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ABSTRACT

Mochuan Liu: Incorporating Benefit-Risk Consideration and Feature Selection into Optimal Dynamic
Treatment Regimens

(Under the direction of Donglin Zeng)

Optimal dynamic treatment regimen (DTR) is one of the most important strategies in precision medicine,

which sequentially assigns the best treatment to patients based on their evolving health status to maximize

the cumulative outcome. For many chronic diseases, treatments are often multifaceted where aggressive

treatments with a higher beneficial reward are usually accompanied by an elevated risk of adverse outcomes,

and ideal DTRs should both yield a higher beneficial gain while avoiding unnecessary risk. In addition, it

is often that among many possible tailoring variables, only a small subset is essential for treatment, and

identifying these variables is particularly important for developing sparse DTRs, which are useful in practice.

To address these challenges, in the first project we propose a new machine learning-based method to

learn the optimal DTRs that maximize patients’ cumulative reward but at each stage, the acute short-term risk

induced by the treatments is controlled lower than a pre-specified threshold. We show that this multistage-

constrained problem can be decomposed into a series of single-stage single-constrained problems, which

can be efficiently solved using a backward algorithm. We provide theoretical guarantees for the method and

demonstrate the performance via simulation studies and an application to a clinical trial for T2D patients

(DURABLE study).

In the second project, we develop a general approach to estimate the optimal DTRs that maximize

patients’ cumulative reward but lead to a cumulative risk no higher than a pre-specified threshold. This

procedure converts the problem into solving unconstrained DTRs problems, which can be accommodated to

existing DTRs methods. Furthermore, we propose an estimation procedure (MRL) to solve the decision rules

across all stages simultaneously. The method is justified via theoretical guarantees, simulation studies, and an

application to the DURABLE study.

In the third project, we develop a new machine learning-based method by extending and adding an

L1-penalty to the MRL framework to implement variable selection while learning optimal DTRs across

iii



all stages contingently. A DC algorithm is developed to solve the L1-MRL problem efficiently and the

performance is demonstrated via simulation studies and application to an observational electronic health

record (EHR) data of T2D patients.
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CHAPTER 1: INTRODUCTION

1.1 Study background

Personalized medicine aims at tailoring treatments to patients so that treatments are best suited to each

individual via leveraging patient’s health heterogeneity during treatment design (Kosorok and Laber, 2019;

Roberts et al., 2020). The awareness of personalized medicine was driven by the recognition that for many

complex diseases, there is no optimal one-size-fits-all treatment that can best fit all patients sharing the same

diagnosis, and the advocacy of personalized medicine can be traced back to late 20th centuries (Sørensen,

1996; Longford and Nelder, 1999). Many data-driven strategies have been developed to substantiate the

idea of personalized medicine in the past two decades, and among them dynamic treatment regimens (DTRs)

focuses on finding the optimal sequence of decision rules based on patients’ evolving health status so that

patients’ cumulative medical reward is maximized (Chakraborty and Moodie, 2013; Laber et al., 2014).

For many DTRs studies, the statistical problem is usually simplified as an optimization problem where

the unique goal is to find the optimal DTRs that maximize patients’ cumulative beneficial rewards. However,

from the application perspective, it has been debated that the potential side effect, treatment cost and patient’s

personal preference should also be fully concerned and addressed when personalizing treatments to patients,

which is particularly important for treatments of chronic diseases such as cancer and diabetes (Krzyszczyk

et al., 2018; Chung et al., 2020). Only a few recent studies have ever been proposed to tackle the optimal

DRTs problem when restrictions such as safety or budget limit should also be assessed and controlled.

Motivated by the demand from real applications, in this dissertation, we focus on developing new DTRs

methods to incorporate additional constraint(s) in DTRs estimation.

In this section, we provide a general review of existing standard optimal DTRs methods and recent

developments of DTRs methods with consideration of additional restrictions in literature. The remaining

sections are organized as follow: in Section 1.2, we review existing standard DTRs methods which aims at

maximizing certain beneficial reward; in Section 1.3, we go over existing DRTs studies where additional

requirements of DTRs need to be satisfied; in Section 1.4, we discuss the main motivation of three main

problems studied in this dissertation and the outline of remaining chapters.
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1.2 Review of standard optimal DTRs methods

1.2.1 Statistical framework of standard DTRs problem

For a standard T -stage DTRs problem, the data consists of {(Ht, At, Yt)}Tt=1. Here, Ht ∈ Ht ⊆ Rdt

denotes patients’ feature variables at stage twhich can be leveraged to determine t-stage treatment assignment,

At ∈ At denotes the observed treatment assignment at stage t with At denoting the set of available treatments,

and Yt ∈ R denotes the instant reward by the end of stage t. In practice, we assume that Ht+1 = (Ht, At, Ot)

which includes all previous stages’ feature variables Ht, treatment assignment of previous stage At and

additional time-dependent covariates Ot which are only observed after treatment assignment happened. In

this work, we only focus on the problem where {At}Tt=1 are discrete sets. For convenience, we further

reduce the problem to the case when only two treatments are available at each stage, denoted as {−1, 1},

i.e., At = {−1, 1} for t = 1, ..., T . In the end, we assume that higher outcome Yt indicates better treatment

performance and the cumulative reward gained at final stage T is measured by Y =
∑T

t=1 Yt.

We say

D = (D1, ...,Dt) : H1 × · · · × HT → A1 × · · · × AT where Dt : Ht → At

is a sequence of DTRs. Under D, patients with health status ht ∈ Ht at stage t will be assigned with treatment

Dt(ht). The optimal DTRs problem aims at finding the optimal rules D∗ such that

D∗ ∈ argmax
D

ED[Y ]

where ED[·] denotes the expectation under At = Dt(Ht) for t = 1, ..., T . In other words, we would like

to learn decision rules D∗ so that patient’s average cumulative reward will be maximized by following

treatments At = D∗(Ht) at each stage.

Additional assumptions need to be imposed to ensure that ED[Y ] is learnable given observed data. To

this end, we introduce some useful causal inference notations. Let Āt = (A1, ..., At) denote the sequence

of observed treatments and āt = (a1, ..., at) ∈ A1 × · · · × At denote a sequence of determined treatments

combination prior to stage t. We use X(āt) to denote the potential outcome of an arbitrary random variable

X under treatment combination āt. Throughout this work, we also use p(At = at|Ht = ht) to denote the
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treatment assignment probability of At = at given Ht = ht. For the standard DTRs problem, we assume

that the following three assumptions hold:

• Stable Unit Treatment Value (SUTV): at each stage, the subject’s outcomes are not influenced by other

subjects’ treatments allocation, i.e., for any t = 1, ..., T ,

Yt = Yt(āt) given Āt = āt

holds for any āt ∈ {−1,+1}t.

• No Unmeasured Confounders (NUC): for any t = 1, ..., T ,

At ⊥⊥ (Ot+1(āt), Yt+1(āt+1), ..., OT (āT−1), YT (āT ))
∣∣Ht

holds for any āT ∈ {−1,+1}T .

• Positivity: for any t = 1, ..., T , there exists universal constants 0 < c1 ≤ c2 < 1 such that

c1 ≤ p(At = 1|Ht) ≤ c2 for Ht a.s.

Assumptions above are standard causal assumptions in many DTRs literature (Chakraborty and Moodie,

2013). SUTV was first proposed in Rubin (1980) and is equivalent to the no interference between units

assumption introduced in Cox (1992). The SUTV assumption ensures that each subject in the data is

independent and not affected by other subjects. In particular, SUTV is a reasonable assumption when data is

collected from a randomized trial drawn from a large population. The NUC assumption is sometimes also

known as sequential randomization assumption, sequential ignorability or exchangeability in the literature.

Under NUC assumption, the treatment assignment At will be independent of all future states and outcomes

conditioning on past treatment history Ht (Robins, 1997). Mathematically, under NUC assumption we have

p(At|Ht, Ot+1(āt), Yt+1(āt+1), ..., OT (āT−1), YT (āT )) = p(At|Ht),

so at each stage, the treatment assignment can be viewed as a randomized trial with randomization prob-

ability p(At|Ht). The NUC assumption is automatically guaranteed when data is collected from a simple
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randomization trial or sequential multiple assignment randomized trial (SMART) (Murphy, 2005b). For

observational data, the NUC assumption will also approximately holds when all relevant confounders have

been observed and controlled. The last positivity assumption is also sometimes referred to experimental

treatment assignment (ETA) assumption, which ensures that treatments to be evaluated at each stage will have

a positive chance to be observed conditioning on the past trajectory. In recent years, new causal frameworks

and personalized medicine methods have also been proposed to tackle the problem when either SUTV

(Jiang, Wallace and Thompson, 2022), NUC (Kallus and Zhou, 2019; Bennett and Kallus, 2019; Cui and

Tchetgen Tchetgen, 2021; Chen and Zhang, 2021; Saghafian, 2022; Rose, Moodie and Shortreed, 2022; Fu

et al., 2022), or positivity assumption (van der Laan and Petersen, 2007; Li and Li, 2019; Zhou et al., 2023) is

violated.

1.2.2 Regression-based DTRs methods

One type of approach to solving the optimal DTRs problem is known as the regression-based method.

For regression-based methods, optimal DTRs are estimated via modeling the expected reward under different

treatments or different variants. To illustrate the idea behind regression-based methods, we consider the

single-stage DTR problem and use (H,A, Y ) to denote the feature variables, observed treatment assignment

and reward. The single problem then becomes

max
D:H→{−1,1}

ED[Y ].

Define Q-function to be Q(h, a) := E[Y |H = h,A = a] and let the conditional average treatment effect

(CATE) to be

C(h) := Q(h, 1)−Q(h,−1).

Then when both SUTV, NUC and positivity assumptions hold, it can be verified that the optimal decision rule

D∗ is given by

D∗(h)
(i)
= sign(C(h))

(ii)
= argmax

a∈{−1,1}
Q(h, a). (1.1)

Therefore, (1.1) indicates that the estimation of D∗ can be achieved via either modeling the CATE or Q-

function using observed data, which leads to the structured mean model (SMM) (Robins, Rotnitzky and Zhao,

1994) and Q-learning (Watkins, 1989; Qian and Murphy, 2011) in personalized medicine literature.
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Both SMM and Q-learning can be extended to the problem with more than two stages, however, such

extension is non-trivial. The main challenge is the existence of so-called delayed treatment effect where

treatments adopted at stage t may not only affect the instant reward Yt but can also influence the final outcome

Y via affecting future time-dependent covariates including future instant rewards. As a result, decision rules

that maximize future reward conditioning on the past observed trajectory may eliminate potential delayed

treatments effect and lead to suboptimal rules (Almirall, Ten Have and Murphy, 2010).

The delayed treatment effect can be fully accounted for by using the well-unknown Bellman equation in

reinforcement learning literature (Bellman, 1966; Sutton and Barto, 1998). Specifically, for a given DTRs

problem, we define the stagewise Q-function to be

Qt(ht, at) := E[Yt + max
at+1∈{−1,1}

Qt+1(Ht+1, at+1)|Ht = ht, At = at], t = 1, ..., T,

with QT+1 = 0. Then Bellman equation indicates that the optimal decision rules will satisfy

D∗(ht) = argmax
at∈{−1,1}

Qt(ht, at), t = 1, ..., T. (1.2)

To extend SMM to T ≥ 2 using (1.2), we define the stagewise g-outcome to be

Y
(g)
t :=

T∑
s=t

Ys −
T∑

s=t+1

sign(Ct(Ht))Ct(Ht)

where Ct(Ht) := Qt(Ht, 1)−Qt(Ht,−1) denotes the t-stage CATE function. By noting that

E[Y
(g)
t |Ht, At] = Qt(Ht, At) =

1

2
(Qt(H1, 1) +Qt(Ht,−1)) +

1

2
AtCt(Ht),

the t-stage optimal treatment rule can be estimated by fitting the semi-parametric model

Y
(g)
t = mt(Ht) +

1

2
AtCt(Ht;βt) + e

(g)
t ; E[e

(g)
t |Ht, At] = 0, (1.3)
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where Ct(Ht;βt) is a parametric model of Ct(Ht) indexed by some unknown parameters βt. The optimal

decision rules can be approximated by

D̂t(ht) = sign(C(ht; β̂)).

Model (1.3) is a special case of the optimal structural nested mean model (SNMM) proposed by Robins

(2004). Several approaches have been proposed to implement (1.3) given observed data, including A-learning

(Blatt, Murphy and Zhu, 2004; Shi et al., 2018), dynamic weighted ordinary least squares (dWOLS) (Huang,

Ning and Wahed, 2014; Wallace and Moodie, 2015), regret regression (Murphy, 2003; Almirall, Ten Have

and Murphy, 2010; Henderson, Ansell and Alshibani, 2010; Almirall et al., 2014) and G-estimation (Robins,

2004).

Alternatively, the optimal decision rules can be estimated via modeling the expected reward under each

treatment rule according to equation (ii) in (1.1). Following this idea, Qian and Murphy (2011) proposed

a backward induction procedure, still namely Q-learning, to estimate the optimal decision rules iteratively

from the final stage T to the initial stage. Specifically, let t-stage q-outcome to be

Y
(q)
t := Yt +Qt+1(Ht+1,D∗(Ht))

then it can be verified that E[Y
(q)
t |Ht, At] = Qt(Ht, At). The optimal DTRs can be therefore determined

via modeling

Ŷ
(q)
t = Yt + max

at∈{−1,1}
Q̂t+1(Ht+1, at+1),

where response variable Ŷ (q)
t can be calculated using the estimated Q-function from stage t+ 1 to T . The

estimated rule at stage t is then given by

D̂t(ht) = sign(Q̂t(ht, 1)− Q̂t(ht,−1)).

When Qt(Ht, At) is assumed to be linear in terms of (Ht, At) and their interaction terms, a typical choice of

the linear regression model is assuming that

Qt(Ht, At) ∼ α0t +Htαt +At(β0t +Htβt).
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To lessen the model misspecification, refinements are also explored to mitigate Q-function estimation error,

including methods via penalized regression model (Qian and Murphy, 2011; Song, Wang, Zeng and Kosorok,

2015), nonlinear model (Laber, Linn and Stefanski, 2014), generative additive model (Moodie, Dean and

Sun, 2014), support vector regression and random tree (Zhao, Kosorok and Zeng, 2009), decision tree-based

model and kernel regression (Zhang et al., 2018), bayesian model (Murray, Yuan and Thall, 2018) and robust

regression model (Ertefaie et al., 2021). Q-learning in DTRs is also closely related to the policy iteration

methods in reinforcement learning literature and useful methods including Q-iteration (Ernst, Geurts and

Wehenkel, 2005), deep Q-learning (Mnih et al., 2015) and robust policy search methods (Zhang et al., 2013;

Jiang and Li, 2016).

1.2.3 Machine learning-based DTRs methods

Different from regression-based methods, another type of method, known as machine learning-based

methods, solves the optimal DTRs problem by directly maximizing a value function. Starting with the

single-stage problem, the intuition behind machine learning-based methods is to note that under SUTV, NUC

and positivity assumptions, the expected reward under arbitrary decision rule D can be expressed by the

expectation of inverse probability estimator (IPW)

V(D) := E

[
Y
I(A = D(H))

p(A|H)

]
, (1.4)

assuming that the treatment assignment probability is known. Note that (1.4) is indeed a weighted binary

classification problem with true label A and weight Y/p(A|H), using this observation Zhao et al. (2012)

proposed to estimate the single-stage optimal DTR problem via solving a weight classification problem.

Specifically, assume that D can be expressed by the sign of some measurable function f : H → R and let F

denotes the set of all measured functions, then one can consider the optimization problem

max
f∈F

Pn
[
Y
I(Af(H) > 0)

p(A|H)

]
.

However, due to the existence of the indicator function, solving the optimization above is NP-hard given

finite observed data. To overcome this numerical challenge, following the idea from SVM, Zhao et al. (2012)

suggests replacing the indicator function with the hinge loss function defined as ϕ(x) = (1− x)+ (Cortes
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and Vapnik, 1995) and proposes the outcome weighted learning (OWL), which learns the optimal treatment

assignment by solving the surrogate minimization problem

min
f∈G

Pn
[
Y
ϕ(Af(H))

p(A|H)

]
+ λn∥f∥2G ,

where the last term is a typical choice of regularization term to reduce overfitting and G denotes a subset of

F . The same classification framework was studied by Zhang, Tsiatis, Laber and Davidian (2012) and Zhang

and Zhang (2018), and regression approaches were proposed to solve the binary classification problem. Other

than hinge loss, the use of quadratic loss was studied in Qi and Liu (2018); Shah, Fu and Kosorok (2021) and

non-convex loss was explored in Huang and Fong (2014); Qiu, Zeng and Wang (2018); Jiang et al. (2020).

Alternatively, when D is assumed from the class of decision tree, different splitting criteria for searching the

optimal decision tree based on (1.4) was also studied in Laber and Zhao (2015); Zhu et al. (2017); Kallus

(2017).

For observational studies, treatment assignment probability is usually unknown and needs to be estimated

from the observed data. In this case, (1.9) can be modified to accommodate observational data via replacing

the true assignment probability p(A|H) by any consistent estimator p̂(A|H), which can still guarantee that

the IPW estimator is consistent. To further improve the accuracy, the augmented IPW (AIPW) estimator was

studied to replace the standard IPW estimator. The AIPW estimator is defined to be

V̂AIPW (D) :=Pn
[
Y
I(A = D(H))

p̂(A|H)
− I(A = D(H))− p̂(A|H)

p̂(A|H)
Ê[Y |H,A = D(H)]

]
(1.5)

Here, p̂(A|H) denotes an arbitrary estimator of the treatment assignment probability p(A|H), and Ê[Y |H,A]

denotes an arbitrary estimator of the Q-function. It can be shown that when either p̂(A|H) or Ê[Y |H,A] is

unbiased, the AIPW will be an unbiased estimator of the true expected reward under treatment rule D. This

property is called doubly robust (Dudik, Langford and Li, 2011; Zhang, Tsiatis, Laber and Davidian, 2012)

and an interpretation based on missing data imputation was provided in Robins, Rotnitzky and Zhao (1994).

Different methods were proposed to estimate the optimal decision rule based on (1.5), including classification

approach (Zhang, Tsiatis, Davidian, Zhang and Laber, 2012), genetic algorithm approach (Zhang et al., 2015),

decision tree-based approach (Tao, Wang and Almirall, 2018; Athey and Wager, 2021; Zhou, Athey and

Wager, 2022) and deep learning approach (Liang, Lu and Song, 2018). Further refinements of AIPW to
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efficiently learn optimal rule was also studied in Zhao et al. (2019); Liang et al. (2021) assuming that the

treatment assignment probability or Q-function is only biasedly estimated for some of the subjects.

