs in the GMM, the outlier must be assigned to one of the two

blobs, either A or B. As a result, the mean and variation of the distribution represented by the

measurements in whichever blob includes the outlier are falsely altered. To mitigate this issue,

it is necessary to filter out noise and outliers in the performance data. In this section, we discuss

methods for doing so.

(a) GMM results without outliers. (b) Distorted GMM results due to an outlier.

Figure 4.10: An example of how an outlier distorts the GMM result. The inner small circles
illustrate the scatter plots of measurements in a 2D dimension, with the outer circles representing
the contour plot of the 2D distribution for measurements in each blob.

It is important to note that the noise/outliers we aim to remove in this context are distinct

from performance anomalies in HDCs. Performance anomalies are caused by insufficient re-

64

sources, unexpected outages, or misconfigurations and accurately reflect the experience of RPCs

in HDCs. Therefore, measurements related to performance anomalies should be retained and

identified, as these provide valuable information for performance assessment and troubleshoot-

ing. On the other hand, noise/outliers are often caused by unexpected data corruptions that occur

randomly during performance tracing and do not accurately represent the experience of RPCs

in HDCs. It is necessary to implement methods that can distinguish between noise/outliers and

performance anomalies, in order to filter out the former without removing any meaningful mea-

surements associated with the latter.

One common approach for filtering out noise/outliers is to use general statistical measures

derived from performance data, such as the mean (µ) and standard deviation (α). For example,

measurements that fall outside the (µ± 4α) interval can be considered as potential noise/outliers

and removed from the input data before GMM modeling. However, this method is not effective

at distinguishing between noise/outliers and performance anomalies, as both can significantly

deviate from normal performance. Additionally, using static thresholds based on overall statistics

can mistakenly remove measurements related to normal behaviors in certain circumstances. This

is because applications can experience different performance based on factors such as service

type, workload, hardware configuration, and temporal and geographical impacts. For example,

latency experienced by bandwidth-intensive and computation-intensive applications on remote

hosts may differ by a few milliseconds to tens of seconds. If there are many more RPCs from

bandwidth-intensive applications in HDCs than from computation-intensive ones, the average de-

lay on remote hosts will be determined by the former. As a result, measurements of computation-

intensive applications with a higher remote delay may be mistakenly filtered out based on overall

statistics. Besides, these thresholds may need to be constantly updated as HDCs and applications

evolve, which can be time-consuming and resource-intensive.

65

4.1.3.1 Our Approach

Our approach for eliminating noises/outliers in performance data is based on two observa-

tions from our experience. First, although noise/outliers and performance anomalies both deviate

significantly from normal performance, they have distinct characteristics. Specifically, perfor-

mance issues caused by a specific factor are likely to consistently impact the relevant RPCs,

while noise/outliers introduced by random data corruption may have very different values. In

a multidimensional performance space, measurements associated with a specific performance

anomaly tend to aggregate, forming a discernible pattern. Conversely, measurements associated

with noise/outliers tend to be dispersed, exhibiting significant variations in their values. Second,

in a well-designed tracing system in production HDCs, the number of noise/outliers is expected

to be lower compared to performance anomalies. Nonetheless, the number of measurements in

both cases should still be significantly smaller than the number of measurements that represent

normal performance.

Due to the high variability and limited quantity of noise/outliers, it is likely that noise/out-

liers will be mixed with normal measurements in GMM blobs, instead of being separated into

individual blobs, unless the number of blobs in the GMM is greatly increased. In such cases, nor-

mal measurements with similar performance characteristics may also be separated into multiple

GMM blobs, making it challenging to differentiate between blobs formed by normal measure-

ments and those formed by noise/outliers. Our model selection approach tackles this challenge by

preventing such cases, as these models have poor fitness, separability, and interpretability and are

always rejected. In a GMM, blobs affected by widely dispersed noise/outliers typically exhibit

significant variations across one or more performance dimensions. On the other hand, blobs com-

posed exclusively of normal measurements (or performance anomalies) generally display densely

clustering with smaller variations.

Our approach for distinguishing between noise/outliers and performance anomalies involves

using GMMs. The process begins with constructing a GMM without discarding any measure-

ments, then identifying blobs that may contain noise/outliers, referred to as background blobs.

66

The final step is removing the noise/outliers from these background blobs and reconstructing the

GMM.

To differentiate background blobs from others, we use the fact that noise/outliers result in

larger variations across one or more performance dimensions in GMM blobs. However, we avoid

setting a static threshold for variations when identifying background blobs as the variations of

normal measurements across different performance dimensions can vary greatly and noise/out-

liers are inherently unpredictable, making it challenging to determine an appropriate threshold.

To address this challenge, we use the classical Mahalanobis distance (125) as a measure of dis-

similarity between two multidimensional blobs, A and B, to distinguish between background

blobs and other blobs. The distance between a measurement in B and the distribution of A is

calculated using Eq. 4.7:

dM(−→m,D)2 = (−→m −−→µ)TS−1(−→m −−→µ) (4.7)

where N is the number of performance dimensions, −→m = (m1,m2,m3, ...,mN)
T represents a

measurement in blob B (M(B)), −→µ = (µ1, µ2, µ3, ..., µN)
T is the mean vector of blob A (D(A)),

and S is the covariance matrix. The distance represents the number of standard deviations that a

measurement in blob B is from the mean of the distribution of blob A. By comparing the average

distance between the measurements and the distributions of any two blobs, we can distinguish

between background and non-background blobs. Typically, non-background blobs have smaller

variations and differ significantly from each other in at least one performance dimension, result-

ing in small, symmetric distances between their distributions and measurements. That is, the

distance between distribution D(A) and measurement M(B) is similar to the distance between

distribution D(B) and measurement M(A) when blobs A and B are non-background blobs. How-

ever, if one of the blobs is a background blob, their distances become asymmetric. Specifically,

the distance between the distribution of background blobs and measurements in non-background

blobs is small, given the larger variations of background blobs, while the distance between the

67

distributions of non-background blobs and measurements in background blobs is large, as mea-

surements in background blobs can scatter widely. This allows us to identify background blobs

using the Mahalanobis distance.

It should be noted that not all measurements in the background blob(s) can be considered

noise/outliers. After identifying the background blob(s), we can use leverage (126), a measure of

how far away the variable values of a measurement are from those of the other measurements, to

identify and remove potential noise/outliers and rebuild a GMM. High-leverage measurements

are often considered outliers and can cause large changes in the parameter estimates when they

are removed. This aligns with our observations that noise/outliers can significantly impact the

results of a GMM. For identifying high-leverage measurements in the background blob(s), we

calculate the Mahalanobis distances between each measurement in the blob(s) and the blob distri-

bution (127). If the distance is greater than a threshold, the measurement is considered an outlier

and removed. Finding a static threshold that effectively covers all background blobs is difficult

because of the unpredictable behavior of noise/outliers and their tendency to have varying values.

To determine the threshold for a background blob i, we compute the ratio of the average distance

between measurement M(i) and distribution D(j), where j is a non-background blob, to the

average distance between measurement M(j) and distribution D(i) (Eq. 4.8). In cases where

multiple non-background blobs exist, the minimum ratio is employed as the threshold for filtering

out as many high-leverage measurements as possible from the background blob (Eq. 4.9).

threshold(i,j) = dM(−−−→mbg(i), Dnon−bg(j))/dM(−−−−−−→mnon−bg(j), Dbg(i)) (4.8)

thresholdi = minj(threshold(i,j)) (4.9)

4.1.3.2 Validation with a Public Dataset

We apply our approach to a public Yahoo dataset, which is commonly used for anomaly

detection (128) — we refer to the dataset as Y1. Figure 4.11 shows the time series plot of the

68

95th percentile of latency in Y1. The blue points represent normal measurements, which follow a

normal distribution N (1, 0.25), and the orange points are random noise injected into the dataset.

There are a total of 63,121 normal measurements and 11,535 injected noise points.

Figure 4.11: Time series plot of latency in 95th percentile from Y1.

We construct a GMM with 2 blobs using these measurements. The probability distribution of

latency for each blob is shown in Figure 4.12(a). According to ground truth information, blob 1

mainly contains normal measurements, while blob 2 contains mostly noise/outliers (10,381 out

of 11,535). The Mahalanobis distance between the distributions and measurements within/be-

tween different blobs is presented in Table 4.4. The distance between the measurements in blob

1 (M(1)) and the distribution of blob 2 (D(2)) is around 0.32, while the distance between the

measurements in blob 2 (M(2)) and the distribution of blob 1 (D(1)) is 1,273. Therefore, blob 2

is considered a background blob affected by noise/outliers. After removing noise/outliers iden-

tified using our approach in blob 2, the probability distribution of latency for the input data is

shown in Figure 4.12(b). The resulting distribution closely matches the ground-truth distribution

N (1, 0.25).

M(1) M(2)
D(1) 4.99 1273.75
D(2) 0.32 4.99

Table 4.4: The Mahalanobis distance within/between blobs in Figure 4.12(a).

We next modify the Yahoo dataset by adding 63,121 measurements that follow a normal

distribution N (11, 0.25). These measurements are considered normal. We refer to this modified

69

(a) Each blob in the GMM. (b) After removing noise using our approach.

Figure 4.12: Probability distributions of latency from Y1 in Figure 4.11.

dataset as Y2. Our goal is to evaluate whether our approach can identify background blob(s) when

there are multiple normal performances. Figure 4.13 shows the time series plot of the latency in

the 95th percentile of Y2. Based on ground truth information, the normal measurements in Y2 are

drawn from two distinct Gaussian distributions. To assess the effectiveness of our background

removal approach, we conduct evaluations using GMMs with 2 and 3 blobs, respectively.

Figure 4.13: Time series plot of latency in 95th percentile in the modified Yahoo dataset.

Figure 4.14(a) displays the probability distribution of each blob in the GMM with 3 blobs.

Based on ground-truth information, blob 1 contains 90% noise, while blobs 2 and 3 are mainly

made up of normal measurements that follow two normal distributions. Table 4.5 presents the

Mahalanobis distances among these three blobs. The measurements in blob 1 have a large dis-

tance to the distribution of blobs 2 and 3 (951 and 948, respectively), while the measurements in

blobs 2 and 3 have small distances to the distribution of blob 1 (2.32 and 0.62, respectively).

Meanwhile, the distances between the measurements and the distributions between blobs 2

and 3 are similar (134 vs. 130). Therefore, blob 1 is considered a background blob affected

70

by noise/outliers. After removing identified outliers from blob 1, the probability distribution

of latency for each blob in the new GMM is shown in Figure 4.14. This clearly illustrates two

different performances that are consistent with the input. In total, our approach removed 9,651 of

11,535 outliers from the input data.

(a) Each blob in a GMM when blob number is
3. (b) After removing noise using our approach.

Figure 4.14: Probability distribution of latency in the modified Yahoo data set in Figure 4.13.

M(1) M(2) M(3)
D(1) 4.99 2.32 0.62
D(2) 951.07 4.99 134.13
D(3) 948.04 130.39 4.99

Table 4.5: The Mahalanobis distance within/between blobs Figure 4.14(a).

We next remove noise/outliers after modeling a GMM with 2 blobs. Figure 4.15(a) shows the

probability distributions of latency for each blob, and Table 4.6 displays their Mahalanobis dis-

tances. Blob 1 contains most of the injected noise and is successfully identified by our approach,

as demonstrated by the smaller distance between distribution D(1) and measurement M(2) com-

pared to the distance between distribution D(2) and measurement M(1). Figure 4.14(b) shows

the probability distribution of latency for each blob in the new GMM after removing the identi-

fied noise. In total, 9,198 injected noise points are removed, revealing the actual structures in the

modified Yahoo dataset.

M(1) M(2)
D(1) 4.99 38.01
D(2) 254.76 4.99

Table 4.6: The Mahalanobis distance between blobs in Figure 4.15(a).

71

(a) Each blob in a GMM when blob number is
2. (b) After removing noise using our approach.

Figure 4.15: Probability distribution of latency in the modified Yahoo data set in Figure 4.13.

In this section, we present three key techniques for ensuring the accuracy of the GMM results

in our modeling pipeline: feature selection, model selection, and background removal. Through

evaluations using performance data from both production HDCs and public datasets, we have

demonstrated the effectiveness of our approach in achieving these tasks. In the next section, we

will explore the use of statistical tools to extract vital information from GMMs for effectively

interpreting the network performance associated with each individual blob.

4.2 Analysis of GMM blobs

To effectively use GMMs for troubleshooting and decision-making, additional analysis is

necessary for interpreting the network performance associated with each identified blob. This

step involves using statistical tools to extract meaningful information from the GMM, based on

the weight, mean, and covariance matrix of each multivariate Gaussian distribution of each blob.

This information can aid in understanding the performance of each blob and can inform future

actions. In this section, we present the statistical tools used for obtaining this information.

GMM analysis consists of three key elements: performance characterization, categorical com-

position analysis, and blob matching. Performance characterization identifies the most distinctive

performance metrics for each blob, which can be used for understanding potential constraints

that may affect performance. Categorical composition analysis highlights the shared categorical

attributes among measurements within each blob and the unique categorical attributes across

72

different blobs. This helps identify which services or jobs are constrained and what factors, such

as location or Quality of Service (QoS), may have contributed to these constraints. Blob match-

ing ensures an “apples-to-apples” comparison when comparing multiple GMMs. This process

helps to evaluate the impact of certain engineering changes on application network performance

by making sure that the blobs being compared from before and after the change are equivalent.

These three components work together to extract essential information from GMMs for inter-

preting the network performance of RPCs in HDCs. This information can assist in assessment,

planning, and troubleshooting tasks. In the following section, we will provide a detailed explana-

tion of the techniques used for each component.

4.2.1 Performance Characterization

By identifying distinguishing performance metrics for each blob in a GMM, we can deter-

mine their unique performance characteristics. These metrics, which correspond to different

subsystems, provide insight into the underlying constraints that can affect performance. For ex-

ample, a blob with a high delay on the client side may indicate a local constraint, while a blob

with low throughput and high network latency may suggest network congestion.

To determine the most distinguishing performance metrics for each blob, we calculate the

distance between the blobs along each performance metrics using the first Wasserstein distance

(129). The Wasserstein distance, also known as the earth mover’s distance, measures the minimal

cost required to transform one probability distribution into another. Given two distributions u and

v and their cumulative distribution functions U and V , the first Wasserstein distance between u

and v is defined as follows (Eq. 4.10) (130):

W1(u, v) =

∫ ∞

−∞
|U − V | (4.10)

The per-metric relative distances between the blobs are then used to rank the most distinguish-

ing performance metrics. These metrics help to understand the performance characteristics of

73

RPC measurements within each blob and to identify the underlying constraints. For example, if

latency on the remote end is the most distinctive metric between two GMM blobs, it may sug-

gest that the performance of RPCs in the blob with higher latency is more constrained by remote

CPU/mem resources. If network delay is the most distinguishing metric, it indicates that the

RPCs in the blob with higher network delay are more constrained by bandwidth resources. Con-

crete examples of this process can be found in Chapter 5, where we demonstrate the accuracy of

GMMs in modeling the network performance of applications on a controlled testbed.

4.2.2 Categorical Composition Analysis

After characterizing the distinctive performance metrics for each blob in a GMM, we next

analyze the common categorical attributes among the measurements within each blob and the

unique categorical attributes across different blobs. This enables us to understand how specific

categorical attributes, such as service or job types, may impact performance. This information

is essential for understanding the cause of network performance associated with each blob in

a GMM, and for making informed decisions on how to address any issues that may affect per-

formance. For example, if we observe that all RPC measurements for an application X are con-

strained by CPU/memory resources, leading to higher latency on local and remote hosts, we can

conclude that increasing the CPU and memory resources available to the application may im-

prove its performance. Similarly, if all measurements from cluster A to cluster B in a data center

are constrained by bandwidth resources, resulting in a high packet loss rate and network latency,

it may indicate a connectivity issue between these two clusters, and it could be beneficial to inves-

tigate the network infrastructure between them.

For obtaining this information, we analyze the categorical composition of each blob in a

GMM. Recall that categorical attributes include job-related information, such as the source and

destination users and jobs, topological location information, such as source and destination pods,

clusters and campuses, and transport policies such as QoS priorities and congestion control al-

gorithms. Our goal is to answer the following questions: (1) What is the degree of diversity in

74

representation of a specific category within a blob? (2) How does the composition of categories

within a blob differ from that of other blobs? To achieve the goal, we construct a per-category

composition vector that represents the fraction of measurements in each blob attributed to each

category. As an example, consider the QoS class category. Suppose that blob A is composed of

1,000 measurements from QoS class 2 and 6,000 measurements from QoS class 3, while blob

B is composed of 100 measurements from QoS class 1 and 200 measurements from QoS class

3. The QoS class composition vectors for blobs A and B would be [0, 1
7
, 6
7
] and [1

3
, 0, 2

3
], respec-

tively. We use fractions instead of absolute numbers because the total number of measurements

for each instance may differ significantly due to workload differences. For comparing the di-

versity of the categorical composition within a blob, we calculate the entropy (131) of the cate-

gorical composition vector for each blob based on Eq. 4.2. A low entropy value indicates high

homogeneity, and ranking attributes based on entropy allows us to identify shared and unique

attributes in each blob. For quantifying the similarity and difference in categorical composition

across different blobs, we compute the cosine similarity (132) between the composition vectors

of a given pair of blobs using Eq. 4.11:

cos(A,B)χ =
A ·B

||A|| × ||B||
(4.11)

where A and B are composition vectors of two blobs for attribute χ, A · B is the dot product of

these two vectors, and ||A|| and ||B|| are the lengths of each vector. The cosine similarity ranges

from 0 to 1, with values closer to 1 indicating a greater degree of similarity. Ranking the cate-

gorical attributes based on cosine similarity reveals shared and unique attributes across different

blobs. The entropy and cosine similarity analysis provides insight into the potential factors that

contribute to similar or different performance among the GMM blobs. More examples will be

presented through case studies in Chapter 6.

75

4.2.3 Blob Matching

When comparing multiple GMMs, such as those before and after an infrastructure change, it

is important to ensure that the blobs being compared are matched for a fair and accurate “apples-

to-apples” comparison. For example, RPCs from a MapReduce application (11) may experience

diverse performance at the “map” and “reduce” stage, as the former is bandwidth-intensive and

the latter is computationally-intensive. When evaluating the impact of a change in HDCs on

MapReduce applications, it would be misleading to compare the performance of the “map” stage

before the change with the “reduce” stage after the change, or vice versa.

To ensure accurate comparisons, we use two measures for matching the corresponding blobs

among multiple GMMs:

1. Cosine similarity between categorical compositions. Matching blobs are expected to in-

clude similar users/jobs from similar QoS classes, resulting in a similar categorical compo-

sition and a higher measure of cosine similarity.

2. The 2-Wasserstein distance between distributions of performance measures (129; 133).

This distance is based on the mean (m) and the covariance matrix (Σ) of the probability

distribution for each blob constructed by the GMM, and has a closed-form expression:

d2 = ||m1 −m2||22 + Tr(Σ1 + Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1)1/2) (4.12)

The assumption is that RPCs that are limited by the same constraint and experience sim-

ilar performance are likely to respond consistently to a planned change or a performance

outage. Therefore, their before and after distributions should be more similar compared to

others and have a smaller distance.

The matching process relies primarily on the 2-Wasserstein distance between distributions,

with a secondary focus on categorical attributes using cosine similarity. It has been effective in

identifying similar blobs without the need for ground-truth information, as shown through con-

76

trolled experiments on a testbed and in real-world case studies in a production HDC, as discussed

in later chapters.

4.3 Conclusion

In this chapter, we present a comprehensive pipeline for modeling and analyzing the network

performance of applications using GMMs based on RPC telemetry data. The modeling pipeline

carefully selects input performance metrics for building GMMs, evaluates the goodness of fit,

goodness of separation, and goodness of interpretation for selecting the model with the optimal

number of blobs, and removes noise and outliers from the input data. The analysis pipeline uses

statistical techniques to extract unique performance metrics and categorical attributes of each

blob from the GMM results, and to ensure fair comparison among multiple GMMs. In the fol-

lowing chapters, we will demonstrate the effectiveness of GMM-based analysis in supporting

assessment, planning, and troubleshooting tasks through case studies conducted in a controlled

testbed and in a production HDC.

77

CHAPTER 5: EVALUATIONS ON THE CLOUDLAB EMULATION PLATFORM

This chapter evaluates the effectiveness of using GMMs for modeling and understanding

the network performance of applications using an experimental testbed. To accomplish this, we

conduct controlled experiments on the CloudLab emulation platform (51) and collect detailed

performance data. CloudLab allows us to manage network topologies and traffic patterns, and

provides visibility all the way down to the bare metal. For emulating conditions commonly found

in data centers, we construct a sub-topology and traffic patterns based on those reported in pre-

vious studies (52). Using the controlled experimentation on Cloudlab, we evaluate the efficacy

of GMMs in identifying different network performance behaviors experienced by RPCs and

compare the modeling results with ground-truth data collected during the experiments.

This chapter is organized as follows. In Section 5.1, we introduce the experimental configu-

ration, including the traffic characteristics and testbed topology. In Section 5.2, we describe the

monitoring tools used for collecting performance data on the testbed. In Sections 5.3 to 5.5, we

present our experiments and the results of applying GMMs in detail.

5.1 Experimental Methodology

5.1.1 Traffic Characteristics

To emulate data center traffic on CloudLab, we use the flow size and inter-arrival time distri-

butions of four representative applications in the Facebook data center as reported in (52): cache

follower, cache leader, web, and hadoop.1 Our experiments focus on the cache follower applica-

1In Facebook’s datacenters (52), web servers (web) serve web traffic; query results are stored temporarily in cache
servers (cache) – including cache leaders, which handle cache coherency, and cache followers, which serve most
read requests (134); and Hadoop servers (hadoop) handle offline analysis and data mining.

78

tion, as it has the highest volume of traffic according to its flow size distribution, as illustrated

in Figure 5.1(a). This makes its traffic more likely to encounter different types of performance

constraints that can lead to diverse network performance. Therefore, we use cache follower traf-

fic to assess the ability of GMMs to capture different network performance and identify their

constraints.

(a) Cumulative distribution of flow size (b) Cumulative distribution of inter-arrival time.

Figure 5.1: Cumulative distributions (%) of flow size and inter-arrival time of four representative
applications reported in Facebook’s data centers (52). Note that cache in Figure 5.1(a) includes
both cache leader and cache follower since they have a similar size distribution.2

5.1.2 Testbed Topology

In our experiments, we use a 3–stage Clos network topology, as described in (135) and de-

picted in Figure 5.2. Due to limitations in the number of switches available on CloudLab, we

reduced the total number of switches to 5, including 4 aggregation switches (Aggri), each con-

nected to 7 machines, and one core switch (core) that connects all the aggregation switches. All

links in the testbed have 10 Gbps capacity, and the minimum RTT between a server and a client is

approximately 0.05 ms, as measured using the ping command in Linux.

In Figure 5.2, the 14 machines under Aggr1 and Aggr2 (S1 to S14) are configured as servers

using the open-source web server Nginx (136), while the 14 machines under Aggr3 and Aggr4

(C1 to C14) are used as clients. Clients use the wget command to send HTTP requests to servers.

HTTP is a request/response protocol that is similar to RPC in its operations. The command spec-

2Curves on the plots are assembled from Figures 6 and 14 in (52).

79

Core

Aggr 1 Aggr 2 Aggr 3 Aggr 4

… …

10Gbps

10Gbps

… …

192.168.1.00/26

192.168.1.01/26192.168.1.10/26

192.168.1.11/26

… … … …S7S1 S8 S14 C1 C7 C8 C14

Figure 5.2: Network topology on CloudLab.

ifies the server’s IP address, port number, and the path to the requested file (e.g., wget -q -O /de-

v/null http://192.168.1.11:80/downloads/cache/dummy_3950). The number in the file name

(e.g., 3950) represents the size of the file in bytes. This allows the clients to control the flow size

distributions to match Figure 5.1(a) during experiments. By controlling the time gap between

consecutive wget commands, we can ensure that the inter-arrival time distribution aligns with

Figure 5.1(b).

Note that in this chapter, the generic term RPC is used to represent the request/response

HTTP protocol implemented in wget.

5.2 Performance Tracing on CloudLab

5.2.1 Monitoring Tools

For GMM modeling and ground-truth validation, we collect performance data from both

switches and end hosts using Simple Network Management Protocol (SNMP), ifconfig, and

tcpdump. A brief overview of each monitoring tool is provided below. For more detailed informa-

tion, see the appendix (Appendix A) on monitoring tools on Cloudlab.

5.2.1.1 SNMP (Switches)

We use SNMP to collect traffic data from every network interface on all switches on Cloudlab

testbed. This data includes information on incoming and outgoing bytes, packets, and discards.

80

By analyzing the packet and byte information obtained through SNMP, we can calculate the

incoming and outgoing traffic rates (bits per second) of each interface on the core switch to check

whether the links are being fully utilized or not. For example, if the measured incoming and

outgoing traffic rate is close to 10 Gbps, this suggests that the corresponding link is being fully

utilized.

5.2.1.2 Ifconfig (Clients & Servers)

We use the ifconfig command to collect packet and byte information from each server and

client. This allows us to determine the number of bytes that are sent, received, and dropped be-

tween each server-client pair during our experiments. we execute the ifconfig command every

second and measure the rate at which data are transferred between each server-client pair within

each second. By analyzing this rate, we can gain insight into how bandwidth is being shared

among multiple server-client pairs.

5.2.1.3 Tcpdump (Clients & Servers)

We use tcpdump to capture TCP/IP headers of packets transmitted and received over the net-

work on both servers and clients during our experiments. The captured information is saved in

pcap files. From these pcap files, we gather records of each HTTP request and response using

5-tuple information (<src_ip, src_port, dst_ip, dst_port, protocol>) and TCP flags. Then, from

each HTTP request and response, we extract performance metrics related to latency, rate, and vol-

ume. These three dimensions are relevant to the potential constraints that can limit the network

performance of each transfer, as mentioned in Section 3.3. Next, we provide more details about

these performance metrics below.

5.2.2 Performance Metrics

By utilizing the monitoring tools discussed above, we collect a set of performance metrics.

These metrics serve two main purposes: (1) as input for building GMMs to model the network

81

performance of transfers, and (2) as ground-truth information to validate the modeling accuracy

of the GMMs. By analyzing these performance metrics, we can identify and confirm any con-

straints that may be limiting the network performance of transfers in our experiments.

5.2.2.1 Delay Metrics

Server
Client

SENT n

RECV ACK n

RECV n

SENT ACK n

SENT n+1

RECV n+1

1. Round trip
time (RTT) 2. Client delay

3. Server delay

Figure 5.3: Delay information extracted using tcpdump.

We extract delay-related performance metrics on both the end hosts and the network using

pcap files collected from each server-client pair. As shown in Figure 5.3, these files provide a

wealth of information that can be used to determine the timing of packets and acknowledgments.

On the server side, we can identify when packet N is sent out (server.sent), when the acknowl-

edgment (ACK) for packet N is received (server.recv_ack), and when packet N+1 is sent out. On

the client side, we can determine when packet N is received (client.recv) and when the ACK for

packet N is sent out (client.sent_ack). Based on this information, we can calculate a set of delay-

related performance metrics, as listed in Table 5.1. We do not measure end-to-end delays from

servers to clients and from clients to servers over the network, as the timestamps used for calcu-

lating these metrics are collected on different machines that may not have synchronized clocks.

For each HTTP request and response, we extract statistics about each type of delay and use them

as input for GMMs to model their network performance in our experiments.

82

Types of Delays Definition
round trip time server.recv_ack(n) - server.sent(n)
client delay client.sent_ack(n) - client.recv(n)
server delay server.sent(n+1) - server.recv_ack(n)
network delay round trip time - client delay

Table 5.1: A list of delay-related performance metrics extracted from pcap files.