The single-stage OWL proposed by Zhao et al. (2012) can also be extended to tackle the DTRs problem

with T ≥ 2. Analogous to the extension of single-stage Q-learning to multistage problems, the extension of

OWL can be achieved by sequentially excluding subjects whose future treatment rules were not optimal and

decomposing the problem into a series of single-stage weight classification problems. Specifically, for T ≥ 2

the IPW of the expected reward under decision rule D can be given by

V̂IPW (D) := Pn
[
Y

∏T
t=1 I(Atft(Ht) > 0)∏T

t=1 p(At|Ht)

]
.

Based on this observation, Zhao et al. (2015) proposed the backward O-learning (BOWL) to approximate the

optimal decision functions {f̂t}Tt=1 via solving

f̂t ∈ argmin
f∈Gt

Pn
[
Y

∏T
s=t+1 I(Asf̂s(Hs) > 0)∏T

s=t p(As|Hs)
ϕ(Atf(Ht))

]
+ λn∥f∥2Gt (1.6)

like Q-learning sequentially from t = T to t = 1. Here, Gt denotes a subset of the set of all measurable

functions from Ht to R.

Since subjects whose future treatment rules do not follow the estimated optimal treatment rules will be

assigned with weight 0 in expression (1.6), which will eliminate the contribution of these subjects to all early

stages’ estimation, this leads to a major limitation for BOWL that the sample size will decrease exponentially

as induction proceeds from stage T to 1, unless the majority of the subjects received optimal treatments cross

all stages which is very unlikely in real data and particularly will not happen in a randomized trial. To address

this issue, Liu et al. (2018) proposed the augmented OWL (AOWL). Concretely speaking, give estimated

decision functions (f̂t, ..., f̂T ) the augmented estimated Q-function is defined to be

Q̂it = (

T∑
s=t

Yis)

∏T
s=t I(Aisf̂s(His) > 0)∏T

s=t p(Ais|His)
−

T∑
s=t

∏s−1
l=t I(Ailf̂l(Hil) > 0)∏s−1

l=t p(Ail|Hil)

(
I(Aisf̂s(His) > 0)

p(Ais|His)
− 1

)
m̂t,s(His),

where m̂t,s(His) is the weighted least squares of

n∑
i=1

∏T
l=t I(Ailf̂l(Hil) > 0)∏T

l=t p(Ail|Hil)

1− p(Ais|His)∏s
l=t p(Ail|Hil)

( T∑
l=t

Yil −mt,s(His)

)2

.
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Let Ŷi,t−1 = m̂t−1(Hi,t−1) be the least squares of

n∑
i=1

(Yi,t−1 + Q̂it −mt−1(Hi,t−1))
2,

then the t− 1 stage’s optimal decision function is approximated by solving the optimization problem

min
f∈Gt

1

n

n∑
i=1

R̃i,t−1

p(Ai,t−1|Hi,t−1)
ϕ(Ãi,t−1f(Hi,t−1)) + λn,t−1∥f∥2Gt−1

,

where R̃i,t−1 = Yi,t−1+ Q̂it− Ŷi,t−1 and Ãi,t−1 = Ai,t−1sign(R̃i,t−1). The intuition behind the AOWL is to

impute the expected reward under the optimal decision rules for subjects whose future treatment assignments

do not follow the optimal rules. In addition, replacing the imputed response variable Yi,t−1 + Q̂it by its

residual R̃i,t−1 will further reduce the variability in response variable and improve the estimation performance.

Numerical and theoretical results indicate that AOWL will have better performance than OWL when the

sample size is relatively small. For convenience, in the following chapter, we use O-learning to refer to either

OWL, BOWL or AOWL when the context is clear.

1.3 DTRs methods in consideration of additional constraint

Different from flourishing studies that focus on standard DTRs, only a few methods have ever been

proposed to address the application when additional constraints, such as the potential side effects or the

cost of the treatment, must be fulfilled during optimal treatment rules design and many are restricted to

single-stage problems.

Among existing literature, most of the studies consider introducing utility function to combine different

outcomes into a univariate outcome (Houede et al., 2010; Thall, Nguyen and Estey, 2008; Thall, 2012; Lee

et al., 2015; Butler et al., 2018; Luckett et al., 2021). Specifically, for T = 1 we let (R1, ..., RK) ∈ RdK

denote K arbitrary response variables, which can include either beneficial rewards, adverse risks or patients’

preference. A utility function is any prespecified function U : RK → R, and in utility-based approaches, the

optimal DTRs are estimated via maximizing

max
D

PD
n

[
U(R1, ..., RK ;H)

]
.
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The utility function can be selected according to different goals that need to be achieved. However, the main

limitation of the utility-based approach is that the choice of the utility function is very subjective and how

different choices of utility will affect the optimal decision rules is hard to quantify.

One of the key goals of personalized medicine is to reduce the adverse impact of treatments to avoid

unnecessary harm treatments may cause to patients. Lizotte, Bowling and Murphy (2012); Laber, Lizotte

and Ferguson (2014) proposed algorithms to maximize multiple outcomes through modeling a series of

conditional expectations via regression similar to Q-learning, and as pointed out in Kosorok and Moodie

(2015), the method proposed in Laber, Lizotte and Ferguson (2014) can be implemented to estimate the

optimal treatment regimen to maximize the beneficial reward while controlling unnecessary risk via a grid

search procedure, but the computation is intense and lack of theoretical justification to guarantee that the

estimated rule is optimal.

Instead, Wang, Fu and Zeng (2018) proposed to incorporate the risk consideration as an additional

constraint and estimate the optimal DTR via solving a constrained optimization problem. Specifically,

consider a single-stage optimal treatment regimen problem with Y denoting the beneficial reward that needs

to be maximized and R denoting the adverse risk that needs to be avoided. Given prespecified risk constraint

τ , Wang, Fu and Zeng (2018) considers following benefit-risk tradeoff optimal treatment regimen problem

max
D

ED[Y ], subject to ED[R] ≤ τ. (1.7)

By imposing the additional constraint, the estimated rule is guaranteed to maximize beneficial reward and

meanwhile secure that the expected risk will also be lower than the prespecified risk threshold τ to ensure

treatment safety. Analogous to standard DTRs problem, additional causal assumptions need to be made to

ensure that (1.7) is learnable given observed data. To this end, we assume that

• For any a ∈ {−1,+1}t, (Y,R) = (Y (a), R(a)) given A = a.

• For any a ∈ {−1,+1}t, A ⊥⊥ (Y (a), R(a))|H.

• There exist 0 < c1 ≤ c2 < 1 such that c1 ≤ p(A|H) ≤ c2 hold for H almost surely.

The three assumptions above are SUTV, NUC and positivity assumption in the context of benefit-risk

consideration when T = 1.
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Suppose that the baseline feature variable H has a continuous density function, then it has been shown

in Wang, Fu and Zeng (2018) that the true optimal rule of (1.9) can be explicitly derived using the same

argument for finding the optimal rejection region in the proof of Neyman-Pearson lemma. Specifically, it can

be shown that the optimal decision rule D∗ is given by

D∗(H) = sign(δY (H)− γ∗δR(H)) (1.8)

where

δY (H) := E[Y |H,A = 1]− E[Y |H,A = −1],

δR(H) := E[R|H,A = 1]− E[R|H,A = −1]

are CATE function w.r.t. Y and R with γ∗ being a positive constant such that the expected risk is equal

to τ under D∗. As a direct observation, expression (1.8) provides a natural estimation method, namely

BR-M, to estimate D∗ via modeling the conditional mean E[Y |H,A = ±1] and E[R|H,A = ±1]. Provided

with unbiased estimators Ê[Y |H,A = ±1] and Ê[R|H,A = ±1], then function δY (H) and δR(H) can be

approximated by

δ̂Y (H) = Ê[Y |H,A = +1]− Ê[Y |H,A = −1],

δ̂R(H) = Ê[R|H,A = +1]− Ê[R|H,A = −1],

and the optimal rule can be estimated by grid searching γ̂ such that

1

n

n∑
i=1

[
Ê[R|Hi, A = 1]I(δ̂Y (Hi)− γ̂δ̂R(Hi) > 0)

+ Ê[R|Hi, A = −1]I(δ̂Y (Hi)− γ̂δ̂R(Hi) < 0)

]
≈ τ.

Like Q-learning, the performance of BR-M may significantly worsen if the conditional mean models are not

correctly specified.

Alternatively, to avoid the impact of model misspecification, Wang, Fu and Zeng (2018) also proposed a

machine learning-based approach, namely BR-O, which directly solves (1.9) as an optimization problem

without involving model estimation. By assuming that the optimal decision rule can be expressed by the sign
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of a decision function, under three causal assumptions it can be shown that (1.8) can be reformulated as

max
f∈F

E

[
Y
I(Af(H) > 0)

p(A|H)

]
, subject to E

[
R
I(Af(H) > 0)

p(A|H)

]
≤ τ. (1.9)

Again, like O-learning the indicator functions in both the objective and constraint functions make solving

the empirical problem of (1.9) NP-hard and numerically unsolvable. To overcome the computational issue,

Wang, Fu and Zeng (2018) suggested replacing the indicator functions with appropriate surrogate functions.

Let ϕ(x) still denote the hinge loss function and let ψ(x, η) denote the shifted ramp loss function (Huang,

Shi and Suykens, 2014) defined as

ψ(x, η) =


0, if x ≤ 0

x+η
η , if x ∈ (0, 1)

1, if x ≥ 1,

associated with shifting parameter η ∈ (0, 1]. Then, we consider the new surrogate problem

argmin
f∈F

E

[
Y
ϕ(Af(H))

p(A|H)

]
subject to E

[
R
ψ(Af(H), η)

p(A|H)

]
≤ τ.

(1.10)

In (1.10), the hinge loss is a typical choice of surrogate function for 0-1 loss similar to O-learning, while

shifted ramp loss ψ(x, η) can be viewed as a smooth upper approximation of the indicator function in the

constraint, which will converge to I(x ≥ 0) as η goes to 0. Empirically, an estimated rule can be obtained by

solving

argmin
f∈G

1

n

n∑
i=1

Yi
ϕ(Aif(Hi))

p(Ai|Hi)
+ λn∥f∥2G

subject to
1

n

n∑
i=1

Ri
ψ(Aif(Hi), η)

p(Ai|Hi)
≤ τ,

(1.11)

for sufficient small η. Again, the additional term λn∥f∥2G is a typical choice of regularization term to

reduce overfitting. When G is a RKHS, Wang, Fu and Zeng (2018) shows that the optimization problem

can be solved efficiently via the difference of convex functions (DC) algorithm (Tao and An, 1997) and the
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optimization problem in each iteration can be reduced to a standard quadratic optimization problem. Recently,

this framework was further studied when outcome variable Y is binary in Wang, Zhao and Zheng (2020)

and when the constraint is specified by the quantile of the Y in Fang, Wang and Wang (2022). A similar

framework was also studied in Pan et al. (2021) and a cross-validation algorithm was proposed to find the

optimal rule that satisfies the constraint.

For DTRs with constraint, the same challenge will occur when extending the single-stage method to the

multistage problem with T ≥ 2. Like standard DTR, the optimal decision rule estimated by conditioning on

past trajectories may lead to suboptimal rules due to the delayed treatment effect toward the beneficial reward

outcome. Moreover, the treatment may also yield delayed treatment effect upon the adverse risk leading the

optimal rules estimated stagewisely infeasible when risk restrictions are imposed. Hence, methods designed

for the single-stage problem are hard to extend to the problem with more than 2 stages when risk needs to be

considered unless further causal assumptions are imposed. Very few methods have been proposed to tackle

the multistage DTRs with additional restrictions. Among existing methods, Laber et al. (2018) studied the

multistage optimal dosage regimen problem with additional restrictions over safety. A policy iteration-based

algorithm was proposed to estimate the optimal DTRs under constraint via modeling a series of Q-function.

Illenberger, Spieker and Mitra (2021) considered the same problem from a benefit-cost perspective and

proposed another Q-learning-based approach with the additional restriction that the optimal decision rules

are from the class of decision tree. However, both two methods rely on accurately modeling the Q-function

and are computationally intense without theoretical justification to guarantee that the estimated rules will be

optimal under the constraint.

1.4 Contributions and outline

As discussed early, controlling the adverse impact of treatments is one of the main goals that need to be

achieved in personalized medicine and few methods have ever been proposed to address this problem. In

this work, we contribute to the study of personalized medicine by proposing new DTRs with consideration

of additional risk constraint(s). Our work is mainly motivated by the treatment of chronic diseases where

treatments that lead to a higher beneficial reward will also cause adverse impacts on patients and need to be

avoided during treatment design.

The remaining work is organized as follows:
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• In Chapter 2, we propose a new DTRs method, namely benefit-risk DTRs (BR-DTRs), to tackle the

DTRs problem where the primary goal is to maximize certain patient’s cumulative reward but during

each stage, the acute short-term risk induced by the proposed treatment rules should also be controlled

lower than prespecified risk restrictions to ensure safety. Numerically, we show that the multistage

multi-constraints DTRs problem can be decomposed into a series of single-stage single-constraint

optimization problems, which can be efficiently solved using optimization algorithms developed in

Wang, Fu and Zeng (2018).

• In Chapter 3, we develop a general framework to handle one type of DTRs problem, namely the

cumulative benefit-risk (CBR) problem, where the primary goal is still to find the optimal treatment

rules that maximize certain patient’s cumulative beneficial reward, but we also require that the proposed

treatment rules should not induce a cumulative risk exceeding the prespecified risk restriction. Numeri-

cally, we propose a general estimation procedure that will convert the estimation of the constrained

DTRs problem into a series of standard unconstrained DTRs problems. To substantiate the estimation,

we present how Q-learning and O-learning can be utilized along with the proposed procedure to solve

a concrete CBR problem. In addition, we propose a novel estimation framework, namely multistage

ramp loss (MRL) learning, to solve each unconstrained DTRs problem with decision rules being jointly

estimated across all stages.

• In Chapter 4, we develop a new machine learning-based method, namely L1-MRL, by extending and

incorporating an additional L1-penalty to MRL framework to implement variable selection in addition

to learning optimal DTRs. Because of the simultaneous property of MRL, the new method is able to

impose cross-stage penalization over the estimated decision rules and a DC algorithm is developed to

estimate the optimal rules efficiently.
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CHAPTER 2: LEARNING OPTIMAL DYNAMIC TREATMENT REGIMENS SUBJECT TO
STAGEWISE ACUTE RISK CONTROLS

2.1 Introduction

As discussed in Chapter 1, existing DTRs method often formalize the problem as learning the optimal

decision rules that solely maximize patients’ certain beneficial reward outcome. However, for many chronic

diseases, treatments are usually multifaceted: the aggressive treatment with a better reward is often accom-

panied by higher toxicity, leading to the elevated risk of severe and acute side effects or even fatality. For

example, the Standards of Medical Care in Diabetes published by the American Diabetes Association (ADA)

suggests metformin as first-line initial therapy for all general T2D patients. Intensified insulin therapy should

be applied to patients when the patients’ A1C level is above the target (American Diabetes Association,

2022b). However, according to the UK Prospective Diabetes study, evidence has indicated that many patients

who may eventually rely on insulin therapy to achieve ideal A1C level will be likely to experience more

hypoglycemic episodes (UKPDS Group, 1998), and the latter can cause neurological impairments, coma, or

death (Cryer, Davis and Shamoon, 2003). Another example is corticosteroid therapy adopted by patients with

asthma, rheumatoid arthritis, or other immune system disorders. Corticosteroid helps patients to relieve the

symptom but will also increase the risk of complications in the short term if patients have another disease via

inhibiting patients’ immune system (Buchman, 2001; Liu et al., 2013). Therefore, the benefit-risk challenge

presented in these chronic diseases entails that the ideal treatment rules should also take into consideration to

reduce any short-term risks while maximizing the long-term rewarding outcome.

To respond to the real demand for the treatment of chronic disease, in this chapter, we consider the

problem of learning the optimal DTRs in a multistage study, subject to different risk constraints at each stage.

Our motivation is to learn the treatment strategy for T2D patients such that the strategy can best control the

HbA1c level in the long run but also ensure that the number of adverse events related to metabolic health

is controlled. We propose a general framework, namely benefit-risk DTRs (BR-DTRs), by extending the

framework developed in Wang, Fu and Zeng (2018) from the single stage to the multiple stages. Specifically,

we propose a backward procedure to estimate the optimal treatment rules: at each stage, we maximize the
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expected value function under the risk constraint imposed at the current stage. The solution can be obtained

by solving a constrained support vector machine problem. Theoretically, we show that the resulting DTRs are

Fisher consistent when some proper surrogate functions are used to replace the risk constraints. We further

derive the non-asymptotic error bounds for the cumulative reward and stagewise risks associated with the

estimated DTRs.

Our contributions are two-fold: first, we propose a general framework to estimate the optimal DTRs

under the stagewise risk constraints; the proposed framework reduces to the O-learning for DTRs in Zhao

et al. (2015) when there is no risk constraint and reduces to the method in Wang, Fu and Zeng (2018) when

there is only one stage. Second, our work establishes the non-asymptotic results for the estimated DTRs

for both value and risk functions and such results have never been given before. In particular, we show that

support vector machines still yield Fisher consistent treatment rules under a range of risk constraints. Our

theory also shows that the convergence rate of the predicted value function is in an order of the cubic root of

the sample size and the convergence rate for the risk control has an order of the square root of the sample size.

The remaining chapter is organized as follows. In Section 2.2, we discuss the statistical framework of

BR-DTRs and present the complete BR-DTRs algorithm. In Section 2.3, we provide further theoretical

justification for BR-DRTs. We demonstrate the performance of BR-DTRs via simulation studies in Section 2.4

and apply the method to a real study of T2D patients in Section 2.5. We discuss the contribution, limitation

and future study topics in Section 2.6. The detailed derivation of the DC algorithm is presented in Section 2.7

and the proofs are presented in Section 2.8 and 2.9.

2.2 Method

2.2.1 DTRs under stagewise risk constraints

Consider a T -stage DTRs problem and we use (Y1, ..., YT ) to denote the beneficial reward and

(R1, ..., RT ) to denote the risk outcomes at each stage. We assume that {(Yt, Rt)}Tt=1 are bounded random

variables and a series of dichotomous treatment options are available at each stage, denoted byAt ∈ {−1,+1}.