5.2.2.2 Rate Metrics

For measuring the rate, we calculate the throughput of each transfer by dividing its response

size by its transfer duration. The response size is obtained by identifying the segment with the

highest TCP sequence number (tcp_seq) among all segments associated with the HTTP request-

response. The response size is equal to the identified TCP segment number plus its frame length

(tcp_len). The transfer duration is the time it takes for a server to transmit an HTTP response

to a client. It is measured from the time the server sends the first packet of the HTTP response

(server.sent) to the time the server receives the acknowledgement of the last packet from the

client of the HTTP response (server.recv_ack). From the pcap trace, the server.sent packet

can be identified as the initial packet sent from the server to the client following the receipt

of an ACK+PSH packet from the client, as the HTTP request is transmitted using TCP flags

ACK+PSH. The server.recv_ack packet can be identified as the packet sent by the client using

TCP flags ACK+PSH+FIN. A detailed example of a pcap trace can be found in Appendix A.3.

The transfer duration varies based on the size of the response. It is important to note that response

sizes are only used for validating the results of GMMs, they are not used as input for building

GMMs.

5.2.2.3 Volume Metrics

For describing the volume of data transmission, we extract the bytes-in-flight metric. This

metrics measures the volume of data that has been sent to the network but has not yet been ac-

knowledged by the receiving end. We extract information from pcap files to track of the number

83

11-20 31 - 50 61-70

Figure 5.4: SACK visualization: cumulative ACK=21 and SACK=31-51,61-71

of bytes sent by the server and the number of bytes acknowledged by the client, and update the

bytes-in-flight metric whenever the server receives an acknowledgement from the client.

TCP uses a cumulative acknowledgment scheme in which the receiver sends an acknowl-

edgment number to the sender. This number indicates that all the bytes in the TCP stream up to

the next expected byte have been received in order. In our testbed, both end hosts support TCP

selective acknowledgments (SACK). With SACK enabled, the receiver can acknowledge receipt

of non-consecutive data, allowing the sender to retransmit only the missing data at the receiver’s

end. Specifically, the receiver specifies the left and right edges of any data beyond the cumu-

lative ACK number that has been received, in addition to the cumulative ACK. For accurately

measuring bytes-in-flight, it is important to consider both cumulative and selective ACKs when

tracking the total number of bytes sent by the sender and acknowledged by the receiver. In pcap

files, the fields tcp_sack_le and tcp_sack_re indicate the left and right edges (the right edge is

not inclusive) of segments that have already been received by the receiver, in addition to those

acknowledged by cumulative ACKs. These fields can specify multiple pairs of tcp_sack_le and

tcp_sack_re values.3

The bytes-in-flight is calculated by subtracting the total bytes acknowledged from the total

bytes sent. This calculation is performed whenever the server sends a new segment to the client

or receives an acknowledgement for a prior segment from the client. For each HTTP response,

we extract statistics about the bytes-in-flight information during its transmission and use these as

input features for building GMMs.

3Figure 5.4 shows an example of TCP SACK when the first (11-20), third (31-40), fourth (41-50), and sixth (61-70)
packets have been received. In this case, the cumulative ACK equals 21, which is the next segment number expected
by the receiver. The receiver has also selectively acknowledged two additional segments beyond the cumulative ACK
number. The first segment includes the third and fourth packets (31 to 50), and the second segment includes the sixth
packet (61 to 70). Thus, for the first segment, the left edge is 31 and the right edge 51, and for the second segment,
the left edge is 61 and the right edge 71.

84

5.2.2.4 Cross-traffic Information

To capture the impact of cross-traffic on the network performance of network transfers, we

measure the volume of cross-traffic that occurs during the lifetime of each transfer. To accom-

plish this, we use pcap files collected from servers and clients to determine the time interval be-

tween the request and the acknowledgement of the last segment of the response for each request-

response pair. We then compute the total number of transfers and the total volume of bytes trans-

mitted over the network from all servers during the lifetime of each transfer.4 This information

enables us to determine the number of transfers and bytes that are competing for resources over

the network and on both end hosts. Since it is not possible to obtain cross-traffic information

from the trace of a single RPC, we use it only as a reference for validating the results of GMMs

and not as input for building GMMs.

5.2.3 Performance Constraints on CloudLab

Table 5.2 summarizes the five types of constraints that transfers can experience on the testbed,

together with the corresponding diagnosis. For instance, significant delays on either the client

or server side can constrain the network performance of transfers. On the client side, delays

prevent clients from sending ACKs back to servers fast enough, while on the server side, delays

prevent new packets from being sent to clients quickly. Additionally, small transfers have small

transmission times, so their performance primarily affected by delay. Therefore, we consider

small transfers to be delay-constrained. In contrast, for large transfers with small network delay

and bytes-in-flight, performance is often constrained by volume/cwnd, which prevents data from

being sent out into the network quickly enough. However, when experiencing significant delays

in the network, their network performance is constrained by network bandwidth.

4Note that this information is still subject to clock synchronization issues between different machines. However, the
clock differences between machines in a cluster on Cloudlab are generally around 1-5ms (137). Given that cross-
traffic information is computed throughout the duration of every RPC transfer and is primarily utilized for analyzing
large transfers with an average duration of around 25ms, the impacts of clock synchronization issues are expected to
be minimal.

85

Constraint Type Diagnosis Observation
Client Clients are not sending ACKs back to servers Significant local delay on clients

fast enough, causing servers to slow down.
Server Servers are not sending new packets to clients Significant local delay on servers

fast enough after receiving ACKs.
Delay/Size Applications are not generating data fast enough. Small transfer size thus small bytes-in-flight

Packets are not being sent out into network fast
Volume/Cwnd enough, either due to applications not generating Large transfer size but small bytes-in-flight

data quickly enough or TCP congestion control
algorithms not sending data out quickly enough.

Network Not enough bandwidth resources. Significant delay over the network

Table 5.2: Types of constraints each RPC may experience in the testbed.

We conduct GMM-based analysis to understand the network performance of transfers in

different scenarios by designing three sets of experiments using the above configurations and

monitoring tools. These experiments evaluate the use of GMMs for: (1) revealing the network

performance of transfers from the cache follower application; (2) understanding the impact of

different protocol/device/traffic configurations, such as generic segmentation offloading (GSO),

HTTP keep-alive, and communication patterns, on the network performance of transfers; and (3)

detecting performance anomalies. Our experiments will show that GMMs are more accurate and

efficient than traditional approaches for summarizing the network performance of hundreds of

thousands of transfers across multiple performance dimensions, using only a small number of

interpretable blobs.

5.3 Use Case 1: Understanding the Performance of Cache Application

Assessing the network performance of HDC applications and identifying any constraints that

impede their performance is crucial for both application developers and data center operators. For

application developers, this enables them to optimize resource configurations and enhance the

efficiency and cost-effectiveness of their services. For data center operators, this facilitates the

effective planning of resource upgrades and changes, enabling them to keep up with increasing

demands and maintain their competitiveness.

In the first experiment, we demonstrate the use of GMMs for understanding the network per-

formance of RPCs from the cache follower application (52) in our testbed, and for identifying

86

bottleneck constraints that limit their performance. This experiment runs for five minutes. During

this period, each client (Cn) sends multiple requests to its associated server (Sn). Each HTTP

request initiates a new TCP connection. The sizes of the responses for each server-client pair

follow the flow size distribution shown in Figure 5.1(a), and the time intervals between consec-

utive HTTP requests follow the inter-arrival time distribution shown in Figure 5.1(b). On the

client side, a new request may be sent before the full response from the previous one has been re-

ceived. The total number of RPCs launched in the experiment is 12,319, and each one generates a

performance measurement, as outlined in Section 5.2.

5.3.1 What Can Be Learned from Traditional Approaches

Time-series plots are a commonly utilized tool for monitoring performance in data centers.

These plots enable the visualization of the evolving trends of performance-critical metrics and the

detection of unusual patterns, such as spikes and outliers (9; 138; 47). For this experiment, Figure

5.5 presents time-series graphs of several performance metrics, providing an understanding of the

range along each dimension. For example, the throughput can be seen to vary between 1000 to

2500 Mbps, the RTT in the 95th percentile mostly falls between 0.5 and 1 ms, and the bytes-in-

flight in the 95th percentile ranges from 100 to 200 KB.

Although time-series data can be useful in illustrating the fluctuating trend of performance

metrics, their spiky and wide-ranging nature can make it challenging to understand the distribu-

tion of each metric. To overcome this challenge, we can use distribution plots, such as kernel

density plots (kde), to provide a clearer understanding. Kde plots uses a smooth curve to repre-

sent the distribution of data points over a continuous interval, making it easier to see the overall

shape of the distribution and identify any clusters or outliers. We can also calculate statistical

information about distributions, such as the median, mean, and percentile values. For example,

Figure 5.6 shows kde plots of several important performance metrics for large RPCs in the exper-

iment, along with the average values for each metric. These plots help us visualize the shape of

these distributions and learn that the average throughput is approximately 1310 Mbps, the maxi-

87

(a) throughput (mbps) (b) max. client delay (second)

(c) 95th bytes-in-flight (MB) (d) 50th bytes-in-flight (MB)

(e) 95th RTT (second) (f) 75th RTT (second)

Figure 5.5: Time series of multiple performance metrics.

88

Figure 5.6: Kde plots of multiple performance dimensions in the experiment. The unit of the
y-axis in a kde plot is probability density. This means that the height of the curve at a particular
point on the x-axis represents the probability of a randomly selected data point falling within a
very small interval around that point. It is important to note that probability density is not the
same as probability. Probability density is a measure of how likely a data point is to fall within a
particular range, while probability is a measure of how likely a data point is to have a particular
value.

mum client delay is around 0.709 ms, and the 95th percentile RTT is 0.724 ms. However, relying

on just one statistic, such as the median, mean, or 95th percentile, to characterize a distribution

may not offer a complete picture of the distribution as the behavior of RPCs can vary, leading to

multiple structures in the distribution. As shown in Figure 5.6, multiple modes can be observed in

several performance metrics, indicating that RPCs exhibit diverse behaviors during transmission

along these metrics. This is particularly evident in the throughput and 95th percentile of network

delay. It is important to fully understand the distributions along each performance metric, includ-

ing common behaviors represented by the mean and median, as well as tail performance (e.g., the

1st, 5th, 95th, and 99th percentiles). This is because anomalies in performance tend to occur in

the tails of the distribution. For example, lower percentiles of throughput and bytes-in-flight may

indicate volume-limited transfers, while higher percentiles of RTT may suggest network-limited

transfers.

Furthermore, it is insufficient to analyze solely a single dimension for a comprehensive under-

standing of application network performance, as different dimensions are often coupled (Section

89

Figure 5.7: Studying the correlation of multiple performance metrics using brushing and linking
with 10% of RPCs collected in the experiment.

90

3.3). Therefore, a multi-dimensional approach is necessary to capture these couplings and gain a

complete understanding of the network performance. While traditional methods for identifying

correlations between multiple performance dimensions can be time-consuming and limited, the

brushing and linking approach, a common technique that allows users to interactively select and

explore data by linking multiple views of the same data, can be helpful. Brushing refers to the

process of selecting a subset of the data by dragging the mouse over the data of interest or using

a bounding shape to isolate this subset. Linking refers to the process of connecting two or more

views of the same data, such that a change to the representation in one view affects the represen-

tation in the other. As demonstrated in Figure 5.7, by selecting a subset of transfers with high

client_delay_max and low bif_p95 on one graph (the first graph in the second row), we can see

how this subset performs in other dimensions such as throughput, server delay, and network delay

— the data from the corresponding RPCs gets highlighted in the other views. We can learn that

transfers with high client delay tend to have low bytes-in-flight and throughput, but their network

delay is similar to other transfers. This kind of analysis can uncover patterns and trends in the

data that may not be immediately noticeable by examining a single performance dimension. How-

ever, this approach becomes increasingly impractical as the volume of performance data grows.

In this example, only 10% of the RPCs collected in our experiment are selected for performance

metric analysis to interactively render all plots using the linked brush. In production HDCs, this

method would not be feasible unless aggressive sampling is employed to reduce the size of the

performance data, which could result in the loss of crucial information. Furthermore, the number

of plots needed for visual analysis grows quadratically with the number of performance metrics

(O(n2)), making it infeasible for most scenarios.

Summary Traditional approaches for identifying patterns and trends in large-scale performance

data across multiple performance dimensions are labor-intensive and error-prone. They are heav-

ily based on manual analysis, which makes them less scalable and robust. Moreover, these ap-

proaches are not efficient in differentiating between RPCs with different performance or identify-

ing correlations between multiple performance dimensions.

91

5.3.2 What Can Be Learned Using GMM Analysis

We use GMMs to model the network performance of RPCs in the experiment. The GMM

modeling pipeline, outlined in Section 4.1, groups the 12,319 RPCs into 3 blobs, based on per-

RPC performance metrics across multiple dimensions related to delay, rate, and volume. Out of

these three blobs, blob 0 represents only 1% of the total RPCs, while blob 1 accounts for 84%

of all RPCs, and blob 3 contains the remaining 15%. We then use the GMM analysis pipeline

described in Section 4.2 to understand the modeling results.

The top performance metric that distinguishes the blobs is first examined using the Wasser-

stein distance, as listed in Table 5.3. The results reveal that blob 0 differs the most from both

blobs 1 and 2 in terms of maximal client delay. Moreover, the distance between blob 0 and blobs

1(8.28)/2(8.25) is significantly larger compared to the distance of the top metric between blob 1

and blob 2 (2.14), suggesting that blob 0 exhibits more distinguishing performance characteris-

tics, which is the local delay on the client host.

Blob1 Blob2 Metric Distance
0 1 client_delay_max 8.28
0 2 client_delay_max 8.25
1 2 throughput 2.14

Table 5.3: The most distinguishing metric between GMM blobs based on the Wasserstein dis-
tance.

Figure 5.8 illustrates the breakdown of delay on local hosts and in the network for RPCs

in each GMM blob. The results show that blob 0, which accounts for only about 1% of the to-

tal RPCs, is dominated by a significant local delay on the client side, while the other blobs are

mainly constrained by network delay across the network. However, due to the small number of

RPCs in blob 0, it can be difficult to spot the large, anomalous client delay from the overall kde

plots in Figure 5.6 or to understand how these RPCs perform in other dimensions. Fortunately,

GMMs provide a valuable tool for identifying and analyzing small groups of RPCs with “unique”

performance characteristics in large performance data. GMMs not only separate this small group

of RPCs into their own blob, but also concurrently characterize their performance in other dimen-

92

sions. For instance, Figures 5.8 and 5.9 reveal that, although blob 0 has server delay and network

delay similar to the other blobs, it experiences much lower throughput.

Figure 5.8: Delay information for each blob in the GMM.

Table 5.3 also highlights the difference in performance between the RPCs in blobs 1 and 2,

despite their similar delays. Throughput is the most distinguishing metric, with RPCs in blob

2 having 1.7 times higher throughput and 2.5 times higher bytes-in-flight in the 95th percentile

compared to blob 1. However, the size of RPCs in both blobs is similar, indicating that the lower

bytes-in-flight and throughput in blob 1 are not due to size constraints, but rather volume con-

straints where the sender is unable to transmit data into the network at a sufficient rate. In con-

trast, the main constraint for RPCs in blob 2 appears to be the network, as indicated by the large

bytes-in-flight and throughput.

blob ID ratio of RPCs constraint
0 1% client
1 84% volume
2 15% network

Table 5.4: Types of constraints experienced by RPCs based on GMMs.

5.3.3 Validating Constraints with Ground Truth Information

The GMM analysis has identified the main constraints for each of the three blobs. CloudLab

also enables the collection of additional performance data that are not used as input for building

93

(a) max. client delay (second) (b) P95 network delay (seconds)

(c) throughout (mbps) (d) P95 bytes-in-flight (bytes)

Figure 5.9: Kde plots of maximal client delay, 95th percentile of network delay, throughput, and
95th percentile of bytes-in-flight in each blob based on GMMs.

GMMs. These “ground-truth” measurements can be instrumental in validating the conclusions

drawn from the GMM analysis and providing a more comprehensive understanding of the per-

formance characteristics of the RPCs. In this section, we conduct a more in-depth analysis of the

collected performance data for verifying the results obtained from the GMM analysis.

We first analyze the pcap traces from servers and clients during the experiment and find that

the average number of concurrent RPCs is around 4. Given that these RPCs fairly share a 10

Gbps bottleneck link, we expect each RPC to achieve an average throughput of approximately

2500 Mbps.5

We then proceed to examine the time sequence graphs of the data streams for a few RPCs

from each of these three blobs. The time sequence graph allows a detailed examination of every

packet transmitted in each RPC between a server and a client. This includes information such

as the IP address and port number, size, transmission and acknowledgement timestamps, and

5It is important to note that actual throughput of each RPC may be lower than the expected value due to TCP
slow-start stage and limitations in CPU processing power.

94

(a) blob 0

(b) blob 1 (c) blob 2

Figure 5.10: Time sequence graph of one example RPC with a size of 3,171,683 bytes in each
blob based on pcap files captured on the server end.

95

the size of the congestion window (as described in Appendix A). This information is not used

as input for building GMMs, GMMs instead use performance statistics and derivatives extracted

from each RPC, such as the 95th percentile of RTT and the delivery rate. Therefore, compared

to the information used for GMM modeling, the time sequence graphs offer a more detailed and

comprehensive analysis of the behavior of each RPC.

Our analysis finds that the time-sequence graphs for RPCs within a particular blob are rela-

tively similar, but differ significantly for RPCs in different blobs. We present a sample trace of an

RPC from each GMM blob to demonstrate the temporal progression (shown in Figure 5.10). To

ensure a fair comparison, all sample RPCs have the same size. For each sample RPC, we present

time sequence plots of the following: (1) TCP sequence number (tcp_seq) and TCP acknowl-

edgment sequence number (tcp_ack_seq) to show the number of bytes sent and acknowledged;

(2) TCP receiver window size advertised by the client (client: cwnd) to indicate the amount of

data that the server can send without overflowing the client, and the number of bytes-in-flight

on the server side (server: bytes-in-flight) to represent the number of bytes sent but not yet ac-

knowledged; (3) round-trip time (RTT), which is the time between the packet being sent and the

corresponding acknowledgment being received by the server. Note that RTTs in this case also in-

clude local delay on the client side (as shown in Figure 5.3). We next examine the time sequence

graphs.

As shown by tcp_seq and tcp_ack_seq plots in Figure 5.10(a), the sample RPC in blob 0 ex-

periences a pause of approximately 44 milliseconds (nearly 68% of the total transfer time) while

waiting for an acknowledgment. Once the acknowledgement is received, the transfer resumes

without further disruptions. During this pause, the measured RTT increases suddenly, from less

than 0.001 seconds to 0.043 seconds, as a result of the delayed arrival of the acknowledgment.

For determining whether the increase in RTT occurred in the network or on the client side, we

analyze the local delay recorded on the client side, as shown in Figure 5.11. The local delay rises

from around 6 milliseconds to 43 milliseconds, contributing to the increase in RTT. The pcap

traces support the conclusion that the performance of the RPCs in blob 0 is mainly impacted

96

Figure 5.11: Time sequence graph of client delay for the example RPC in Figure 5.10(a) based on
pcap files captured on the client end.

by an increase in local delay on the client. Therefore, blob 0 is mainly constrained by clients.

Categorical analysis shows that blob 0 contains RPCs from all clients, not just from a particular

one(s). Therefore, the performance bottleneck is not due to anomalous clients, but rather a more

generic performance bottleneck RPCs may experience during transmission.

The time sequence graphs for the sample RPCs in blobs 1 and 2 are shown in Figures 5.10(b)

and 5.10(c), respectively. Unlike the RPC in blob 0, as shown in Figure 5.10(a), these RPCs do

not experience significant local delays on the client side. However, the RPC in blob 1 has a much

smaller cwnd and fewer bytes-in-flight at the start of the transfer compared to the RPC in blob

2. This results in a 2 times longer time to transmit the same amount of data, given that the size

of these RPCs is the same. For instance, the number of bytes-in-flight remains around 4 KB and

the cwnd is around 458 KB during the first 0.01 seconds for the RPC in blob 1. Meanwhile, the

RTTs stabilize around 0.05 milliseconds, which is closer to the propagation delay.6 The small

RTTs suggest that the network is not the constraint for RPCs in blob 1. Instead, the performance

is primarily constrained by volume/cwnd, where the sender is unable to generate/transmit data

quickly enough, resulting in underutilization of the available bandwidth resources within the

network.

6The minimal RTT measured using the ping command between a server and a client in our testbed is around 0.05
milliseconds.

97

In contrast, the RPC in blob 2 completes in less than 0.01 seconds, with an average of 136

KB in bytes-in-flight and a rapidly increasing cwnd, as shown in Figure 5.10(c). The average

throughput of RPCs in blob 2 is around 2000 Mbps (Figure 5.9(c)), which is close to the ex-

pected throughput of 2500 Mbps when 4 RPCs, the average number of concurrent RPCs during

the experiment, fairly share a 10 Gbps bottleneck link. This indicates that the RPCs in blob 2

effectively utilize bandwidth resources and their performance is mainly limited by the network.

In conclusion, our analysis reveals that the performance of the RPCs in each GMM blob is

influenced by different factors. The RPCs in blob 0 are mainly constrained by clients with high

local latency, those in blob 1 by volume with small bytes-in-flight during transfer, and those in

blob 2 by network with high throughput and bytes-in-flight. This demonstrates that the physi-

cally based GMM model can effectively group RPCs based on their network performance, even

without the use of detailed per-packet time sequence information.

Unlike traditional approaches, GMMs offer a concise summary of tens of thousands of RPCs

through three multidimensional Gaussian distributions (blobs). This simplifies the process of:

(1) Identifying abnormal performance experienced by a small group of RPCs (blob 0). (2) Sum-

marizing the network performance of RPCs across multiple dimensions. (3) Interpret the main

constraint associated with each blob.

5.3.4 GMMs vs. kMeans vs. DBSCAN

As explained in Section 3.2.2, our use of GMM is based on the physical interpretation of a

large number of similarly-constrained application workers in HDCs, rather than simply clustering

based on performance metrics. To demonstrate this, we compare the modeling results of GMMs

with two commonly used clustering approaches, kMeans (139) and DBSCAN (140), to determine

if they can also identify the three blobs and their unique constraints. For a fair comparison, we

use the same set of RPCs and the same set of performance metrics as input for all modeling

approaches.

98

(a) GMMs

P
50

 b
if

(b
yt

es
)

(b) kMeans

P
50

 b
if

(b
yt

es
)

(c) DBSCAN

Figure 5.12: Scatter plots in throughput and 50th bytes-in-flight with different clustering algo-
rithms. Note that DBSCAN uses the value -1 to indicate outliers that do not belong to any cluster.
This suggests that DBSCAN is not effective in this case, as it is unable to cluster all of the data
points.

99

The scatter plots in Figure 5.12 compare the throughput and 50th percentile of bytes-in-

flight for each blob using three different clustering algorithms. We compare the RPCs clus-

tered in each blob using different approaches. The results indicate that kMeans cannot identify

client-constrained RPCs, as these only constitutes 1% of the performance data. On the other

hand, DBSCAN can identify client-constrained RPCs, but fails to differentiate between volume-

constrained and network-constrained RPCs due to overlap in their performance near the edges.

The results of the comparison between GMMs, kMeans, and DBSCAN show that GMMs pro-

vide a more accurate identification of different network performance experienced by RPCs and

their constraints. GMM-based analysis is able to handle disproportionate ratios of RPCs across

blobs and similar performance along one or more individual dimensions, which are limitations of

kMeans and DBSCAN.

5.4 Use Case 2: Analyzing the Impact of Configuration Factors on RPC Performance

In this section, we employ GMMs to investigate the impact of configuration factors such as

generic segmentation offloading (GSO) (Section 5.4.1), HTTP Keep-Alive (Section 5.4.2 and

Appendix B.1), and communication patterns (Section 5.4.3 and Appendix B.2) on the network

performance of RPCs by conducting A/B comparisons.

5.4.1 Experiment 1: The Impact of Generic Segmentation Offloading (GSO)

In the previous experiment (Section 5.3), it was observed that 84% of the RPCs are limited

by volume, as indicated by their low throughput and bytes-in-flight (blob 1 in Table 5.4). We

had disabled GSO during the experiment, and wondered if that resulted in poor performance. To

investigate the effect of GSO on the network performance of RPCs, we repeat the previous experi-

ment with GSO enabled by executing the ethtool command, using the same setup as described in

Section 5.3.

100

5.4.1.1 Background: GSO

GSO is a technique used in networking to optimize the transmission of large data packets

over networks with a limited Maximum Transmission Unit (MTU). The MTU refers to the max-

imum size of a packet that can be transmitted over a network without fragmentation. When a

network interface receives a large packet that exceeds the MTU, it needs to be fragmented into

smaller packets before transmission. This fragmentation process can introduce overhead and

inefficiencies, especially when dealing with large-scale data transfers. GSO addresses this issue

by offloading the segmentation process from the sending device’s CPU to the network interface

hardware, thus enables upper-layer applications to handle fewer, larger packets instead of more,

smaller packets, and reduces the per-packet overhead in the network stack. As a result, GSO can

lead to more efficient packet sending and receiving when it is enabled on the end hosts.

5.4.1.2 What Can Be Learned from Traditional Analysis

The comparison of network delay, throughput, and bytes-in-flight with and without GSO

is shown in Figure 5.13 using cdf and kde plots. The results show that when GSO is enabled,

the average network delay in the 95th percentile decreases by approximately 70%, from 0.7

to 0.2 milliseconds. Additionally, the average throughput increases by 2.7 times, from 1315

to 3472 Mbps, and the average bytes-in-flight in the 95th percentile increases by 1.48 times,

from 154 to 228 KB. These positive results align with the design goal of GSO. However, the

kde plots in Figure 5.13 also reveal multiple structures in throughput and bytes-in-flight when

GSO is enabled, suggesting that different RPCs experience diverse performance. Investigating

the correlations between these different modes across performance dimensions is a complex task

that can be accomplished using techniques similar to the linking and brushing method shown in

Figure 5.7.

101

(a) Cumulative distribution of throughput (b) Kde of throughput

(c) Cumulative distribution of P95 network delay (d) Kde of P95 network delay

(e) Cumulative distribution of P95 bytes-in-flight (f) Kde of P95 bytes-in-flight

Figure 5.13: Performance comparison in the 95th percentile network delay, throughput and 95th
percentile bytes-in-flight with and without GSO.

102

(a) 95th percentile of network delay w/o GSO (b) 95th percentile of network delay with GSO

(c) 95th percentile of bytes-in-flight w/o GSO (d) 95th percentile of bytes-in-flight with GSO

(e) throughput w/o GSO (f) throughput with GSO

Figure 5.14: Cumulative probability of multiple performance metrics of each blob with and
without GSO.

5.4.1.3 What Can Be Learned Using GMM Analysis

To avoid the overhead of traditional linking and brushing techniques, we construct GMMs

using the same set of per-RPC performance metrics utilized as in the previous experiment when

GSO is disabled (Section 5.3). We then apply the blob matching methodology outlined in Section

4.2.3 to match the blobs in these two GMMs, with and without GSO, for an “apples-to-apples”

comparison. Matched blobs are assigned the same label for annotation. By comparing the GMM

results of the matched blobs, we aim to uncover any supplementary insights that may emerge.

103

Blob (RPC ratio) Network delay Throughout (Mbps) P95 bif (Kbytes)
0 (1%) 0.61 288.4 129.73

1 (84%) 0.73 1201.4 130.71
2 (15%) 0.65 2000.1 282.76

a GSO = OFF
Blob (RPC ratio) Network delay Throughout (Mbps) P95 bif (Kbytes)

0 (57%) 0.22 3585.4 244.35
1 (23%) 0.15 3169.4 135.30
2 (20%) 0.38 3775.1 375.25

b GSO = ON

Table 5.5: Average performance of RPCs in each blob.

Figure 5.14 presents the cumulative distribution of the most distinguishing metrics between

each blob according to the Wasserstein distance: 95th percentile of network delay, 95th percentile

of bytes-in-flight, and throughput. Their average performance is summarized in Table 5.5. As

seen in the table, when GSO is disabled, the volume-constrained blob 1 and network-constrained

blob 2 show a 160% difference in throughput (1201 Mbps vs. 2000 Mbps) and a 210% difference

in the 95th percentile of bytes-in-flights (129 KB vs. 282 KB). However, when GSO is enabled,

the largest gap between blobs in the GMM is reduced to 1.2x difference in throughput (3169

Mbps vs. 3775 Mbps) and a 1.5x difference in the 95th percentile bytes-in-flight (244 KB vs. 375

KB), resulting in more consistent performance for all RPCs. This demonstrates that with GSO

enabled, there is a more uniform distribution of performance across the blobs, improving fairness.