Let H1 ⊂ · · · ⊂ HT be the feature variables at stage t, which includes the baseline prognostic variables,

intermediate outcomes and any time-dependent covariates information prior to stage t and recall that DTRs
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are defined as the sequence of functions

D = D1 × · · · × DT : H1 × · · · × HT → {−1,+1}T where Dt : Ht 7→ {−1,+1}.

The goal of BR-DTRs is to find the optimal rule D∗ that maximizes the cumulative reward at the final stage T ,

while the risk at each stage t is controlled by a pre-specified risk constraint, denoted by τt. Mathematically,

we aim to solve the following optimization problem

max
D

ED[
T∑
t=1

Yt]

subject to ED[R1] ≤ τ1, . . . , E
D[RT ] ≤ τT ,

where ED[·] still denotes the expectation given At = Dt(Ht) for t = 1, .., T .

Analogous to standard DTRs methods reviewed in Section 1.2, additional assumptions are necessary

to ensure that the above problem can be solved using the observed data. To this end, we again let Āt =

(A1, .., At) denote the observed treatment history and āt = (a1, ..., at) ∈ {−1,+1}n denote any fixed

treatment history up to time t, and use X(āt) to denote the potential outcome of variable X under treatment

āt.

Assumption 2.1 (Stable Unit Treatment Value (SUTV)) At each stage, the subject’s outcomes are not

influenced by other subjects’ treatments allocation, i.e.,

(Yt, Rt) = (Yt(āt), Rt(āt)) given Āt = āt.

Assumption 2.2 (No Unmeasured Confounders (NUC)) For any t = 1, ..., T

At ⊥⊥ (Ht+1(āt), ...,HT (āT−1), YT (āT ), RT (āT ))
∣∣Ht.

Assumption 2.3 (Positivity) For any t = 1, ..., T , there exists universal constants 0 < c1 ≤ c2 < 1 such

that

c1 ≤ p(At = 1|Ht) ≤ c2

holds for Ht almost surely.
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Assumption 2.4 (Acute Risk) For any t = 1, ..., T and āt ∈ {−1, 1}t, Rt(āt) only depends on at. Thus, we

can write Rt(at) for this potential outcome.

The first two assumptions are corresponding SUTV and NUC assumption in the context of the DTRs

problem with multiple stagewise risk constraints and we repeat the positivity assumption in the standard

DTRs problem as Assumption 2.3. In particular, the NUC and positivity assumption will still hold when data

is collected from a simple randomized trial or SMART. Assumption 2.4 captures the acute risk property of

chronic diseases. That is, for the same individual, the adverse risk in each stage is caused by his/her most

recent treatment. As an additional note, we can further assume that Rt is positive and bounded away from

zero after shifting both Rt and τt by one same constant without changing the problem of interest.

Under all four additional assumptions and suppose Dt(Ht) = sign(ft(Ht)) for some measurable decision

function ft, we note that

ED[Rt] = E

[
Rt

∏T
t=1 I(Atft(Ht) > 0)∏T
t=1 p(At|Ht)

]
= E

[
Rt(sign(f1), ...., sign(ft))

]

= E

[
Rt(sign(ft))

]
= E

[
RtI(Atft(Ht) > 0)

p(At|Ht)

]
.

Then according to Qian and Murphy (2011), the original problem can be reformulated as

max
(f1,...,fT )∈F1×···FT

E

[
(
∑T

t=1 Yt)
∏T
t=1 I(Atft(Ht) > 0)∏T

t=1 p(At|Ht)

]
subject to E

[
RtI(Atft(Ht) > 0)

p(At|Ht)

]
≤ τt, t = 1, ..., T,

(2.1)

where Ft denotes the set of all real value measurable functions from Ht → R. Intuitively, following the same

arguments as in Zhao et al. (2015), the solution of the above problem can be solved in a backward fashion as

follows: let {Ot}Tt=1 denote the feasible region of the original problem under risk constraints (τ1, ..., τT ) at

stage t, i.e.,

Ot =

{
f ∈ Ft

∣∣∣∣E[
RtI(Atf(Ht) > 0)

p(At|Ht)

]
≤ τt

}
, t = 1, ..., T,

and define the U -function as

Ut(ht; gt, gt+1, ..., gT ) = E

[
(
∑T

j=t Yt)
∏T
j=t I(Ajgj(Hj) > 0)∏T

j=t p(Aj |Hj)

∣∣∣∣Ht = ht

]
,
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where we set UT+1 = 0. Then the optimal solution to (2.1), denoted by (g∗1, ..., g
∗
T ), satisfies

g∗t = argmin
ft∈Ot

E

[
(Yt + Ut+1(Ht+1; g

∗
t+1, ..., g

∗
T ))I(Atft(Ht) < 0)

p(At|Ht)

]
. (2.2)

In fact, our later proof for Theorem 2.1 will show that such a backward algorithm leads to the optimal DTRs

solving problem (2.1).

2.2.2 Surrogate loss and Fisher consistency

One main difficulty of implementing the framework (2.2) is the existence of the indicator functions

in both the objective function and risk constraints, which makes solving the original problem NP-hard.

Following the idea in Wang, Fu and Zeng (2018), we propose to replace the indicator function in the objective

function by hinge loss function ϕ(·) defined as ϕ(x) = (1− x)+, and replace the indicator function in the

risk constraint by shifted ramp loss function given by

ψ(x, η) =


1, if x ≥ 0

x+η
η , if x ∈ (−η, 0)

0, if x ≤ −η,

where η ∈ (0, 1] is a prespecified shifting parameter that can vary with stage. We then consider the following

surrogate problem, namely the BR-DTRs problem,

f∗t = argmin
ft∈At

E

[
(Yt + Ut+1(Ht+1; f

∗
t+1, ..., f

∗
T ))ϕ(Atft(Ht))

p(At|Ht)

]
, (2.3)

where

At =

{
f ∈ Ft

∣∣∣∣E[
Rtψ(Atf(Ht), ηt)

p(At|Ht)

]
≤ τt

}
from stage t ∈= {1, ..., T}. Equivalently, we replace the 0-1 loss function in the objective function with the

hinge loss and replace the indicator function in the risk constraint with the shifted ramp loss function. The

shifted ramp loss leads to a smooth and conservative approximation of the risk constraint function when ηt is

small.
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Our next result shows that the new surrogate problem leads to the DTRs that are Fisher consistent. Before

stating the theorem, we define a t-stage pseudo-outcome Qt as

Qt = Yt + Ut+1(Ht+1; f
∗
t+1, ..., f

∗
T ),

which is the cumulative reward from stage t to T assuming that all treatments have been optimized from

stage t+ 1 to T . For any random vector (Y,R,A,H) and for a = ±1, we use the following notations:

mY (h, a) = E[Y |H = h,A = a], δY (h) = mY (h, 1)−mY (h,−1),

mR(h, a) = E[R|H = h,A = a], δR(h) = mR(h, 1)−mR(h,−1).

Let

τt,min = E

[
Rt

I(AtδRt(Ht) < 0)

p(At|Ht)

]
,

τt,max = E

[
Rt

I(AtδQt(Ht) > 0)

p(At|Ht)

]
.

In other words, τt,min is the risk under the decision function given by −δRt(Ht), which is the one maximizing

the risk regardless of the reward outcome. Thus, τt,min is the minimum risk that one can possibly achieve at

stage t. While, τt,max is the risk for the decision function given by δQt(Ht), which is the one maximizing the

reward regardless of the risk. Thus, τmax,t is the maximal risk.

Theorem 2.1 For t = 1, .., T and any fixed τt,min < τt < τt,max, suppose that P (δQt(Ht)δRt(Ht) = 0) = 0

and random variable δQt(Ht)/δRt(Ht) has the distribution function with a continuous density function in

the support of Ht. Then for any ηt ∈ (0, 1] and t = 1, ..., T , we have sign(f∗t ) = sign(g∗t ) almost surely, and

(f∗1 , ..., f
∗
T ) solves the optimization problem in (2.1).

When τt ≥ τt,max, the BR-DTRs problem reduces to a standard DTRs problem and Zhao et al. (2015)

shows that the Fisher consistency holds without additional conditions. For T = 1, the conditions are similar

to Wang, Fu and Zeng (2018), but they assume Ht to have a continuous distribution. Theorem 2.1 basically

indicates that when the risk constraints are feasible and assume that the reward difference between two

treatments varies continuously with respect to the risk and risk difference, using the surrogate loss leads to the

true optimal DTRs for any shifting parameter ηt ∈ (0, 1]. We note that this result has never been established

before. The complete proof is presented in Section 2.8.
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2.2.3 Estimating BR-DTRs using empirical data

Given data {(Hi1, Ai1, Yi1, Ri1, ...,HiT , AiT , YiT , RiT )}ni=1 from n i.i.d. patients, we propose to solve

the empirical version of the surrogate problem to estimate the optimal DTRs: let

At,n =

{
f ∈ Gt

∣∣∣∣ 1n
n∑
i=1

Ritψ(Aitf(Hit), η)

p(Ait|Hit)
≤ τt

}
,

then we solve

f̂t = argmax
f∈At,n

1

n

n∑
i=1

(
∑T

s=t Yis)
∏T
s=t+1 I(Aisf̂s(His) > 0)∏T
s=t p(Ais|His)

ϕ(Aitf(Hit)) + λn,t∥f∥2Gt (2.4)

for t = T, ..., 1 in turn. Here, ∥ · ∥Gt denotes the functional norm associated with functional space Gt ⊂ Ft.

Again, the last term λn,t∥f∥2Gt is a typical choice of penalty term which regularizes the complexity of the

estimated optimal decision function to avoid overfitting. Common choices of Gt include RKHS under a linear

kernel where k(hi, hj) = hTi hj , or a Gaussian radial basis kernel with k(hi, hj) = exp(−σ2∥hi − hj∥2),

where σ denotes the inverse of the bandwidth.

To improve the numerical performance of BR-DTRs, we further adopt the augmentation technique used

in the AOWL proposed by Liu et al. (2018) introduced in Section 1.2. Specifically, we replace the weights in

the objective function and treatment variable respectively by

Ŷit = |Yit + Q̂i,t+1 − µ̂t(Hit)|, Âit = Aitsign(Yit + Q̂i,t+1 − µ̂t(Hit)). (2.5)

Here, Q̂i,t is the augmented Q-function defined as

Q̂i,t+1 =
(
∑T

s=t+1 Yis)
∏T
s=t+1 I(Aisf̂s(His) > 0)∏T

s=t+1 p(Ais|His)

−
T∑

j=t+1

{∏j−1
s=t+1 I(Aisf̂s(His) > 0)∏j−1

s=t+1 p(Ais|His)

[
I(Aij f̂j(Hij) > 0)

p(Aij |Aij)
− 1

]
µ̂t+1,j(Hij)

}
,

(2.6)

and let Q̂i,T+1 = 0. Additionally, µ̂t,j is the estimated mean function from solving the weighted least square

problem
1

n

n∑
i=1

∏T
s=t+1 I(Aisf̂s(His) > 0)∏T

s=t+1 p(Ais|His)

1− p(Aij |Hij)∏j
s=t+1 p(Ais|His)

(

T∑
s=t+1

Yis − µt,j(Hij))
2, (2.7)
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Algorithm 1 BR-DTRs
Input: Given training data (Yit, Rit, Ait, Hit) and (λt,Gt, τt, η) for i = 1, ..., n and t = 1, ..., T
for t = T to 1 do

for j = t+ 1 to T do
obtain estimator µ̂t,j via minimizing (2.7)

end for
if t = T then define Q̂i,T+1 = 0

else compute Q̂i,t+1 from (2.6)
end if
compute µ̂t(Hij) via least square estimator and obtain {(Ŷit, Âit)}ni=1 via (2.5)
obtain f̂t by solving

min
f∈Gt

1

n

n∑
i=1

Ŷit
p(Ait|Hit)

ϕ(Âitf(Hit)) + λn,t∥f∥2Gt

subject to
1

n

n∑
i=1

Rit

p(Ait|Hit)
ψ(Aitf(Hit), η) ≤ τt

using DC algorithm
end for
Output: (f̂1, ..., f̂T )

and µ̂t(Hij) is obtained by minimizing
∑n

i=1(Yit + Q̂i,t+1 − µt(Hit))
2. The main motivation for this

construction was discussed in Section 1.2.2, where Liu et al. (2018) showed that the removal of the main

effect, µ̂t(Hit), could reduce the weight variability without affecting the treatment rule estimation, and that

using the augmentation term in constructing Q̂i,t+1 could use the information from all subjects, leading to

more efficient estimation for DTRs.

Hence, we propose a backward procedure to estimate the optimal DTRs. First, we solve a single-stage

problem using data at stage t = T , and then in turn, for t = T−1, ..., 1, we solve the constrained optimization

problem after plugging in (f̂t+1, ..., f̂T ). For the optimization at each stage, we apply the difference of convex

functions (DC) algorithm (Tao and An, 1997) which is an iterative process and in each iteration, the update

can be reduced to a standard quadratic programming problem. Details of the DC algorithm are provided in

Section 2.7.

2.3 Theoretical Results

In this section, we establish the non-asymptotic error rate of the value function and stagewise risks

under the estimated decision functions (f̂1, ..., f̂T ). More specifically, for any arbitrary decision functions
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(g1, ..., gt), the value function of (g1, ..., gT ) is defined as

V(g1, ..., gT ) = E

[
(
∑T

t=1 Yt)
∏T
t=1 I(Atgt(Ht) > 0)∏T

t=1 p(At|Ht)

]
.

We aim at obtaining the non-asymptotic bound for the regret function given by

V(f∗1 , ..., f∗T )− V(f̂1, ..., f̂T )

and the stagewise risk difference is given by

E

[
RtI(Atf̂t(Ht) > 0)

p(At|Ht)

]
− τt,

for t = 1, ..., T .

We assume that {Gt}Tt=1 are the RKHS generated by the Gaussian radial basis kernel, i.e., Gt = G(σn,t)

where G(σ) denotes the Gaussian RKHS associated with bandwidth σ−1. Furthermore, for random variable

Qt, Rt, At and Ht, we define for a, b ∈ {−1, 1},

Ha,b =

{
h ∈ H : aδQt(h) > 0, bf∗t,τt(h) > 0

}

and ∆t,τ ′(h) =
∑

a,b∈{−1,1} dist(h,H/Ha,b)I(h ∈ Ha,b), where dist(·) denotes the Euclidean distance and

f∗t,τ ′ denotes optimal solution of (2.3) at stage t but replace the risk constraint in At by τ ′. Recall that

Qt = Yt + Ut+1(Ht+1; f
∗
t+1, ..., f

∗
T ) = Yt + Ut+1(Ht+1; f

∗
t+1, ..., f

∗
T ).

We assume

Assumption 2.5 Let Pt denote the joint probability Ht. For given (τ1, ..., τT ) and any t = 1, .., T , there

exists universal positive constant δ0,t > 0, Kt > 0 and αt > 0 such that for any τ ′ ∈ [τt−2δ0,t, τt+2δ0,t] ⊂

(τt,min, τt,max) we have ∫
Ht

exp

(
−

∆t,τ ′(h)
2

s

)
Pt(dh) ≤ Kts

αtdt/2

holds for all s > 0.
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Assumption 2.5 is an extension of the Geometric Noise Exponent (GNE) assumption proposed by Steinwart

and Scovel (2007) to establish a fast convergence risk bound for standard SVM, and later adopted by Zhao

et al. (2012) to derive the risk bound for the DTRs without risk constraints. The assumption can be viewed as a

regularization condition of the behavior of samples near the true optimal decision boundary. For a fixed τt, αt

can be taken to 1 when ∆(h) has order less or equal to O(h). When the optimal decision boundary is strictly

separated, i.e. dist(Ha,b, Ha′,b′) > 0 for any a ̸= a′ and b ̸= b′, by using the fact that exp(−t) ≤ Cst
−s

one can check that Assumption 2.5 holds for αt = ∞. When the optimal decision boundary is not strictly

separated, it can be shown that Assumption 2.5 can still hold for arbitrary αt ∈ (0,∞) when the marginal

distribution of Ht has light density near the optimal decision boundary (see Example 2.4 in Steinwart and

Scovel (2007)).

The following theorem gives the non-asymptotic error bound for the value loss and risk difference for the

estimated DTRs, assuming that all µt and µt,j in the augmentation are known. The theorem allows stage-wise

shifting parameters to vary with sample size, denoted by (ηn,1, ..., ηn,T ).

Theorem 2.2 Suppose that Assumption 2.1 to 2.5 and conditions in Theorem 2.1 hold, and Ht is defined

on a compact set Ht ⊂ Rdt for t = 1, ..., T . Let {νt} and {θt} be two series of positive constants such that

0 < νt < 2 and θt > 0 for all t = 1, ..., T . Then for any n ≥ 1, λn,t > 0, σn,t > 0 and 0 < ηt ≤ 1, such

that λn,t → 0, σn,t → ∞ and that there exit constants C1, C2, C3 satisfying

C1σ
−αtdt
n η−1

n,t ≤ δ0,t, C2n
−1σ

(1−νt/2)(1+θt)dt
n,t ≤ 1,

and δt + C1σ
−αt,dt
n,t η−1

n,t + C3n
−1/2σ

(1−νt/2)(1+θt)dt/2
n,t

(
M

c1λn,t
+ σdtn,t

)νt/4
η
−νt/2
n,t ≤ 2δ0,t, it holds

|V(f̂1, ..., f̂T )− V(f∗1 , ..., f∗T )| ≤
T∑
t=1

(c1/5)
1−tCt

(
n−1/2λ

−1/2
n,t σ

(1−νt/2)(1+θt)dt/2
n,t

+ λn,tσ
dt
n,t + σ−αtdtn,t η−1

n,t + ηn,t

)

with probability of at least 1−
∑T

t=1 ht(n, σn,t), where

ht(n, σn,t) = 2 exp

(
−

2nδ20,tc
2
1

M2

)
+ 2 exp

(
− nδ2t c

2
1

2M2

)
+ exp

(
− σ

(1−νt/2)(1+θt)dt
n,t

)
.
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Moreover, with probability at least 1− ht(n, σn,t), the risk induced by f̂t satisfies

E

[
RtI(Atf̂t(Ht) > 0)

p(At|Ht)

]
≤ τt + δt + Ctn

−1/2σ
(1−νt/2)(1+θt)dt/2
n,t λ

−νt/4
n,t η

−ν/2
n,t .

Here, Ct denotes some constant only depending on αt,Kt, dt, νt, θt, c1 and M .