As shown in Figure 5.14, the performance characteristics of three blobs in the GMM with

GSO enabled reveal that the RPCs in blob 2 experience the highest network delay and through-

put. This suggests the presence of additional queuing delay introduced in the network during

transmissions. Queuing occurs when the bottleneck link is saturated and the bandwidth is suf-

ficiently utilized, indicating that the performance of RPCs in blob 2 is mainly constrained by

the network. Since there is no significant delay at either end for all blobs as depicted in Figure

5.15, the constraint for RPCs in blobs 0 and 1 is either size or volume given their small bytes-

in-flight. However, since the RPCs in blob 0 experience a similar throughput as the RPCs in the

network-constrained blob 2, it is unlikely that their performance is limited by size.

104

(a) GSO = OFF (b) GSO = ON

Figure 5.15: Delay breakdown in each blob with and without GSO.

Additionally, Figure 5.15 shows the breakdown of the most distinguishing delay metrics in

the network and on the end hosts for each blob in both GMMs. One of the most notable observa-

tions from the plot is that the significant delay observed on the client side when GSO is diabled

is no longer present when GSO is enabled, suggesting that the RPCs are no longer constrained

by the client in this scenario. Because the large client delay experienced by the small set of RPCs

is not clearly visible in the kde plot when GSO is disabled (Figure 5.6), it is challenging to high-

light this change based only on visualization. Additionally, the network delay experienced by the

RPCs in each blob is lower, which aligns with the overall trend7.

In conclusion, the GMM analysis reveals that the possible constraint for blob 0 is volume, for

blob 1 is size, and for blob 2 is the network. Moreover, as the experiment demonstrates, changing

a single factor (i.e., enabling or disabling GSO) can lead to new interactions among the RPC

flows and with the network, often in unpredictable ways. In this case, GMM is very useful in

illustrating the different influences on subsets of RPC flows.

7The reduction in network delay may seem counterintuitive since GSO is not expected to impact network delay. This
unexpected result can be attributed to the imprecise timestamps captured in tcpdump. These timestamps represent
the approximate arrival time of incoming packets and the transmission time of outgoing packets, but they may not
be entirely accurate due to factors such as delayed processing caused by system interrupts. In particular, when GSO
is disabled, the arrival timestamp for a packet may be delayed if the system is busy handling smaller packets, even
though this delay is not introduced over the network. As a result, the delay may be erroneously counted as part of the
network delay in the timestamps captured in tcpdump.

105

5.4.1.4 Validating Constraints Using Ground Truth Information

Next, we validate the constraints associated with each blob in the GMM with GSO enabled

by using ground-truth information from the pcap traces. The cumulative distribution of the size

of each RPC for each blob is shown in Figure 5.16. As the figure demonstrates, the RPCs in blob

1 have a smaller median size, approximately 800 KB, compared to those in blobs 0 and 2, which

have a median size of around 2.4 MB. This smaller size may contribute to their performance

characteristics, such as lower throughput and fewer bytes-in-flight, as smaller RPCs may spend

a larger proportion of time in the TCP slow-start stage. Therefore, the network performance

of RPCs in blob 1 is mainly limited by their sizes. It is noteworthy that the size of RPCs is not

included as an input performance metric when modeling GMMs, as its distribution may not be

Gaussian and can vary depending on the specific application. However, GMMs can still identify

the impact of RPC size on network performance by analyzing other performance metrics.

Figure 5.16: Cumulative distribution of RPC sizes of each GMM blob when GSO is on.

(a) Cumulative distribution of RPC numbers. (b) Cumulative distribution of RPC bytes.

Figure 5.17: Cross-traffic information of each GMM blob when GSO is on.

106

To gain insights into the performance differences between the RPCs in blobs 0 and 2, we con-

duct a further analysis of the pcap files. We evaluate the cross-traffic to assess the network load

during the experiment. By combining information from all pcap files, we calculate the average

number of concurrent RPCs and their bytes at any given moment. As shown in Figure 5.17, it

is evident that, during approximately 80% of the observed duration, the number of concurrent

RPCs within the network does not exceed 2. Moreover, when examining the cross-traffic bytes

associated with RPCs in blobs 0 and 2, they exhibit similarity, indicating the absence of any no-

table differences. Thus, the performance differences observed between blobs 0 and 2 cannot be

attributed to cross-traffic influences.

Examination of time sequence graphs of sample RPCs from blobs 0 and 2, with similar sizes,

reveals some key insights. As shown in Figure 5.18, the RPC in blob 2 completes 1 millisecond

faster, with higher bytes-in-flight and smaller RTTs during transmission, compared to the RPC

in blob 0. The increasing RTTs observed in the graph of the RPC in blob 2 (Figure 5.18(b)) as

bytes-in-flight increases suggest that additional queueing delays are introduced and the network

bandwidth is limited. This confirms that the network is the primary constraint for the perfor-

mance of the RPCs in Blob 2. In contrast, the RPCs in blob 0 exhibit smaller RTTs and lower

throughput, suggesting that their performance may be more constrained by volume, rather than

network conditions. This indicates that the RPCs in blob 0 do not utilize the available bandwidth

as efficiently as those in blob 2.

The conclusion drawn from the pcap files regarding the performance constraints for each blob

is consistent with the analysis based on GMM results.

5.4.2 Experiment 2: The Impact of HTTP Persistence

In this section, we investigate the ability of GMMs to assess the effect of the persistence of

HTTP connections on the network performance of RPCs. HTTP Keep-Alive, also known as an

HTTP persistent connection, enables a single TCP connection to remain open for multiple HTTP

requests and responses, instead of creating a new connection for each request and response. This

107

(a) blob 0 (b) blob 2

Figure 5.18: Time sequences of bytes-in-flight and RTT for sample traces in blobs 0 and 2.

reduces the overhead of connection establishment and termination, leading to faster data transfer,

as it avoids the overhead of establishing and tearing down TCP connections for each request.8

Figure 5.19 illustrates the difference in TCP time sequence graphs with and without HTTP

Keep-Alive. When a new connection is established without HTTP Keep-Alive, the bytes-in-

flights on the server side (server:bif), which is limited by the congestion window size (cwnd),

starts with a small value and gradually increases, as shown in Figure 5.19(a). However, when

Keep-Alive is enabled, the connection continues with the large cwnd (and possible bytes-in-

flight) from the previous requests, as depicted in Figure 5.19(b). This leads to improved perfor-

mance with a shorter transfer duration and larger throughput. Given its performance advantages,

HTTP Keep-Alive is widely used in data centers to maintain open connections between ma-

chines. Therefore, it is crucial to understand its impact on the network performance of RPCs in

our testbed using traffic patterns similar to those found in data centers. To evaluate the impact of

HTTP Keep-Alive on RPC performance, we conduct experiments under two different workloads:

(1) with at most one connection between each server/client pair (Appendix B.1), and (2) with up

to five connections between each server/client pair.

8However, there are certain cases in which HTTP Keep-Alive cannot bypass TCP slow start. For instance, when the
TCP connection between the client and server exceeds its idle timeout period, either party may close the connection.
In such cases, when the client initiates a subsequent request, a new TCP connection is established, triggering TCP
slow start once more.

108

(a) without HTTP Keep-Alive (b) with HTTP Keep-Alive

Figure 5.19: TCP time-sequence graph without (left) and with (right) HTTP Keep-Alive. Note
that the time in (a) corresponds to a single request, while the time in (b) is for a later request sent
after the establishment of a keep-alive connection.

5.4.2.1 The Impact of HTTP Keep-Alive with Multiple Connections

In order to study the effect of HTTP Keep-Alive on the network performance of RPCs when

there is increased workload, we establish five connections between each server/client pair. Simi-

lar to the single-connection scenario, each connection transferred 1 GB of data through multiple

HTTP requests and responses, resulting in a total data transfer of 5 GB between each server-

client pair. The distribution of response sizes remains consistent with the prior experiments, and

each client stops issuing new requests to a server after receiving responses totaling 1 GB in size.

This test scenario is relevant as HTTP Keep-Alive is commonly used in data centers, and it en-

ables us to assess its impact on RPC performance under higher loads.

What Can Be Learned from Traditional Analysis Table 5.6 compares the average perfor-

mance of RPCs with and without the use of HTTP Keep-Alive with multiple connections. As

the results indicate, enabling HTTP Keep-Alive leads to a decrease in the overall completion rate

from 8.4 Gbps to 8.27 Gbps. Both values are close to the bottleneck link speed of 10 Gbps, indi-

109

cating high utilization of the network. In comparison, the single connection scenario, as shown in

Table B.1, exhibits a completion rate of around 4.78 Gbps. Additionally, enabling HTTP Keep-

Alive leads to a decrease in average throughput from 536 Mbps to 341 Mbps, a reduction in the

95th percentile of bytes-in-flight from 0.57 MB to 0.49 MB, and an increase in the 95th per-

centile of RTT from 4.58 ms to 10.88 ms. These results suggest that when HTTP Keep-Alive is

enabled under increased workload, the network performance of RPCs is degraded.

HTTP Keep-Alive Overall rate Throughput 95th Bif 95th Rtt
enabled 8.27 Gbps 341 Mbps 0.49 MB 10.88 ms
disabled 8.40 Gbps 536 Mbps 0.57 MB 4.58 ms

Table 5.6: Comparison of average performance with and without HTTP Keep-Alive for multiple
connections.

(a) HTTP Keep-Alive disabled (b) HTTP Keep-Alive enabled

Figure 5.20: Breakdown of delay on end-hosts and network for each blob in GMMs with multiple
connections.

P0disable P1disable P2disable
P0enable 12.84 17.52 21.88
P1enable 24.86 10.98 18.21
P2enable 13.85 14.85 3.53

Table 5.7: Distance measure of the 2-dimensional Wasserstein distance between blobs in two
GMMs.

What Can Be Learned Using GMM Analysis The previous summary provides an overview of

the performance of RPCs with and without HTTP Keep-Alive, but does not offer a comprehen-

sive understanding of how HTTP Keep-Alive impacts RPCs. To gain deeper insight, we employ

110

GMMs to build two models based on per-RPC metrics collected with and without HTTP Keep-

Alive. The resulting blobs in these models are then matched using 2d Wasserstein distance, as

described in Section 4.2.3, to facilitate an “apples-to-apples” comparison. This matching process

leads to the identification of three pairs of matched blobs, which are denoted as P0disable/P0enable,

P1disable/P1enable, and P2disable/P2enable, respectively.

Figure 5.20 presents a comparison of the breakdown of delay on end hosts and in the network

for each blob in these GMMs in the case of multiple connections, with and without HTTP Keep-

Alive. When HTTP Keep-Alive is disabled (Figure 5.20(a)), the network performance of RPCs

is predominantly limited by the network delay, which is the most significant factor. In contrast,

when HTTP Keep-Alive is enabled (Figure 5.20(b)), there is a noticeable increase in local client

delay, along with an increase in network delay. Table 5.8 summarizes the top 5 performance

metrics that differentiate these blobs in each GMM. When HTTP Keep-Alive is disabled, the

performance of RPCs in the different blobs varies in terms of throughput, server delay, bytes-

in-flight, network delay, and RTT. On the other hand, when HTTP Keep-Alive is enabled, the

performance of RPCs mainly differs in terms of RTTs and bytes-in-flight.

without HTTP Keep-Alive with HTTP Keep-Alive
performance metric distance performance metric distance

1 throughput 1.69 rtt_p50 0.79
2 server_delay_p75 1.36 bif_p50 0.73
3 bif_p95 1.27 rtt_mean 0.73
4 network_delay_mean 1.26 bif_mean 0.69
5 rtt_mean 1.26 bif_p75 0.69

Table 5.8: Top 5 performance metrics that distinguish the blobs in each GMMs with multiple
connections.

P0 P1 P2
1 server_delay_p75 throughput_mbps bif_mean
2 server_delay_p50 network_delay_mean bif_p95
3 throughput_mbps rtt_mean bif_p75

Table 5.9: Top 3 performance metrics that distinguish each blob in the GMM when HTTP Keep-
Alive is disabled.

111

(a) Disabled: throughput (Mbps) (b) Enabled: throughput (Mbps)

(c) Disabled: P95 bytes-in-flight (d) Enabled: P95 bytes-in-flight

(e) Disabled: P5 bytes-in-flight (f) Enabled: P5 bytes-in-flight

Figure 5.21: Kde plots of each blob in throughput and bytes-in-flight when HTTP Keep-Alive is
disabled (Disabled: left column) and enabled (Enabled: right column).

avg. no. of RPCs (cross-traffic) avg. bytes (cross-traffic) RPC size (byte) distinguishing info.
P0 41.21 5.266e7 0.54e6 RPC size
P1 30.18 4.028e7 2.08e6 cross-traffic load
P2 41.69 5.512e7 2.41e6 RPC size

Table 5.10: Cross traffic and RPC size information for each blob when HTTP Keep-Alive is
disabled with multiple connections.

112

Before comparing the performance of RPCs with and without HTTP Keep-Alive, we conduct

an in-depth analysis of the performance of RPCs in each GMM. The objective of this analysis is

to identify the specific performance characteristics and constraints of each blob in both scenarios.

When HTTP Keep-Alive is disabled, we use model analysis to determine the most distinguishing

performance metrics for each blob. The results of this analysis are summarized in Table 5.9. Ad-

ditionally, we present kde plots of throughput, and the 5th and 95th percentile of bytes-in-flight

in Figure 5.21. The results in Table 5.9 and Figure 5.21 indicate that blob P0 has the smallest

throughput and bytes-in-flight, blob P1 has the highest throughput and the smallest network de-

lay, and blob P2 has the highest bytes-in-flight. Furthermore, the GMM analysis in Table 5.10

reveals that the RPCs in blob P1 differ significantly in terms of cross-traffic volume, including

the number of RPCs and the total volume of bytes transmitted. On the other hand, the RPCs in

the blobs P0 and P2 differ more in their sizes. The low cross-traffic volume experienced by the

RPCs in P1 may explain their high throughput and small network delay. Despite experiencing

similar levels of cross-traffic, the average size of RPCs in P0 is almost four times smaller than

in P1, suggesting that the smaller bytes-in-flight and throughput are due to the overhead of con-

nection establishment and the TCP slow start for each HTTP request/response. In conclusion,

when HTTP Keep-Alive is disabled and the network workload is high, the performance of RPCs

is mainly influenced by the network, but also depends on the sizes of the RPCs and the presence

of cross-traffic. Large RPCs with minimal cross-traffic tend to perform better (blob P1), while

smaller RPCs are more susceptible to performance issues due to their size and competition for

bandwidth with larger RPCs (blob P0). This highlights the importance of considering the trans-

fer size when managing network congestion, as smaller transfers may be more vulnerable to

performance degradation (56).

Next, we evaluate the network performance of RPCs with HTTP Keep-Alive enabled. Our

analysis is summarized in Figure 5.20(b). It shows that network delay is not the only factor af-

fecting the network performance of RPCs when HTTP Keep-Alive is enabled, as the end hosts

also contribute to delays in RPCs for blobs P0 and P2. Table 5.8 indicates that the main differ-

113

ences in RPC performance among the blobs are RTT and bytes-in-flight. Contrary to when HTTP

Keep-Alive is disabled, RPC size is no longer a distinguishing factor among the blobs when it is

enabled, as the average size is around 2 × 106 bytes for all three blobs. However, the volume of

cross-traffic still plays a crucial role in determining the performance of RPCs, as shown in Table

5.11. RPCs in blob P1 experience the least cross-traffic, resulting in the smallest network delay

and highest throughput. When comparing the cross-traffic information from Table 5.11 with that

from Table 5.10, it is clear that cross-traffic increases significantly when HTTP Keep-Alive is

enabled.

avg. no. of RPCs (cross-traffic) avg. bytes (cross-traffic) RPC size (byte)
P0 44.76 8.685e7 2.20e6
P1 39.67 7.655e7 1.92e6
P2 44.55 8.557e7 1.92e6

Table 5.11: Average cross-traffic and RPC size of each blob when HTTP Keep-Alive is enabled.

Table 5.12 presents a comparison of the top five performance metrics that distinguish blob P0

when HTTP Keep-Alive is enabled versus disabled. The table shows that the use of HTTP Keep-

Alive results in significant increases in bytes-in-flight and RTT, which are the most significant

differences between the two scenarios. These differences are also depicted in Figures 5.21 and

5.20(b). It is worth noting that similar changing trends are observed in blobs P1 and P2, but are

not included here for brevity.

1 2 3 4 5
P0 bif_min rtt_p5 rtt_p25 rtt_min bif_p5

Table 5.12: Top 5 distinguishing performance metrics for P0 with and without HTTP Keep-
Alive.

Overall, our test results indicate that increasing the number of connections between each

server/client pair from one to five degrades the performance of RPCs when HTTP Keep-Alive

is enabled, resulting in increased delay and decreased throughput. This is contrary to the widely

held belief that HTTP Keep-Alive improves performance. Further analysis reveals that the vol-

ume of cross-traffic increases with HTTP Keep-Alive, as shown in Figure 5.22. The results show

114

(a) time series of number of flows (b) Cumulative distribution of number of flows

(c) time series of completing rate (d) Cumulative distribution of completion rate

Figure 5.22: Number of concurrent RPCs and completion rate with and without HTTP Keep-
Alive.

that when HTTP Keep-Alive is disabled, the median number of RPCs is 25 and the completion

rate is around 8.8 Gbps, whereas with HTTP Keep-Alive enabled, the numbers are 35 and 9 Gbps,

respectively. Although the total workload is similar, with around 67,000 MB of data transferred

in total, the additional overhead of TCP connection establishment and teardown, as well as the

slow start stage when HTTP Keep-Alive is disabled, reduces competition in the network. This

allows each RPC to acquire a larger share of the available bandwidth resources, resulting in bet-

ter performance with a higher completion rate, as depicted in Figures 5.22(c) and 5.22(d), and

reduced RTT, as evidenced by the values presented in Table 5.6.

Validating Constraints with Ground Truth Information Finally, using ground-truth infor-

mation obtained from pcap traces, we present time sequence plots of bytes-in-flight and RTTs

for representative RPCs in blobs P0 and P1 with HTTP Keep-Alive both disabled and enabled.

Our GMM analysis shows that, despite increased network and client-side delays, RPCs in P0

experience higher throughput and byte-in-flight. Figures 5.23(a) and 5.23(b) illustrate that when

115

(a) P0: without HTTP Keep-Alive (b) P0: with HTTP Keep-Alive

(c) P1: without HTTP Keep-Alive (d) P1: with HTTP Keep-Alive

Figure 5.23: Sample time sequence plots of bytes-in-flight and RTTs of example traces in P0 and
P2.

116

HTTP Keep-Alive is enabled, the example RPC experiences larger bytes-in-flight and RTTs at

the beginning of the transfer. Additionally, during the transmission, several bursts in client delay

almost double the measured RTT. Despite these increased delays, the transfer duration is reduced

by around half, resulting in higher throughput, compared to when HTTP Keep-Alive is disabled.

Our GMM analysis indicates that enabling HTTP Keep-Alive has a negative impact on the

performance of RPCs in blob P1, as demonstrated by an increase in network delay (Figure

5.20(b)) and a decrease in throughput (Figure 5.21(b)). This conclusion is further supported

by the time sequence plots of bytes-in-flight and RTTs for a representative RPC in P1, both with

and without HTTP Keep-Alive enabled (Figures 5.23(c) and 5.23(d)). The sample RPC shows

that, with HTTP Keep-Alive enabled, the transfer begins with high bytes-in-flight and RTTs,

which gradually decrease over time. However, this results in a longer transfer duration and lower

throughput.

The results of this example show that when competing for bandwidth resources in a congested

network, the RPCs in blob P1 adopt a more conservative approach, sending less data into the net-

work, while the RPCs in P0 become more aggressive, sending more data to increase their share

of bandwidth. This balancing of behaviors helps to reduce the disparities in resource allocation,

leading to a fairer distribution of resources. However, due to the increased volume of cross-traffic,

the overall performance is still degraded compared to when HTTP Keep-Alive is disabled.

5.4.3 Experiment 3: The Impact of Communication Patterns

Lastly, we investigate the impact of different communication patterns on RPC performance

when multiple connections exist between each server and client with HTTP Keep-Alive enabled.

In contrast to the 1-to-1 communication scenario described in Section 5.4.2.1, where each client

communicates with a specific server via multiple TCP connections, we examine a 1-to-5 scenario

where each client communicates with five different servers through a single TCP connection.

Each connection transferred 1 GB of data through multiple HTTP requests and responses. By

utilizing GMM analysis, we observe no notable variations in RPC performance between the two

117

communication patterns. This finding suggests that, when the network workload is similar, the

specific choice of strategy for distributing RPC requests does not significantly influence on the

network performance of RPCs in our testbed. For a detailed analysis, please refer to Appendix

B.2.

5.5 Use Case 3: Detecting Performance Anomalies

This section presents an example of how GMMs can be used to detect an anomalous server

in our testbed. Performance anomalies are common in data centers and can have different causes.

However, the proportion of RPCs exhibiting abnormal behavior is usually small compared to

normal ones, making it challenging to identify them using time series and distribution plots alone.

The experiment involves five connections between each server and client, with each connec-

tion transferring 1 GB of data with HTTP keep-alive enabled. In this case study, the anomaly was

not intentionally introduced, but instead was discovered while analyzing the results of a GMM

with HTTP keep-alive enabled in an experiment.

Figure 5.24: Delay breakdown of each GMM blob.

Figure 5.24 illustrates the breakdown of the delay in the network and on the end hosts for

each blob in the GMM, with blob 1 experiencing the smallest network delay among the other

blobs, resulting in the highest throughput. GMM-based categorical analysis shows that the RPCs

in blob 1 are different from the other blobs in terms of machine names. The cosine similarity

between the RPCs in blobs 0 and 2 in terms of machine names is as high as 0.99, indicating a

118

consistent distribution of RPCs among a group of machines. In contrast, the cosine similarity

between blob 1 and blobs 0 and 2 is only around 0.29. Further analysis reveals that 48% of the

RPCs in blob 1 are from the server s_hp104, while there are almost no RPCs from s_hp104 in

blobs 0 and 2, as shown in Figure 5.25.

(a) blob 0 (b) blob 1 (c) blob 2

Figure 5.25: The ratio of RPCs from each machine in each blob. "s_" in the machine name indi-
cates servers.

To validate the accuracy of the GMM results, we conduct further analysis on the packet in-

formation captured on the end hosts and the overall sending rate of each server. This is done by

examining the transmitted packets per second, as collected by the ifconfig command, and by an-

alyzing the data from the pcap files. It is important to reiterate that the information collected by

ifconfig from each end host is not utilized as input for constructing GMMs. Instead, it serves as

ground-truth information used solely for validating the GMM results, specifically in cases where

there are variations in RPC performance across different end hosts. Figure 5.26(a) displays the

time series of transmitted packets (tx_pkts) from each server within an interval of one second.

As can be seen in Figure 5.26(a), the server s_hp104 transmitted approximately twice as many

bytes in the first 25 seconds of the experiment compared to the other servers. This high transmis-

sion rate resulted in s_hp104 completing the transfer of 5GB of data in half the time, as shown in

Figure 5.26(b). These results obtained from ifconfig provide evidence that server s_hp104 demon-

strates “anomalous" behavior characterized by a significantly higher transmission rate. This

finding aligns with the conclusions derived from the GMM analysis, which indicates that RPCs

from s_hp104 exhibit distinct behaviors compared to those from other servers. Unfortunately, the

119

(a) time series of transmitted bytes within each second from each server
from ifconfig

(b) sending rate of each server based on pcap infor-
mation

Figure 5.26: The ground truth statistics based on ifconfig and tcpdump.

120

underlying cause of this anomalous behavior in s_hp104 remains unknown, as it did not reoccur in

our subsequent experiments.

Without the use of GMMs, it can be challenging to identify an anomalous server in the

testbed. This is because the structure of the anomaly is not immediately evident from the kde

plot shown in Figure 5.27. Detecting such anomalies is particularly challenging in large-scale

production HDCs, where there can be terabytes of data transferred among tens of thousands of

machines. Performance anomalies in these environments often occur on a much smaller scale

compared to normal behaviors, making it difficult to determine whether RPCs from/to a subset of

machines are exhibiting divergent behavior in any performance dimensions.

Figure 5.27: KDE plots of delay, rate and volume without GMMs.

5.6 Conclusion

In this chapter, we demonstrate the utilization of GMMs in identifying different network per-

formance experience for RPCs and uncovering their bottleneck constraints in a controlled testbed

with traffic patterns that follow the distribution of a representative application in production data

centers. The performance metrics for GMM modeling and validation are obtained by extracting

statistics from end hosts and switches in the testbed using Simple Network Management Protocol

(SNMP), ifconfig, and tcpdump.

121

In our experiments, we have shown that GMMs are capable of effectively identifying different

types of performance experienced by RPCs, despite the disproportional percentages of RPCs

experiencing each type of performance and their similar performance in one or more performance

dimensions. We validate the effectiveness of GMMs in evaluating the impact of different con-

figuration factors, such as GSO, HTTP keep-alive, and communication patterns, on the network

performance of RPCs. The GMM approach provides a more precise “apples-to-apples” compar-

ison when compared to traditional approaches, allowing us to understand the impact of changes

on RPCs with different performance. Additionally, we demonstrate the usefulness of GMMs in

detecting performance anomalies and pinpointing the most likely causes.

Throughout these experiments, we compared our GMM-based approach with traditional time-

series and distribution-based analysis methods. Our GMM-based approach is more effective in

uncovering the differences in performance among tens of thousands of RPCs by considering

multiple performance metrics simultaneously, such as rate, volume, and latency. The analysis

tools introduced in Chapter 3.3 make it easy to interpret the bottleneck constraints affecting

RPC performance, enabling us to understand why certain RPCs perform in certain ways. In the

following chapters, we will examine real-world case studies conducted in a production HDC.

122

CHAPTER 6: CASE STUDIES FROM A PRODUCTION HDC

We have implemented the modeling pipeline described in Section 4 in one of the largest

production HDCs at Google, and used it for modeling the network performance of real-world

applications over the past three years.

In this chapter, we first describe the data instrumentation system in the production HDC for

collecting RPC telemetry. We then present several case studies that demonstrate the efficiency

of our modeling approach and provide insights into the performance of HDC applications. Each

case study involves one or more HDC applications running on different infrastructures or during

different time periods. The main objective is to understand how GMM-based analysis reveals

the network performance of HDC applications, assesses the impact of infrastructure changes on

application network performance, and troubleshoots performance degradation in the production

HDC.

6.1 RPC Performance Instrumentation: Fathom

As previously discussed in Section 3.2.2, the RPC library used by applications provides a

good vantage point for collecting performance metrics related to local, remote, and network

systems. This enables us to analyze and characterize the network performance of applications

effectively.

The RPC workflow in the production HDC is similar to that shown in Figures 3.1 and 3.2. For

collecting RPC telemetry, we use the existing instrumentation system in the production HDC,

Fathom. Fathom passively instruments a sampled RPC and records timestamps when request and

response messages traverse each layer in the RPC and network stack – from the shared user RPC

library (141) through the kernel TCP/IP and qdisc scheduler to the NIC – in both senders and

123

receivers to collect performance data for fitting into GMMs. In the next section, we describe the

metrics and categorical attributes collected by Fathom.

6.1.1 Performance Metrics Collected

For each instrumented RPC message, Fathom collects the following metrics:

1. Latencies: the timestamps when the request and response messages pass through each layer

of the networking stack on the host – from the shared user RPC library, through the kernel

TCP/IP and qdisc scheduler, and in the network (from when the first byte is sent until the

last byte is acknowledged);

2. Rates: sender pacing rate and receiver delivery rate (throughput);

3. Connection state: including the estimated TCP round-trip time (RTT), congestion window

size, and number of packets lost during transmission.