Theorem 2.2 can be established by first verifying the result for T = 1 and then extending the result

to T ≥ 2 using an analogous argument of Theorem 3.4 of Zhao et al. (2015). The risk bound of the value

function proved in Theorem 2.2 indicates that the error consists of four parts. The first two terms correspond

to the stochastic error and systematic error due to using the empirical estimator to approximate the true

objective function and restricting the optimal function within a RKHS in empirical the problem (2.4). The

third error term O(σ−αtdtn,t η−1
n,t) is induced by using the empirical estimator as risk constraints in (2.4). The

remaining error has order O(ηn,t) and results from the property that the regret under 0-1 loss function is

upper bounded by the regret under hinge loss plus an error term of order O(η) when we use the shifted ramp

loss to approximate the indicator function in constraints. Due to the existence of the last two error terms, the

choice of shifting parameter must be small but bounded away from 0 in order to minimize the regret. The

proof of Theorem 2.2 and required preliminary lemmas are provided in Section 2.9.

According to Theorem 2.2, the risk bound of the regret is minimized by setting ηn,t = σ−αtdtn,t η−1
n,t ,

λn,tσ
dt
n,t = σ−αtdtn,t η−1

n,t and ηn,t = n−1/2λ
−1/2
n,t σ

(1−νt/2)(1+θt)dt/2
n,t , which gives

λn,t = O
(
σ
−(αt+2)dt/2
n,t

)
, ηt = O

(
σ
−αtdt/2
n,t

)
and

σn,t = O
(
n

1
αtdt+(αt+2)dt/2+(1−νt/2)(1+θt)dt

)
.

Consequently, there exists constants k1, k2 > 0 independent of sample size n such that

|V(f̂1, ..., f̂T )− V(f∗1 , ..., f∗T )| ≤ k1

T∑
t=1

(c1/5)
1−tn

− αtdt
2αtdt+(αt+2)dt+2(1−νt/2)(1+θt)dt

holds with probability 1 −
∑T

t=1 exp
(
− k2n

(1−νt/2)(1+θt)dt
αtdt+(αt+2)dt/2+(1−νt/2)(1+θt)dt

)
. When αt can be selected

arbitrarily large in which case the data are approximately separated near the optimal decision boundary,
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the convergence rate of the value function is at most of order O(n−1/3). In terms of risks, when αt can be

arbitrarily large and let νt go to 0, the risk constraint inequality indicates that the stagewise risk under the

estimated rule can always be bounded by τt plus an error term of order up to O(n−1/2). In terms of stage T ,

we note that the error bound is increasing exponentially with respect to the total number of stages. This result

is similar to the risk bound of value function obtained in Q-learning (Murphy, 2005a) and O-learning (Zhao

et al., 2015). As another note, the value function is Lipschitz continuous in terms of the model parameters

for µt and µt,j . Thus, when the models of µt and µt,j are parametric so the parameters are estimated at

O(n−1/2), the impact on the convergence rate of the regret will be of the same order and will not affect the

minimum possible error rate of the value function and the adverse risk under the estimated rule. Similar

arguments are given in Chen, Zeng and Wang (2021).

2.4 Simulation Studies

We demonstrate the performance of BR-DTRs via simulation studies in this section. We consider two

settings both of which simulate the situation when adopting preferable treatment in the early stage would

immensely affect the performance of possible treatments in later stages. Specifically, in both settings, we

first generate an 8-dimensional baseline prognostic variable matrix X from independent uniform distribution

U [0, 1]. In the first setting, we consider a two-stage randomized trial where treatments A1, A2 are randomly

assigned with an equal probability of 0.5. The stage-specific rewards and risks are defined by

Y1 = 1−X1 +A1(−X1 −X2 + 1) + ϵY1 , R1 = 2 +X1 +A1(−X1/2 +X2 + 1) + ϵR1 ,

Y2 = 1−X1 +A2(Y1 − 3X1 +A1 + 1) + ϵY2 , R2 = 1 +X1 +A2(Y2/2−X1 +A2/2 + 1) + ϵR2 ,

where ϵY1 , ϵY2 are noises of reward outcomes generated from the independent standard normal distribution

N(0, 1), and ϵR1 , ϵR2 are noises of adverse risks generated from the independent uniform distribution

U [−0.5, 0.5]. In this setting, both Y1, Y2, R1 and R2 are the linear functions of H1 = X and H2 =

(H1, A1, Y1, R1). In the second setting, Y2 is a nonlinear function of H2 and is generated according to

Y1 = 1 +A1(−X1 −X2/3 + 1.2) + ϵY1 , R1 = 1.5 +A1(−X1/3 + 1.5) + ϵR1 ,

Y2 = 1 +A2(−X2
1/2−X2

2/2 + 3A1/2 + 1.5) + ϵY2 , R2 = 1 +A2(2A1 + 2) + ϵR2 ,
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and (A1, A2, ϵY1 , ϵY2 , ϵR1 , ϵR2) are generated the same way as setting I. Note that for setting II, the optimal

decision boundary in stage II is a circle with respect to (X1, X2).

For each simulation setting, we implement our proposed method with training data sample size n equal

to 200 and 400, and η varies from 0.02 to 0.1 with an increment of 0.02. For the first simulation setting,

we repeat the simulation for τ1 = τ2 = 1.4 and 1.5; for the second simulation setting, we repeat the

simulation for τ1 = τ2 = 1.3 and 1.4. Both the linear kernel and Gaussian kernel are employed to compare

their performance. The tuning parameter Cn = (2nλn,t)
−1 will be selected by a 2-fold cross-validation

procedure that maximizes the Lagrange dual function from a pre-specified grid of 2−10 to 210. To alleviate the

computational burden, when using the Gaussian kernel we follow the idea of Wu, Zhang and Liu (2010) and fix

σ−1
n,t to be 2median{∥Hi−Hj∥ : Ai ̸= Aj} instead of picking σn,t adaptively according to n and λn,t. In our

simulations, all feature variables will be re-centered to mean 0 and rescaled into interval [−1, 1]. When solving

the optimization problem, we choose the initial values for parameters either uniformly in a bounded interval

or using the estimated parameters from the unconstrained problem. We recommend the latter approach as the

performance is overall better than picking the initial point randomly. All quadratic programming programs

in the DC procedure will be solved by R function solve.QP() from quadprog package (https://cran.

r-project.org/web/packages/quadprog/index.html). As a comparison, we also implement

the AOWL method proposed by Liu et al. (2018) as implemented in package DTRlearn2 (https://cran.

r-project.org/web/packages/DTRlearn2/index.html), which ignores the risk constraints.

In addition, we also compare our method with the naive approach where in stage I, we simply use Y1 + Y2 as

the outcome for estimation without adjusting for any delayed treatment effects even though the risk constraints

are considered. To assess the performance of each method, we calculate the stage optimal estimated reward

and risk on an independent testing dataset of size N = 2× 104. We repeat the analysis with 600 replicates.

Figure 2.1 displays the estimated reward and risk on the independent testing data for the first simulation

setting under the different choices of training sample size, kernel basis and shifting parameter η for τ1 =

τ2 = 1.4. From the plot, we notice that for the simple linear setting, under both linear and Gaussian kernel the

median values of estimated reward/risk will be close to the theoretical reward/pre-specified risk constraints.

This indicates that the proposed method can successfully maximize the reward while controlling the risks

across both stages. In this setting, compared with the linear kernel, using the Gaussian kernel will significantly

underestimate the risk on training data, leading to somewhat exceeding risk on the testing data. Also as

expected, in this setting increasing sample size would improve the performance under both kernel choices.
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Figure 2.1: Estimated reward/risk on independent testing data set for simulation setting I, training sample size
n = {200, 400} and η = {0.02, 0.04, ..., 0.1} (x-axis) under linear kernel or Gaussian kernel. The dashed line in
reward plots refers to the theoretical optimal reward under given constraints. The dashed line in risk plots represents the
risk constraint τ = 1.5.
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Figure 2.2: Estimated reward/risk on independent testing data set for simulation setting II, training sample size
n = {200, 400} and η = {0.02, 0.04, ..., 0.1} (x-axis) under linear kernel or Gaussian kernel. The dashed line in
reward plots refers to the theoretical optimal reward under given constraints. The dashed line in risk plots represents the
risk constraint τ = 1.4.
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In terms of the shifting parameter η, in setting I there is no obvious preference of choosing a small value

to a large value. The result from the second nonlinear simulation setting under τ1 = τ2 = 1.4 is presented

in Figure 2.2. Under this more complicated setting and when both two stages’ optimal decision boundaries

are nonlinear, we notice that our method still yields a value close to the truth and the risks are reasonably

controlled in both stages. The Gaussian kernel outperformed the linear kernel in both stages since using

the linear kernel will misspecify the true model. When the sample size increased, the performance for the

Gaussian kernel improved but it was not necessary for the linear kernel, likely due to the misspecification.

We also observe that under the second simulation setting and when the Gaussian kernel is used, choosing a

small shifting parameter η will achieve better performance on the testing data with much smaller variability.

The results for τ = 1.5 for setting I and τ = 1.3 for setting II are similar to τ = 1.4 already discussed. The

same conclusions can be made and the results are presented in Section 2.10.

Finally, the results in Table 2.1 compare the performance of BR-DTRs to AOWL, which ignores the risk

constraints, and the naive method, which considers the risk constraints but uses the immediate outcomes as

the reward. Clearly, even though AOWL always gives a higher reward than BR-DTRs, the corresponding

risks of applying the estimated treatment rules are much larger than the ones from BR-DTRs. In contrast,

BR-DTRs can always give valid decision rules with risks close to pre-specified threshold values. When

compared with the naive method, due to the nature of DTRs, the reward of the BR-DTRs method is always

higher than the naive method.

2.5 Application to DURABLE Trial

We apply BR-DTRs to analyze the data from the DURABLE study (Fahrbach et al., 2008). The

DURABLE study is a two-phase trial designed to compare the safety and efficacy of insulin glargine versus

insulin lispro mix in addition to oral antihyperglycemic agents in T2D patients. During the first phase trial,

patients were randomly assigned to the daily insulin glargine group or twice daily insulin lispro mix 75/25

(LMx2) group for 24 weeks. By the end of 24 weeks, patients who failed to reach an HbA1c level lower

than 7.0% would enter the second phase intensification study and be randomly reassigned with either the

basal-bolus therapy (BBT) or LMx2 for insulin glargine group, or basal-bolus therapy (BBT) or three times

daily insulin lispro mix 50/50 (MMx3) therapy for LMx2 group. Any other patients who reached HbA1c

7.0% or lower would enter the maintenance study and keep the initial therapy for another 2 years.
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In the DURABLE study, the major objective is lowering patients’ endpoint blood glucose level measured

in HbA1c level, and in this analysis, we use the reduction of HbA1c level at 48 weeks since 0 week

as the reward outcome. The risk outcome is set to be hypoglycemia frequency encountered by patients,

which reflects the potential risk induced by adopting assigned treatment. Since not all patients entered the

intensification study with treatment reassignment, to implement BR-DTRs, we assume that for the patients

who reached HbA1c level lower than 7.0% at the end of the first phase trial, their current treatment was

already optimal and should not be adjusted. Under this assumption, the second stage analysis only involves

patients who entered the intensification study; while only in the first stage will all patients be included in the

analysis. In the first stage estimation, for the patients in the maintenance study, their future reward outcome

(reduction of HbA1c) is assumed to be maintained. That is, in Stage I, the reward outcome becomes

Y ′ =


Y, if subject is from the maintenance study

Y I(A2f̂2(H2)>0)
0.5 , if subject is from the intensification study.

Finally, the second stage risk outcome is the total frequency of hyperglycemia events during the intensification

study (from 24 weeks to 48 weeks) and the first stage risk outcome is defined to be the total hypoglycemia

events from week 0-24 for patients who entered intensification study, and the total hypoglycemia events from

week 0-48 rescaled to 24 weeks for the remaining patients who entered maintenance study. In the analysis,

we eventually apply the logarithm transformation to these counts to handle some extremely large counts in

the data.

We consider 20 relevant covariates as the baseline predictors H1, including HbA1c testing result, heart

rate, systolic/diastolic blood pressures, body weight, body height, BMI and 7 points self-monitored blood

glucose measured at baseline (week 0) along with patient’s age, gender, duration of T2D and 3 indicator

variables indicating whether patients were taking metformin, thiazolidinedione or sulfonylureas. The second

stage predictors H2 include all predictors in H1, patient’s treatment assignment, the cumulative number of

hyperglycemia events during the first stage, along with heart rate, systolic/diastolic blood pressures, HbA1c

and same 7 points self-monitored blood glucose measured at the initial time of the second stage (24 weeks).

All covariates are centered at mean 0 and rescaled to be within [−1, 1].

The final study cohort includes 579 patients from the intensification study and another 781 from the

maintenance study. To compare the performance, we randomly sample 50% patients from the intensification
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Table 2.2: Estimated reward/risk under different risk constraints for DURABLE study analysis

Risk Constraint BR-DTRs Naive

τ2 τ1 Reward Stage II Risk Stage I Risk Reward Stage II Risk Stage I Risk

0.334 0.893 1.471(0.072) 0.311(0.033) 0.844(0.044) 1.460(0.087) 0.311(0.033) 0.842(0.049)

0.948 1.520(0.078) 0.311(0.033) 0.874(0.067) 1.499(0.091) 0.311(0.033) 0.868(0.066)

1.005 1.547(0.089) 0.311(0.033) 0.929(0.102) 1.527(0.098) 0.311(0.033) 0.923(0.111)

∞ 0.893 1.598(0.043) 0.347(0.028) 0.832(0.039) 1.604(0.048) 0.347(0.028) 0.840(0.040)

0.948 1.605(0.053) 0.347(0.028) 0.832(0.040) 1.607(0.056) 0.347(0.028) 0.850(0.056)

1.005 1.620(0.068) 0.347(0.028) 0.922(0.107) 1.625(0.062) 0.347(0.028) 0.888(0.103)

∞ 1.713(0.052) 0.347(0.025) 1.040(0.047) - - -

study as the training sample for stage II and additional 50% patients from the maintenance study as the

training sample for stage I. The remaining patients will be treated as the testing data to assess the performance

of the estimated rules. We consider different risk constraints τ2 = (0.334,∞) and τ1 = (0.893, 0.948, 1.005)

where we rescale the risk to hypoglycemia events per 4 weeks. We note that 0.334 and 0.948 are the mean

risks of stage II and stage I, respectively, and 1.005 is close to the median estimated risk on testing data under

the unconstrained case. We repeat the analysis 100 times for random splitting of the training and testing data.

In our method, we use the Gaussian kernel and choose η = 0.02, while tuning parameter Cn for each stage

will be selected by two-fold cross-validation similar to the simulation studies. The bandwidth of the Gaussian

kernel is also selected similar to the simulation studies.

All real data analysis results are displayed in Table 2.2. From Table 2.2 we first notice that in each

stage, the median estimated risk on testing data is tightly controlled by the prespecified risk constraints. This

demonstrates that BR-DTRs can also successfully control adverse risks in real applications. Under each

risk constraint, the cumulative reward estimated by BR-DTRs is only slightly better or closed against the

estimated reward using the naive method. One reason is that the majority of the patients in stage I would not

enter the intensification study and, hence, have no delayed treatment effect at all.

Among all 7 constraint settings, the uncontrolled setting, as expected, produces the estimated rules with

both the highest reward and risks, and the estimated reward decreases as the risk constraint of either stage is

decreasing. Under the unconstrained estimated optimal rules, all patients are recommended to receive LMx2

in the first stage and later switch to MMx3 after 24 weeks if patients’ HbA1c level is greater than 7% by the

end of the first phase. As a comparison, when the risk constraint is imposed in stage II, the optimal rules will

instead recommend all patients to receive BBT when patients failed to reach HbA1c lower than 7% in the

second stage at a price of significantly lower reduction in HbA1c by the end of 48 months. Similar treatment
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preference change happens in stage I as the optimal estimated rule becomes less favorable to LMx2 against

insulin glargine when τ1 decreases.

Comparing the reward and risks under the different choice of risk constraint, τ1 = 1.005 and τ2 = ∞

produces the second highest reward with moderate risk in the second stage and 10% lower risk in the first

stage compared to the unconstrained setting. Under this suboptimal setting, the estimated rules recommend

only 50.7% of patients start with LMx2 therapy and later switch to MMx3 therapy if patients fail to reach an

HbA1c level of less than 7.0% by the end of the first phase of treatment. By checking the baseline covariates

between the patients who received different treatment recommendations, under this estimated rule for the

patients whose baseline HbA1c falls in the range [7, 8), [8, 9) and [9, 10), the proportion of the patients who

are recommended with LMx2 therapy drops from 62.7% to 56.3% and 46.3%; similarly, for the patients

whose baseline BMI falls in the range [28, 32), [32, 34) to [34, 36), the proportion of patients recommended

with LMx2 also drops from 59.3% to 53.8% and 51.3%. The negative correlation between the increment of

baseline HbA1c/BMI against the proportion of patients recommended with LMx2 as the first phase treatment

indicates that the patients with a worse initial health condition are less likely to be recommended with LMx2

therapy as the initial treatment when the risk impact is considered. This is consistent with the fact that

LMx2 is an intenser therapy compared with insulin glargine therapy and would cause more hypoglycemia

events among unhealthier T2D patients. In particular, the suboptimal rules obtained from BR-DTRs meet the

ADA guidance which suggests that intensive insulin therapy should be prescribed to patients according to

patients’ health condition to reduce potential hypoglycemia events. In conclusion, the real data application

demonstrates that, by evaluating the impact of adverse risks along with beneficial reward, BR-DTRs can

produce better personalized, more practically implementable treatment recommendations compared with

standard O-learning which only takes beneficial reward into consideration.

2.6 Discussion

In this chapter, we introduced a new statistical framework BR-DTRs to estimate the optimal dynamic

treatment rules under the stagewise risk constraints. The backward induction technique provided a natural

numerical algorithm to solve for BR-DTRs efficiently through iteratively solving a series of standard quadratic

programming problems. We also established a non-asymptotic risk bound for the value and stagewise risks
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under the estimated decision function. The theoretical results, for the first time, provided the performance

guarantee for the constrained support vector machine problem.

It is worth noting that even though in BR-DTRs we assumed treatments to be dichotomous and only one

risk constraint is imposed at each stage, our method can also be extended to problems with more treatment

options and risk constraints at each stage. One can achieve this by imposing multiple smooth risk constraints

to multicategory learning algorithms, such as AD-learning proposed by Qi et al. (2020). However, verifying

the Fisher consistency of generalized problems is not trivial. Moreover, even though throughout the chapter

we defined Rt as the adverse risk of treatments, the interpretation of Rt can indeed be more general based

on the context of the applications. For example, Rt can be the cost of resources used in treating patients,

constraints due to patients’ preference for treatment design, or fairness of treatment policy among races,

genders, or different socioeconomic backgrounds. By allowing different constraints to be imposed in BR-

DTRs, our method can also provide a unified framework that optimizes the cumulative benefit while meeting

all the constraints from practice.