All timestamping extensions implemented in Fathom for collecting latencies have been up-

streamed to Linux in kernel v3.17 and later (143). As the detailed implementation is beyond

the scope of this dissertation, we will not be discussing it here. For collecting rates and connec-

tion states, Fathom captures the state of TCP when a timestamp is recorded in kernel. Compared

to recording a timestamp when it is received in userspace, this approach has been shown to yield

more accurate results by reducing measurement delay, which is particularly important on high-

speed networks.

The data collection in the RPC library occurs at the boundary between application-side per-

formance, such as request backlog or processing delays on local/remote end, and network-side

performance, such as delivery rate and transfer latency. This enables multiple perspectives on

the potential constraints that applications may encounter when executing an RPC transaction.

The key metrics captured by Fathom are summarized in Table 6.1, with a detailed description

provided. These metrics are then further aggregated (as described in detail in Section 6.1.4) and

used as candidates for modeling with GMMs.

124

Metrics Description
Rate metrics
delivery_rate Throughput of the connection, including delivery_rate_applimited

(e.g., when the throughput is limited by application backlog)
and delivery_rate_notapplimited.

pacing_rate Per-connection pacing rate chosen by TCP.
Latency metrics
pacing_latency Per-message latency incurred by the pacing layer at the sender.
tx_latency_* Delta between when the first byte of a message was sent to

when we receive the acknowledgment for the last byte. Given
the different message sizes, we aggregate the per-message
transfer latency in 6 buckets: (0, 1KB], (1KB, 8KB], (8KB,
64KB], (64KB, 256KB], (256KB, 2MB], and (2MB, +∞).

tcp_queueing_latency Time a message sits on the TCP transmit queue.
rpc_transmit_queueing_latency Time a message spends in the RPC library buffers after

serialization until it is written to the socket.
app_queueing_latency Time a message spends in the RPC library queues before it is

serialized into the binary buffers of the RPC library.
receive_queueing_latency Delta between when the sender receives the acknowledgement

of the message to when the receiver starts processing the RPC.
rate_limit_latency Per-message latency incurred by the traffic shaping layer at

the sender.
Connection state metrics
min_rtt Windowed minimum round trip time (RTT) of the connection

on a per-acknowledgment basis.
congestion_window TCP congestion window size.
wire_bytes Sum of RPC payloads.
message_count Number of RPC requests/responses.
retx_packets Number of packets retransmitted.
delivered_packets Number of packets delivered.
delivered_ce_packets Number of packets delivered with ECN marks (142).
rwnd_limited_time_ratio Average ratio that the connection was receive window limited

while transmitting an RPC request and response.
sndbuf_limited_time_ratio Average ratio that the connection was send buffer limited

while transmitting an RPC request and response.

Table 6.1: Description of key metrics collected in Fathom.

125

RPC Metrics Collected by Fathom vs. On Cloudlab (Chapter 5) Despite the common goal

of collecting RPC performance metrics, Fathom’s approach in the production HDC and our ap-

proach on CloudLab testbed differ notably due to the inherent differences between experimental

and production environments. Our approach on CloudLab primarily relies on pcap traces col-

lected from both servers and clients to provide detailed per-packet information, as described in

Section 5.2. This enables us to obtain network latency, client latency, and volume metrics related

to each packet transmitted in an RPC. In contrast, Fathom only captures a few snapshots of the

per-RPC TCP state to obtain rates, network latency, and volume metrics—this is important for

managing tracing and storage overhead in production HDCs. Table 6.2 shows when these metrics

are collected in Fathom: rate_limit_latency, tcp_queueing_latency, pacing_latency, and pac-

ing_rate are logged when the first packet of an RPC is sent, while delivery_rate, min_rtt, and

congestion_window are logged when an acknowledgment is received for the last byte sent in an

RPC. Given the scale of HDCs, collecting a few snapshots from each of millions of RPCs can

still provide informative data for performance monitoring, troubleshooting, and planning, as

demonstrated in (39). More fundamentally, as demonstrated in Chapter 5 and later in this chap-

ter, GMMs work well with RPC data collected with both approaches for modeling application

network performance.

Snapshot Collection Metrics

when the first packet is sent

rate_limit_latency
tcp_queueing_latency

pacing_latency
pacing_rate

when the last packet is acknowledged
delivery_rate

min_rtt
congestion_window

Table 6.2: Fathom metrics and their snapshot collection.

6.1.2 Categorical Attributes Collected

Fathom annotates each instrumented RPC with several categorical attributes related to:

126

1. Application: including the name of the source and destination user and job. A user is an

internal service entity for resource accounting and management, representing a different

service. For instance, a user can be a storage service that contains multiple jobs serving

other services, such as bandwidth-intensive streaming services or computation-intensive

machine learning services1. In the production HDC, users submit jobs to a cluster manager

with customized configurations (107). A job can be configured with different categorical

attributes, such as transmission priority and datacenter clusters.

2. Topology: including the location of the source and destination pod, cluster, and metro

region. In HDCs, racks are grouped into pods, pods are grouped into clusters, and multiple

clusters are interconnected within a metro region. Each pod contains only servers in one

cluster, while a cluster may span multiple pods.

3. Transport policies: including transmission priority (QoS class) and congestion control

algorithm, which influence transmission.

Table 6.3 shows detailed information about each categorical attribute in Fathom. These categori-

cal attributes are used for analyzing the GMM results, as discussed in Section 4.2.2.

Fathom is a passive monitoring system and does not generate any probing traffic. It covers

a significant portion of applications as most applications in HDCs use RPCs. Storing accurate

raw distributions for all RPCs would be infeasible due to the enormous amount of data involved.

Therefore, Fathom uses sampling and aggregation techniques for maintaining the distribution

structure while reducing the processing and data volume burden in the HDC.

6.1.3 RPC Sampling

To efficiently collect measurements with low overhead, Fathom employs a fixed probability

random sampling technique. As found in previous research (39), a small sample size, such as one

out of thousands of requests, can provide sufficient information for common use cases of tracing

1In our context, “service” and “user” can be used interchangeably.

127

Categorical attributes Description
time Start timestamp of the aggregation interval.
src_user Source user name. User is the internal service entity for resource

accounting and management. A user can be Google developers and
system administrators that run Google’s applications and services.

src_job Source job name. At Google, users submit their work to Borg in the
form of jobs (107). A user may contain multiple jobs. Each job
consists of one or more tasks that all run the same program.

dst_user Destination user name.
dst_job Destination job name.
src_pod Source pod. A pod is a basic construct of a data-center infrastructure

that inter-connects over a thousand hosts to each other and to
the data-center network spine.

src_cluster Source cluster. A cluster may span several pods inside a data-center,
but each pod only contains machines for one cluster.

src_metro Source metro. Multiple data-centers are inter-connected within a metro.
dst_pod Destination pod.
dst_cluster Destination cluster.
dst_metro Destination metro.
QoS_class Transmission priority of a flow (28). Flows with different QoS

are in different queues and served in a weighted round-robin way. The
higher the priority, the higher the QoS_class, and the larger the weight.

congestion_control TCP congestion control algorithm.

Table 6.3: Categorical attributes in Fathom.

128

data, such as performance evaluation, understanding, and testing. Overall, Fathom monitors

billions of TCP connections per second, 24x7, globally across all of Google’s datacenters after

sampling.

6.1.4 t-Digests: Aggregation that Preserves Distributions

To reduce storage overhead, Fathom aggregates instrumented measurements into distributions

based on the categorical attributes listed in Table 6.3 after sampling. Specifically, performance

metrics for RPCs with identical attributes are aggregated into one-minute intervals based on the

start timestamp of each sampled RPC, which is rounded to the nearest minute. Maintaining ac-

curate distributions, particularly in the tails (i.e., high and low percentiles), is crucial for fitting

GMMs with multiple and unknown modes, as well as for diagnosing performance issues that

often manifest in the tails of metric distributions (e.g., the 95th percentile of transfer latency).

However, storing precise distributions for billions of RPCs per second incurs significant process-

ing and storage overhead due to the massive volume of traffic on HDCs.

Histograms Using histograms is a common approach for reducing storage cost while maintain-

ing distribution information. To construct a histogram from a set of performance measurements,

the first step is to divide the range of values into consecutive, non-overlapping bins (or “inter-

vals”) and then count the number of values that fall into each bin.

However, histograms have two weaknesses when used with performance metrics collected

in HDCs: (1) Finding an appropriate bin size for each performance metric can be challenging.

For instance, rate-related performance metrics can range from O(100) to O(1e5) mbps, while

latency-related metrics can vary from O(1e-3) to O(1) seconds. The values may also depend on

the application type, underlying infrastructure, and cross-traffic. Using a fixed number of bins

may result in the loss of information in some cases. (2) Merging multiple histograms for future

analysis can be difficult due to diverse bin sizes.

t-Digests Instead of histograms, Fathom uses t-digests (144) for storing metric distributions, as

they offer several benefits. First, t-digests provide an error bound relative to the quantile, with

129

higher accuracy at both tails, which is often the most important information for diagnosing per-

formance issues. Second, t-digests have a bounded storage overhead, which is important for

handling the large amount of measurements collected in HDCs. Finally, t-digests allow for the

aggregation of multiple distributions without loss of accuracy. This enables metrics to be effi-

ciently aggregated at a level of categorical or temporal granularity that is fine enough to capture

variations and coarse enough to preserve modal structures, all with a manageable volume of data.

Therefore, Fathom aggregates performance measurements listed in Table 6.1 into t-digests at the

granularity of a one-minute timescale, based on the the starting time of each RPC and categorical

attributes listed in Table 6.3 .

6.1.5 Training Features from Fathom

From these aggregated t-digests of metrics, we describe their distributions using (1) the 1st

to 99th percentiles, (2) the differences between two percentiles, such as the difference between

the 1st to 99th percentile, and (3) the number of RPC measurements in each t-digest. In total, we

extract 313 statistical features, from which we select training features for building GMMs. For

confidentiality reasons, all performance metrics are normalized relative to (as a multiple of) the

minimum value for each metric in this chapter.

Table 6.4 displays the set of training features that are selected for constructing GMMs, fol-

lowing the approach for feature selection detailed in Section 4.1.1. It is worth noting that metrics

related to latency are log-normalized using the equation presented in Eq. 6.1, as indicated by

the inclusion of the term “log2” in the feature name. For handling zero values and preventing

division by zero errors, a constant of ϵ = 1e20 is added to the equation in Eq. 6.1.

x′ = log2(x+ ϵ) (6.1)

As outlined in Section 4.1.1, the remaining performance statistics derived from Table 6.1 are

not utilized as input for building GMMs. This is because these either (1) do not follow a normal

130

Feature metric Related entity/resource
1 app_queueing_latency_sec_p95_log2 application
2 rpc_transmit_queueing_latency_sec_p95_log2 local CPU/mem
3 rate_limit_latency_sec_p95_log2 transmission policy
4 pacing_latency_sec_p95_log2 congestion control algorithm
5 tx_latency_*_sec_p25_log2

network, application

6 tx_latency_*_sec_p75_log2
7 tx_latency_*_sec_p95_log2
8 delivery_rate_mbps_p25
9 delivery_rate_mbps_p75
10 delivery_rate_mbps_p95
11 receive_queueing_latency_sec_p95_log2 remote CPU/mem

Table 6.4: Training features for GMMs. ("tx_latency_*_sec" represents different latency buckets,
as described in Table 6.1. In our analysis, we choose 1KB and 8KB.)

distribution, such as the discrete scalar performance metrics including delivered_packets and

retx_packets), or (2) are correlated with already-selected features and therefore do not provide

any additional information. For example, the 5th and 50th percentiles of the delivery rate are

not selected as they are found to be correlated with the 25th and 75th percentiles, respectively.

However, it is important to note that these metrics, particularly these do not follow normal distri-

butions, may prove helpful for analyzing the modeling results in conjunction with the categorical

attributes collected in Table 6.3. We will present detailed examples of this in the case studies.

Throughout the remainder of this chapter, we will present several case studies that demon-

strate how GMMs can be utilized for achieving the following objectives: (1) Avoid the impact

of Simpson’s paradox when interpreting the network performance of applications from large

amounts of RPC telemetry data. (2) Gain insights into the performance of a major service. (3)

Assess the impact of an infrastructure change on RPC performance. (4) Plan for future infrastruc-

ture upgrades. (5) Identify the root cause of performance anomalies.

6.2 Case Study 1: Simpson’s Paradox in RPC Telemetry

In this section, we illustrate several instances of Simpson’s paradox that can occur in perfor-

mance data, where certain trends may become obscured or even reversed after data aggregation.

131

Simpson’s Paradox can lead to potentially misleading conclusions when the trend in a set of

grouped data differs from the trend in the overall dataset.

Analyzing the hundreds of performance metrics collected from billions of RPCs in HDCs can

be challenging due to the diverse nature of these systems. HDCs host numerous applications with

diverse service types, communication patterns, traffic volumes, and hardware configurations. For

managing the analysis workload, it is necessary to apply certain aggregation schemes. However,

determining the “correct” level of aggregation that only combines metrics from the same group to

avoid Simpson’s Paradox can be difficult, as it requires a thorough understanding of the hardware

configurations and applications involved.

To demonstrate the impact of Simpson’s paradox on RPC performance in HDCs, we examine

telemetry data from an application running in a production cluster. The application comprises

over 4,000 jobs with RPCs belonging to 4 different QoS classes, distributed across more than 10

pods with different hardware configurations.

N
or

m
al

iz
ed

 T
ra

ns
fe

r l
at

en
cy

N
or

m
al

iz
ed

 R
ec

ei
ve

Q

ue
ue

in
g

La
te

nc
y

2

3

4

5

6

7

0

2

4

6

8

Figure 6.1: Boxplots of the overall transfer latency (left) and receive queueing latency (right) for
the application.

Figure 6.1 displays boxplots of the overall transfer latency and receive queueing latency for

the application, regardless of job type, traffic class, or RPC size. The normalized values rang-

ing from approximately 2 to 7 and 0 to 8, respectively, between the 5th and 95th percentiles. To

further analyze the data, we divide the RPCs into three size-based groups: (1) small, with RPCs

no larger than 8KB, (2) medium, with RPCs between 8 and 256 KB, and (3) large, with RPCs

larger than 256 KB. However, when these RPCs are aggregated into these three groups as shown

132

in Figure 6.2, the boxplots for the two metrics vary significantly. The overall median normalized

transfer latency is around 3, while it is around 17 for large RPCs and 3 for small ones, a ratio of

more than 5 times. For receive queueing latency, the overall value is around 4 in the 75th per-

centile, while it is around 16e9 for small RPCs and 0 for medium and large ones. This indicates

that when RPCs of different sizes are aggregated, the performance characteristics specific to

each size are obscured, and the overall performance along multiple performance dimensions is

dominated by different subgroups. Specifically, the overall transfer latency is mainly influenced

by medium and small RPCs, while the receive queuing latency is largely impacted by medium

and large RPCs, making it difficult to understand the overall performance and correlate multiple

performance dimensions.

N
or

m
al

iz
ed

 T
ra

ns
fe

r l
at

en
cy

Large Medium Small

0

10

20

30

N
or

m
al

iz
ed

 R
P

C
 T

ra
ns

m
it

Q

ue
ue

in
g

La
te

nc
y

Large Medium Small
0

1

2

3

N
or

m
al

iz
ed

 R
P

C
 S

iz
e

0

1

2

3

4

5

Large Medium Small

N
or

m
al

iz
ed

 R
ec

ei
ve

Q

ue
ue

in
g

La
te

nc
y

0

16

32

48

1e9

Large Medium Small

Figure 6.2: Boxplots of transfer latency (top left), receive queueing latency (top right), RPC
transmit queueing latency (bottom left), and RPC size (bottom right) for the application after
aggregating based on RPC sizes.

In addition to RPC size, there are many other attributes that can impact performance and

should be taken into consideration when aggregating RPCs. Figure 6.3 shows boxplots of transfer

133

N
or

m
al

iz
ed

Tr

an
sf

er
 la

te
nc

y

0

4

6

8

N
or

m
al

iz
ed

 R
ec

ei
ve

Q

ue
ue

in
g

La
te

nc
y

1e16

0

4

8

12

N
or

m
al

iz
ed

 A
pp

Q

ue
ue

in
g

La
te

nc
y

0

2

4

6

N
or

m
al

iz
ed

 A
pp

P

ac
in

g
La

te
nc

y

1

3

5

Figure 6.3: Boxplots of transfer latency (top left), receive queueing latency (top right), app
queueing latency (bottom left), and pacing latency (bottom right) for 10 different source jobs in
this application.

latency, receive queueing latency, application queueing latency, and aggregated pacing latency for

different source jobs. As can be seen, latency varies significantly among these jobs. For example,

the median receive queueing latency may be as high as 4e16 for one job, but zero for others, and

the app queueing latency may be around 3 for one job but less than 1 for others. Additionally, the

performance of these jobs along different dimensions is inconsistent. For instance, the first job

has the smallest transfer latency but the largest receive queueing latency, while the second job has

the largest app queueing latency. It is crucial to recognize that this information would be hidden

if performance metrics were aggregated without considering the types of source jobs associated

with each RPC. However, unlike RPC sizes, which can be grouped into discrete buckets, job

names are string-based and customized, and cannot be easily discretized. Figure 6.4 shows the

transfer and receive queue latency boxplots for 200 jobs from the application, highlighting the

variability in performance across different jobs. Given that there are over 4,000 jobs running in

the application, it can be challenging to manually analyze each one or to accurately understand

how RPCs with different categorical attributes perform and aggregate them before analyzing

134

N
or

m
al

iz
ed

Tr

an
sf

er
 la

te
nc

y
N

or
m

al
iz

ed
 R

ec
ei

ve

qu
eu

ei
ng

 la
te

nc
y

N
or

m
al

iz
ed

 T
C

P
qu

eu
ei

ng
 la

te
nc

y

Figure 6.4: Boxplots of transfer latency, receive queueing latency and TCP queueing latency for
RPCs from 200 jobs.

their performance. More advanced approaches must be used to automatically identify RPCs that

experience similar performance and differentiate those with distinct performance. Below we

demonstrate how GMMs can assist us in achieving this goal for this example.

6.2.1 How GMMs Help

Figure 6.2 illustrates that RPC size is a significant factor in determining RPC performance.

However, jobs with large RPCs may still exhibit different behaviors on the local/remote host

or in the network. In this section, we examine approximately 150,000 tdigest aggregated over

millions of large RPCs from the production application and demonstrate how GMMs can help

group RPCs with similar performance across multiple dimensions and reveal behaviors that were

previously obscured. Using the pipeline described in Section 4.2, we group these RPCs into 3

135

blobs in a GMM: blob 0 comprises approximately 5% of the total RPCs, blob 1 includes almost

35% of the RPCs, and blob 2 contains the remaining 60%.

Figure 6.5 presents transfer latency, RPC queueing latency, and RPC size for each GMM blob.

Compared to the overall distribution of large RPCs in Figure 6.2, GMM reveals more distinct

behaviors. For example, RPCs in blob 1 exhibit a larger transmit queueing latency compared

to others, suggesting a potential local constraint for RPCs in this blob. RPCs in blob 0 have the

highest transfer latency and RPC sizes, making them more likely to be network-constrained. By

identifying the unique performance of RPCs in each GMM blob, the impact of Simpson’s para-

dox on the overall distribution becomes clearer. Since 60% of the RPCs experience similar per-

formance (blob 2), the overall distribution shown in Figure 6.2 primarily reflects the experience

of this group and ignores the remaining 40%. Therefore, the large transfer latency experienced

by RPCs in blob 0, which is about two times larger than that of blob 2, is hidden in the overall

distribution. Similarly, the large transmit queueing latency experienced by RPCs in blob 1 is also

obscured.

N
or

m
al

iz
ed

 R
P

C
 T

ra
ns

m
it

Q

ue
ue

in
g

La
te

nc
y

N
or

m
al

iz
ed

 R
P

C
 S

iz
e

N
or

m
al

iz
ed

 T
ra

ns
fe

r l
at

en
cy

0

25

50

75

100

0

8

16

1e2
32

2.5

7.5

12.5

Figure 6.5: Boxplots of transfer latency (left), RPC transmit queueing latency (middle), and RPC
size (right) for the application after aggregating based on RPC sizes.

The above examples demonstrate that the amount of information that can be gleaned from per-

formance data in production HDCs is closely tied to how the data is aggregated. An “incorrect”

level of aggregation may obscure critical information and result in an inaccurate understanding

of RPC performance in HDCs. GMMs can automatically identify distinct RPC performance by

simultaneously considering multiple performance metrics, regardless of the traffic volume of

RPCs with each performance, and minimize the impacts of Simpson’s paradox. As a result, dif-

136

ferent optimization techniques can be applied to improve RPCs with different performance and

constraints.

6.3 Case Study 2: Evaluating the Performance of a Major Service

In this case study, we evaluate the performance of a storage infrastructure service, known as

StoreService, in the production HDC network. StoreService operates in many Google’s datacen-

ters globally and is widely used by many applications to store immutable data. Specifically, we

examined one week’s worth of Fathom measurements for StoreService running in one datacenter

in mid-2019. During this period, the service accounted for nearly 20% of the entire traffic inside

the datacenter. StoreService has 3 main jobs that communicates with 17 other destination users

(clients or backend servers), and uses multiple QoS classes. In total, we sampled several millions

of RPCs, aggregated into 45,945 one-minute measurements with different categorical attributes,2.

A GMM was then built using this data.

0

20

P95 minimum RTT

0

5

P95 delivery rate

0.0

2.5

5.0
P95 cwnd

Figure 6.6: StoreService: Time-series of normalized 95th percentiles of minimum RTT, cwnd,
and delivery rate

Figure 6.6 shows the time series plot of the normalized 95th percentiles of the minimum RTT,

congestion window size (cwnd), and delivery rate for the week-long RPC measurements from

2Note that not every combination of categorical attributes has sampled RPCs in each minute because (1) applications
may not run 24/7 in HDCs, and (2) sampling in Fathom.

137

StoreService. As can be seen, all three metrics exhibit large variations and noticeable fluctuations.

For example, the 95th percentile of the delivery rate typically ranges from 3 to 5 times, with

occasional fluctuations reaching around 8 times. The data volume is large, and manual analysis to

interpret the data would be prohibitively time-consuming.

6.3.1 GMM Results

A GMM was trained on the 45,945 measurements and resulted in three blobs, denoted as O,

F , and S, each of which is a multivariate Gaussian distribution. Figure 6.7 includes a 3D scatter

plot (6.7(a)) and density plots (6.7(b)) of three specific normalized metrics: the 95h percentile

of the delivery rate, the 95h percentile of cwnd, and the 95h percentile of the minimum RTT. We

observe that:

• The axes in Figure 6.7(a) represent different types of constraints (rate, volume, and latency)

that applications can experience in the network. The measurements within each blob are

closely coupled across multiple performance metrics. For example, the RPCs in the blob F

experience the highest 95th percentile of the delivery rate and the smallest 95th percentile

of cwnd. This coupling is not obvious when looking at individual metrics without blob

breakdown, as shown in Figure 6.7(c). To understand how RPCs perform across multiple

dimensions, it is necessary to dissect the data accordingly or use the bursting and linking

techniques described in Section 5.3.1.

• The three blobs occupy different regions in the 3D scatter plot, reflecting how their perfor-

mance is impacted differently by the underlying constraints (discussed further later).

• Within each blob, several different metrics are well modeled by Gaussian distributions, as

further supported by Q-Q plots in Figure 6.8. The distribution of the 95th percentile of the

minimum RTT of the RPCs in blob F is bimodal as shown in Figure 6.7(b). Occasionally,

new modes may emerge at higher RTT percentiles, but unless there is support for them in

other dimensions, the model will create a broad, flat, Gaussian distribution that covers the

138

(a) 3D scatter plot

1 2 3 4 5 6 7 8
Normalized P95 delivery rate

0.0
0.5
1.0
1.5
2.0

D
en

si
ty

F
O
S

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Normalized P95 cwnd

0.0
0.5
1.0
1.5
2.0
2.5

D
en

si
ty

F
O
S

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Normalized P95 min. RTT

0
1
2
3
4

D
en

si
ty

F
O
S

(b) Density plot of each GMM blob.

Normalized P95 delivery rate

0

2

1

Normalized P95 cwnd

0

2
1

3

3

Normalized P95 min. RTT

0

4
2

6
8

D
en

si
ty

D
en

si
ty

D
en

si
ty

1 3.81.7 2.4 3.1

1.5 53.25 6.75

2.11.3 1.51.1 1.7 1.9

(c) Density plot without blob breakdown.

Figure 6.7: GMM Modeling: 95th percentiles of delivery rate, congestion window size, and
minimum RTT.

139

(a) 95th percentile of delivery rate

(b) 95th percentile of cwnd

(c) 95th percentile of minimum RTT

Figure 6.8: Q-Q plot of measurements in each blob (from left to right: O, F and S).

140

data. In this case, the bimodal distribution is desired because splitting out a mode that only

exists in one or two dimensions can create a mess in all the other dimensions. For example,

the distribution of the 95th percentile of the delivery rate and cwnd of the RPCs in blob F

is unimodal (Figure 6.7(b)). Therefore, it is preferable for the model to maintain a bimodal

distribution in the 95th percentile of the minimum RTT and to further examine them at a

finer level in Section 6.4.

The results also suggest that the distribution of the delivery rate fits better to a Gaussian dis-

tribution in both tails compared to cwnd, which is a discrete parameter, and the minimum

RTT, which is more susceptible to noise from queuing delays.

This case study demonstrates the use of GMM for analyzing a substantial amount of perfor-

mance data from a production HDC application. The data consists of diverse jobs, QoS classes,

and destination users. By distilling the data into a small number of Gaussian distributions, each

representing a unique performance behavior, GMM significantly reduces the dimensionality of

data. This reduction enables the analysis of tens of thousands of performance metrics and mil-

lions of RPCs using only a few operating points. The GMM analysis identifies three distinct

performance behaviors in the network performance of the StoreService, each with different rates

and latencies. These results provide deeper insights and demonstrate the usefulness of GMM in

interpreting performance data in HDCs.

6.3.1.1 GMM Distinguishes Performance Constraints

Figure 6.7(a) demonstrates that the delivery rate for F is higher than other blobs. However,

it is not feasible to visually inspect and compare hundreds of metrics in this way. Therefore, we

proceed to quantify the differences in the distributions of the 313 performance metrics captured

in our measurements for the three blobs.

To quantify the differences between the distributions of a given metric for two blobs, we use

the Wasserstein distance as described in Chapter 4. Specifically, we compute the 2-Wasserstein

distance between each pair of blobs based on the mean and covariance matrix constructed by

141

Blob Pairs (O, F) (O, S) (F , S)
2-Wasserstein distance 21.17 22.62 19.58

Metric 1 delivery_rate pacing_rate delivery_rate
Metric 2 cwnd delivery_rate pacing_rate
Metric 3 pacing_rate tx_latency tx_latency

Table 6.5: The most distinguishing metrics between blob pairs.

GMM for each blob. This distance indicates the overall difference in RPC performance between

the two blobs. Next, we calculate the 1-Wasserstein distance for each performance metric be-

tween GMM blobs. However, to avoid listing the distance for each metric between any two blobs,

which would result in 48,672 distances (312×312/2) between two GMM blobs, we summarize

the average distance based on the base metric they are derived from (such as delivery rate, RTT,

cwnd, and queuing latency). For example, to calculate the average distance of the base metric

delivery rate, we average the distances between all statistics (as described in Section 6.1.4) de-

rived from the delivery rate. Table 6.5 presents the three most distinguishing base metrics with

the largest average 1-Wasserstein distance for each pair of blobs, and Figure 6.9 shows the box-

plots for these metrics. Note that we do not include the boxplot of the pacing rate, as the trend is

consistent with the delivery rate. Our findings are as follows.

10

20

30

40

50

60

N
or

m
al

iz
ed

 v
al

ue

F
O
S

(a) delivery rate

2

4

6

8

10

12

14

16
F
O
S

(b) cwnd

5

10

15

20

25

30

35

40
F
O
S

(c) transfer latency

Figure 6.9: Boxplots for the three most distinguishing metrics.

• F is least constrained by the network. Table 6.5 shows that the most distinguishing met-

ric for F against the other blobs is the delivery rate. Figure 6.9 supports this finding by

142

demonstrating that all percentiles of the delivery rate observed in F are significantly higher

than those for the other two blobs. Specifically, the median delivery rate in F is around 2.2

times and 1.3 times larger than in S and O, respectively.