When proposing the BR-DTRs, our main motivation is to find the optimal decision rules that maximize

population reward while satisfying stagewise risk constraints. For many applications, finding the most

influential feature variables that decide the optimal decision rules under the consideration of adverse risks

is of equal importance, and our proposed method can also be extended to address this by including feature

selection during the estimation. For example, when RKHS is generated by the linear kernel, the optimal

decision boundary is linear, and one can add a penalty term with a group structure to impose sparsity on

feature variables. Lastly, our proposed method focuses on the scenario when controlling the short-term risks

of the treatments is of interest with the finite time horizon. In other real applications, the long-term risk or

disease burden may also need to be controlled for patients’ benefit, and the time horizon can be infinite such

as in mobile health. Due to the limitation of the backward induction technique, the BR-DRTs framework

cannot be directly extended to deal with these problems. Further investigation is needed to address the infinite

time horizon problem.

2.7 Details of DC Algorithm for Solving Single Stage BR-DTRs

In this section, we describe the DC algorithm for solving BR-DTRs at stage t. The algorithm was

originally proposed in Wang, Fu and Zeng (2018). Given estimated rules (f̂t+1, ..., f̂T ), one can calculate Ŷit
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and Âit from (2.5). Our goal is to solve the optimization problem

min
β∈Rd,β0∈R

Cn

n∑
i=1

Ŷit
p(Ait|Hit)

ϕ
(
Âit(Ki,tβ + β0)

)
+

1

2
βTKtβ

subject to
n∑
i=1

Rit
p(Ait|Hit)

ψ
(
Ait(Ki,tβ + β0), η

)
≤ nτt,

where Cn = (2nλn,t)
−1. Kt is the n-by-n kernel matrix of stage t defined by Kij = K(Hit, Hjt) where

K(·, ·) is the inner product equipped by RKHS Gt and Ki,t is the i-th row of Kt.

Note that the shifted ramp loss can be decomposed as ψ(x, η) = η−1(x+ η)+ − η−1(x)+. By applying

the DC algorithm, given β(s) and β(s)0 , we update (β, β0) by solving optimization problem

min
β∈Rdt ,β0∈R

Cn

n∑
i=1

Ŷit
p(Ait|Hit)

ϕ
(
Âit(Ki,tβ + β0)

)
+

1

2
βTKtβ

subject to
n∑
i=1

Rit
p(Ait|Hit)

[{
Ait(Ki,tβ + β0) + η

}
+
− C

(s)
it Ait(Ki,tβ + β0)

]
≤ nητt,

where C(s)
it = I(Ait(Ki,tβ

(s) + β
(s)
0 ) > 0). Similar to standard SVM, we introduce slacking variables

ξi ≥ 1− Âit(Ki,tβ + β0), ξi ≥ 0 to replace ϕ
(
Âit(Ki,tβ + β0)

)
in the objective function. Moreover, we

introduce additional slacking variables ζi ≥ Ait(Ki,tβ+β0)+ η, ζi ≥ 0 to replace
{
Ait(Ki,tβ+β0)+ η

}
+

in the risk constraint. After plugging the slacking variables, the optimization problem becomes

min
β∈Rdt ,β0∈R

Cn

n∑
i=1

Ŷit
p(Ait|Hit)

ξi + Cn

n∑
i=1

ζi
n

+
1

2
βTKtβ

subject to
n∑
i=1

Rit
p(Ait|Hit)

[
ζi − C

(s)
it Ait(Ki,tβ + β0)

]
≤ nητt,

1− Âit(Ki,tβ + β0) ≤ ξi, 0 ≤ ξi,

Ait(Ki,tβ + β0) + η ≤ ζi, 0 ≤ ζi, for i = 1, .., n.

(2.8)

The additional term Cn
∑n

i=1
ζi
n in the objective function is to guarantee that the slacking variable ζi is equal

to
{
Ait(Ki,tβ + β0) + η

}
+

. For fixed tuning parameter Cn, this optimization problem will be equivalent to

the original problem as the additional term will eventually vanish when the sample size n increases.
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The Lagrange function of (2.8) is given by

L =Cn

( n∑
i=1

Ŷit
p(Ait|Hit)

ξi +
n∑
i=1

ζi
n

)
+

1

2
βTKtβ

− π

[
nητt −

n∑
i=1

Rit
p(Ait|Hit)

(
ζi −

n∑
i=1

C
(s)
it Ait(Ki,tβ + β0)

)]

−
n∑
i=1

αi

[
ξi − 1 + Âit(Ki,tβ + β0)

]
−

n∑
i=1

µiξi −
n∑
i=1

κi

[
ζi − η −Ait(Ki,tβ + β0)

]
−

n∑
i=1

ρiκi.

Taking derivatives w.r.t. ξi, ζi, β and β0, one can obtain that the optimal Lagrange multipliers α =

(α1, ..., α
T
n ), κ = (κ1, ..., κn)

T , µ = (µ1, ..., µn), ρ = (ρ1, ..., ρn) and π satisfy

CnV t,Y −α− µ = 0,

Cn1/n+ πV t,R − κ− ρ = 0,

β − πV
(s)
t,R,A,C − Âtα+Atκ = 0,

π1TV
(s)
t,R,A,C + 1T Âtα− 1TAtκ = 0,

where 1 and 0 denote n-by-1 vectors with all entries equal to 1 and 0 respectively,

V t,Y =


Ŷ1t

p(A1t|H1t)
...

Ŷnt
p(Ant|Hnt)

 , V t,R =


R1t

p(A1t|H1t)
...

Rnt
p(Ant|Hnt)

 , V
(s)
t,R,A,C =


R1t

p(A1t|H1t)
A1tC

(s)
1t

...
Rnt

p(Ant|Hnt)
AntC

(s)
nt

 .

Here, we abuse the notation and define Ât = diag{(Â1t, ..., Ânt)} and At = diag{(A1t, ..., Ant)}. Plugging

the equations back to L and note that α ≥ 0, κ ≥ 0, µ ≥ 0, ρ ≥ 0 and π ≥ 0, after some algebra one can

obtain that the dual problem of (2.8) w.r.t. ω = (π,αT ,κT )T is given by

min
ω

1

2
ωT (HTKtH)ω − ωT lη,τt

subject to a ≤Wω ≤ b, 0(2n+1)×1 ≤ ω ≤ u,

where

H =

[
V

(s)
t,R,A,C Ât −At

]
, W =

 V t,R 0n×n −In

1TV
(s)
t,R,A,C 1T Ât −1TAt

 ,
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lη,τt = (−nητt, 1T , η1T )T , a = (−Cn1T /n, 0)T , b = (∞1T , 0)T and u = (∞, CnV
T
t,Y ,∞1T )T . Note

that the optimization w.r.t. ω is a standard quadratic optimization problem, which can be solved efficiently

via gradient descent methods. Denote the optimal solution of previous optimization problem by ω̂(s), we

update β by

β(s+1) = π̂(s)V
(s)
t,R,A,C + Âtα̂

(s) −Atκ̂
(s).

The new β
(s+1)
0 can be determined via grid search such that the original objective function is maximized

among values that satisfy the constraint given β = β(s+1), and we adopted this approach in our work.

Alternatively, using Karush–Kuhn–Tucker conditions one can also determine β(s+1)
0 by taking the average

of constraints among all support vectors lie on the margin (Hastie, Tibshirani and Friedman, 2009, Chapter

12.2), i.e., β(s+1)
0 is given by solving either

∑
{i∈{1,...,n}|α̂(s)

i >0,µ̂
(s)
i >0}

[
1− Âit(Ki,tβ

(s+1) + β0)
]
= 0,

or ∑
{i∈{1,...,n}|κ̂(s)i >0,ρ̂

(s)
i >0}

[
η +Ait(Ki,tβ

(s+1) + β0)
]
= 0,

or combine both. The DC iteration stops when the termination condition max(|β(s+1) − β(s)|∞, |β(s+1)
0 −

β(s)|) ≤ ϵ is satisfied. Let β̂ = (β̂1, ..., β̂n)
T and β̂0 denote the final solution returned by DC iteration, then

the final estimated decision function at stage t is given by f̂t(·) =
∑n

i=1K(Hit, ·)β̂i + β̂0.

2.8 Proof of Theorem 2.1

We summarize the additional notations used in the proofs below:

f∗t the true optimal decision function solving the BR-DTRs (2.3),

and we use f∗t,τ for f∗t whenever τ is necessary in the context;

Vt,ϕ(s, h) −{ϕ(s)E[Qt|Ht = h,At = 1] + ϕ(−s)E[Qt|Ht = h,At = −1]};

Rt,ψ(s, η, h) ψ(s, η)E[Rt|Ht = h,At = 1] + ψ(−s, η)E[Rt|Ht = h,At = −1].

When T = 1, we omit subscript t from all these notations.
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2.8.1 Proof of Theorem 2.1 for T = 1

We consider T = 1. After dropping the stage subscript, both (2.1) and (2.2) problems are equivalent to

solving

min
f∈F

E

[
Y I(Af(H) < 0)

p(A|H)

]
subject to E

[
RI(Af(H) > 0)

p(A|H)

]
≤ τ,

(2.9)

and its resulting decision is given by sign(g∗). Without loss of generality, we assume that Y is non-negative;

otherwise, we can change Y to |Y | and A to A ∗ sign(Y ).

We define M = {h : δY (h)δR(h) < 0} , i.e., the set of subjects where the beneficial treatment also

reduces risk. Then according to Theorem 1 in Wang, Fu and Zeng (2018), for any τ ∈ (τmin, τmax), the

optimal f∗ can be chosen as

g∗(h) =



sign(δY (h)), if h ∈ M

1, if h ∈ {δY (h)/δR(h) > λ∗, δY (h) > 0} ∩Mc

−1, if h ∈ {δY (h)/δR(h) < λ∗, δY (h) > 0} ∩Mc

−1, if h ∈ {δY (h)/δR(h) > λ∗, δY (h) < 0} ∩Mc

1, if h ∈ {δY (h)/δR(h) < λ∗, δY (h) < 0} ∩Mc,

where λ∗ satisfies E[R(g∗, H)] = τ . Our surrogate problem to be solved is (2.3), which is

min
f∈F

E

[
Y ϕ(Af(H))

p(A|H)

]
subject to E

[
Rψ(Af(H), η)

p(A|H)

]
≤ τ

(2.10)

We let f∗ denote the solution. Our following theorem (the same version for Theorem 2.1 for T = 1) gives an

explicit expression for f∗ so that the solution for the surrogate problem has the same sign as g∗.

Theorem 2.3 For any fixed τmin < τ < τmax, suppose that P (δY (H)δR(H) = 0) = 0 and random variable

δY (H)/δR(H) has distribution function with a continuous density function in the support of H . Then for

40



any η ∈ (0, 1], f∗(h) can be taken as

f∗(h) =



sign(δY (h)), if h ∈ M

1, if h ∈ {δY (h)/δR(h) > λ∗, δY (h) > 0} ∩Mc

−η, if h ∈ {δY (h)/δR(h) < λ∗, δY (h) > 0} ∩Mc

−1, if h ∈ {δY (h)/δR(h) > λ∗, δY (h) < 0} ∩Mc

η, if h ∈ {δY (h)/δR(h) < λ∗, δY (h) < 0} ∩Mc,

(2.11)

where λ∗ is the same one in the definition of g∗.

By comparing the expressions for g∗ and f∗, we immediately conclude that they have the same signs so

solving (2.10) leads to a Fisher consistent solution to the original problem in (2.9). The proof consists of

several steps. For any decision function f , we say that f is feasible meaning that f satisfies the risk constraint

in the surrogate problem (2.10), and for any two feasible functions, f1 and f2, “f1 is non-inferior to f2”

means that the objective function in (2.10) is less than or equal to the one for f2, and “f1 is superior to f2” if

the objective function is strictly less than.

From now on, we assume η ∈ (0, 1] and τ ∈ (τmin, τmax). By the definitions of Vϕ and Rψ, we note

E

[
Y ϕ(Af(H))

p(A|H)

]
= −E[Vϕ(f,H)],

E

[
Rψ(Af(H), η)

p(A|H)

]
= E[Rψ(f, η,H)].

Proof of Theorem 2.3:

Step 1. We show that the value for the optimal solution, f∗, can be restricted within [−1, 1]. That is, the

following lemma holds.

Lemma 2.1 For any feasible decision function f(h), define f̃(h) = min(max(f(h),−1), 1) as the truncated

f at -1 and 1. Then f̃ is non-inferior to f .

Proof: Note that ψ(h, η) = ψ(1, η) for any h > 1 and ψ(h, η) = ψ(−1, η) for any h < −1. Thus, it follows

from η ≤ 1 that E[Rψ(f̃ , η,H)] = E[Rψ(f, η,H)] ≤ τ , so f̃ is feasible. Moreover, it is easy to see that if
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f(h) > 1, then f̃(h) = 1 so

E

[
Y ϕ(Af(H))

p(A|X)

∣∣∣∣H = h

]
= E[Y |A = −1, H = h](1 + f(h))

≥ 2E[Y |A = −1, H = h] = E

[
Y ϕ(Af̃(H))

p(A|X)

∣∣∣∣H = h

]
.

Similarly, if f(h) < −1,

E

[
Y ϕ(Af(H))

p(A|X)

∣∣∣∣H = h

]
= E[Y |A = 1, H = h](1− f(h))

≥ 2E[Y |A = −1, H = h] = E

[
Y ϕ(Af̃(H))

p(A|X)

∣∣∣∣H = h

]
.

Since f(h) = f̃(h), when |f(h)| ≤ 1, we conclude

E

[
Y ϕ(Af(H))

p(A|X)

]
≥ E

[
Y ϕ(Af̃(H))

p(A|X)

]
.

Thus, Lemma 2.1 holds. □

Step 2. We characterize the expression of f∗(h) for h ∈ M, which is the region where the beneficial

treatment also reduces the risk.

Lemma 2.2 For any feasible function f with |f | ≤ 1, we define

f̃(h) = f(h)I(h ∈ Mc) + sign(δY (h))I(h ∈ M).

Then f̃ is non-inferior to f .

Proof: For h with δY (h) > 0 and δR(h) < 0, Rψ(s, η, h) is minimized when s ∈ [η, 1], while Vϕ(s, h) is

maximized at s = 1. Since f̃(h) = 1 Rψ(f̃(h), η, h) ≤ Rψ(f(h), η, h) and Vϕ(f̃(h), h) ≥ Vϕ(f(h), h).

The same inequalities hold for h with δY (h) < 0 and δR(h) > 0. In other words, they hold for any h ∈ M.

Since f̃(h) = f(h) for h ∈ Mc,

E[Rψ(f, η,H)]− E[Rψ(f̃ , η,H)] = E[(Rψ(f, η,H)−Rψ(f̃ , η,H))I(H ∈ M)] ≥ 0,

42



and similarly, E[Vϕ(f,H)]− E[Vϕ(f̃ , H)] ≤ 0. We conclude that f̃ is non-inferior to f . □

Step 3. From steps 1 and 2, we can restrict f to satisfy |f | ≤ 1 and f(h) = sign(δY (h)) for h ∈ M.

Furthermore, since τmax is the risk under decision rule sign(δY (h)), τ < τmax implies that

P (f(H) ̸= sign(δY (H)), H ∈ Mc) > 0.

In this step, we wish to show that the optimal solution should attain the risk bound, i.e., E[Rψ(f, η,H)] = τ .

Otherwise, assume for some feasible solution f such that E[Rψ(f, η,H)] = τ0 < τ. Consider two sets

D+ = {h ∈ H : f(h) < 1, δY (h) > 0} ∩Mc

D− = {h ∈ H : f(h) > −1, δY (h) < 0} ∩Mc,

then P (D+) + P (D−) > 0. Without loss of generality, we assume that P (D+) > 0. We construct

f̃(h) =


f(h), if h /∈ D+

min

(
f(h) + η(τ−τ0)

MP (D+)
, 1

)
, if h ∈ D+,

where M is the bound for R.

For h ∈ D+, Vϕ(f̃(h), h) > Vϕ(f(h), h) since 1 ≥ f̃(h) > f(h) and Vϕ(s, h) is an strictly increasing

function of s ∈ [−1, 1] due to δY (h) > 0. We immediately conclude E[Vϕ(f̃ , H)] > E[Vϕ(f,H)]. On the

other hand, Rψ(s, η, h) is a piecewise linear function of s with absolute value of slopes no larger than

max(E[R|H = h,A = 1], E[R|H = h,A = −1])

η
≤ M

η
.

Hence, it follows that

E[Rψ(f̃ , η,H)] =E[Rψ(f̃ , η,H)]− E[Rψ(f, η,H)] + E[Rψ(f, η,H)]

≤E[(Rψ(f̃ , η,H)−Rψ(f, η,H))I(H ∈ D+)] + τ0

≤M
η

η(τ − τ0)

MP (D+)
P (D+) + τ0 = τ.
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As a result, f̃ is superior to f with a strictly larger objective function, a contradiction. In other words, the

expected risk for the optimal solution should attain the bound.

With steps 1-3, we can restrict within the class

W = {f : |f | ≤ 1, f(h) = sign(δY (h)) for h ∈ M, E[Rψ(f, η,H)] = τ}

to find the optimal decision function.

Step 4. We derive the expression of the optimal function for f by considering solving a Lagrange

multiplier for the problem (2.10):

max
f

−E
[
Y ϕ(Af(H))

p(A|H)

]
− ν

(
E

[
Rψ(Af(H))

p(A|H)

]
− τ

)
,

where ν is a constant to be determined by the constraint in W . We maximize the above function by

maximizing the conditional mean of the term in the expectation given H = h for every h, which is given by

G(f) ≡ Vϕ(f, h)− νRψ(f, η, h).

Note that G(f) is now a function w.r.t. the value of f given fixed h. Since f ∈ [−1, 1] and f in W is already

given for h ∈ M, it suffices to examine that for h ∈ Mc. In addition, G(f) is a piecewise linear function for

f ∈ [−1,−η], (−η, 0], (0, η] and (η, 1]. Thus, the maximizer can only be achieved at points −1,−η, 0, η and

1. Note that R is assumed to be positive, G′(0) = −ν/η(E[R|H = h,A = 1]+E[R|H = h,A = −1]) < 0

if ν > 0, or > 0 if ν < 0. For ν = 0, G(0) = −E[Y |H = h,A = 1] − E[Y |H = h,A = −1] =

(G(1) +G(−1))/2. Thus, the maximum for G(f) can always be attained at f which is not zero. In other

words, we only need to compare the values at f ∈ {−1,−η, η, 1}.