Furthermore, Figures 6.9 and 6.7(b) indicate that the transfer latency and the 95th per-

centile of minimum RTT observed in F are significantly lower than in the other two blobs.

This suggests that the RPCs in F experience low queueing delays and achieve a high deliv-

ery rate, indicating that they are the least constrained by network bandwidth compared to

the other two blobs.

• S is most constrained by the network. The delivery rate and transfer latency are the two

most distinguishing metrics that distinguish S from the other blobs. The delivery rate for

RPCs in S is much lower than in O and F , while the transfer latency is significantly higher.

Our analysis shows that comparing the most distinguishing performance metrics across differ-

ent GMM blobs helps us gain insights into the RPC experience and constraints in HDCs.

6.3.1.2 Categorical Attributes Influence the Performance Behavior of a GMM Blob

While the previous section provided insights into the performance of RPCs in each blob,

these are not enough for developers to determine how to improve their performance. To provide

more actionable results, we need to understand what a blob is composed of by characterizing

it with attributes that are meaningful to developers. To achieve this, we study the categorical

composition of each blob based on the nine different categories captured in Fathom, as previously

discussed in Chapter 4.2 and Table 6.3.

QoS class Job Dst. user
O 0 0.002 0
F 0.001 0.366 0.680
S 0 0.186 0.004

a Entropy

Blob pair QoS class Job Dst. user
O F 0 0.991 0
O S 0 0.001 0
F S 1 0.007 0.831

b Cosine Similarity (cs)

Table 6.6: Categorical analysis of blobs.

143

We first identify the most distinguishing catgorical attributes for each pair of blobs for the

StoreService application through the GMM analysis described in Section 6.6. These attributes

include the QoS class, job, and destination user as shown in Table 6.6. A destination user may be

a client user accessing the storage service or another service that relies on StoreService, such as

image and monitoring services, with different QoS classes. Our findings can be summarized as

follows:

• Table 6.6a shows that RPCs in each blob primarily belongs to a single QoS class (en-

tropy(QoS class) ≈ 0). Additionally, the QoS class of RPCs in F and S is the same (cs(QoS

class, F , S) = 1), but differs from the QoS class of RPCs in O. After checking the QoS val-

ues for the majority of RPCs in the respective blobs, we find that the QoS class of O has

the lowest priority for scheduling bandwidth in network switches.

• Table 6.6b shows that RPCs in F and S communicate with almost the same set of destina-

tion users (cs(dst. user, F , S) ≈ 0.8) and use the same QoS class, but belong to different sets

of jobs (cs(job, F , S) ≈ 0). As previously seen in Figure 6.9, RPCs in S experience a much

lower delivery rate and higher transfer latency than in F . Upon further analysis of the data

for StoreService, we find that the average RPC payload size (wire_bytes in Table 6.1) for

jobs in F is approximately two times higher than in S. This suggests that when RPCs in F

and S are competing for access to network bandwidth in the same priority queue, the large

volume of RPCs generated by F can cause congestion with RPCs from S.

• Figure 6.9 also shows that S has a much lower delivery rate and a much higher transfer

latency compared to O, which is surprising given that RPCs in S belong to a higher QoS

class than in O. Upon further examination of the data, we find that the average RPC pay-

load size in O is much larger (∼ 27 times) than in S. Therefore, even though O has a lower

QoS class, it achieves a higher delivery rate than S. This is expected because a connection

can achieve higher throughput if it has a larger volume of data to send when the sending

rate is controlled by TCP.

144

The categorical composition analysis provides actionable insights for developers. For exam-

ple, we can see that the delivery rate of RPCs in S is slower than F even on a similar network

path, which may be due to the smaller traffic volume and RPC size of S. Since these blobs use

the same QoS class but belong to different jobs, one potential improvement would be to lower

the QoS class of F to improve the performance of S. We can also see that O has a large RPC

size but the lowest QoS, which may suggest that the low congestion window size (cwnd) is due

to congestion within the service itself, rather than the other two blobs. Another possibility is that

the congestion control algorithm is overly conservative when interpreting congestion signals,

resulting in an unnecessary low cwnd.

This second case study illustrates the effectiveness of using GMMs to analyze large amounts

of data on RPC performance. The GMMs can condense the measurements from hundreds of

thousands of diverse RPCs into a small number of blobs, each representing a distinct pattern of

network behavior and following a multivariate Gaussian distribution. Importantly, the RPC mea-

surements within each blob have distinct physical meanings, including the rate at which RPCs are

transmitted (delivery rate), the time required for each packet to be acknowledged (RTT), and the

volume of traffic in flight (congestion window). By analyzing the categorical composition of each

blob, actionable insights can be gained to improve the performance of RPCs in each blob.

6.4 Case Study 3: Understanding Impact of Infrastructure Change: Congestion Control

This case study employs our modeling pipeline for investigating the impact of an engineering

change made to the HDC on the performance of StoreService. Specifically, in mid-2019, a new

congestion control algorithm (newCC) was introduced to replace the old algorithm (oldCC). One

of the key features of newCC is its conservative approach for adjusting the congestion window,

with the aim of reducing packet losses and queuing latencies. Using our pipeline, our objective is

to understand the effects of this change on the network performance of StoreService.

145

6.4.1 Background: TCP Congestion Control

The Transmission Control Protocol (TCP) is a transport protocol used for exchanging data

and messages between devices and application programs over an internetwork. It provides several

services, including reliable data delivery, flow control, and congestion control – we focus on

the latter here. Network congestion can occur during transmission if the sender generates too

many packets for the network to handle, resulting in degraded performance, such as excessive

packet delay, loss, and retransmission. TCP uses a congestion control algorithm to regulate the

flow of data and prevent or alleviate congestion. It relies on a congestion window (cwnd) and a

congestion policy to determine the number of bytes that senders can transmit at any given time.

Over the past few decades, several congestion control algorithms for HDCs have evolved for

handling the increasing traffic volume and diverse communication patterns.

6.4.2 The Picture Without GMM Analysis

StoreService is a major service in the production HDC that is utilized by many other services.

The performance of these services can differ due to their unique traffic patterns, volumes, and

QoS priorities. Our experience has shown that the performance of even the same application can

vary significantly depending on the time of day or week (e.g., nightime vs. daytime, or weekend

vs. weekday). The impact of changing the congestion control algorithm on such diverse traffic

may itself be diverse. Therefore, aggregating all RPCs during analysis may obscure important

trends within certain sub-populations, or even produce misleading trends due to Simpson’s para-

dox (37). For instance, the gray line in Figure 6.10 shows the normalized median delivery rate of

aggregated RPCs before and after deploying newCC. The graph reveals several spikes with high

fluctuations when considering the aggregated data.

To avoid drawing incorrect or incomplete conclusions, it is necessary to identify the appropri-

ate way to segment the data by grouping RPCs that exhibit similar performance and separating

RPCs for which performance is affected differently. Finding an ideal segmentation requires in-

depth domain knowledge and significant hypothesis testing when performed manually, which

146

oldCC

newCC

Figure 6.10: Time series plots of the median delivery rate one week before and after deploying
newCC.

can be time-consuming due to the vast amount of traffic and diverse applications supported by

StoreService. As demonstrated below, our GMM-based analysis approach addresses this by ag-

gregating based on a joint consideration of multiple metrics and the manifestation of performance

constraints.

6.4.3 How Does GMM Help Understand Performance Before the Infrastructure Change?

We analyze week-long Fathom measurements from a major job of interest (J) from StoreSer-

vice running in one datacenter. The data was collected for six weeks, with three weeks before

and three weeks after replacing oldCC with newCC. Each week produced more than 47 million

sampled RPCs, which were aggregated into more than 30,000 1-minute t-digests.

First, we analyze the before data using our modeling pipeline. The pipeline produced three

GMM blobs from each week-long data, each with unique performance characterized by three

key performance metrics: cwnd, delivery rate, and minimum RTT. Figures 6.11(a)-6.11(c) show

the 3D scatter plots of the medians of these metrics for each blob. Our analysis yields several

interesting findings:

1. Each of the three blobs is characterized by a unique performance signature. Blob A, for

example, is the most bandwidth-constrained, as indicated by its small delivery rate and

large minimum RTT. Blob B has the highest delivery rate and may have been constrained

147

A

B

C

(a) 3 weeks before

A

B

C

(b) 2 weeks before

A

B

C

(c) 1 week before

A

B

C

(d) 1 week after

A

B

C

(e) 2 weeks after

A

B

C

(f) 3 weeks after

Figure 6.11: 3D scatter plots of RPCs from job J in StoreService in the three weeks before and
after the deployment of newCC.

by either network bandwidth or the application’s data generation behavior (the change in

behavior of blob B after deployment of newCC helped us determine which).

2. The underlying structures of the data are fairly consistent and stable over time. Specifically,

the model we used to process the data for each week consistently identified three blobs

in a multidimensional space, with relatively stable locations for each blob. We also use

categorical analysis to confirm that the categorical composition of each individual blob is

consistently stable across the three weeks.

3. The categorical compositions of the blobs differ significantly from each other. For instance,

blob A has lower QoS priorities throughout the HDC, which may explain its lower delivery

rate despite also having a small minimum RTT (like blob C).

These findings collectively suggest that oldCC is likely to favor RPCs with higher QoS prior-

ities (blobs B and C), leading to these RPCs occupying a larger share of bandwidth resources

148

A B C

2

4

6

8

10

12

N
or

m
al

iz
ed

 v
al

ue

old_cc
new_cc

(a) congestion window size

A B C

5

10

15

20

25 old_cc
new_cc

(b) delivery rate

A B C
1.0

1.2

1.4

1.6

1.8

2.0
old_cc
new_cc

(c) minimum RTT

Figure 6.12: Boxplots for the most distinguishing metrics.

compared to RPCs from lower-priority QoS classes. Figure 6.10 depicts the time series of the

normalized median delivery rate of RPCs in each blob before and after the deployment of newCC.

Through GMM analysis, we can see that the performance of RPCs in blob A is finally distin-

guishable. Additionally, we find that the fluctuations in the performance of RPCs in each blob, as

measured by different metrics, are smaller than the aggregate trend suggests. This is because the

aggregate trend includes RPCs with different performance characteristics.

Our results demonstrate that the network performance of RPCs in each blob, despite being

diverse, adaptive, and complex, exhibits stable structures over periods of several days/weeks.

GMM analysis consistently identifies and separates these structures without requiring prior

knowledge, significantly accelerating and aiding the process of succinctly interpreting perfor-

mance.

6.4.4 How Does newCC Impact Networking Constraints Experienced by J in StoreService?

newCC: A newCC: B newCC: C
oldCC: A 7.74 23.13 15.03
oldCC: B 26.11 2.78 6.94
oldCC: C 18.81 5.76 4.02

Table 6.7: The 2-Wasserstein distance between blobs

Next, we apply GMM to model RPCs during three weeks after the deployment of newCC.

Figures 6.11(d)-6.11(f) show the 3D scatter plots for the GMM blobs in the same dimension

149

old_cc: A

new_cc: A

new_cc: C

new_cc: B

old_cc: B

old_cc: C

Figure 6.13: StoreService: 3D scatter plot—before and after

space as Figures 6.11(a)-6.11(c). The three blobs maintain relatively stable locations in the 3D

space over the three weeks. However, when comparing the modeling results from one week

before (6.11(c)) and one week after (6.11(d)) the deployment, we see that the blob locations

change substantially. For better visualization, Figure 6.13 shows the 3D scatter plots before

and after the congestion control change side by side. We can observe that the GMMs reflect the

underlying engineering change in the form of noticeable shifts in the otherwise stable blobs. In

the following analysis, we will examine the details of this impact.

Matching Blobs To understand the impact of newCC on the network performance of RPCs in

each blob, it is important to identify the corresponding blobs in the before- and after- GMMs

(e.g., Figure 6.11(c) vs. 6.11(d)) for an “apples-to-apples” comparison. As described in Chapter

4, we identify corresponding blobs by matching those with the most similar categorical composi-

tion and the smallest 2-Wasserstein distances. Table 6.7 lists the 2-Wasserstein distance between

GMM blobs before and after the change: corresponding blobs are matched based on the small-

150

5 10 15 20 25 30 35 40
5th percentile cwnd

0.0

0.2

0.4

0.6

D
en

si
ty

A
B
C

Figure 6.14: Distribution of 5th percentile of cwnd with new_cc.

est distance and plotted using the same color in Figure 6.11. We also used cosine similarity to

validate the matching process and the results are consistent with Table 6.7.

Ranking the Most-Impacted Metrics Based on the Wasserstein distance, the most distinguish-

ing metrics after deploying newCC continue to be cwnd, delivery rate, and minimum RTT (Figure

6.12). Our findings show that: (1) Cwnd is significantly lower in all blobs with newCC, which

aligns with its intended design of being more conservative in adjusting cwnd to reduce packet

losses and latency. (2) The decrease of cwnd with newCC leads to a tighter limit on the delivery

rate, and more importantly, reduces the disparity in the delivery rate across blobs. This protects

the performance of RPCs from low-QoS classes and suggests that newCC has a large impact on

RPCs from higher QoS classes by reducing their delivery rate more significantly to achieve a

more fair share of bandwidth resources across different QoS classes. Given that newCC is de-

signed to be more conservative than oldCC in increasing its congestion window for reducing

packet losses and queuing latency, the delivery rate is decreased in all blobs with newCC. (3) All

blobs show a smaller minimum RTT with newCC, indicating that all RPCs have moved from an

overloaded, bandwidth-constrained operating point to a more desirable one.

6.4.5 Identifying a Needle in the Haystack

GMM analysis can also reveal subtle but anomalous performance. One of the more distin-

guishing metrics identified by our GMM analysis was the 5th percentile cwnd (Figure 6.14). The

“pulse” at the minimum value of blob A raises suspicions and suggests a pathological problem

with newCC. After sharing this issue with the newCC developers, it was traced back to an im-

151

plementation bug that caused cwnd of newCC to be stuck at the minimum value in some corner

cases. Although these corner cases are rare and have minimal impact on overall performance, our

analysis is sensitive enough to highlight them.

6.5 Case Study 4: Infrastructure Upgrade Planning

This case study demonstrates how our GMM-based modeling can help engineers gain insights

into the physical constraints that affect the network performance of HDC applications and plan

for future infrastructure upgrades. We specifically focus on the performance of MonitorService,

a global monitoring service responsible for data collection, aggregation, and general monitoring,

which is highly sensitive to performance issues. Our analysis is conducted on a heterogeneous

datacenter consisting of pods with different switch-port speeds. MonitorService is hosted on

two types of slow-speed pods, Ps1 and Ps2, as well as one type of fast-speed pod, Pf . For our

modeling, we use three days of inter-pod traffic data, which includes 53,278 1-minute t-digest

measurements aggregated from over a million sampled RPCs.

Figure 6.15 depicts a 3D scatter plot that shows for the four GMM blobs, the observed 95th

percentiles of the three most distinguishing metrics obtained by GMM analysis: receive queuing

latency, delivery rate, and minimum RTT. The GMM analysis highlights two types of bottleneck

constraints for RPCs from MonitorService: network bandwidth and processing on receiver hosts

(a detailed analysis is in Section 6.5.1). Our analysis of categorical composition shows that the

most distinctive categorical attributes among the different blobs are pod speeds and destination

users, as shown in Table 6.8. Blobs 1 and 2 contain RPCs from the low-speed pods Ps1 and Ps2,

but are intended for different destination services, d1 and d2, respectively. In contrast, blobs 3 and

4 contain RPCs from the fast-speed pod Pf . RPCs in blob 3 are intended for the same destination

service as those in blob 1 (d1), while those in blob 4 are intended for the same destination service

as those in blob 2 (d2).

152

Figure 6.15: MonitorService: GMM blobs

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

N
or

m
al

iz
ed

 v
al

ue

1
2
3
4

(a) minimum RTT

20

40

60

80

100

120

140

160
1
2
3
4

(b) delivery rate

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1
2

3
4

(c) receive queuing

Figure 6.16: Boxplots for the most distinguishing metrics.

Blob Dst. user Pod type
1 d1 Ps1, Ps2

2 d2 Ps1, Ps2

3 d1 Pf

4 d2 Pf

Table 6.8: Categorical Composition of Blobs

153

6.5.1 How Can GMM Inform Planning of Future Upgrades?

Figure 6.16 shows the boxplots of the most distinguishing metrics for RPCs in each blob. We

observe that RPCs in the fast-speed pod Pf exhibit higher delivery rates and lower minimum RTT

(blobs 3 and 4), which justifies the increased infrastructure and operation cost of upgrading the

switch port speeds. However, the results also suggest that the end-to-end RPC latency for user

d1 may not benefit significantly from running on the faster pod Pf . Our GMM-based analysis

highlights high receive queuing latency for this user in both slow-speed (blob 1) and fast-speed

(blob 3) pods (Figure 6.16(c)), indicating that the bottleneck may be at the receiver and is likely

constrained by host resources such as CPU or memory. Therefore, to improve the network perfor-

mance of d1 (blobs 1 and 3), upgrading to additional network bandwidth would not be effective.

Instead, upgrading the processing resources on the end hosts might be more beneficial. On the

other hand, RPCs for d2 (blobs 2 and 4) could benefit from more bandwidth capacity, as their per-

formance is still restricted by bandwidth even in the fast-speed pod Pf . An alternative approach

to boost overall performance without additional hardware upgrades is to decrease the bandwidth

allocated to RPCs for d1, since the end hosts cannot handle higher workloads. This would allow

RPCs in d2 to use more bandwidth resources to alleviate the bandwidth constraint that limits their

performance.

6.5.2 Discussion

Identifying the bottleneck that constrains the performance of HDC applications can be a chal-

lenging task. It is often assumed that performance issues are due to the network infrastructure.

For example, Guo et al. (19) attribute latencies in applications and kernel stacks to the network.

While recent studies have aimed to address this issue, such as Arzani et al. (40) that used a super-

vised decision tree-based algorithm to identify the responsible entity (client, server, or network)

for failures in HDCs, these approaches require large amounts of training data and can not classify

previously unseen patterns. The case study demonstrates that by using fine-grained RPC instru-

154

mentation, GMM can identify non-network bottleneck constraints without any prior knowledge

or labelled training data.

6.6 Case Study 5: Root Cause Analysis of Performance Degradation

Diagnosing the root cause of performance issues in HDC applications can be challenging due

to the complex interactions between the networking stacks of hosts, application workloads, and

underlying storage and network infrastructure. This often requires multiple service owners to

collaborate and align the incident timeline with any known changes for identifying the cause. The

process can be tedious and time-consuming. In this context, GMM analysis can provide guidance

and insights into the root cause of performance issues. The following case study demonstrates

how GMM analysis can help with this task.

We conducted an investigation into a significant episode of performance degradation expe-

rienced by a key-value store service. The service experienced an unusually high rate of RPC

failures in a datacenter, and one potential cause was a recent software upgrade. However, initial

analysis of the software did not reveal a clear cause for the failures. The key-value store uses

a distributed database service (referred to as DatabaseService) that connects multiple storage

servers within every pod in the datacenter. DatabaseService includes numerous jobs that commu-

nicate with a variety of destination services and across different QoS classes. During the incident,

it was noted that RPCs from DatabaseService to storage servers had generally higher latencies.

This led us to consider DatabaseService as a potential cause of the performance issues. However,

it was also possible that the higher latencies were due to a range of other factors, such as insuffi-

cient bandwidth during transmission, exhausted CPU/mem on end hosts, or unfair rate throttling.

In short, the underlying cause was not clear from the raw RPC telemetry from Fathom. In fact, in

the absence of our analysis pipeline, it took network engineers more than a week to investigate

the outage, involving multiple teams, including the application owner, application engineers, net-

work engineers, and the congestion control team. Such a lengthy diagnosis incurred significant

costs to the HDC.

155

1

2 P95 minimum RTT

0

2

P5 cwnd

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
0

1

2 P5 delivery rate

Figure 6.17: DatabaseService: Time-series of normalized 95th percentile minimum RTT and 5th
percentiles of cwnd and delivery rate across six days.

To illustrate the complexity of the issue, Figure 6.17 shows the time series of the 95th per-

centile of minimum RTT and the 5th percentiles of cwnd and delivery rate for the two days pre-

ceding and the four days following the start of the outage (day 3). The figure reveals numerous

spikes with significant fluctuations even before the onset of the outage. It is challenging to dis-

tinguish between measurements of “degraded” performance and “normal” spikes based on these

time series and predefined thresholds alone. Therefore, identifying the root causes of spikes in

multiple metrics would be a daunting task.

6.6.1 How Can GMM Analysis Help Separate Traffic With Degraded Networking Performance?

Our GMM modeling approach conducts multivariate analysis of RPC performance, which

considers the joint behavior of multiple performance metrics instead of focusing solely on indi-

vidual dimensions. This approach has been shown to be more effective in identifying the root

cause of degraded performance experienced by application workers, as it can capture the complex

interactions between different metrics for understanding the underlying causes of performance

issues.

156

P2 P6 P8 P25 P26

P2 -
P3

P6 -

Table 6.9: Traffic volume matrix between top pairs of source (row) and destination
(column) pods for measurements in the “best” blob () and the “worst” blob ().

For this case study, we analyzed 172,664 1-minute Fathom t-digests measurements aggre-

gated from over 44 million sampled RPCs from DatabaseService, collected during the two days

following the start of the outage. Our analysis pipeline identified two blobs, one of which had

significantly poor network performance. We labelled these blobs as the “best” and “worst” based

on their performance. Specifically, RPCs from the "worst" blob had a 95th percentile of mini-

mum RTT that was approximately 2.3 times larger, a delivery rate that was approximately 5 times

smaller, and a cwnd that was approximately 15 times smaller. These measurements indicate that

their performance is severely constrained by bandwidth resources, and the issue could potentially

be resolved by providing additional bandwidth or by distributing the traffic over less congested

links. It is worth noting that the GMM-based analysis successfully identified measurements with

degraded performance without requiring any prior knowledge about the system. Furthermore, it

helped us understand the type of bottleneck and potential remedies.

6.6.2 How Can GMM Analysis Shed Light on the Root Cause?

Our analysis of the categorical composition of the two blobs led to two important observa-

tions. Firstly, we found that the jobs most affected in the “worst” blob belonged to an application

that was unrelated to the key-value store service but was accessing the same set of storage servers

through DatabaseService. Secondly, we observed that the topological location of the RPCs in the

two blobs had a significant impact on their traffic patterns. The traffic pattern of the RPCs in the

“best” and “worst” blobs in terms of the source and destination pods is shown in Table 6.9. The

diameter of the circles indicates the volume of RPCs between two pods, with larger diameters

157

indicating a higher volume. RPCs in the “best” blob are more evenly distributed across all pods,

while RPCs in the “worst” blob are highly skewed toward communications between pods P6 and

P2. The skewed traffic pattern for DatabaseService suggested a likely network bottleneck within

P6 or P2. These insights guided engineers to identify the following root causes for the perfor-

mance degradation: (1) The poor performance of the key-value store RPCs was due to congestion

experienced by its backend database service (DatabaseService). The congestion was caused by

an unrelated application that was accessing the same set of storage servers and significantly in-

creased its storage access, resulting in a complete saturation of the bandwidth within the pod. (2)

Pods P6 and P2 were improperly configured and had insufficient bandwidth for the amount of

storage deployed inside. Once the root cause was identified, congestion was easily relieved by

doubling the bandwidth capacity within the pods.

6.6.3 Discussion

This case study demonstrates the effectiveness of GMM analysis in extracting valuable in-

sights from complex communication patterns where many interdependent applications share a

datacenter network. These applications often share both the software and physical infrastructure,

which are constantly upgrading. Performance degradation can be caused by rare or hidden issues

that occur a few dependency hops away, making it difficult for inference-based anomaly localiza-

tion techniques to identify the root cause. These techniques typically rely on detailed dependency

graphs to describe the relationships between different components (93; 34; 9). Heuristics-based

anomaly detection relies on setting threshold values to identify unusual behavior, while learning-

based approaches rely on representative training date to identify patterns. However, both of these

approaches can be limited in their ability to generalize to the diverse and large-scale environ-

ments found in HDCs. This case study showed that GMM analysis can distinguish between good

and poor performance without relying on hand-crafted heuristics, representative training data, or

prior knowledge of the infrastructure or workloads. The categorical analysis provided valuable

clues about the root cause of the performance issues. While human experts could also eventually

158

discover this information by slicing and dicing the data, GMM analysis significantly accelerates

the process.

6.7 Conclusion

In this chapter, we evaluate the effectiveness of GMMs in modeling network performance of

different applications in a production HDC. We use performance metrics collected by Fathom,

an existing RPC performance instrumentation, to illustrate the impact of Simpson’s paradox

on RPC telemetry and demonstrate how GMM analysis can mitigate this issue. Additionally,

we present several case studies conducted in the HDC to show how GMM-based analysis can

assist in assessment, planning, and troubleshooting tasks for applications running on diverse

network infrastructure and over different time periods. In the following chapter, we will discuss

the lessons we have learned from conducting further case studies in the production HDC and the

improvements we have made to both the performance instrumentation system and our modeling

pipeline.

159

CHAPTER 7: DATA COLLECTION INSTRUMENTATION MODIFICATIONS AND
FOLLOW-UP CASE STUDIES

Our GMM analysis for different case studies in the production HDC has revealed two poten-

tial issues with Fathom, our performance instrumentation pipeline. Firstly, the modeling results

may still be affected by Simpson’s paradox due to the disproportionate ratio of small and large

RPCs in the HDC. Secondly, the existing method for collecting the delivery rate in Fathom is not

representative of RPC performance due to the volatility of the per-packet delivery rate during the

transfer of an RPC.

In this chapter, we discuss these two issues and describe the modifications made to address

these. We then present two case studies conducted in the production HDC after the modifications.

The first case study demonstrates how GMMs can be used to assess the impact of an engineering

change on the performance of a storage service. The second case study showcases how GMMs

can be used for fleet-wide analysis when multiple models are built with RPCs from a machine

learning service running in different HDC clusters.

7.1 Issue 1: The Impact of RPC Size on Performance

7.1.1 The Network Performance of Small vs. Large RPCs

7.1.1.1 Background: Bandwidth and Delay

Throughput and delay, also known as latency, are two important metrics used to evaluate the

performance of a network transfer. Throughput represents the amount of data that can be trans-

ferred from the source to the destination within a specific time frame, while delay measures the

time taken for a message to travel from one end of the network to the other. Optimal network per-

160

formance is achieved when the sender can transmit packets at a rate that maximizes throughput

and minimizes delay.

Delay is composed of four main components: propagation delays, transmission delays, queue-

ing delays, and processing delays.

1. Propagation delay represents the time it takes for data to propagate between nodes in the

forms of an electromagnetic encoded signal. It depends on the distance between two end

hosts and the effective speed of electromagnetic wave propagation over the corresponding

mediums (as shown in Eq. 7.1).

propagation delay =
distance between hosts

propagation speed
(7.1)

2. Transmission delay, also known as serialization delay, is the time it takes to encode the bits

of a packet into an electromagnetic signal and transmit it over a physical interface. It is

calculated based on the size of the packet and the transmission capacity (link speed) of the

interface, as shown in Eq. 7.2;

transmission delay =
packet size
link speed

(7.2)

3. Queueing delay measures the amount of time that messages spend waiting in queue at

network packet switches before being transmitted on an outbound link.

4. Processing delay occurs at switches and routers along the propagation path over a network.

When measuring round trip delay (i.e., the amount of time it takes for a signal to travel

from a sender to a receiver and back again), the receiver processing delay is also taken into

account.

delay = propagation delay + transmission delay + queueing delay + processing delay (7.3)

161

throughput =
size

delay
(7.4)

7.1.1.2 Background: Physical Constraints Limiting the Performance of Network Transfers

The performance of an RPC can be affected by three main physical constraints along the

transmission path: (1) Round-trip propagation delay (RTprop), which is the minimum time it

takes for a packet to travel from the source to the destination and back as described above. (2)

Bottleneck bandwidth (BtlBw), which is the transmission capacity of the slowest interface along

the path between the source and destination. This value depends on the hardware configurations

of the intermediate devices. (3) Bottleneck buffer (BtlBuf), which is the available buffer size at

the bottleneck switches. The bandwidth-delay product (BDP), which is the product of BtlBw and

RTprop, represents the maximum amount of data that can be on the network circuit at any given

time, that is, data that have been transmitted but not yet acknowledged. For achieving the optimal

network performance, the arrival rate of the packets should equal to BtlBw and the total data in

flight should equal to BDP (99).

7.1.1.3 What Is Relevant for Small vs. Large RPCs

The performance of RPCs on a network is affected by the three physical constraints discussed

above — however, the constraints may have different effects depending on the size of the RPC.

Small RPCs are typically less affected by bandwidth, as these are often smaller than BDP and do

not fully utilize the available bandwidth on the propagation path; but instead these are impacted

by delay, which is mainly determined by RTprop. For example, a 1-byte RPC will experience

a 100x performance difference with a 100 ms RTprop compared to a 1 ms RTprop. Link speed,

such as 10 Mbps or 100 Mbps, is relatively insignificant in this case, as the transmission delay

would be 0.8 us and 0.08 us, respectively. Therefore, the network performance of small-sized

RPCs is most constrained by delay, particularly propagation delay, as their rates and volumes are

insufficient to fully utilize the bandwidth resources.

162

In contrast, large RPCs are mainly affected by bandwidth. For example, it will take 20 sec-

onds to transmit 25 MB data over a 10 Mbps channel, making it relatively unimportant if it is a

1-ms channel or a 100-ms channel. With a fixed propagation delay, a larger bandwidth results in

higher throughput. For large RPCs, their network performance is primarily constrained by rates

and volumes, as the bottleneck bandwidth determines the amount of data that can be transmitted

within a given period and the rate at which it can be sent over the network.

7.1.2 Potential Issues with Disproportional Ratios of Small and Large RPCs

Data center workloads are characterized as heavy-tailed, with a small fraction of RPCs car-

rying most of the bytes that traverse the network (145; 146; 52). In Google data centers, for ex-

ample, ∼5% of RCPs larger than 64 KB constitute around 87% of the overall traffic. As a result,

when Fathom randomly samples a subset of RPCs for monitoring, the majority of them are small.

It is important to note that each sampled RPC in Fathom is included in the performance measure-

ment, regardless of its size. When Fathom aggregates the performance metrics of the sampled

RPCs within a minute into a t-digest without considering their sizes, it is likely that the overall

trends will be heavily influenced by small RPCs due to their abundance, as illustrated by Figures

6.1 and 6.2 in Chapter 6. However, small RPCs do not provide a complete understanding of net-

work bandwidth constraints because (1) their performance is primarily affected by propagation

delay and (2) they do not significantly contribute to network load (Section 7.1.1.3). Therefore,

Fathom divides transfer latency into six buckets based on RPC size: (0, 1KB], (1KB, 8KB],

(8KB, 64KB], (64KB, 256KB], (256KB, 2MB], and (2MB, +∞), as shown in Table 6.1 in Sec-

tion 6.1, to illustrate the impact of sizes on network performance. However, this decision has two

potential issues:

1. Distributions along other performance dimensions may still be subject to Simpson’s para-

dox, which can lead to hidden and misleading results. For example, the delivery rate of

large RPCs may be hidden in aggregated t-digests or only apparent in very high percentiles

(e.g., 99.99th percentile). It’s worth noting that the delivery rate of small RPCs is less infor-

163

mative in revealing network conditions since they do not fully utilize available bandwidth.

On the other hand, high remote latency can occur when a large number of small RPCs burst

into the same end host simultaneously, a common workload in machine learning applica-

tions when data is merged from multiple monitoring nodes to a central learning agent for

training (40). However, this is unlikely to happen with large RPCs, as their performance is

mainly constrained by bottleneck bandwidth. As a result, aggregating a mixture of small

and large RPCs in each t-digest may lead to Simpson’s paradox, making it difficult to un-

derstand their performance. In the above examples, high percentiles of delivery rate are

determined by large RPCs, while high percentiles of remote latency are determined by

small ones. Without further investigation, it is difficult to identify the corresponding per-

centiles associated with small and large RPCs along each performance dimension.

2. The small number of large RPCs results in a considerable number of aggregated measure-

ments with empty t-digests for transfer latency in the large buckets. Specifically, while

99% of the measurements have transfer latency in the 1 KB and 8 KB buckets, less than

5% have at least one valid value in the larger buckets. As mentioned earlier, the transfer

latency in each bucket reflects the network experience of RPCs with different sizes. How-

ever, machine learning algorithms cannot handle empty values, making it necessary to have

at least one sampled RPC in each bucket when using the transfer latency of all six buckets

as training features. As a result, the number of RPC measurements available for modeling

GMMs is significantly reduced (less than 1%). While including only the transfer latency

of small buckets increases the number of measurements, it may not accurately capture the

performance of large RPCs, which have a greater impact on the overall network load.

7.1.3 Modifications to Fathom

To address the aforementioned issues, we propose separating sampled RPCs based on their

sizes. This results in multiple measurements corresponding to specific sizes, rather than having

a single aggregated measurement that includes RPCs of different sizes. However, this separation

164

will inevitably introduce significant storage overhead in the HDC due to the large volume of

performance data. For managing the overhead, we suggest the following changes to Fathom:

1. To classify RPCs based on size, we introduce a categorical dimension with three labels:

small, medium, and large. The size range for each label is determined by calculating the

BDP based on the minimal physical latency and link capacity in HDCs. In HDCs, most

communications occur within a cluster (52), with an average propagation delay of approx-

imately 1 us. In a generic 3-tier Clos tree topology (28), there are typically 6 to 10 hops

between a randomly placed source and destination, with a one-way delay of 0.5 us per hop

for moving data from ingress to egress. Additionally, it takes about 5 us to handle a typical

interrupt on an end host, resulting in a total of 10 us. Considering the range of NIC speeds

in HDCs, which can vary from 10 to 100 Gbps, the BDP is between 21.25 KB (17 us * 10

Gbps) and 262.5 KB (21 us * 100 Gbps). RPCs smaller than 21 KB are likely to be domi-

nated by delay, while RPCs larger than 262 KB are likely to be dominated by bandwidth.

Based on these two thresholds, we have divided the seven buckets of transfer latency for

RPCs of differnet sizes in Fathom into three categories: small, medium, and large, as

shown in Table 7.1. The size label for each sampled RPC is used as an additional cate-

gorical attribute for aggregation.

original bucket size label
(0, 1KB]

small
(1KB, 8KB]
(8KB, 64KB]

medium
(64KB, 256KB]
(256KB, 2MB]

large
(2MB, inf)

Table 7.1: The approach for determining size label for each RPC.

2. To more effectively analyze the impact of sizes on RPC performance, we capture the size

of each sampled RPC in Fathom and create a t-digest for tracking its distribution. How-

ever, this metric is not used as an input for building GMMs; Rather, it is utilized only for

analysis of GMM blobs.

165

The modifications mentioned above divide a single performance measurement that includes

RPCs of different sizes into three separate measurements, each representing the performance

of small, medium, and large RPCs. Each measurement contains only one t-digest for transfer

latency, instead of six, which reduces the storage overhead. Additionally, this new aggregation

strategy helps to minimize the impact of Simpson’s paradox on all performance dimensions, as

discussed in Section 7.1.2, and enables us to analyze the performance of RPCs of different sizes

separately using GMMs.

7.2 Issue 2: Per-RPC vs. Per-Packet Delivery Rate

Delivery rate, also referred to as throughput, is a critical metric for assessing the performance

of RPCs in the network, as discussed in Section 7.1.1.1. The original implementation of Fathom

only captures TCP’s estimate of the effective delivery rate for the last packet in each RPC, which

is determined by dividing the size of the last packet by the time gap between the second to last

packet and the last packet. However, delivery rate can be fairly volatile when computed on a per-

packet basis (147). The variability of per-packet delivery rate across packets can significantly

impact the accuracy of performance measurements, especially for large RPCs that span multiple

packets and are heavily influenced by link capacity. Based on the Fathom data collected in the

production HDC, approximately 30% of RPCs transmit more than one packet. Therefore, logging

the per-packet delivery rate of the last packet is not representative of the delivery rate experi-

enced by other packets. This limitation is especially relevant for larger RPCs that span multiple

packets and are more heavily influenced by link capacity, as their effective delivery rate can vary

significantly on a per-packet basis.

To mitigate this issue, we have redefined how Fathom measures delivery rate. Instead of rely-

ing on TCP’estimate of per-packet delivery rate, we now calculate the average delivery rate per

RPC by dividing its size by its total transfer latency. Figure 7.1 illustrates the probability distri-

bution of delivery rate for RPCs generated by an application in the HDC using both the original

and modified approaches. The per-packet delivery rate based on the last packet of the connection

166

0 1 2 3 4

P
ro

ba
bi

lit
y

Normalized Throughput

original per-packet
delivery rate for all
RPCs

modified per-RPC delivery
rate for RPCs >= 64KB

modified
per-RPC
delivery rate
for all RPCs

Figure 7.1: The comparison between the original per-packet delivery rate and the modified
per-RPC delivery rate in Fathom.

(original) is about 4 times higher than the per-RPC delivery rate calculated from the RPC size

and transfer latency (modified). Using the per-packet metric may lead to an overestimation of

RPC performance by focusing solely on the rate of a single packet.

We next present two additional case studies conducted using GMMs in the production HDC

after implementing the above changes to Fathom.

7.3 Case Study 1: Assess the Impact of Protective Load Balancing (PLB) Deployment

PLB (56) is designed for load balancing traffic in data centers by rerouting congested or

disconnected flows based on end-to-end congestion notifications (ECN (65)) and failure signals

(TCP retransmission timeouts). Previous studies have demonstrated the effectiveness of PLB

in reducing the average and tail latencies of all-to-all workloads compared to state-of-the-art

techniques through simulations and testbed evaluations (148). In this case study, we aim to assess

the impact of deploying PLB at a larger scale in production HDCs on the network performance of

a storage service.

Storage traffic accounts for the majority of data center traffic at Google, with many appli-

cations relying on RPCs over TCP for read and write operations. However, workload changes

167

can quickly create hotspots on ToR switches hosting these storage servers. For assessing the im-

pact of PLB on the storage service, we built two GMMs to model the network performance of

the RPCs of the storage service in a representative data center cluster. We analyzed the RPCs

for a period of 7 days before and after the PLB deployment, excluding the rollout time window.

During this period, we did not observe any significant change in the overall workload.

We plotted the time series of delivery rate and transfer latency before and after the deploy-

ment in Figure 7.2, which showed spiky patterns, as expected, with no clear trends. However, by

comparing the GMMs, we identified two groups of RPCs (blobs A and B) whose performance

was most affected by PLB — the network performance of the remaining 2 blobs was not affected

much by the PLB deployment. These groups have distinct categorical attributes, revealing impor-

tant insights into how PLB impacted the storage service’s network performance.

N
or

m
al

iz
ed

De

liv
er

y
Ra

te

0

2

4

6

N
or

m
al

iz
ed

Tr

an
sf

er
 L

at
en

cy

0

2

4

6 rollout time

Figure 7.2: Time series of the normalized 99th percentile (blue), 95th percentile (green), and 50th
percentile (red) of transfer latency and delivery rate of the storage service RPCs before and after
the deployment of PLB.

RPCs in blob A are related to a specific job and have small sizes, with a maximum of 1 KB,

and low QoS requirements. These small RPCs often serve as control messages for the storage

system and need to be delivered quickly, and their latency is lower-bounded by the physical

propagation delay, which PLB cannot change. Figure 7.3 shows the tail latency of these RPCs de-

creased after the deployment of PLB. Specifically, the 99th percentile has dropped by about 20%,

while the first 25th percentile has somewhat increased. The increase in the first 25th percentile

can be attributed to more similar levels of congestion experienced by all small RPCs after the

168

deployment of PLB. Before PLB, some of these transfers experienced much heavier congestion

due to load imbalance, resulting in a more variable distribution of latencies.

Figure 7.3: Latency for small (<=1KB) RPCs of storage workload.

RPCs in blob B are related to a different job and have sizes larger than 2 MB, with a higher

QoS requirement than the RPCs in blob A. These RPCs carry storage chunks, and their latency

is reduced across all percentiles, as shown in Figure 7.4. The reduction starts at around 5% and

increases to 10% at the 99th percentile. This improvement is due to the fact that as PLB resolves

collisions by spreading heavy flows, it finds more available bandwidth and increases the effective

capacity for all flows.

Figure 7.4: Latency for large (2MB+) RPCs of storage workload.

In this case study, GMM highlights two subsets of RPCs whose behaviors are impacted by

PLB in different ways. With traditional approaches, it is challenging to identify the subset of

RPCs that are being affected and learn their changing trends as shown in Figure 7.2.

169

7.4 Case Study 2: Evaluate the Fleetwide Performance of Machine Learning Service in HDCs

As machine learning applications become increasingly prevalent in our daily lives, the vol-

ume of machine learning workloads also increases in data centers that support such applications.

In this case study, we analyze the performance of RPCs from a representative distributed machine

learning service, referred to as MLService, in the production HDC. Unlike our previous case

studies, which focused mainly on the performance of multiple applications running in one HDC

cluster, this case study evaluates the performance of MLService in eight HDC clusters over the

course of a week. These clusters account for more than 60% of the total MLService traffic.

During the week, there were over 10 million sampled RPCs from MLService in each cluster,

which were aggregated into over 100,000 RPC measurements. The HDC clusters are located

in different geographical locations with diverse infrastructures, including machine types, NIC

speeds, and OS versions, and host different applications (in addition to MLService) simultane-

ously. To help us understand the performance differences experienced by RPCs across these

clusters, we gather external categorical information describing the configuration of each machine

in each cluster, including storage configuration (such as the number of SSDs and disks), compu-

tation configuration (such as the number of CPUs and cores), and network configuration (such

as the number of NICs and NIC speed). The results indicate that machines have different con-

figurations across these clusters in all three aspects. By considering this information alongside

our performance analysis, we can gain insights into the factors that affect the performance of the

MLService RPCs in these clusters.

In this case study, we faced two new challenges when analyzing GMMs results of RPCs

in multiple clusters and developed new techniques to address them. In the following sections,

we discuss these two issues and their solutions. Finally, we summarize our findings about the

performance of MLService using GMMs.

170

7.4.1 Issue 1: Job Name Analysis

The source and destination job of each RPC is an important categorical attribute that char-

acterizes RPCs in different blobs in GMM analysis. As different jobs can represent different

workloads and communication patterns that lead to different performance, it is important to de-

termine if RPCs in a GMM blob belong to the same job or if RPCs in different GMM blobs are

from different jobs. This information can help us understand why RPCs perform in certain ways

and highlight which jobs are most affected by performance anomalies, as discussed in Chapter 6.

However, the job names defined in MLService are too detailed, making it challenging to

identify common or distinct job information in the GMM analysis. The general format of a job

name in MLService is “< field_1 > . < field_2 > . < field_3 > . < field_4 >”, where

each field contains multiple substrings composed of both letters and integers concatenated by a

hyphen (“-”). When using job names to calculate cosine similarity and entropy in GMM analysis,

it is difficult to distinguish between blobs with RPCs that differ only in the last field of their job

names and those that are completely different, as their cosine similarity and entropy are the same.

To extract high-level job information for analysis, we use TF-IDF (Time Frequency-Inverse

Document Frequency) (57) to measure the importance of each substring in job names. TF-IDF

compares the number of times a word appears in a document with the number of documents in

which the word appears, as formalized in Equation 7.5.

TF-IDF(t, d,D) = TF(t, d)× IDF(t) =
ft,d∑
t′ ft′ ,d

× log
N

|{d ∈ D : t ∈ d}|
(7.5)

where t is the term (word) we are looking to measure the commonness of and N is the number of

documents (d) in the corpus (D).

In our case, we tokenize the source and destination job names by using “.” and “-” as delim-

iters. Each substring is considered a word, and each source/destination job name of an RPC is

considered as a document. After calculating the weight of each word using TF-IDF, we select the

important words to regenerate the source/destination job name of each RPC. For instance, given

171

an original job name “flow-tree-main-f209b281.worker-poolf-v8-data.eval-043-combine.grass-

server-10d”, we generate a new name “flow-tree.worker.eval-combine.grass-server” by retaining

only the important words based on TF-IDF weights.

These newly generated job names are used for calculating cosine similarity and entropy,

which helps to better reveal similarities and differences in job names for RPCs between blobs.

For example, Table 7.2 shows the average cosine similarity of original and processed source job

names between five blobs in different GMMs. The results demonstrate that after processing the

job names using our approach, it becomes evident that the RPCs in blob 5 are from different jobs

compared to others.

blob ID 1 2 3 4 5
Original source job name 0.19 0.18 0.21 0.12 0.18

Processed source job name 0.6 0.72 0.75 0.63 0.18

Table 7.2: Cosine similarity between job names that appear in five blobs in different GMMs
based on the original and processed job names.

7.4.2 Issue 2: Match GMM blobs in Different DataCenter Clusters

When comparing multiple blobs from GMMs, such as before and after a rollout, we use the

Wasserstein distance and categorial attributes to match blobs and ensure an “apples-to-apples”

comparison. This matching approach has been effective in our previous case studies, both in

CloudLab (Chapter 5) and in the production HDC (Chapter 6), when studying the performance of

RPCs from one or more applications within the same HDC cluster over different time periods.

However, due to infrastructure differences across HDC clusters, the actual performance of

RPCs can vary significantly, even when they are limited by the same type of constraint. This

variability can make the current matching condition too strict, making it challenging to find corre-

sponding blobs across all GMMs and accurately compare RPC performance in different clusters.

For example, Figure 7.5 shows the 2D distribution of RPCs from MLService in three HDC clus-

ters in terms of delivery rate (x-axis) and transfer latency (y-axis) based on GMMs. The plots

show that although the relative locations of the blobs in these three GMMs are similar, RPCs

172

in blob 1 experience a higher delivery rate in cluster C. GMM analysis revealed that cluster C

has more network resources with a larger number of NICs and higher NIC speeds compared to

clusters A and B, which explains the gap in delivery rate. However, when matching blobs using

our previous approach, only two blob pairs can be exactly matched across these three GMMs, as

shown in Table 7.3. For the remaining unmatched blobs, it is difficult to understand how their

performance differs from or resembles others. Therefore, we have relaxed the matching criteria

to account for significant infrastructure differences between HDC clusters, which can cause large

variations in RPC performance despite similar constraints.

Normalized P95 delivery rate Normalized P95 delivery rate Normalized P95 delivery rate

N
or

m
al

iz
ed

 P
75

Tr

an
sf

er
 la

te
nc

y
2

4
6

8

2
4

6
8

2
4

6
8

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Cluster A Cluster B Cluster C

1
2 1

12

N
or

m
al

iz
ed

 P
75

Tr

an
sf

er
 la

te
nc

y

N
or

m
al

iz
ed

 P
75

Tr

an
sf

er
 la

te
nc

y

2
3

3
3

4
4

4

Figure 7.5: 2D distribution of each GMM blob for RPCs in MLService from two three clusters
(x-axis: normalized delivery rate, y-axis: normalized transfer latency).

A B C
matched pair 1 1 1 1
matched pair 2 2 3 3

Table 7.3: Blobs matched in the three GMMs based on the Wasserstein distance.

To compare the performance of different clusters and identify similarities and differences

between them, we use hierarchical agglomerative clustering (58) based on the Wasserstein dis-

tance. This approach allowed us to build a hierarchy of GMM blobs that indicates how different

or similar their performance is. By analyzing the dendrogram in Figure 7.6, we could see the

hierarchical relationship between GMM blobs, with the height indicating the distance between

the blobs.

One of the advantages of this approach is that it not only enables us to match blobs, but also

provides information about the performance differences of unmatched blobs. Specifically, we are

173

able to obtain the same information as in Table 7.3 from the dendrogram, since the matched blobs

in Table 7.3 (C : 1, A : 1 and B : 1; A : 2, B : 3 and C : 3) have the smallest distance between

each other, as shown in Figure 7.5. Additionally, from Figure 7.5, we can learn the following:

C: 1 A: 1 B: 1 B: 2 C: 2 A: 3 C: 4 C: 3 A: 2 B: 3 A: 4 B: 4

di
st

an
ce

Group 1 Group 2

Figure 7.6: Hierarchical clustering dendrogram of the GMM blobs in Figure 7.5.

1. The GMM blobs can be divided into two distinct groups based on the distance, Group 1

and Group 2. The GMM analysis reveals that the blobs in Group 1 (C : 1, A : 1, B : 1,

B : 2, and C : 2) contain RPCs from jobs with larger sizes, while the blobs in Group 2

(A : 3, C : 4, C : 3, A : 2, B : 3, A : 4, and B : 4) include RPCs from other jobs with

smaller sizes.

2. The unmatched blob B : 2 and C : 2 have similar performance and are closer to blobs

C : 1, A : 1, and B : 1. The GMM analysis shows that the RPCs in these two blobs

differ the most from other blobs in Group 1 in terms of smaller congestion window size,

suggesting that their performance is more likely to be constrained by volume.

3. The RPCs in the remaining four unmatched blobs have a lower delivery rate, compared to

the previously matched blobs in Group 2 (A : 2, B : 3, and C : 3). Among these blobs,

A : 4 and B : 4 have similar performance and are more different from A : 3 and C : 4

GMM analysis shows that compared to RPCs in A : 3 and C : 4, RPCs in A : 4 and

B : 4 have a smaller receive queueing latency, indicating that their performance is less

constrained by remote hosts.

The above example illustrates that this clustering approach for GMM analysis can signifi-

cantly simplify the analysis process when dealing with a large number of blobs. By grouping

174

similar blobs together, we can efficiently extract critical information and insights, reducing the

time and effort required to analyze the data.

7.4.3 What Can Be Learned from the Fleet-Wide Analysis

Through the analysis of the GMM blobs of MLService from the eight HDC clusters, we have

demonstrated that the relative performance of the blobs in each cluster is generally consistent,

with minor variations due to workload and infrastructure differences, as shown in Figure 7.5.

The scalability of HDCs and the number of applications running inside make generic models

critical for performance monitoring, as it would be overwhelming to maintain unique models

for RPCs from each application running at each location. Furthermore, if that were the case, it

would indicate that our initial assumption about using GMMs as the appropriate physical model

for describing the performance of RPCs was incorrect.

Using the new techniques described earlier, GMM analysis can efficiently identify blobs

with similar or different performance, indicate the most distinct/uniform performance metrics

between blobs, and highlight the most distinguishing categorical attributes corresponding to

these blobs when there are tens of GMM blobs. By analyzing GMM blobs from these eight HDC

clusters, we can learn about the network performance of RPCs in each blob and their constraints

by identifying the dominant latency. Specifically, our analysis of GMM blobs from the eight

HDC clusters has provided the following insights:

1. In the case of large RPCs, all blobs are network-constrained. However, there is one blob

where RPCs experience significantly higher transfer latency in the network, as illustrated in

Figures 7.7(a) and 7.8(b). GMM analysis reveals that RPCs in this blob belong to a unique

set of jobs. Table 7.4 indicates that the average cosine similarity in source jobs between

two other blobs in the HDC cluster is around 0.93, while it is only 0.04/0.17 between blob

1* (which has abnormal performance) and blob 2/3. Moreover, the average size of RPCs

in this blob is four times larger than that of RPCs in other blobs. Machine configurations

show that machines in this cluster have the smallest number of NICs per machine and the

175

slowest NIC speed. As a result, larger RPCs are more constrained when there are fewer

bandwidth resources available in this cluster. To improve the performance of these RPCs,

one option is to place them in other clusters with more bandwidth resources.

blob pair (1*,2) (1*,3) (2, 3)
cosine similarity 0.17 0.04 0.93

Table 7.4: Cosine similarity of source jobs between GMM blobs in the HDC cluster.

2. For medium-sized RPCs, the network is the primary constraint for all blobs except one,

where the workload exhibits different characteristics based on GMM analysis. In particular,

despite having a comparable overall traffic volume to other blobs, this blob has nearly

four times more RPCs sent in each aggregated interval, while the average RPC size is

approximately four times smaller. This leads to a significant local delay that is almost 10

times larger than in other blobs. GMM analysis, therefore, suggests the RPCs in this blob

into larger ones could reduce local latency and enhance overall performance.

3. In 7 out of 8 HDC clusters, small RPCs in MLService are mainly constrained by receivers,

resulting in a dominant queueing delay on the remote host. However, in one blob in the

remaining HDC cluster, the performance of small RPCs in one blob is constrained by

senders, as shown by a slightly increased local delay (about two times) compared to RPCs

in other clusters, as shown in Figure 7.9. GMM analysis shows that the jobs in this blob

are unique, as they are accelerated by Tensor Processing Units (TPUs) based on their

job names. This reduces the queueing delay on remote hosts by up to 80% while sending

nearly four times more RPCs in a fixed interval.

In summary, this case study has demonstrated that the performance of RPCs within the same

application is generally consistent across multiple HDC clusters, despite differences in infras-

tructure and workload. This finding suggests that the results obtained through GMM can be used

for large-scale global HDC performance monitoring. Moreover, GMM analysis can identify sub-

176

The
"abnormal"

blob

D
is

ta
nc

e

(a) Dendrogram of GMM blobs based on hierar-
chical clustering results.

Average latency

The "abnormal" blob

(b) The breakdown of average latency in each GMM blob.

Figure 7.7: Distance between GMM blobs and the breakdown of average latency in each blob for
large RPCs.

177

The
"abnormal"

blob

D
is

ta
nc

e

(a) Dendrogram of GMM blobs based on hierar-
chical clustering results.

Average latency

The "abnormal" blob

(b) The breakdown of average latency in each GMM blob.

Figure 7.8: Distance between GMM blobs and the breakdown of average latency in each blob for
medium-sized RPCs.

178

The "abnormal" blob

Average latency

(a) Overall latency.

The "abnormal" blob

Average latency
(b) Local latency.

Figure 7.9: The breakdown of average latency in each GMM blob for small-sized RPCs.

179

sets of RPCs that experience different performance, and highlight the most distinct performance

metrics and categorical attributes, providing valuable insights into their performance.

7.5 Conclusion

In this chapter, we discuss two issues in our performance instrumentation pipeline in the pro-

duction HDCs that affect the accuracy of the modeling results, and describe our approaches for

addressing these. The modified pipeline is then used for two additional case studies that demon-

strate the effectiveness of GMM-analysis in (1) assessing the impact of a new load-balancing

policy on application performance, and (2) evaluating the fleetwide performance of a machine

learning service in the production HDCs. For extracting useful insights from the GMM results in

the fleetwide analysis, we introduce two techniques to the GMM analysis component. The first

one is TF-IDF, which helps to identify distinct categorical attributes among GMM blobs. The

second technique is hierarchical agglomerative clustering, which enables us to group GMM blobs

with similar performance. These two techniques make it easier to analyze and interpret the GMM

results.

180

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Understanding the network performance of applications in HDCs is essential for assessing

their overall performance, planning for future upgrades and rollouts, and troubleshooting perfor-

mance anomalies. However, due to the massive scale, diverse infrastructure and workload, and

inherent coupling due to shared resources in HDCs, this task is inherently challenging. In this

thesis, we propose the use of constraint-based models for modeling the network performance of

HDC applications. We have implemented a pipeline that takes RPC telemetry as input, models

different RPC behaviors with GMMs, and analyzes the modeling results using a set of statistical

tools.

Over the past three years, we have conducted several case studies on a controlled emulation

testbed and in a production HDC, demonstrating the effectiveness of our constraint-based mod-

eling approach in (1) identifying RPCs experiencing different network performance and their

respective bottleneck constraints, (2) assessing the impact of engineering changes and infras-

tructure differences on application network performance, and (3) detecting and troubleshooting

performance anomalies.

8.2 Role of Constraint-based Modeling in Achieving Different Network Health Monitoring
Goals

Network monitoring in data centers has been a fairly active research field in the past decade.