Simple calculation gives

G(−1) = −2E[Y |H = h,A = 1]− νE[R|H = h,A = −1],

G(−η) = −(1 + η)E[Y |H = h,A = 1]− (1− η)E[Y |H = h,A = −1]− λE[R|H = h,A = −1],

G(η) = −(1− η)E[Y |H = h,A = 1]− (1 + η)E[Y |H = h,A = −1]− νE[R|H = h,A = 1],
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and

G(1) = −2E[Y |H = h,A = −1]− νE[R|H = h,A = 1].

When δY (h) > 0 so δR(h) is also positive, it is straightforward to check G(1) > G(η) and G(−η) > G(−1).

Note G(1)−G(−η) = (1 + η)δY (h)− λδR(h) so we immediately conclude that the optimal value for f

should be 1, if δY (h) > λ, where λ = ν/(1 + η), and it is −η otherwise. When δY (h) ≤ 0, we use the same

arguments to obtain that the optimal value for f should be -1 if δY (h) > λ, and it is η otherwise. Therefore,

the optimal function maximizing the Lagrange multiplier for any fixed ν (equivalently, λ) has the same

expression as (2.11).

Next, we show that there is some positive λ∗ such that

E[RI(Ag∗(H) > 0)/p(A|H)] = E[RI(Af∗(H) > 0)/p(A|H)] = E[Rψ(f
∗, η,H)] = τ.

The first equality follows from the fact that sign(g∗) = sign(f∗), and the second equality follows from that

Rψ(s, η, h) is constant for any s ∈ [−1,−η] and s ∈ [0, η]. To prove the existence of λ∗, we notice

Γ(λ) ≡E[RI(Af∗(H) > 0)/p(A|H)]

=E[E[R|H,A = 1]I(H ∈ {δY (h) > 0} ∩M)]

+ E[E[R|H,A = −1]I(H ∈ {δY (h) < 0} ∩M)]

+ E[E[R|H,A = 1]I(H ∈ {δY (h)/δR(h) > λ, δY (h) > 0} ∩Mc)]

+ E[E[R|H,A = −1]I(H ∈ {δY (h)/δR(h) < λ, δY (h) > 0} ∩Mc)]

+ E[E[R|H,A = −1]I(H ∈ {δY (h)/δR(h) > λ, δY (h) < 0} ∩Mc)]

+ E[E[R|H,A = 1]I(H ∈ {δY (h)/δR(h) < λ, δY (h) < 0} ∩Mc)]

(2.12)

is a continuous function of λ since δY (H)/δR(H) has continuous density function. Furthermore, Γ(∞) =

τmin, Γ(0) = τmax. Thus, there exists some λ∗ > 0 such that Γ(λ∗) = τ .

Finally, for any f , based on steps 1-3, we have

−E
[
Y ϕ(Af(H))

p(A|H)

]
≤ max

f∈W

{
−E

[
Y ϕ(Af(H))

p(A|H)

]}
.
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On the other hand, for f ∈ W , E[Rψ(Af(H))/p(A|H)] = τ and

−E
[
Y ϕ(Af(H))

p(A|H)

]
− λ∗(1 + η)

(
E

[
Rψ(Af(H))

p(A|H)

]
− τ

)

≤ −E
[
Y ϕ(Af∗(H))

p(A|H)

]
− λ∗(1 + η)

(
E

[
Rψ(Af∗(H))

p(A|H)

]
− τ

)
.

Therefore,

E

[
Y ϕ(Af(H))

p(A|H)

]
≥ E

[
Y ϕ(Af∗(H))

p(A|H)

]
.

In other words, f∗ given by (2.11) is the optimal solution to the problem (2.10). We thus complete the proof

of Theorem 2.3.

2.8.2 Proof of Theorem 2.1 for T ≥ 2

Start from stage T . For any given f1, ..., fT−1, we consider fT maximizing

E

[
(
∑T

t=1 Yt)I(AT fT (HT ) > 0)

p(AT |HT )

∏T−1
t=1 I(Atft(Ht) > 0)∏T−1

t=1 p(At|Ht)

]

subject to constraint

E

[
RT I(AT fT (HT ) > 0)

p(AT |HT )

∏T−1
t=1 I(Atft(Ht) > 0)∏T−1

t=1 p(At|Ht)

]
≤ τT .

Based on Theorem 1 in Wang, Fu and Zeng (2018), the optimal solution can be chosen as

g̃∗T (h) =



sign(δ
Ỹ
(h)), if h ∈ M̃

1, if h ∈ {δ
Ỹ
(h)/δ

R̃
(h) > λ̃, δ

Ỹ
(h) > 0} ∩ M̃c

−1, if h ∈ {δ
Ỹ
(h)/δ

R̃
(h) < λ̃, δ

Ỹ
(h) > 0} ∩ M̃c

−1, if h ∈ {δ
Ỹ
(h)/δ

R̃
(h) > λ̃, δ

Ỹ
(h) < 0} ∩ M̃c

1, if h ∈ {δ
Ỹ
(h)/δ

R̃
(h) < λ̃, δ

Ỹ
(h) < 0} ∩ M̃c

46



where M̃ =
{
h : δ

Ỹ
(h)δ

R̃
(h) < 0

}
,

δ
Ỹ
(h) = (E[QT |HT = h,AT = 1]− E[QT |HT = h,AT = −1])

∏T−1
t=1 I(Atft(Ht) > 0)∏T−1

t=1 p(At|Ht)
,

δ
R̃
(h) = (E[RT |HT = h,AT = 1]− E[RT |HT = h,AT = −1])

∏T−1
t=1 I(Atft(Ht) > 0)∏T−1

t=1 p(At|Ht)
,

and and λ̃ satisfies

E

[
RT I(AT g̃

∗
T (HT ) > 0)

p(AT |HT )

∏T−1
t=1 I(Atft(Ht) > 0)∏T−1

t=1 p(At|Ht)

]
= τT .

Note that for h in the support of Ht where Atft(Ht) ≤ 0 for any t = 1, ..., T − 1, g̃∗T (h) can be any arbitrary

value since it does not affect the value and risk expectations. On the other hand, recall that g∗T (h) is the

function maximizing

E

[
(
∑T

t=1 Yt)I(AT fT (HT ) > 0)

p(AT |HT )

]
subject to constraint

E

[
RT I(AT fT (HT ) > 0)

p(AT |HT )

]
≤ τT .

Based on Theorem 1 in Wang, Fu and Zeng (2018), g∗T is given as

g∗T (h) =



sign(δQT (h)), if h ∈ M

1, if h ∈ {δQT (h)/δRT (h) > λ∗, δQT (h) > 0} ∩Mc

−1, if h ∈ {δQT (h)/δRT (h) < λ∗, δQT (h) > 0} ∩Mc

−1, if h ∈ {δQT (h)/δRT (h) > λ∗, δQT (h) < 0} ∩Mc

1, if h ∈ {δQT (h)/δRT (h) < λ∗, δQT (h) < 0} ∩Mc

where M = {h : δQT (h)δRT (h) < 0}, and λ∗ satisfies

E

[
RT I(AT g̃

∗
T (HT ) > 0)

p(AT |HT )

∏T−1
t=1 I(Atft(Ht) > 0)∏T−1

t=1 p(At|Ht)

]
= τT .
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From the above two expressions, it is clear that on the set when Atft(Ht) > 0 for all t = 1, ..., T − 1,

g̃∗T (h) takes the same form as the solution as g∗T (h). Furthermore, due to Assumption 2.4,

E

[
RT I(AT fT (HT ) > 0)

p(AT |HT )

∏T−1
t=1 I(Atft(Ht) > 0)∏T−1

t=1 p(At|Ht)

]
= E

[
RT I(AT fT (HT ) > 0)

p(AT |HT )

]
.

Thus, we conclude that λ̃ can be chosen to be the same as λ∗ so g̃∗T (h) can be chosen to be exactly the same

as g∗T (h). In other words,

V(f1, ..., fT−1, g
∗
T ) ≥ V(f1, ..., fT )

and g∗T satisfies

E

[
RT I(AT g

∗
T (HT ) > 0)

p(AT |HT )

∏T−1
t=1 I(Atft(Ht) > 0)∏T−1

t=1 p(At|Ht)

]
= τT .

By Theorem 2.3, both g∗T and f∗T have the same signs. Therefore,

V(f1, ..., fT−1, f
∗
T ) ≥ V(f1, ..., fT )

and f∗T satisfies

E

[
RT I(AT f

∗
T (HT ) > 0)

p(AT |HT )

]
= τT .

Once f∗T is determined, we consider the T − 1 stage. Now the original problem (2.1) becomes

maxV(f1, ..., fT−1, f
∗
T ) = E

[
(
∑T
t=1 Yt)I(AT f

∗
T,η(HT )>0)

p(AT |HT )

∏T−1
t=1 I(Atft(Ht)>0)∏T−1

t=1 p(At|Ht)

]
subject to E

[
RtI(Atft(Ht)>0)

p(At|Ht)

]
≤ τt, t = 1, ..., T − 1.

We repeat the same arguments as for stage T as before, to conclude

V(f1, ..., f∗T−1, f
∗
T ) ≥ V(f1, ..., fT−1, fT )

and f∗T−1 satisfies

E

[
RT−1I(AT1f

∗
T−1(HT−1) > 0)

p(AT1 |HT−1)

]
= τT−1.
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We continue this proof till t = 1 so conclude that (f∗1 , ..., f
∗
T ) maximizes the multistage value and

satisfies the constraints over all the stages. The above arguments also show that f∗t has the same sign as g∗t .

Theorem 2.1 thus holds.

2.9 Proof of Theorem 2.2

Instead, we prove a more general version of Theorem 2.2.

Theorem 2.4 In addition to the conditions in Theorem 2.1, suppose that Assumption 2.5 holds and Ht takes

value from a compact subset of Rdt for t = 1, ..., T . Let (τ1, ..., τT ) and (δ0,1, ..., δ0,T ) denote the constraints

and corresponding constants in Assumption 2.5. Let δt > 0, 1 ≤ xt, 0 < θ1,t, 0 < θ2,t, 0 < ν1,t < 2,

0 < ν2,t ≤ 2 for t = 1, ..., T . Give positive parameter λn,t → 0 and σn,t → ∞, and let

ξ
(1)
n,t = c

(
2M

c1

√
M

c1λn,t
+ σdtnt+

λn,t

(
M

c1λn,t
+ σdtn,t

))
n−1/2(σ

(1−ν1,t/2)(1+θ1,t)dt/2
n,t + 2

√
2xt + 2xt/

√
n),

ξ
(2)
n,t = c(λntσ

dt
nt + σ−αtdtn,t ) and ξn,t = ξ

(1)
n,t + ξ

(2)
n,t . In addition, let

ϵ′n,t = δt + C1,tσ
−αtdt
n η−1

n,t + C3,tn
−1/2σ

(1−ν2,t/2)(1+θ2,t)dt/2
n,t

(
M

c1λn,t
+ σdtn,t

)ν2,t/4
η
−ν2,t/2
n,t

and

ht(n, xt) = 2 exp

(
−

2nδ20,tc
2
1

M2

)
+ 2 exp

(
− nδ2t c

2
1

2M2

)
+ exp(−xt).

Then for any n ≥ 1 and (λn,t, σn,t, ηn,t) such that

C1,tσ
−αtdt
n η−1

n,t ≤ δ0,t,

C2,tσ
(1−ν1,t/2)(1+θ1,t)dt
n,t ≤ 1,

ϵ′n,t < 2δ0,t, and xt ≥ 1, with probability at least 1−
∑T

t=1 ht(n, xt), we have

|V(f̂1, ..., f̂T )− V(f∗1 , ..., f∗T )| ≤
T∑
t=1

(c1/5)
1−t(ξn,t + (T − t+ 1)Mηn,t + 2cϵ′n,t). (2.13)

49



Moreover, with probability at least 1− ht(n, xt) the risk induced by f̂t satisfies

E

[
RtI(Atf̂t(Ht) > 0)

p(At|Ht)

]
≤ τt + δt + C3,tσ

(1−ν2,t/2)(1+θ2,t)dt/2
n,t

(
M

c1λn,t
+ σdtn,t

)ν2,t/4
η
−ν2,t/2
n,t . (2.14)

Here, c in front of ξ(1)n,t is a positive constant only depends on (ν1,t, θ1,t, dt), c in front of ξ(2)n,t is a positive

constant only depends on (αt, dt,Kt,M) and c of ϵ′n,t is a positive constant only depends on (τt, δ0,t). C1,t

is a positive constant depend on (αt, dt,Kt,M), C2,t is a positive constant depends on (ν1,t, θ1,t, dt), C3,t a

positive constant depends on (ν2,t, θ2,t, dt, c1,M).

Theorem 2.2 can be obtained from Theorem 2.4 by setting θt = θ1,t = θ2,t, νt = ν1,t = ν2,t and

xt = σ
(1−νt/2)(1+θt)dt
n,t . Ci = suptCi,t for i = 1, 2, 3. We first prove Theorem 2.4 for T = 1 and then extend

the result to T ≥ 2.

2.9.1 Proof of Theorem 2.2 (Theorem 2.4) for T = 1

Since T = 1, we omit the subscript for the stage in this subsection so all the notations are the same as in

Section 2.8. Since τ is necessary in the proof, we use f∗τ to refer to f∗ that solves (2.10) corresponding to τ

and η = ηn.

2.9.1.1 An excessive risk inequality

In this section, we prove some preliminary lemmas for (2.10). Lemma 2.3 shows that the regret from the

optimal decision function solving the original problem (2.9) is bounded by the regret from the one solving the

surrogate problem (2.10), plus an additional biased term of order O(ηn). Lemma 2.4 shows that the optimal

value using the surrogate loss is Lipschitz continuous with respect to τ .

Lemma 2.3 Under the condition of Theorem 2.3, for any f : H → R and any ηn ∈ (0, 1], we have

V(f∗τ )− V(f) ≤ E[Vϕ(f∗τ , H)]− E[Vϕ(f,H)] +Mηn.

Proof: Theorem 2.3 shows that f∗τ must have expression (2.11) almost surely. Let Ṽ(f, h) = I(f(h) >

0)E[Y |H = h,A = 1] + I(f(h) ≤ 0)E[Y |H = h,A = −1]. For any h ∈ {δY (h) > 0}, we consider the

following 6 scenarios:
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1. When h ∈ M, f∗τ (h) = 1 and f(h) > 0, we have Ṽ(f∗τ , h)− Ṽ(f, h) = 0 and

Vϕ(f∗τ , h)− Vϕ(f, h) =


(1− f(h))δY (h), f(h) ≤ 1

(f(h)− 1)mY (h,−1), f(h) > 1,

2. When h ∈ M, f∗τ (h) = 1 and f(h) ≤ 0, we have Ṽ(f∗τ , h)− Ṽ(f, h) = δY (h) and

Vϕ(f∗τ , h)− Vϕ(f, h) =


(1− f(h))δY (h), f(h) ≥ −1

2δY (h) + (−f(h)− 1)mY (h, 1), f(h) < −1,

3. When h ∈ Mc, f∗τ (h) = 1 and f(h) > 0, we have Ṽ(f∗τ , h)− Ṽ(f, h) = 0 and

Vϕ(f∗τ , h)− Vϕ(f, h) =


(1− f(h))δY (h), f(h) ≤ 1

(f(h)− 1)mY (h,−1), f(h) > 1,

in which case Vϕ(f∗τ , h)− Vϕ(f, h) ≥ Ṽ(f∗τ , h)− Ṽ(f, h).

4. When h ∈ Mc, f∗τ (h) = 1 and f(h) ≤ 0, we have V(f∗τ , h)− V(f, h) = δY (h) and

Vϕ(f∗τ , h)− Vϕ(f, h) =


(1− f(h))δY (h), f(h) ≥ −1

2δY (h) + (−f(h)− 1)mY (h, 1), f(h) < −1,

in which case Vϕ(f∗τ , h)− Vϕ(f, h) ≥ V(f∗τ , h)− V(f, h).

5. When h ∈ Mc, f∗τ (h) = −ηn and f(h) > 0, we have Ṽ(f∗τ , h)− Ṽ(f, h) = −δY (h) and

Vϕ(f∗τ , h)− Vϕ(f, h) =


−f(h)δY (h)− ηnδY (h), f(h) ≤ 1

−δY (h)− ηnδY (h) + (f(h)− 1)mY (h,−1), f(h) > 1.

Thus, Vϕ(f∗τ , h)− Vϕ(f, h) ≥ −δY (h)− ηnδY (h) = Ṽ(f∗τ , h)− Ṽ(f, h)− ηnδY (h).
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6. When h ∈ Mc, f∗τ (h) = −ηn and f(h) ≤ 0, we have V(f∗τ , h)− V(f, h) = 0 and

Vϕ(f∗τ , h)− Vϕ(f, h) =


−f(h)δY (h)− ηnδY (h), f(h) ≥ −1

(f(h)− 1)mY (h, 1) + (1− ηn)δY (h), f(h) < −1.

Thus, we obtain Vϕ(f∗τ , h)− Vϕ(f, h) ≥ −ηnδY (h) = Ṽ(f∗τ , h)− Ṽ(f, h)− ηnδY (h).

Hence, by combining all these cases, we conclude that

Ṽ(f∗τ , h)− Ṽ(f, h) ≤ Vϕ(f∗τ , h)− Vϕ(f, h) +Mηn

for any ηn ∈ (0, 1] and any decision function f . The same argument holds for any h such that δY (h) < 0.

Consequently, since V(f) = E[Ṽ(f,H)],we have

V(f∗τ )− V(f) ≤ E[Vϕ(f∗τ , H)]− E[Vϕ(f,H)] +Mηn.

□

Lemma 2.4 For any δ > 0 and τ such that [τ − 2δ, τ + 2δ] ⊆ (τmin, τmax), E[Vϕ(f∗τ , H)], as a function of

τ , is Lipschitz continuous at τ .

Proof: Let τ1 = τ and τ2 be any number in [τ − 2δ, τ + 2δ]. Without loss of generality, we assume τ2 < τ1.