There have been significant advances made in both anomaly detection (identifying traffic expe-

riencing anomalous performance (46; 41; 47; 45)) and anomaly classification (determining the

181

Anomaly
Detector

Anomaly
Results

Anomaly
Detector

Anomaly
Results

Data Pre-
processing

GMM

GMM
Analysis

Performance
Interpretation

General Network Monitoring

Blob Matching

GMM Analysis

<Model1, Model2 …, Modeln>

General
Rollout
Analysis

Multivariate
Time-series

Data

Model

Performance
Comparison

Data Pre-
processing

Model
Training

Threshold
Selection

Online
Detection

Anomaly
Results

Anomaly Detector (Su et al. KDD'19)

Anomaly
Detection

Rollout
Correlation

Go/No-go
Decision

Anomaly
Signals

Rollout
Logs

Blamed
Component

Rollout Anomaly Analysis
(Li et al. NSDI'20)

Anomaly
Detector

Anomaly
Results

Rollout Anomaly
Analysis

blob2

blobn

blob1

TCP
Metric

Model
Training

Classific
ation

Anomaly
Classifier
(Arzani et al.
SIGCOMM'16)

Faulty
Entity

Ground
Truth Label

Anomaly
Correlation

Anomaly
Localization

Anomaly
Classifier

Faulty
Entity

Anomaly
Classifier

Faulty
Entity

Anomaly
Classifier

Faulty
Entity

(a) Anomaly Detection (46)

Anomaly
Detector

Anomaly
Results

Anomaly
Detector

Anomaly
Results

Data Pre-
processing

GMM

GMM
Analysis

Performance
Interpretation

General Network Monitoring

Blob Matching

GMM Analysis

<Model1, Model2 …, Modeln>

General
Rollout
Analysis

Multivariate
Time-series

Data

Model

Performance
Comparison

Data Pre-
processing

Model
Training

Threshold
Selection

Online
Detection

Anomaly
Results

Anomaly Detector (Su et al. KDD'19)

Anomaly
Detection

Rollout
Correlation

Go/No-go
Decision

Anomaly
Signals

Rollout
Logs

Blamed
Component

Rollout Anomaly Analysis
(Li et al. NSDI'20)

Anomaly
Detector

Anomaly
Results

Rollout Anomaly
Analysis

blob2

blobn

blob1

TCP
Metric

Model
Training

Classific
ation

Anomaly
Classifier
(Arzani et al.
SIGCOMM'16)

Faulty
Entity

Ground
Truth Label

Anomaly
Correlation

Anomaly
Localization

Anomaly
Classifier

Faulty
Entity

Anomaly
Classifier

Faulty
Entity

Anomaly
Classifier

Faulty
Entity

(b) Anomaly Classification (40)

Anomaly
Detector

Anomaly
Results

Anomaly
Detector

Anomaly
Results

Data Pre-
processing

GMM

GMM
Analysis

Performance
Interpretation

General Network Monitoring

Blob Matching

GMM Analysis

<Model1, Model2 …, Modeln>

General
Rollout
Analysis

Multivariate
Time-series

Data

Model

Performance
Comparison

Data Pre-
processing

Model
Training

Threshold
Selection

Online
Detection

Anomaly
Results

Anomaly Detector (Su et al. KDD'19)

Anomaly
Detection

Rollout
Correlation

Go/No-go
Decision

Anomaly
Signals

Rollout
Logs

Blamed
Component

Rollout Anomaly Analysis
(Li et al. NSDI'20)

Anomaly
Detector

Anomaly
Results

Rollout Anomaly
Analysis

blob2

blobn

blob1

TCP
Metric

Model
Training

Classific
ation

Anomaly
Classifier
(Arzani et al.
SIGCOMM'16)

Faulty
Entity

Ground
Truth Label

Anomaly
Correlation

Anomaly
Localization

Anomaly
Classifier

Faulty
Entity

Anomaly
Classifier

Faulty
Entity

Anomaly
Classifier

Faulty
Entity

(c) Rollout Anomaly Analysis (31)

Figure 8.1: Analysis Pipelines Adopted in Key Prior Work

entities responsible for anomalies, including during rollouts (40; 35)). Figure 8.1 illustrates the

respective pipelines used in prominent recent approaches.

The main focus of prior work has been on addressing performance pathologies, by designing

anomaly detection and classification approaches. As noted in Section 1.1.1, however, HDC net-

work operators have several important goals with respect to network monitoring—in addition to

anomaly detection and classification, they would significantly benefit from developing a general

sense of the network performance of applications, for purposes of long and short-term planning,

understanding the impact of infrastructural and engineering changes, as well as understanding

the root cause and fix of performance pathologies. Our constraint-based analysis approach pro-

vides a scalable and interpretable lens for such sense-making analysis, that focuses not only on

the bad, but also on the good, and the moderate—and in fact, naturally separates these out from

each other.

Figure 8.2 envisions a general framework for network monitoring in HDCs, in which GMM-

based constraints analysis helps inform all of the different network monitoring goals mentioned

above. Specifically, the ability of GMM to distill out distinct categories of network performance,

combined with our contributions in (i) characterizing the performance of different GMM blobs,

(ii) categorical composition analysis, and (iii) comparison of blobs before and after a change, can

182

Anomaly
Detector

Anomaly
Results

Anomaly
Detector

Anomaly
Results

Data Pre-
processing

GMM

GMM
Analysis

Performance
Interpretation

General Network Monitoring

Blob Matching

GMM Analysis

<Model1, Model2 …, Modeln>

General
Rollout
Analysis

Multivariate
Time-series

Data

Model

Performance
Comparison

Data Pre-
processing

Model
Training

Threshold
Selection

Online
Detection

Anomaly
Results

Anomaly Detector (Su et al. KDD'19)

Anomaly
Detection

Rollout
Correlation

Go/No-go
Decision

Anomaly
Signals

Rollout
Logs

Blamed
Component

Rollout Anomaly Analysis
(Li et al. NSDI'20)

Anomaly
Detector

Anomaly
Results

Rollout Anomaly
Analysis

blob2

blobn

blob1

TCP
Metric

Model
Training

Classific
ation

Anomaly
Classifier
(Arzani et al.
SIGCOMM'16)

Faulty
Entity

Ground
Truth Label

Anomaly
Correlation

Anomaly
Localization

Anomaly
Classifier

Faulty
Entity

Anomaly
Classifier

Faulty
Entity

Anomaly
Classifier

Faulty
Entity

Figure 8.2: A General Network Monitoring Framework—GMM analysis informing network
health monitoring and planning, general rollout impact analysis, anomaly detection, and anomaly
classification.

be a significant enabler with several applications. First and foremost, we have already demon-

strated our ability to empower network operators with sense-making analysis for network health

monitoring and planning, as well as understanding the impact of infrastructural change—to the

best of our knowledge, this has never been achieved before. Second, Figure 8.2 envisions that our

approach can also benefit previously-proposed approaches for anomaly detection/classification—

by first distilling performance data based on distinct network performance behavior, and then

applying these approaches to each blob. The importance and need for doing so is also supported

by observations in (40; 35): Due to the significant diversity in implementation, service types,

and traffic patterns of HDC applications, learning-based anomaly detection and classification

may need to individually train different detectors/classifiers for each application. In this case,

GMM can help automatically identify application instances that experience the same network

performance—thus, only one detector/classifier is needed for them (Figure 8.2). Consequently,

this can help achieve significant gains in classification/detection performance, without incurring

the overhead of labeling a large volume of training data as well as building thousands of models

on a per-application basis.

183

8.3 Limitations and Future Work

Our research has developed a scalable interpretable approach for understanding the network

performance of HDC applications. However, the interpretation of our modeling results still re-

quires the expertise of domain experts in HDCs. Although we can group RPCs experiencing

different behavior into different blobs and highlight the most distinct performance metrics and

categorical attributes associated with each blob in a GMM, it still requires additional effort to

understand how the observed network performance and the categorical attributes are connected

for revealing the underlying determinant factors.

Our ultimate vision is to develop an automated analysis framework that leverages our mod-

eling approach to summarize the network performance of different HDC applications, to assess

the impact of planned infrastructure and engineering changes, as well as to understand the root

causes behind unplanned performance outages. Such a framework would significantly reduce

the time and workforce required for analyzing the network performance of different applications

in HDCs, compared to the current state of the art, which only highlights the most distinguishing

performance metrics and categorical attributes in GMMs.

We believe that the scalability, generalizability, and strength of our approach can be further

enhanced by pursuing the following directions:

1. Exploring new tools and techniques for interpreting GMM modeling results. These can

help reveal more important information associated with each GMM blob regarding their

network behaviors. A promising avenue for further exploration is to leverage the correla-

tions between different performance metrics in GMMs. These correlations can provide

valuable insights into the bottleneck constraint that limits the network performance of

RPCs in each GMM blob, as described in Chapter 3. For example, if high network latency

is correlated with low throughput for a particular GMM blob, it suggests that network band-

width is a bottleneck constraint that limits the performance of RPCs in that blob. By investi-

gating these correlations in more detail, we can gain a more nuanced understanding of the

184

performance behaviors identified by GMMs and how to improve network performance for

HDC applications. To fully leverage these correlations, however, we need to integrate new

tools and techniques for summarizing this information in the analysis pipeline.

2. Developing approaches for summarizing GMM modeling results at scale. Fleetwide analy-

sis helps to understand how different factors, such as diverse network infrastructure, com-

peting traffic, and geographic locations, affect application performance by comparing

GMMs built from RPCs across multiple clusters. As HDC infrastructure and workload

continue to grow in size and complexity, new techniques are required to efficiently perform

large-scale fleetwide analysis, as demonstrated in Chapter 7. Therefore, we must continue

to explore additional tools and techniques for addressing potential issues in fleetwide analy-

sis.

3. Integrating domain knowledge to label performance behavior characterizations identified

by GMMs. When a GMM is trained, it can identify different performance behaviors based

on the performance data it receives. However, interpreting these behaviors can be chal-

lenging without additional context and knowledge. By incorporating domain knowledge,

experts can provide meaningful labels for each GMM blob, such as network-constrained,

application-constrained, and sender/receiver-constrained, that accurately reflect the per-

formance behavior characterizations identified by GMMs. Combined with categorical

attributes, such as traffic classes, job names, or geographic locations, these labels can be

useful for assessment, planning and troubleshooting tasks, as demonstrated in Chapters 5 -

7.

This labeling process creates labeled data that can serve as ground-truth training data for

building supervised learning models. These models are a crucial step toward automating

GMM analysis and reducing manual analysis overhead, which allows us to understand

application network performance more efficiently.

185

4. Improving monitoring instrumentation with higher accuracy and precision. Monitoring

instrumentation plays a crucial role in collecting data for GMM modeling. The quality

of input data collected by the underlying monitoring instrumentation directly affects the

accuracy of modeling results. Therefore, it is essential to improve the accuracy and preci-

sion of the data collected by the monitoring instrumentation, as demonstrated in Chapter 7.

There are several ways to achieve this goal. For example, (64) proposed a learning-guided

sampling method for collecting more data related to performance outliers, which occur

less frequently than normal performance and are represented less frequently in the mon-

itoring data. This approach can ensure that data related to infrequent events is collected,

which is important for root causing. By continuing to improve the accuracy and precision

of the input data collected by the monitoring instrumentation, we can ensure that the GMM

modeling results are more reliable and accurate, which can help us make better decisions

regarding the HDC infrastructure and application performance.

5. Incorporating hardware-level and application-level performance metrics into the data col-

lection pipeline. Although this thesis primarily focuses on application network perfor-

mance, we believe that our approach can be extended to other subsystems, such as storage,

computation, and memory, by incorporating the corresponding performance metrics. Col-

lecting these additional performance metrics can be challenging, as it requires additional

instrumentation at the hardware and application levels. However, with advances in moni-

toring tools and technologies, it is becoming increasingly feasible to collect these metrics

in a scalable and efficient manner. By incorporating these metrics into the data collection

pipeline, we can develop more accurate and comprehensive models that can provide valu-

able insights into the performance of different subsystems and their impact on the overall

system performance.

186

APPENDIX A: MONITORING TOOLS ON CLOUDLAB

A.1 SNMP

SNMP is a networking monitoring protocol that is used to collect information on devices con-

nected to the network (53). Table A.1 shows the detailed information collected through SNMP.

During experiments, we query the above information for each switch based on the corresponding

OIDs every second.

Field OID Description
ifHCInOctets 1.3.6.1.2.1.31.1.1.1.6 Incoming bytes
ifHCOutOctets 1.3.6.1.2.1.31.1.1.1.10 Outgoing bytes
ifInUcastPkts 1.3.6.1.2.1.2.2.1.11 Incoming No. of packets
ifOutUcastPkts 1.3.6.1.2.1.2.2.1.17 Outgoing No. of packets
ifInDiscards 1.3.6.1.2.1.2.2.1.13 Incoming No. of discards
ifOutDiscards 1.3.6.1.2.1.2.2.1.19 Outgoing No. of discards

ifCounterDiscontinuityTime 1.3.6.1.2.1.31.1.1.1.19
Indication of discontinuities
of interfaces’ counters

Table A.1: Information collected via SNMP on switches.

A.2 Ifconfig

Ifconfig is a system administration utility in Unix-like operating systems for network inter-

face configuration. It returns information about all network interfaces currently in operation on

the machine, including the total number of bytes and packets transmitted (tx) and received (rx)

over each interface. Figure A.1 shows an example output of ifconfig. During our experiments, we

run ifconfig on all end machines on the testbed every second.

Figure A.1: Example output of ifconfig.

187

Figure A.2: An example trace captured by tcpdump.

A.3 Tcpdump

Tcpdump is a command-line utility that captures and analyzes network traffic that passes

through the system (55). During experiments, tcpdump is launched to capture information about

TCP/IP and packets that are transmitted and received over a network on both servers and clients.

This information is stored in pcap files and analyzed using wireshark. Figure A.2 shows an exam-

ple trace, from which we can identify connection establishment via a three-way handshake (that

is, 5601411-5601525), data transfer (that is, 5601529-5601572: client sends request and server

sends response), and connection termination (that is, 5601573-5601575).

188

APPENDIX B: ADDITIONAL CASE STUDIES ON CLOUDLAB TESTBED

B.1 Experiment 1: The Impact of HTTP Keep-Alive with a Single Connection

In the first experiment, we evaluate the effect of HTTP Keep-Alive on RPC performance

when there is at most one connection between each server/client pair. The experiment involves

the transfer of approximately 1 GB of data from the server to the client through multiple HTTP

requests and responses. A new request is sent shortly after receiving the full response to the

previous request and the response size follows the flow size distribution of the cache application

described in Section 5.1.1. To run the experiment, we use the wget command with or without

–no-http-keep-alive flag to enable or disable HTTP Keep-Alive, respectively.

What Can Be Learned from Traditional Analysis Table B.1 presents a comparison of the

average performance in terms of throughput, the 95th percentile of bytes-in-flight, and RTT. The

results indicate that enabling HTTP Keep-Alive leads to improved network performance for

RPCs, with a higher throughput (114%), a higher 95th percentile of bytes-in-flight (131%), and a

smaller 95th percentile of RTTs (85%).

HTTP Keep-Alive Overall Rate Throughput 95th Bif 95th Rtt
enabled 4.78 Gbps 1.67 Gbps 0.21 MB 0.607 ms
disabled 4.56 Gbps 1.46 Gbps 0.16 MB 0.712 ms

Table B.1: A comparison of the average performance with and without HTTP Keep-Alive.

What Can Be Learned Using GMM Analysis To further analyze the impact of HTTP Keep-

Alive on RPC performance, we then build two GMMs using the per-RPC metrics collected with

Keep-Alive enabled or disabled, respectively. The 1d-Wasserstein distance is calculated between

the blobs along different performance dimensions and the top five distinguishing performance

metrics are presented in Table B.2. The results indicate that when HTTP Keep-Alive is disabled,

the most distinguishable performance metrics are related to bytes-in-flight. This implies that

the performance differences between the RPCs in different blobs are primarily due to volume,

rather than delay and rate. However, when HTTP Keep-Alive is enabled, both RTT and bytes-in-

189

flight become the top distinguishable performance metrics. This suggests that the performance

differences between the RPCs in different blobs are significant in both delay and volume.

w/o HTTP Keep-Alive with HTTP Keep-Alive
performance metric distance performance metric distance

1 bif_p50 1.49 rtt_p75 1.40
2 bif_p75 1.41 rtt_p50 1.38
3 bif_p25 1.37 bif_p50 1.36
4 bif_p5 1.31 rtt_p95 1.34
5 bif_p95 1.27 bif_p75 1.32

Table B.2: Top 5 distinguishing performance metrics among blobs in each GMMs.

To make a fair comparison between the blobs in the two GMMs, we match them using the

Wasserstein distance, as described in Section 4.2. Table B.3 displays the 2-dimensional Wasser-

stein distance between the blobs in these two GMMs. The blobs with the smallest distance are

matched and labeled using the same legend (P0, P1, and P2) in the subsequent plots.

P0disable P1disable P2disable
P0enable 5.27 12.65 12.79
P1enable 8.34 2.04 16.13
P2enable 35.36 7.97 7.76

Table B.3: Distance measure of the 2-dimensional Wasserstein distance between blobs in two
GMMs.

(a) HTTP Keep-Alive disabled (b) HTTP Keep-Alive enabled

Figure B.1: Breakdown of delay on end-hosts and network for each blob with and without HTTP
Keep-Alive in the GMMs with a single connection.

Figure B.1 shows the breakdown of the most notable delays on end hosts and in the network

for each blob in the two GMMs. The majority of the delay occurs in the network for all the blobs,

190

but the network delay for the three blobs is similar when HTTP Keep-Alive is disabled (Figure

B.1(a)) and varies significantly when it is enabled (Figure B.1(b)). This explains why delay met-

rics are only among the top five distinguishing performance metrics between blobs when HTTP

Keep-Alive is enabled. When HTTP Keep-Alive is disabled, RPCs in blob P0, which represent

20% of the total RPCs, experience higher client delay compared to the others (Figure B.1(a)).

Comparing the two GMMs reveals that when HTTP Keep-Alive is enabled, RPCs in P1 and P2

have lower network delay, indicating less severe constraints in the network. Meanwhile, RPCs in

P0 have lower client delay, implying less constraints on the client side but no significant changes

in network delay.

Figure B.2 presents the kde graphs comparing the most significant performance metrics be-

tween the matched blobs in the two GMMs using the Wasserstein distance. These metrics are:

throughput, the 5th and 95th percentile of bytes-in-flight, and the 95th percentile of network de-

lay. The comparison between the P0 blobs in the two GMMs shows that when HTTP Keep-Alive

is enabled, the previously volume-constrained RPCs experience improved performance, as evi-

denced by their higher throughput. With HTTP Keep-Alive enabled, the bandwidth resources are

distributed more equitably among the RPCs in the different blobs within one GMM. For instance,

the throughput of RPCs in P0 decreases slightly from approximately 1825 Mbps to 1709 Mbps,

while the throughput of RPCs in P1 and P2 increases from approximately 1390 Mbps to 1650

Mbps, leading to better overall performance.

In conclusion, the GMM analysis of the performance comparison shows that when there is

at most one connection between each server/client pair in our testbed, enabling HTTP Keep-

Alive leads to improved performance by optimizing bandwidth utilization, reducing delay, and

increasing volume and rate. Furthermore, it results in a more uniform performance for all RPCs.

Validating Constraints with Ground-truth Information In this section, we validate the find-

ings of our GMM analysis by using ground-truth information from sample pcap traces for each

blob in the two GMMs with and without HTTP Keep-Alive enabled. Figure B.3 presents the time

sequence plots of selected RPC traces from P0 and P2.

191

(a) Disabled: throughput (Mbps) (b) Enabled: throughput (Mbps)

(c) Disabled: P5 bytes-in-flight (d) Enabled: P5 bytes-in-flight

(e) Disabled: P95 bytes-in-flight (f) Enabled: P95 bytes-in-flight

(g) Disabled: P95 network delay (sec) (h) Enabled: P95 network delay (sec)

Figure B.2: Kernel density plots of throughput, bytes-in-flight, and network delay for multiple
connections when HTTP Keep-Alive is disabled (Disabled: left column) and enabled (Enabled:
right column).

192

When HTTP Keep-Alive is disabled, the RPC in P0 experiences a significant client delay

during transmission, resulting in an increase in the measured RTT as observed in Figure B.3(a).

However, with HTTP Keep-Alive enabled, the client delay becomes negligible and stable at

around 20 microseconds, as shown in Figure B.3(b). This suggests that the main contributor

to the increased RTTs in this scenario is the network, not the local hosts. Without HTTP Keep-

Alive, the network performance of the RPCs is partially hindered by clients. With HTTP Keep-

Alive, this constraint is relieved and the performance is mainly constrained by the network. It

is also evident that without HTTP Keep-Alive, the increase in bytes-in-flight is slower due to

the TCP slow start stage, as shown in Figure B.3(a), rather than starting at a high value at the

beginning of the transfer, as observed in Figure B.3(b).

In the case of P2, the use of HTTP Keep-Alive leads to an increase in bytes-in-flight, result-

ing in a reduction of approximately 57% in the total transfer duration (as shown in Figure B.3(d)).

When HTTP Keep-Alive is disabled, the RPC remains at a relatively low number of bytes-in-

flight for most of the transmission (Figure B.3(c)), resulting in lower RTTs but a longer transfer

duration and lower throughput. This indicates that the performance of the RPCs in P2 is mainly

limited by volume and that enabling HTTP Keep-Alive greatly relieves this constraint. Further

analysis of pcap traces reveals that there is more cross-traffic from multiple server/client pairs

in the network when HTTP Keep-Alive is disabled. As shown in Figure B.4(b), more bytes are

transmitted concurrently and it takes longer for the transfers to complete. This is consistent with

the correlation between RTTs and bytes-in-flights, as shown in Figure B.4(a). When HTTP Keep-

Alive is disabled, the same increase in bytes-in-flight leads to a larger increase in RTTs due to the

greater number of bytes already in the network.

B.2 Experiment 2: The Impact of Communication Patterns

Finally, we examine the impact of different communication patterns on the performance of

RPCs when there are multiple connections between each server/client with HTTP Keep-Alive en-

abled. Different communication patterns may cause different interactions among traffic and result

193

(a) P0: without HTTP Keep-Alive (b) P0: with HTTP Keep-Alive

(c) P2: without HTTP Keep-Alive (d) P2: with HTTP Keep-Alive

Figure B.3: Time sequence plots of bytes-in-flight and round-trip times (RTTs) of selected traces
from blobs P0 and P2 using multiple connections.

(a) Correlation between bytes-in-flight and RTT
of RPCs in P0.

(b) Total bytes during transmission in the experi-
ment based on pcap files.

Figure B.4: Ground truth information from pcap files.

194

in diverse queuing delays. To accurately assess the impact of these patterns on RPC network per-

formance, we use GMMs. In contrast to the 1-to-1 communication scenario described in Section

5.4.2.1, where each client communicates with a specific server via multiple TCP connections, we

examine a 1-to-5 scenario where each client communicates with five different servers, and corre-

spondingly, each server communicates with five different clients through a single TCP connec-

tion. Each connection transferred 1 GB of data through multiple HTTP requests and responses.

As a result, 70 concurrent TCP connections are established across the network, transferring a

total of 70GB of data.

Figure B.5 shows the TCP-tuple information (< src_ip : src_port − dst_ip : dst_port >)

extracted from the pcap files on one server with these two different patterns. In the 1-to-1 pat-

tern (Figure B.5(a)), the server (192.168.1.140) maintains five TCP connections to the same

client (192.168.1.204), each with a different port number (39030, 39032, 39034, 39036, and

39038). In the 1-to-5 scenario, the server (192.168.1.13) communicates with five different clients

(192.168.1.203, 192.168.1.206, 192.168.1.74, 192.168.1.77, and 192.168.1.79). In this experi-

ment, each connection still transfers around 1 GB of data.

(a) One server to a single client (b) One server to multiple clients

Figure B.5: TCP tuple information from one server during experiments with different communi-
cation patterns.

We apply the same analysis method as in previous experiments, constructing two GMMs

based on per-RPC performance metrics collected in each scenario. We then match the resulting

blobs in the two GMMs using the 2d Wasserstein distance. The matched blobs are annotated

195

with the same legend: P0, P1, and P2. The distances between the matched blobs are 0.074 be-

tween P0, 0.036 between P1, and 0.031 between P2, which are much smaller compared to the

minimum distance of 2.04 between the matched blobs in Table B.3 in Section B.1.

(a) One server to a single client. (b) One server to multiple clients.

Figure B.6: Delay breakdown for blobs in each GMM with different communication patterns.

Figure B.6 shows the breakdown of the delay in each blob, displaying consistent performance

on both local hosts and in the network. Since P0 has the largest distance among these three

matched blobs, Table B.4 ranks their top 5 distinguishing performance metrics in two GMMs

based on their distance. As can be seen, the maximum distance between the most distinctive per-

formance metric (rtt_p95) is only around 0.106. Figure B.7 presents the kde plots of the most

distinctive performance metrics in terms of delay, volume, and rate for P0, which consistently

shows minimal differences.

performance metric distance
1 rtt_p95 0.106
2 rtt_p25 0.082
3 bif_p50 0.074
4 rtt_p95 0.074
5 throughput 0.052

Table B.4: Top 5 distinguishing performance metrics for P0.

Furthermore, categorical analysis did not indicate any substantial variations in the sizes of

the RPCs and cross-traffic between matched blobs in the two GMMs. As depicted in Figure B.8,

the percentage of RPC bytes in each blob is similar in the matched blobs, demonstrating that the

volume of traffic is comparable.

196

(a) median RTT (b) median bytes-in-flight

(c) throughput

Figure B.7: KDE plots of P0 with different communication patterns: 1 to 1 vs. 1 to 5.

(a) One server to a single client. (b) One server to multiple clients.

Figure B.8: The ratio of RPCs in each blob with different communication patterns.

197

In conclusion, our analysis using GMMs indicates that there are no notable variations be-

tween the two communication patterns. This finding suggests that, in our testbed with uniform

hardware and software in clients and servers , and a balanced network topology, the specific

choice of strategy for distributing RPC requests does not have a significant impact on the network

performance of RPCs when the network workload is similar.

198

REFERENCES

[1] “The hyperscale data center drives the global cloud revolution.” https://
dataconomy.com/2019/07/why-96-of-enterprises-face-ai-
training-data-issues/. Accessed: 2020-03-02.

[2] A. A. Team, “Summary of the amazon ec2 and amazon rds service disruption in the us east
region.” https://aws.amazon.com/message/65648/.

[3] Wikipedia, “Microsoft azure.” https://en.wikipedia.org/wiki/Microsoft_
Azure.

[4] “Google cloud: Cloud computing services.” https://cloud.google.com, 2020
(accessed 2020-10-27).

[5] Macrotrends, “Facebook net worth 2009-2021 | fb.” https://www.macrotrends.
net/stocks/charts/FB/facebook/net-worth.

[6] M. Iqbal, “Youtube revenue and usage statistics (2020).” https://www.
businessofapps.com/data/youtube-statistics/.

[7] “Stadia - one place for all the ways we play.” https://stadia.google.com, 2019.

[8] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, K. N. B., C. Bhagat, S. Jain,
J. Kaimal, S. Liang, K. Mendelev, S. Padgett, F. Rabe, S. Ray, M. Tewari, M. Tierney,
M. Zahn, J. Zolla, J. Ong, and A. Vahdat, “B4 and after: Managing hierarchy, partitioning,
and asymmetry for availability and scale in google’s software-defined wan,” in Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, (New York, NY, USA), p. 74â87, Association for Computing Machinery,
2018.

[9] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson, X. Yang, R. Yao, M. Chintalapati, A. Kr-
ishnamurthy, and T. Anderson, “Deepview: Virtual disk failure diagnosis and pattern
detection for azure,” in 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18), pp. 519–532, 2018.

[10] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, “Cloud computing:
Distributed internet computing for it and scientific research,” IEEE Internet computing,
vol. 13, no. 5, pp. 10–13, 2009.

[11] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and D. Chen, “G-hadoop:
Mapreduce across distributed data centers for data-intensive computing,” Future Gen-
eration Computer Systems, vol. 29, no. 3, pp. 739–750, 2013.

[12] Google, “grpc: A high performance, open source universal rpc framework.” https://
grpc.io/, (accessed: 04.09.2021).