We also let f∗1 and f∗2 be the optimal decision functions solving (2.10) for τ1 and τ2, respectively, and their

corresponding λ∗’s values are denoted as λ1 and λ2. According to (2.11), it is easy to verify that

E[Vϕ(f∗1 , H)]− E[Vϕ(f∗2 , H)]

=E

[
(1 + ηn)δY (H)I

(
λ1 ≤

δY (H)

δR(H)
≤ λ2

)
I(δY (H) > 0)I(H ∈ Mc)

]
− E

[
(1 + ηn)δY (H)I

(
λ1 ≤

δY (H)

δR(H)
≤ λ2

)
I(δY (H) < 0)I(H ∈ Mc)

]
=(1 + ηn)E

[
|δY (H)|I

(
λ1 ≤

δY (H)

δR(H)
≤ λ2

)
I(H ∈ Mc)

]
.
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On the other hand

τ1 − τ2 =E[Rψ(f
∗
1 , ηn, H)I(H ∈ Mc)]− E[Rψ(f

∗
2 , ηn, H)I(H ∈ Mc)]

=E

[
δR(H)I

(
λ1 ≤

δY (H)

δR(H)
≤ λ2

)
I(δY (H) > 0)I(H ∈ Mc)

]
− E

[
δR(H)I

(
λ1 ≤

δY (H)

δR(H)
≤ λ2

)
I(δY (H) < 0)I(H ∈ Mc)

]
=E

[
|δR(H)|I

(
λ1 ≤

δY (H)

δR(H)
≤ λ2

)
I(H ∈ Mc)

]
.

The above two equations imply that

E[Vϕ(f∗1 , H)]− E[Vϕ(f∗2 , H)]

=(1 + ηn)E

[
|δY (H)|
|δR(H)|

|δR(H)|I
(
λ1 ≤

δY (H)

δR(H)
≤ λ2

)
I(H ∈ Mc)

]
≤2λ2E

[
|δR(H)|I

(
λ1 ≤

δY (H)

δR(H)
≤ λ2

)
I(H ∈ Mc)

]
≤2λ2(τ1 − τ2).

The lemma holds since λ2 is no larger than λ∗-value corresponding to τ − 2δ. □

2.9.1.2 Approximation bias in RKHS

In this section, we prove a series of lemmas to quantify the approximation bias of f̂ , where f̂ denotes the

solution of single stage empirical problem

argmin
f∈G

1

n

n∑
i=1

Yi
ϕ(Aif(Hi))

p(Ai|Hi)
+ λn∥f∥2G

subject to
1

n

n∑
i=1

Ri
ψ(Aif(Hi), ηn)

p(Ai|Hi)
≤ τ,

(2.15)

resulted from restricting f̂ to be a function in Gaussian RKHS G.

The section is organized as follows: Lemma 2.5 provides an approximation of f∗τ using functions in

Gaussian RKHS; in Lemma 2.6, we quantify the difference of risk under shifted ramp loss between f∗τ and

its approximation in G; in Lemma 2.7, we show that ∥f̂∥G is bounded with high probability; in Lemma 2.8,

we show that An(τ) changes continuously w.r.t. τ and the approximation bias is given Lemma 2.9.
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For convenience, we define

Lϕ(f) = Y
ϕ(Af(H))

p(A|H)
, Pn[Lϕ(f)] =

1

n

n∑
i=1

Yi
ϕ(Aif(Hi))

p(Ai|Hi)
,

Rψ(f, ηn) = R
ψ(Af(H), ηn)

p(A|H)
, Pn[Rψ(f, ηn)] =

1

n

n∑
i=1

Ri
ψ(Aif(Hi), ηn)

p(Ai|Hi)
,

where Pn denotes the empirical distribution. Let G = G(σn) denote the Gaussian RKHS with bandwidth

σ−1
n , we define

A(τ) =

{
f ∈ G

∣∣∣∣E[Rψ(f, ηn)] ≤ τ

}
,

An(τ) =

{
f ∈ G

∣∣∣∣Pn[Rψ(f, ηn)] ≤ τ

}
,

where An(τ) is equivalent to the definition of the feasible region of the empirical problem with T = 1. We

also define H̄ = 3H,

δ̄Y (h) =


δY (h), if |h| ≤ 1

δY (h/|h|), if |h| > 1,

δ̄R(h) =


δR(h), if |h| ≤ 1

δR(h/|h|), if |h| > 1,

and recall that in Assumption 2.5 we defined

H̄a,b =

{
h ∈ H̄ : aδ̄Y (h) > 0, b(δ̄Y (h)− λ∗δ̄R(h)) > 0

}

and when T = 1 ∆τ (h) =
∑

a,b∈{−1,1} dist(h, H̄/H̄a,b)I(h ∈ H̄a,b), where a, b ∈ {−1, 1} and λ∗ is the

value in f∗τ so function ∆ depends on τ , and

f̄τ (h) =



1, if h ∈ H̄1,1

ηn, if h ∈ H̄−1,1

−1, if h ∈ H̄−1,−1

−ηn, if h ∈ H̄1,−1

0, otherwise.
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Thus, f̄τ can be viewed as an extension of f∗τ from of H to H̄. Our first lemma is to determine the pointwise

approximation bias of f∗τ using the RKHS. Note that we assumed H is a compact subset of G, without loss of

generality, from now on we assume that H ⊆ BG where BG denotes the unit ball in G.

Lemma 2.5 Let f̌τ = (σ2n/π)
d/4f̄τ and define linear operator

Vσf̌(x) =
(2σ)d/2

πd/4

∫
Rd
e−2σ2∥x−y∥22 f̌(y)dy.

Then, we have

∥Vσn f̌τ∥2G ≤ cσdn, (2.16)

and

|Vσn f̌τ (h)− f∗τ (h)| ≤ 8e−σ
2
n∆τ (h)

2/2d. (2.17)

holds for all h ∈ H, where ∆τ (h) is defined in Assumption 2.5 and c denotes a constant which depends on

the dimension of feature space H.

Remark 1 Note that Vσf̌τ is an approximation of f∗τ in G. Thus, Lemma 2.5 quantifies the distance between

the true optimal decision function and its approximation at each point h.

Proof: Since H ⊂ BG and f̌τ = (σ2n/π)
d/4f̄τ , we can easily obtain that the L2 norm of f̌τ satisfies

∥f̌τ∥22 ≤ Vol(d)2
(
81

π

)d/2
σdn = cσdn,

where Vol(d) is the volume of BG (see equation (25) from Steinwart and Scovel (2007)) so c is a positive

constant depends only on d. Moreover, it has been shown in Steinwart, Hush and Scovel (2006) that Vσ :

L2(Rd) → G(σ) is an isometric isomorphism and the inequality above implies ∥Vσn f̌τ∥2G = ∥f̌τ∥22 ≤ cσdn.

We now start proving (2.17). By the construction of f̄τ , it is straightforward to see that f̄τ (h) = f∗τ (h)

for all h ∈ H. Note for any h ∈ H1,1 we have

Vσn
f̌τ (h) =

(
2σ2

n

π

)d/2 ∫
Rd

e−2σ2
n∥h−y∥2

f̄τ (y)dy

=

(
2σ2

n

π

)d/2[ ∫
B(h,∆τ (h))

e−2σ2
n∥h−y∥2

f̄τ (y)dy +

∫
Rd/B(h,∆τ (h))

e−2σ2
n∥h−y∥2

f̄τ (y)dy

]
,
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where B(h, r) is the ball of radius r centering at h under Euclidean norm. By Lemma 4.1 in Steinwart and

Scovel (2007), the construction of f̄τ guarantees that B(h,∆τ (h)) ⊆ H̄1,1 for all h ∈ H1,1. It then follows

that for any h ∈ H1,1

|Vσn f̌τ − f∗τ (h)| =|Vσn f̌τ (h)− f̄τ (h)|

=

∣∣∣∣Vσn f̌τ (h)− (
2σ2n
π

)d/2 ∫
Rd
e−2σ2

n∥h−y∥2dy

∣∣∣∣
=

∣∣∣∣(2σ2n
π

)d/2 ∫
Rd/B(h,∆τ (h))

e−2σ2
n∥h−y∥2 [f̄τ (y)− 1]dy

∣∣∣∣
≤2P (|U | ≥ ∆τ (h)),

where the last step uses the fact that |f̄τ − 1|∞ ≤ 2, and U follows the spherical Gaussian distribution on Rd

with parameter σn. Following inequality (3.5) from Ledoux and Talagrand (1991), we have

P (|U | ≥ ∆τ (h)) ≤ 4e−σ
2
n∆

2
τ (h)/2d.

Similarly, we can obtain the same bound for h ∈ H̄−1,1, H̄1,−1 and H−1,−1. As a conclusion, we have

|Vσn f̌τ (h)− f∗τ (h)| ≤ 8e−σ
2
n∆

2
τ (h)/2d

for any h ∈ H. □

In the next lemma, we show that under Assumption 2.5, the difference of the risk under shifted ramp loss

between f∗τt and its approximation Vσn f̌τ1 is uniformly bounded by O(σ−αdn η−1
n ) for any τ1 ∈ [τ − 2δ0, τ +

2δ0]; moreover when n is sufficiently large, Vσn f̌τ−2δ0 will belong to the empirical feasible region An(τ)

with high probability.

Lemma 2.6 For any τ1 ∈ [τ − 2δ0, τ + 2δ0],

|E[Rψ(Vσn f̌τ1 , ηn)]− E[Rψ(f
∗
τ1 , ηn)]| ≤ cσ−αdn η−1

n , (2.18)

where c is a constant depending on (α, d,K,M). Moreover, for any σn and ηn such that cσ−αdn η−1
n ≤ δ0,

with probability 1− 2 exp
(−2nδ20c

2
1

M2

)
, we have Vσn f̌τ−2δ0 ∈ An(τ).
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Proof: First note that for any measurable function f1, f2 : H → R, we always have

|E[Rψ(f1, ηn)]− E[Rψ(f2, ηn)]

=E

[
E[R|H,A = 1][ψ(f1(H), ηn)− ψ(f2(H), ηn)]

+ E[R|H,A = −1][ψ(−f1(H), ηn)− ψ(−f2(H), ηn)]

]
≤2Mη−1

n E[|f1(H)− f2(H)|].

Using result (2.17) in Lemma 2.5 and Assumption 2.5, we can obtain

|E[Rψ(Vσn f̌τ1 , ηn)]− E[Rψ(f
∗
τ1 , ηn)]| ≤η

−1
n 16ME[e−σ

2
n∆τ (h)

2/2d]

≤16MK(2d)αd/2σ−αdn η−1
n

=cσ−αdn η−1
n .

To prove the remaining part of the lemma, suppose τ1 = τ − 2δ0. We note that Rψ(Vσn f̌τ1 , ηn) is bounded

by M/c1. Based on Hoeffding’s inequality, we can obtain

P

[
|Pn[Rψ(Vσn f̌τ1 , ηn)]− E[Rψ(Vσn f̌τ1 , ηn)]| ≥ δ0

]
≤ 2 exp

(
−2nδ20c

2
1

M2

)
. (2.19)

According to (2.18) and the choice of (σn, ηn), we have

|E[Rψ(Vσn f̌τ1 , ηn)]− (τ − 2δ0)|

=|E[Rψ(Vσn f̌τ1 , ηn)]− E[Rψ(f
∗
1 , ηn)]|

≤cσ−αdn η−1
n ≤ δ0.

(2.20)

Combining (2.19) and (2.20), we obtain

P

[
Pn[Rψ(Vσn f̌τ1 , ηn)] ≥ τ

]
≤ 2 exp

(
−2nδ20c

2
1

M2

)
,

which implies that Vσn f̌τ1 ∈ An(τ) with probability at least 1− 2 exp
(−2nδ20c

2
1

M2

)
. □

In Lemma 2.7, we show that ∥f̂∥G is bounded with high probability.
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Lemma 2.7 f̂τ satisfies

P

(
∥f̂τ∥2G ≤ c

(
M

c1λn
+ σdn

))
≥ 1− 2 exp

(
−2nδ20c

2
1

M2

)
, (2.21)

for any choice of cσ−αdn η−1
n ≤ δ0. Here, the constant c in front of σdn only depends on dimension d and the

constant in front of σ−αdn η−1
n is equal to the constants of the same term in Lemma 2.6.

Proof: From the last claim of Lemma 2.6, we have Vσn f̌τ−2δ0 ∈ An(τ) holds with probability at least

1− 2 exp
(−2nδ20c

2
1

M2

)
. Using and (2.16) of Lemma 2.5, under the choice of (σn, ηn) we have

λn∥f̂∥2G ≤ Pn[Lϕ(f̂)] + λn∥f̂∥2G ≤ Pn[Lϕ(Vσn f̌τ−2δ0)] + λn∥Vσn f̌τ−2δ0∥2G ≤ c

(
M

c1
+ λnσ

d
n

)
,

which gives (2.21). □

Lemma 2.7 implies that, instead of A(τ) and An(τ), we can concentrate on the sets given by

A(τ, Cn) =
{
f ∈ G

∣∣∣∣∥f∥G ≤ Cn, E[Rψ(f, ηn)] ≤ τ

}
,

An(τ, Cn) =
{
f ∈ G

∣∣∣∣∥f∥G ≤ Cn,Pn[Rψ(f, ηn)] ≤ τ

}
,

where Cn = c
√

M
c1λn

+ σdn. This is because f̂ belongs to them with a high probability.

We further study the relationships among A(τ, Cn) and An(τ, Cn). The proof will use a general covering

number property for Gaussian RKHS from Steinwart and Scovel (2007), which is stated as Proposition 2.1 in

Section 2.9.1.4.

Lemma 2.8 For any δ > 0 with probability at least 1− exp
(
− nδ2c21

2M2

)
, we have

A(τ − ϵn, Cn) ⊂ An(τ, Cn) ⊂ A(τ + ϵn, Cn), (2.22)

where

ϵn = cσ(1−ν2/2)(1+θ2)d/2n

(
M

c1λn
+ σdn

)ν2/4
η−ν2/2n + δ

for 0 < ν2 ≤ 2 and θ2 > 0. Moreover, let

ϵ′n = ϵn + cσ−αdn η−1
n ,
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then for any λn and σn such that ϵ′n ≤ 2δ0, we have Vσn f̌τ−ϵ′n ∈ A(τ − ϵn, Cn) and

|E[Lϕ(Vσn f̌τ−ϵ′n)]− E[Lϕ(f
∗
τ−ϵ′n)]| ≤ cσ−αdn .

Here, the constants in front of σ−adn and σ−adn η−1
n are equal to the constants in Lemma 2.7. c in front of ϵn is

a constant only dependent on (M, c1, ν2, θ2, d).

Proof: To prove (2.22), it is sufficient to show that with probability 1− exp
(
− nδ2c21

2M2

)
we have

sup
f∈Rψ,ηn◦BG(Cn)

|Pn[f ]− E[f ]| ≤ ϵn, (2.23)

where Rψ,ηn ◦ BG(Cn) = {Rψ(f, ηn)|f ∈ BG(Cn)} and BG(Cn) denotes the closed ball in G with radius Cn.

By Theorem 4.10 from Wainwright (2019), we have that

sup
f∈Rψ,ηn◦BG(Cn)

|Pn[f ]− E[f ]| ≤ 2Radn(Rψ,ηn ◦ BG(Cn)) + δ

holds with probability 1− exp
(
− nδ2c21

2M2

)
, where Radn(F) is the Rademacher complexity of some functional

set F defined as

Radn(F) = EXEϵsup
f∈F

∣∣∣∣ 1n
n∑
i=1

ϵif(Xi)

∣∣∣∣, ϵi ∼ i.i.d. P (ϵi = ±1) = 0.5.

Following the proof in Example 5.24 from Wainwright (2019), by Dudley’s entropy integral the Rademacher

complexity is upper bound by

Radn(Rψ,ηn ◦ BG(Cn)) ≤E
[
24√
n

∫ 2M
c1

0

√
logN (Rψ,ηn ◦ BG(Cn), ϵ, L2(Pn))dϵ

]
(i)

≤E
[
24√
n

∫ 2M
c1

0

√
logN

(
BG ,

ηnc1
MCn

ϵ, L2(Pn)
)
dϵ

]
(ii)

≤ cσ(1−ν2/2)(1+θ2)d/2n

(
M

c1λn
+ c2dσ

d
n

)ν2/4
η−ν2/2n ,

(2.24)

where to obtain (i) we have used the fact that Rψ,ηn is a Lipschitz function of f with Lipschitz constant M
c1ηn

,

and in (ii) we used the covering number property of BG stated in Proposition 2.1.
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For the second part of the lemma, Vσn f̌τ−ϵ′n ∈ A(τ − ϵn, Cn) is a direct conclusion of (2.18) from

Lemma 2.6 since

E[R(Vσn f̌τ−ϵ′n , ηn)]

≤|E[R(Vσn f̌τ−ϵ′n , ηn)]− E[R(Vσnf
∗
τ−ϵ′n , ηn)]|+ |E[R(Vσnf

∗
τ−ϵ′n , ηn)]|

≤τ − ϵ′n + cσ−αdn = τ − ϵn.

Note that for any f1, f2 : H → [−1, 1] we always have

|E[Lϕ(f1)]− E[Lϕ(f2)]|

=E

[
E[Y |H,A = 1][ϕ(f1(H))− ϕ(f2(H))] + E[Y |H,A = −1][ϕ(−f1(H))− ϕ(−f2(H))]

]
=E[δY (H)[f1(H)− f2(H)]]

≤E[|δY (H)||f1(H)− f2(H)|].

Hence, using (2.17) in Lemma 2.5 and Assumption 2.5 we have

|E[Lϕ(Vσn f̌τ−ϵ′n)]−E[Lϕ(f
∗
τ−ϵ′n)]| ≤

8E[|δY (H)|e−σ
2
n∆

2
τ−ϵ′n

(h)/2d
] ≤ 8MK(2d)αd/2σ−αdn = cσ−αdn .

This completes the proof for the lemma. □

As a corollary of Lemma 2.8, we can establish risk error bound (2.14) stated in Theorem 2.4 for T = 1.

We stated this results as Corollary 2.1 below

Corollary 2.1 Suppose (σn, ηn) satisfy the requirement in Lemma 2.7, then for any 0 < ν2 ≤ 2, θ2 > 0 and

δ > 0 with probability at least 1− 2 exp
(−2nδ20c

2
1

M2

)
− 2 exp

(
− nδ2c21

2M2

)
we have

E

[
RI(Af̂(Ht) > 0)

p(A|H)

]
≤ τ + δ + cn−1/2σ(1−ν2/2)(1+θ2)d/2n

(
M

c1λn
+ σdtn

)ν2/4
η−ν2/2n .