199

https://dataconomy.com/2019/07/why-96-of-enterprises-face-ai-training-data-issues/
https://dataconomy.com/2019/07/why-96-of-enterprises-face-ai-training-data-issues/
https://dataconomy.com/2019/07/why-96-of-enterprises-face-ai-training-data-issues/
https://aws.amazon.com/message/65648/
https://en.wikipedia.org/wiki/Microsoft_Azure
https://en.wikipedia.org/wiki/Microsoft_Azure
https://cloud.google.com
https://www.macrotrends.net/stocks/charts/FB/facebook/net-worth
https://www.macrotrends.net/stocks/charts/FB/facebook/net-worth
https://www.businessofapps.com/data/youtube-statistics/
https://www.businessofapps.com/data/youtube-statistics/
https://stadia.google.com
https://grpc.io/
https://grpc.io/

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
“Hypertext transfer protocol–http/1.1,” tech. rep., 1999.

[14] “Youtube.” https://www.youtube.com, 2018-08-29 (accessed 2020-10-27).

[15] “Netflix - watch tv shows online, watch movies online.” https://www.netflix.com,
2020 (accessed 2020-10-27).

[16] “Facebook.” https://www.facebook.com, 2020 (accessed 2020-10-27).

[17] “Gmail - google.” https://mail.google.com, 2020 (accessed 2020-10-27).

[18] “Maps - apple.” https://www.apple.com/maps/, 2020 (accessed 2020-10-27).

[19] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B. Pang,
H. Chen, et al., “Pingmesh: A large-scale system for data center network latency mea-
surement and analysis,” in Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, pp. 139–152, 2015.

[20] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz, L. Yuan, M. Zhang,
B. Y. Zhao, et al., “Packet-level telemetry in large datacenter networks,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication, pp. 479–
491, 2015.

[21] A. Roy, H. Zeng, J. Bagga, and A. C. Snoeren, “Passive realtime datacenter fault detec-
tion and localization,” in 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17), pp. 595–612, 2017.

[22] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous, “Network charac-
teristics of video streaming traffic,” in Proceedings of the seventh conference on emerging
networking experiments and technologies, pp. 1–12, 2011.

[23] Z. Zhang and C. Williamson, “A campus-level view of outlook email traffic,” in Proceed-
ings of the 2018 VII International Conference on Network, Communication and Comput-
ing, pp. 299–306, 2018.

[24] J. Johnson and J. Jeff, GUI bloopers: don’ts and do’s for software developers and Web
designers. Morgan Kaufmann, 2000.

[25] F. F.-H. Nah, “A study on tolerable waiting time: how long are web users willing to wait?,”
Behaviour & Information Technology, vol. 23, no. 3, pp. 153–163, 2004.

[26] J. D. Brutlag, H. Hutchinson, and M. Stone, “User preference and search engine latency,”
2008.

[27] R. Jota, A. Ng, P. Dietz, and D. Wigdor, “How fast is fast enough? a study of the effects of
latency in direct-touch pointing tasks,” in Proceedings of the sigchi conference on human
factors in computing systems, pp. 2291–2300, 2013.

200

https://www.youtube.com
https://www.netflix.com
https://www.facebook.com
https://mail.google.com
https://www.apple.com/maps/

[28] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. De-
sai, B. Felderman, P. Germano, et al., “Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network,” ACM SIGCOMM computer communi-
cation review, vol. 45, no. 4, pp. 183–197, 2015.

[29] L. Poutievski, O. Mashayekhi, J. Ong, A. Singh, M. Tariq, R. Wang, J. Zhang, V. Beau-
regard, P. Conner, S. Gribble, et al., “Jupiter evolving: Transforming google’s datacenter
network via optical circuit switches and software-defined networking,” in Proceedings of
the ACM SIGCOMM 2022 Conference, pp. 66–85, 2022.

[30] O. Alipourfard, J. Gao, J. Koenig, C. Harshaw, A. Vahdat, and M. Yu, “Risk based plan-
ning of network changes in evolving data centers,” in Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles, pp. 414–429, 2019.

[31] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang, Q. Lin, Y. Wu, S. Levy,
et al., “Gandalf: An intelligent, end-to-end analytics service for safe deployment in large-
scale cloud infrastructure,” in 17th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 20), pp. 389–402, 2020.

[32] N. Cardwell, S. Savage, and T. Anderson, “Modeling tcp latency,” in Proceedings IEEE
INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064),
vol. 3, pp. 1742–1751, IEEE, 2000.

[33] M. Yu, A. G. Greenberg, D. A. Maltz, J. Rexford, L. Yuan, S. Kandula, and C. Kim, “Pro-
filing network performance for multi-tier data center applications,” in NSDI, vol. 11, pp. 5–
5, 2011.

[34] R. N. Mysore, R. Mahajan, A. Vahdat, and G. Varghese, “Gestalt: Fast, unified fault lo-
calization for networked systems,” in 2014 {USENIX} Annual Technical Conference
({USENIX} {ATC} 14), pp. 255–267, 2014.

[35] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and C. Delimitrou, “Seer: Lever-
aging big data to navigate the complexity of performance debugging in cloud microser-
vices,” in Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 19–33, 2019.

[36] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang, L. Yuan, and M. Zhang, “Netpilot:
automating datacenter network failure mitigation,” in Proceedings of the ACM SIGCOMM
2012 conference on Applications, technologies, architectures, and protocols for computer
communication, pp. 419–430, 2012.

[37] C. H. Wagner, “Simpson’s paradox in real life,” The American Statistician, vol. 36, no. 1,
pp. 46–48, 1982.

[38] M. A. Hernán, D. Clayton, and N. Keiding, “The simpson’s paradox unraveled,” Interna-
tional journal of epidemiology, vol. 40, no. 3, pp. 780–785, 2011.

201

[39] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jas-
pan, and C. Shanbhag, “Dapper, a large-scale distributed systems tracing infrastructure,”
2010.

[40] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred, “Taking the blame game out
of data centers operations with netpoirot,” in Proceedings of the 2016 ACM SIGCOMM
Conference, pp. 440–453, 2016.

[41] J. Li, W. Pedrycz, and I. Jamal, “Multivariate time series anomaly detection: A framework
of hidden markov models,” Applied Soft Computing, vol. 60, pp. 229–240, 2017.

[42] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” arXiv
preprint arXiv:1511.08458, 2015.

[43] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE transac-
tions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[44] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[45] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang, J. Tong, and
Q. Zhang, “Time-series anomaly detection service at microsoft,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 3009–3017, 2019.

[46] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly detection for mul-
tivariate time series through stochastic recurrent neural network,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2828–2837, 2019.

[47] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen,
and N. V. Chawla, “A deep neural network for unsupervised anomaly detection and diag-
nosis in multivariate time series data,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 1409–1416, 2019.

[48] D. A. Reynolds, “Gaussian mixture models.,” Encyclopedia of biometrics, vol. 741, 2009.

[49] S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou, “Machine learning-
based prefetch optimization for data center applications,” in Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis, pp. 1–10, 2009.

[50] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, et al., “Apache spark: a unified engine for big data pro-
cessing,” Communications of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[51] R. Ricci, E. Eide, and C. Team, “Introducing cloudlab: Scientific infrastructure for ad-
vancing cloud architectures and applications,” ; login:: the magazine of USENIX & SAGE,
vol. 39, no. 6, pp. 36–38, 2014.

202

[52] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social network’s
(datacenter) network,” in Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, pp. 123–137, 2015.

[53] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin, “Rfc1157: Simple network manage-
ment protocol (snmp),” 1990.

[54] M. Kerrisk, “Ifconfig(8) – linux system administrator’s manual.” https://man7.org/
linux/man-pages/man8/ifconfig.8.html.

[55] V. Jacobson, “Tcpdump,” ftp://ftp. ee. lbl. gov, 1989.

[56] M. A. Qureshi, Y. Cheng, Q. Yin, Q. Fu, G. Kumar, M. Moshref, J. Yan, V. Jacobson,
D. Wetherall, and A. Kabbani, “Plb: congestion signals are simple and effective for net-
work load balancing,” in Proceedings of the ACM SIGCOMM 2022 Conference, pp. 207–
218, 2022.

[57] A. Aizawa, “An information-theoretic perspective of tf–idf measures,” Information Pro-
cessing & Management, vol. 39, no. 1, pp. 45–65, 2003.

[58] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster analy-
sis. John Wiley & Sons, 2009.

[59] R. Fonseca, G. Porter, R. H. Katz, and S. Shenker, “X-trace: A pervasive network tracing
framework,” in 4th {USENIX} Symposium on Networked Systems Design & Implementa-
tion ({NSDI} 07), 2007.

[60] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-wide profiling: A
continuous profiling infrastructure for data centers,” IEEE micro, vol. 30, no. 4, pp. 65–79,
2010.

[61] “Jaeger: open source, end-to-end distributed tracing.” https://www.
jaegertracing.io/, (accessed 2020-10-27).

[62] “Openzipkin: A distributed tracing system.” https://zipkin.io/, (accessed 2020-
10-27).

[63] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W. Ong, B. Schaller,
P. Shan, B. Viscomi, et al., “Canopy: An end-to-end performance tracing and analysis
system,” in Proceedings of the 26th Symposium on Operating Systems Principles, pp. 34–
50, 2017.

[64] P. Las-Casas, G. Papakerashvili, V. Anand, and J. Mace, “Sifter: Scalable sampling for
distributed traces, without feature engineering,” in Proceedings of the ACM Symposium on
Cloud Computing, pp. 312–324, 2019.

[65] S. Floyd, “Tcp and explicit congestion notification,” ACM SIGCOMM Computer Commu-
nication Review, vol. 24, no. 5, pp. 8–23, 1994.

203

https://man7.org/linux/man-pages/man8/ifconfig.8.html
https://man7.org/linux/man-pages/man8/ifconfig.8.html
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://zipkin.io/

[66] N. Jarvey, “Cbs all access crashes as super bowl lv kicks off.” https://www.
hollywoodreporter.com/business/digital/cbs-all-access-
crashes-as-super-bowl-lv-kicks-off-4129254/, 2021 (accessed:
04.09.2021).

[67] J. Peters, “Prolonged aws outage takes down a big chunk of the internet.” https://
www.theverge.com/2020/11/25/21719396/amazon-web-services-aws-
outage-down-internet.

[68] S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point detection in time-series
data by relative density-ratio estimation,” Neural Networks, vol. 43, pp. 72–83, 2013.

[69] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework for automated
time-series anomaly detection,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1939–1947, 2015.

[70] A. A. Qahtan, B. Alharbi, S. Wang, and X. Zhang, “A pca-based change detection frame-
work for multidimensional data streams: Change detection in multidimensional data
streams,” in Proceedings of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 935–944, 2015.

[71] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series change point
detection,” Knowledge and information systems, vol. 51, no. 2, pp. 339–367, 2017.

[72] J. Mazel, P. Casas, R. Fontugne, K. Fukuda, and P. Owezarski, “Hunting attacks in the
dark: clustering and correlation analysis for unsupervised anomaly detection,” Interna-
tional Journal of Network Management, vol. 25, no. 5, pp. 283–305, 2015.

[73] L. Wei and E. Keogh, “Semi-supervised time series classification,” in Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 748–753, 2006.

[74] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, “Using mobile
phones to determine transportation modes,” ACM Transactions on Sensor Networks
(TOSN), vol. 6, no. 2, pp. 1–27, 2010.

[75] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma, “Understanding transportation modes
based on gps data for web applications,” ACM Transactions on the Web (TWEB), vol. 4,
no. 1, pp. 1–36, 2010.

[76] M. Han, Y.-K. Lee, S. Lee, et al., “Comprehensive context recognizer based on multimodal
sensors in a smartphone,” Sensors, vol. 12, no. 9, pp. 12588–12605, 2012.

[77] K. D. Feuz, D. J. Cook, C. Rosasco, K. Robertson, and M. Schmitter-Edgecombe, “Au-
tomated detection of activity transitions for prompting,” IEEE transactions on human-
machine systems, vol. 45, no. 5, pp. 575–585, 2014.

204

https://www.hollywoodreporter.com/business/digital/cbs-all-access-crashes-as-super-bowl-lv-kicks-off-4129254/
https://www.hollywoodreporter.com/business/digital/cbs-all-access-crashes-as-super-bowl-lv-kicks-off-4129254/
https://www.hollywoodreporter.com/business/digital/cbs-all-access-crashes-as-super-bowl-lv-kicks-off-4129254/
https://www.theverge.com/2020/11/25/21719396/amazon-web-services-aws-outage-down-internet
https://www.theverge.com/2020/11/25/21719396/amazon-web-services-aws-outage-down-internet
https://www.theverge.com/2020/11/25/21719396/amazon-web-services-aws-outage-down-internet

[78] Y. Kawahara and M. Sugiyama, “Sequential change-point detection based on direct
density-ratio estimation,” Statistical Analysis and Data Mining: The ASA Data Science
Journal, vol. 5, no. 2, pp. 114–127, 2012.

[79] M. Yamada, A. Kimura, F. Naya, and H. Sawada, “Change-point detection with feature
selection in high-dimensional time-series data,” in Twenty-Third International Joint Con-
ference on Artificial Intelligence, 2013.

[80] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in Noise
reduction in speech processing, pp. 1–4, Springer, 2009.

[81] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[82] J. C. De Winter, “Using the student’s t-test with extremely small sample sizes,” Practical
Assessment, Research, and Evaluation, vol. 18, no. 1, p. 10, 2013.

[83] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,” Journal of the Ameri-
can statistical Association, vol. 46, no. 253, pp. 68–78, 1951.

[84] M. L. McHugh, “The chi-square test of independence,” Biochemia medica, vol. 23, no. 2,
pp. 143–149, 2013.

[85] B. D. Ripley, Pattern recognition and neural networks. Cambridge university press, 2007.

[86] C. Delimitrou and C. Kozyrakis, “ibench: Quantifying interference for datacenter appli-
cations,” in 2013 IEEE international symposium on workload characterization (IISWC),
pp. 23–33, IEEE, 2013.

[87] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[88] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve or die: High-
availability design principles drawn from googles network infrastructure,” in Proceed-
ings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, (New York, NY, USA),
p. 58â72, Association for Computing Machinery, 2016.

[89] C. Chatfield, “The holt-winters forecasting procedure,” Journal of the Royal Statistical
Society: Series C (Applied Statistics), vol. 27, no. 3, pp. 264–279, 1978.

[90] H. Abdi, “Discriminant correspondence analysis,” 2007.

[91] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and M. Zhang, “Towards
highly reliable enterprise network services via inference of multi-level dependencies,”
ACM SIGCOMM Computer Communication Review, vol. 37, no. 4, pp. 13–24, 2007.

[92] M. J. Wainwright, M. I. Jordan, et al., “Graphical models, exponential families, and vari-
ational inference,” Foundations and Trends® in Machine Learning, vol. 1, no. 1–2, pp. 1–
305, 2008.

205

[93] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl, “Detailed diag-
nosis in enterprise networks,” in Proceedings of the ACM SIGCOMM 2009 conference on
Data communication, pp. 243–254, 2009.

[94] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, “Fault localization via risk
modeling,” IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4,
pp. 396–409, 2009.

[95] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[96] G. Casella and R. L. Berger, Statistical inference. Cengage Learning, 2021.

[97] J. Postel, “Rfc0793: Transmission control protocol,” 1981.

[98] J. Postel et al., “User datagram protocol,” 1980.

[99] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “Bbr: Congestion-
based congestion control,” Queue, vol. 14, no. 5, pp. 20–53, 2016.

[100] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for
differentiated services,” tech. rep., 1998.

[101] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam, C. Contavalli, and A. Vahdat,
“Carousel: Scalable traffic shaping at end hosts,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, pp. 404–417, 2017.

[102] P. Sreekumari and J.-i. Jung, “Transport protocols for data center networks: a survey
of issues, solutions and challenges,” Photonic Network Communications, vol. 31, no. 1,
pp. 112–128, 2016.

[103] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp variant,” ACM
SIGOPS operating systems review, vol. 42, no. 5, pp. 64–74, 2008.

[104] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,
and M. Sridharan, “Data center tcp (dctcp),” in Proceedings of the ACM SIGCOMM 2010
Conference, pp. 63–74, 2010.

[105] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal processing maga-
zine, vol. 13, no. 6, pp. 47–60, 1996.

[106] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead,” Nature Machine Intelligence, vol. 1, no. 5, pp. 206–
215, 2019.

[107] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-
scale cluster management at google with borg,” in Proceedings of the Tenth European
Conference on Computer Systems, pp. 1–17, 2015.

[108] M. Rouaud, “Probability, statistics and estimation,” Propagation of uncertainties, 2013.

206

[109] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al., “Spark: Cluster
computing with working sets.,” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[110] J. MatouÅ¡ek and B. GÃ¤rtner, Understanding and Using Linear Programming. Springer
Science & Business Media, 2007.

[111] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[112] M. Ringnér, “What is principal component analysis?,” Nature biotechnology, vol. 26, no. 3,
pp. 303–304, 2008.

[113] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning
research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[114] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and pro-
jection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

[115] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu, “Feature se-
lection: A data perspective,” ACM Computing Surveys (CSUR), vol. 50, no. 6, pp. 1–45,
2017.

[116] C. M. Jarque and A. K. Bera, “A test for normality of observations and regression resid-
uals,” International Statistical Review/Revue Internationale de Statistique, pp. 163–172,
1987.

[117] S. Sanders and J. Kaur, “Can web pages be classified using anonymized tcp/ip headers?,”
in Proceedings of IEEE INFOCOM, IEEE, 2015.

[118] S. I. Vrieze, “Model selection and psychological theory: a discussion of the differences be-
tween the akaike information criterion (aic) and the bayesian information criterion (bic).,”
Psychological methods, vol. 17, no. 2, p. 228, 2012.

[119] E.-J. Wagenmakers and S. Farrell, “Aic model selection using akaike weights,” Psycho-
nomic bulletin & review, vol. 11, no. 1, pp. 192–196, 2004.

[120] L. Lovmar, A. Ahlford, M. Jonsson, and A.-C. Syvänen, “Silhouette scores for assessment
of snp genotype clusters,” BMC genomics, vol. 6, no. 1, p. 35, 2005.

[121] I. J. Myung, “Tutorial on maximum likelihood estimation,” Journal of mathematical Psy-
chology, vol. 47, no. 1, pp. 90–100, 2003.

[122] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, vol. 4.
Springer, 2006.

[123] J. Sklansky, “Finding the convex hull of a simple polygon,” Pattern Recognition Letters,
vol. 1, no. 2, pp. 79–83, 1982.

[124] M. Thomas and A. T. Joy, Elements of information theory. Wiley-Interscience, 2006.

207

[125] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, “The mahalanobis distance,”
Chemometrics and intelligent laboratory systems, vol. 50, no. 1, pp. 1–18, 2000.

[126] “Leverage (statistics).” https://en.wikipedia.org/wiki/Leverage_
(statistics)#Determination_of_outliers_in_X_using_leverages.

[127] D. J. Olive, “Applied robust statistics,” Preprint M-02-006, 2008.

[128] Y. B. Nikolay Laptev, Saeed Amizadeh, “A benchmark dataset for time series anomaly
detection.” https://yahooresearch.tumblr.com/post/114590420346/a-
benchmark-dataset-for-time-series-anomaly.

[129] N. Fournier and A. Guillin, “On the rate of convergence in wasserstein distance of the
empirical measure,” Probability Theory and Related Fields, vol. 162, no. 3-4, pp. 707–738,
2015.

[130] A. Ramdas, N. García Trillos, and M. Cuturi, “On wasserstein two-sample testing and
related families of nonparametric tests,” Entropy, vol. 19, no. 2, p. 47, 2017.

[131] R. M. Gray, Entropy and information theory. Springer Science & Business Media, 2011.

[132] H. V. Nguyen and L. Bai, “Cosine similarity metric learning for face verification,” in Asian
conference on computer vision, pp. 709–720, Springer, 2010.

[133] J. Delon and A. Desolneux, “A wasserstein-type distance in the space of gaussian mixture
models,” SIAM Journal on Imaging Sciences, vol. 13, no. 2, pp. 936–970, 2020.

[134] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo,
S. Kulkarni, H. Li, et al., “{TAO}: Facebookâs distributed data store for the social graph,”
in 2013 {USENIX} Annual Technical Conference ({USENIX}{ATC} 13), pp. 49–60, 2013.

[135] C. Clos, “A study of non-blocking switching networks,” Bell System Technical Journal,
vol. 32, no. 2, pp. 406–424, 1953.

[136] R. Soni, Nginx. Springer, 2016.

[137] G. W. Mike Hibler, Leigh Stoller, “Time synchronization at cloudlab clusters.” https:
//gitlab.flux.utah.edu/emulab/emulab-devel/-/issues/658.

[138] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1928–1943, ACM,
2018.

[139] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 29, no. 3, pp. 433–439, 1999.

[140] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited, revisited:
why and how you should (still) use dbscan,” ACM Transactions on Database Systems
(TODS), vol. 42, no. 3, pp. 1–21, 2017.

208

https://en.wikipedia.org/wiki/Leverage_(statistics)#Determination_of_outliers_in_X_using_leverages
https://en.wikipedia.org/wiki/Leverage_(statistics)#Determination_of_outliers_in_X_using_leverages
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
https://gitlab.flux.utah.edu/emulab/emulab-devel/-/issues/658
https://gitlab.flux.utah.edu/emulab/emulab-devel/-/issues/658

[141] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,” ACM Transactions
on Computer Systems (TOCS), vol. 2, no. 1, pp. 39–59, 1984.

[142] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit congestion notification
(ecn) to ip,” tech. rep., 2001.

[143] W. de Bruijn, “net-timestamp: new tx tstamps and tcp (linux 3.17).” https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=618896e6d00773d6d50e0b19f660af22fa26cd61.

[144] T. Dunning and O. Ertl, “Computing extremely accurate quantiles using t-digests,” arXiv
preprint arXiv:1902.04023, 2019.

[145] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data center traffic charac-
teristics,” ACM SIGCOMM Computer Communication Review, vol. 40, no. 1, pp. 92–99,
2010.

[146] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers in
the wild,” in Proceedings of the 10th ACM SIGCOMM conference on Internet measure-
ment, pp. 267–280, 2010.

[147] Q. Yin, J. Kaur, and F. D. Smith, “Tcp rapid: from theory to practice,” in IEEE INFOCOM
2017-IEEE Conference on Computer Communications, pp. 1–9, IEEE, 2017.

[148] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “Flowbender: Flow-level adaptive
routing for improved latency and throughput in datacenter networks,” in Proceedings of
the 10th ACM International on Conference on emerging Networking Experiments and
Technologies, pp. 149–160, 2014.

209

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=618896e6d00773d6d50e0b19f660af22fa26cd61
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=618896e6d00773d6d50e0b19f660af22fa26cd61
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=618896e6d00773d6d50e0b19f660af22fa26cd61

	TITLE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Understanding the Network Performance of HDC Applications is Critical
	The Significance of Understanding the Network Performance of HDC Applications
	Task 1: Assessment
	Task 2: Planning
	Task 3: Diagnosis

	Common Characteristics of HDC Applications
	Distributed
	Diverse Application Workload & Requirements
	Diverse Infrastructures
	Coupled

	Challenges in Understanding the Network Performance of HDC Applications

	Performance Monitoring in HDCs: State-Of-The-Art
	Our Approach: Analyzing HDC Application Network Performance Via Constraints-based Models
	Our Goal
	Implementation
	GMM Evaluation
	Enhancements

	Thesis Organization

	Related Work
	Performance Monitoring/Tracing
	Anomaly Detection and Characterization
	Time-series Based Approaches
	Performance Statistics/Traffic Features Based Approaches
	Heuristic Rules
	Statistical Tools
	Learning-based Techniques
	Rollout Impact Anlysis

	Dependency-graph Modeling
	Limitations

	Our Approach: Constraint-Based Models Based on Remote Procedure Call Telemetry
	The Goal: Constraint-Based Modeling
	Performance Data: Remote Procedure Call Telemetry
	How Constraints Manifest in HDCs
	A Vantage Point for Observing Constraints: Remote Procedure Call
	The RPC Workflow
	Potential Constraints for an RPC

	Interpretable Modeling: Gaussian Mixture Models (GMMs)
	Background: Gaussian Mixture Models
	Interpretable Modeling

	The Modeling Pipeline
	GMM Modeling
	Feature Selection
	Model Selection
	Goodness of Fit
	Goodness of Separation
	Goodness of Interpretation
	Model Selection Approach Summary

	Background Removal
	Our Approach
	Validation with a Public Dataset

	Analysis of GMM blobs
	Performance Characterization
	Categorical Composition Analysis
	Blob Matching

	Conclusion

	Evaluations on the CloudLab Emulation Platform
	Experimental Methodology
	Traffic Characteristics
	Testbed Topology

	Performance Tracing on CloudLab
	Monitoring Tools
	SNMP (Switches)
	Ifconfig (Clients & Servers)
	Tcpdump (Clients & Servers)

	Performance Metrics
	Delay Metrics
	Rate Metrics
	Volume Metrics
	Cross-traffic Information

	Performance Constraints on CloudLab

	Use Case 1: Understanding the Performance of Cache Application
	What Can Be Learned from Traditional Approaches
	What Can Be Learned Using GMM Analysis
	Validating Constraints with Ground Truth Information
	GMMs vs. kMeans vs. DBSCAN

	Use Case 2: Analyzing the Impact of Configuration Factors on RPC Performance
	Experiment 1: The Impact of Generic Segmentation Offloading (GSO)
	Background: GSO
	What Can Be Learned from Traditional Analysis
	What Can Be Learned Using GMM Analysis
	Validating Constraints Using Ground Truth Information

	Experiment 2: The Impact of HTTP Persistence
	The Impact of HTTP Keep-Alive with Multiple Connections

	Experiment 3: The Impact of Communication Patterns

	Use Case 3: Detecting Performance Anomalies
	Conclusion

	Case Studies From a Production HDC
	RPC Performance Instrumentation: Fathom
	Performance Metrics Collected
	Categorical Attributes Collected
	RPC Sampling
	t-Digests: Aggregation that Preserves Distributions
	Training Features from Fathom

	Case Study 1: Simpson's Paradox in RPC Telemetry
	How GMMs Help

	Case Study 2: Evaluating the Performance of a Major Service
	GMM Results
	GMM Distinguishes Performance Constraints
	Categorical Attributes Influence the Performance Behavior of a GMM Blob

	Case Study 3: Understanding Impact of Infrastructure Change: Congestion Control
	Background: TCP Congestion Control
	The Picture Without GMM Analysis
	How Does GMM Help Understand Performance Before the Infrastructure Change?
	How Does newCC Impact Networking Constraints Experienced by J in StoreService?
	Identifying a Needle in the Haystack

	Case Study 4: Infrastructure Upgrade Planning
	How Can GMM Inform Planning of Future Upgrades?
	Discussion

	Case Study 5: Root Cause Analysis of Performance Degradation
	How Can GMM Analysis Help Separate Traffic With Degraded Networking Performance?
	How Can GMM Analysis Shed Light on the Root Cause?
	Discussion

	Conclusion

	Data Collection Instrumentation Modifications and Follow-up Case Studies
	Issue 1: The Impact of RPC Size on Performance
	The Network Performance of Small vs. Large RPCs
	Background: Bandwidth and Delay
	Background: Physical Constraints Limiting the Performance of Network Transfers
	What Is Relevant for Small vs. Large RPCs

	Potential Issues with Disproportional Ratios of Small and Large RPCs
	Modifications to Fathom

	Issue 2: Per-RPC vs. Per-Packet Delivery Rate
	Case Study 1: Assess the Impact of Protective Load Balancing (PLB) Deployment
	Case Study 2: Evaluate the Fleetwide Performance of Machine Learning Service in HDCs
	Issue 1: Job Name Analysis
	Issue 2: Match GMM blobs in Different DataCenter Clusters
	What Can Be Learned from the Fleet-Wide Analysis

	Conclusion

	Conclusions and Future Work
	Conclusions
	Role of Constraint-based Modeling in Achieving Different Network Health Monitoring Goals
	Limitations and Future Work

	Monitoring Tools on Cloudlab
	SNMP
	Ifconfig
	Tcpdump

	Additional Case Studies on Cloudlab Testbed
	Experiment 1: The Impact of HTTP Keep-Alive with a Single Connection
	Experiment 2: The Impact of Communication Patterns

	REFERENCES