Here, c is a constant only depends on (M, c1, ν2, θ2, d).
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Proof: Lemma 2.7 implies that f̂ is bounded by Cn with probability at least 1− 2 exp
(−2nδ20c

2
1

M2

)
. Moreover,

the concentration inequality (2.23) of Lemma 2.8 implies that

E[Rψ(f, ηn)]− Pn[Rψ(f, ηn)] ≤ δ + cn−1/2σ(1−ν2/2)(1+θ2)d/2n

(
M

c1λn
+ σdtn

)ν2/4
η−ν2/2n

holds with probability at least 1− 2 exp
(
− nδ2c21

2M2

)
for any δ > 0 and f ∈ BG(Cn). The result holds since

Pn[Rψ(f̂ , ηn)] ≤ τ by definition and note that

E

[
RI(Af̂(H) > 0)

p(A|H)

]
≤ E[Rψ(f̂ , ηn)].

□

Lemma 2.8 indicates that Vσn f̌τ−ϵ′n ∈ A(τ − ϵn, Cn) ⊆ An(τ, Cn) holds with high probability. In

Lemma 2.9, we will show that Vσn f̌τ−ϵ′n can be used to quantify the approximation bias caused by RKHS.

Lemma 2.9 Under the condition of Lemma 2.8, we have

inf
f∈A(τ−ϵn,Cn)

(E[Lϕ(f)] + λn∥f∥2G − E[Lϕ(f
∗
τ−ϵ′n)]) ≤ ξ(2)n .

Proof: Let f̌τ−ϵ′n = (σ2n/π)
d/4f̄τ−ϵ′n , then from Lemma 2.8 we have

|E[Lϕ(Vσn f̌τ−ϵ′n)]− E[Lϕ(f
∗
τ−ϵ′n)]| ≤ cσ−αdn ,

and Vσn f̌τ−ϵ′n ∈ A(τ − ϵn, Cn). Moreover, (2.16) from Lemma 2.5 gives that ∥Vσn f̌τ−ϵ′n |∥
2
G ≤ cσdn. Hence,

we have

inf
f∈A(τ−ϵn)

[E[Lϕ(f)] + λn∥f∥2G − E[Lϕ(f
∗
τ−ϵ′n)]]

= inf
f∈A(τ−ϵn)

[E[Lϕ(f)] + λn∥f∥2G − E[Lϕ(Vσn f̌τ−ϵ′n)]− λn∥Vσn f̌τ−ϵ′n∥
2
G ] + λn∥Vσn f̌τ−ϵ′n∥

2
G

+ E[Lϕ(Vσn f̌τ−ϵ′n)]− E[Lϕ(f
∗
τ−ϵ′n)]

≤c(λnσdn + σ−αdn ) ≡ ξ(2)n .

□
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2.9.1.3 Completing the proof of Theorem 2.2 (Theorem 2.4) for T = 1

We first establish the error bound for excessive risk (2.13). Since the Fisher consistency of Theorem 2.3

indicates V(g∗) = V(f∗τ ) and using the excessive risk inequality in Lemma 2.3 we have

V(f∗τ )− V(f̂) ≤ E[Vϕ(f∗τ , H)]− E[Vϕ(f̂ , H)] +Mηn,

the proof is completed if we can show

E[Vϕ(f∗τ , H)]− E[Vϕ(f̂ , H)] = E[Lϕ(f̂)]− E[Lϕ(f
∗
τ )] ≤ ξn + 2λ0ϵ

′
n = ξn + cϵ′n (2.25)

holds with probability at least 1− h(n, x), where λ0 denotes the λ∗-value for (τ − 2δ0) which is a constant

only depends on (τ, δ0).

According to Lemma 2.7, we have shown that ∥f̂∥G is bounded by Cn = c
√

M
c1λn

+ σdn with probability

least 1− 2 exp
(−2nδ20c

2
1

M2

)
. Hence, similar to proof of Corollary 2.1, we can restrict to set BG(Cn), and replace

A(τ) and An(τ) by A(τ, Cn) and An(τ, Cn) correspondingly.

To prove (2.25), we note that the left-hand side of the inequality can be composed as

E[Lϕ(f̂)]− E[Lϕ(f
∗
τ )]

≤E[Lϕ(f̂)] + λn∥f̂∥2G − E[Lϕ(f
∗
τ )]

≤E[Lϕ(f̂)] + λn∥f̂∥2G − inf
f∈An(τ,Cn)

(E[Lϕ(f)] + λn∥f∥2G)

+ inf
f∈An(τ,Cn)

(E[Lϕ(f)] + λn∥f∥2G)− E[Lϕ(f
∗
τ )]

≤E[Lϕ(f̂)] + λn∥f̂∥2G − inf
f∈An(τ,Cn)

(E[Lϕ(f)] + λn∥f∥2G)︸ ︷︷ ︸
(I)

+ inf
f∈An(τ,Cn)

(E[Lϕ(f)] + λn∥f∥2G)− inf
f∈A(τ−ϵn,Cn)

(E[Lϕ(f)] + λn∥f∥2G)︸ ︷︷ ︸
(II)

+ inf
f∈A(τ−ϵn,Cn)

(E[Lϕ(f)] + λn∥f∥2G)− E[Lϕ(f∗τ−ϵ′n)]︸ ︷︷ ︸
(III)

+E[Lϕ(f
∗
τ−ϵ′n)]− E[Lϕ(f

∗
τ )]︸ ︷︷ ︸

(IV )

.

(2.26)
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Using the inclusion result from Lemma 2.8, we have

A(τ − ϵn, Cn) ⊆ An(τ, Cn) ⊆ A(τ + ϵn, Cn)

holds with probability no more than 2 exp
(
− nδ20c

2
1

2M2

)
, and A(τ − ϵn, Cn) ⊆ An(τ, Cn) implies (II) < 0. In

addition, An(τ, Cn) ⊆ A(τ + ϵn, Cn) implies that

E[Lϕ(f̂)]− E[Lϕ(f
∗
τ )]

≥E[Lϕ(f̂)]− E[Lϕ(f
∗
τ+ϵ′n

)] + E[Lϕ(f
∗
τ+ϵ′n

)]− E[Lϕ(f
∗
τ )]

≥E[Lϕ(f
∗
τ+ϵ′n

)]− E[Lϕ(f
∗
τ )].

which provides a lower bound for the difference of the surrogate reward between f̂ and f∗τ . Using the

approximation bias obtained in Lemma 2.9, (III) is bounded by ξ(2)n . For term (IV ), using the Lipschitz

continuity property of the value function obtained in Lemma 2.4 we have

|E[Lϕ(f
∗
τ−ϵ′n)]− E[Lϕ(f

∗
τ )]| ≤ 2λ0ϵ

′
n.

Hence, it remains to derive the bound for (I). To this end, we define

f̃τ = argmin
f∈A(τ)

E[Lϕ(f)] + λn∥f∥2G , (2.27)

and apply Proposition 2.2 for L(f) = Lϕ(f) + λn∥f∥2G ,

W(X1,...,Xn) = {L(f)− L(f̃τ )|f ∈ An(τ, Cn)},

and

W = {L(f)− L(f̃τ )|f ∈ BG(Cn)}.

By similar argument used in Lemma 2.7, we can show that ∥f̃∥G ≤ Cn for any choice of cσ−αdn η−1
n ≤ δ0 and

consequently we can replace A(τ) by A(τ, Cn) in (2.27).

Proposition 2.2 requires ∥w∥∞ is uniformly bounded by some constant B for any w ∈ W and the

ϵ-covering number of N (B−1W, ϵ, L2(Pn)) is uniformly bounded with polynomial order of ϵ−1. To verify
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the first condition, using the property of Gaussian RKHS we have ∥f∥∞ ≤ ∥f∥G for all f ∈ BG(Cn) and it

follows that

∥L(f)− L(f̃τ )∥∞ ≤ M

c1
∥f − f̃τ∥∞ + λn∥f̃τ∥2G + λn∥f∥2G

≤ 2cM

c1

√
M

c1λn
+ σdn + 2c2λn

(
M

c1λn
+ σdn

)
= B,

which gives the choice of B. Moreover, from the sub-additivity of the entropy we have

logN (B−1W, 2ϵ, L2(Pn)) ≤ logN (B−1{Lϕ(f) : f ∈ BG(Cn), ϵ, L2(Pn)})︸ ︷︷ ︸
(V )

+ logN (B−1{λn∥f∥2G : f ∈ BG(Cn), ϵ, L2(Pn)})︸ ︷︷ ︸
(V I)

.

For (V ) we have

(V ) ≤ logN (BG(Cn),
c1Bϵ

M
,L2(Pn))

= logN (BG ,
c1Bϵ

M

(
c

√
M

c1λn
+ σdn

)−1

, L2(Pn))

≤ logN (BG , 2ϵ, L2(Pn)),

since L is a 1-Lipschitz function of f and c1Bϵ
M

(
c
√

M
c1λn

+ σdn

)−1

≥ 2 for sufficient small λn and large σn.

For (V I) we have

(V I) ≤ log

(
c

√
M

c1λn
+ σdn

/
(Bϵ)

)
= log

(
c

√
M

c1λn
+ σdn

/
B

)
− log ϵ ≤ − log ϵ.

Combining the upper bound of (V ) and (V I) and using the covering number property for

logN (BG , ϵ, L2(Pn)) given in Proposition 2.1, we have

sup
Pn

logN (B−1W, 2ϵ, L2(Pn)) ≤sup
Pn

logN (BG , 2ϵ, L2(Pn))− log ϵ

≤cϵ−ν1 ,
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for any σn > 0, 0 < ν1 < 2, θ1 > 0, ϵ > 0 and some positive constant c which only depends on (ν1, θ1, d).

This implies that

sup
Pn

logN (B−1W, ϵ, L2(Pn)) ≤ cσ(1−ν1/2)(1+θ1)dn ϵ−ν1 .

Therefore, let B = 2cM
c1

√
M
c1λn

+ σdn + 2c2λn

(
M
c1λn

+ σdn

)
and l = cσ

(1−ν1/2)(1+θ1)d
n , Proposition 2.2

implies that

P ∗([E[Lϕ(f̂)] + λn∥f̂∥2G − inf
f∈An(τ,Cn)

(E[Lϕ(f)] + λn∥f∥2G)] ≥ ξ(1)n ) ≤ e−x,

where

ξ(1)n = c

(
2M

c1

√
M

c1λn
+ σdn + 2λn

(
M

c1λn
+ σdn

))
n−1/2(σ(1−ν1/2)(1+θ1)d/2n + 2

√
2x+ 2x/

√
n)

for some positive c only depends on (ν1, θ1, d). The risk inequality (2.14) is guaranteed by Corollary 2.1 and

this completes the proof for T = 1.

2.9.1.4 Statement of Propositions

In this section, we give the complete statement of all general propositions used for establishing The-

orem 2.4. The first proposition states that the ϵ-covering number of BG under L2(Pn) is uniformly with

polynomial order in terms of σn and ϵ. This result was first established as Theorem 2.1 in Steinwart, Hush

and Scovel (2006).

Proposition 2.1 (Steinwart and Scovel (2007, Theorem 2.1)) For any ϵ > 0, we have

sup
Pn

logN (BG , ϵ, L2(Pn)) ≤ cσ(1−ν/2)(1+θ)dn ϵ−ν

for any 0 < ν ≤ 2 and θ > 0. Here, BG is the closed unit ball in G w.r.t. ∥ · ∥G and N (·, ϵ, L2(Pn)) is the

covering number of ϵ-ball w.r.t. empirical L2(Pn) norm

∥f∥L2(Pn) =

(
1

n

n∑
i=1

f(Xi)
2

)1/2

.

c is a constant only depends on (ν, θ, d).
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Proposition 2.2 quantifies the stochastic error of f̂ . The proof of Proposition 2.2 relies on first verifying

Proposition 2.3 which is a weaker generalization of Theorem 5.6 of Steinwart and Scovel (2007) to allow

the range of f̂ to be a subset depending on the sample. We give the proof of Proposition 2.3 after proving

Proposition 2.2, and two preliminary results used to establish Proposition 2.3 are stated as Proposition 2.4

and Proposition 2.5 at the end of this section.

To state Proposition 2.2, we use L to denote any loss function from space Z × F to R and P to denote

the probability distribution on Z . In this section, we abuse the notation and use f∗ and f̂ to denote the true

and empirical minimizer under loss function L, i.e.,

f∗ = argmin
f∈F

E[L(f)], f̂ = argmin
f∈F

Pn[L(f)].

Proposition 2.2 (Bounding Stochastic Error) Let L be a loss function from space Z × F to R. Let P be a

probability measure on Z and F be a set of bounded measurable functions from Z to R. Suppose that we

have a set of functional sets {F(z1,...,zn)}(z1,...,zn)∈Zn and for any index (z1, ..., zn) we have F(z1,...,zn) ⊂ F .

Let

W = {L(f)− L(f∗)|f ∈ F}.

If there exists B > 0 such that ∥w∥∞ ≤ B for all w ∈ W and W is separable w.r.t. ∥ · ∥∞. Moreover, there

are constants n ≥ l ≥ 1 and 0 < p < 2 such that

sup
Pn

logN (B−1W, ϵ, L2(Pn)) ≤ lϵ−p

for any ϵ > 0. Then there exists c > 0 depending only on p such that for any n ≥ 1, h ≥ 1 we have

P ∗(E[L(f̂)] > E[L(f∗)] + cζn(l, B, h)) ≤ e−h,

where

ζn(l, B, h) = 6cB

(
l

n

)1/2

+ 2
√
2B

√
h

n
+ 2B

h

n
.

Proof: Applying Proposition 2.3 to set W = F and

W(z1,...,zn) = {L(f)− L(f∗)|f ∈ F(z1,...,zn)},
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we have

P ∗(E[L(f̂)] >E[L(f∗)] + cζn)

≤ P ∗(∃w ∈ W(Z1,...,Zn) with Pn(w) ≤ 0 we have E(w) ≥ ζn)

≤ e−h,

where ζn = 3E sup
s∈S

Pn(s) + 2
√
2B

√
h
n + 2B h

n and S are defined in statement of Proposition 2.3. Hence,

the result is proved if we can show that under additional covering number assumption, ζn is upper bounded

by ζn(l, B, h). To give an upper bound of E sup
s∈S

Pn(s), it is worth noticing that by the definition of S in

Proposition 2.3 we have

E sup
s∈S

Pn(s) ≤ E sup
w∈W,E(w2)≤B2

|E(w)− Pn(w)| = ωn(W, B2),

where ωn(W, ξ) is the modulus of the continuity of W . Define the local Rademacher complexity of W to be

Radn(W, ξ) = EZ Eϵ sup
w∈W,E(w2)≤ξ

∣∣∣∣ 1n
n∑
i=1

ϵif(Zi)

∣∣∣∣,
where {ϵi} are n i.i.d. Rademacher random variables. According to van der Vaart and Wellner (1996), we

have

ωn(W, ξ) ≤ 2Radn(W, ξ).

Using the property that ∀r > 0

Radn(rW, ξ) = rRadn(W, r−2ξ)

and applying Proposition 5.5 of Steinwart and Scovel (2007), which is stated as Proposition 2.4, under the

assumption on the covering number of W , we have

E sup
s∈S

Pn(s) ≤ωn(W, B2) ≤ 2Radn(W, B2) ≤ 2BRadn(B−1W, 1) ≤ 2cB

(
l

n

)1/2

.

□

Proposition 2.3 Let P be a probability measure on Z and W be a set of bounded measurable functions from

Z to R. Suppose that we have a set of functional sets {W(z1,...,zn)}(z1,...,zn)∈Zn and for any index (z1, ..., zn)
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we have W(z1,...,zn) ⊂ W . Let (Z1, ..., Zn) be n i.i.d. sample drawn from P . Suppose that W is separable

w.r.t. ∥ · ∥∞ and ∥w∥∞ ≤ B < ∞ for all w ∈ W . Let S = {E(w) − w : w ∈ W}. Then for all n ≥ 1,

h ≥ 1 and

ζn = 3E sup
s∈S

Pn(s) + 2
√
2B

√
h

n
+ 2B

h

n
,

we have

P ∗(for all w ∈ W(Z1,...,Zn) with Pn(w) ≤ 0 we have E(w) ≤ ζn) ≥ 1− e−h.

Proof: Let us define S(z1,...,zn) = {E(w)− w : w ∈ W(z1,...,zn)}, by the assumption of W it is obvious that

S(z1,...,zn) ⊂ S with E(s) = 0, ∥s∥∞ ≤ 2B and E(s2) ≤ 4B2 for all s ∈ S. Moreover, it is also easy to

verify that S is separable w.r.t. ∥ · ∥∞ given W is separable w.r.t. ∥ · ∥∞. Note that

P ∗(∃w ∈ W(Z1,...,Zn) with Pn(w) ≤ 0 we have E(w) ≥ ζn)

≤P ∗(∃w ∈ W(Z1,...,Zn) with E(w)− Pn(w) ≥ ζn)

≤Pn( sup
s∈S(Z1,...,Zn)

Pn(s) ≥ ζn)

≤Pn(sup
s∈S

Pn(s) ≥ ζn).

Using Theorem 5.3 from Steinwart and Scovel (2007), which is stated as Proposition 2.5, with b = 2B and

ι = 4B2, we have

Pn(sup
s∈S

Pn(s) ≥ ζn) ≤ Pn
(
sup
s∈S

Pn(s) ≥ 3Esup
s∈S

Pn(s) + 2
√
2B

√
h

n
+ 2B

h

n

)
≤ e−h.

□

Proposition 2.4 (Steinwart and Scovel (2007, Proposition 5.5)) Let W be a class of measurable functions

from Z to [−1, 1] which is separable w.r.t. ∥ · ∥∞ and let P be a probability measure on Z. Assume that there

are constants q > 0 and 0 < p < 2 with sup
Pn

logN(W, ϵ, L2(Pn)) ≤ qϵ−p for all ϵ > 0. Then there exists a

constant c depending only on p such that for all n ≥ 1 and all ϵ > 0 we have

Radn(W, ϵ) ≤ c

{
ϵ1/2−p/4

(
q

n

)1/2

,

(
q

n

)2/(2+p)}
.
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Proposition 2.5 (Steinwart and Scovel (2007, Theorem 5.3)) Let P be a probability measure on Z and W

be a set of bounded measurable functions from Z to R which is separable w.r.t. ∥ · ∥∞ and satisfies E(w) = 0

for all w ∈ W . Furthermore, let b > 0 and ι ≥ 0 be constants with ∥w∥∞ ≤ b and E(w2) ≤ ι for all

w ∈ W . Then for all x ≥ 1 and all n ≥ 1 we have

Pn
(
sup
w∈W

Pn(w) > 3E sup
w∈W

Pn(w) +
√

2xι

n
+
bx

n

)
≤ e−x.

2.9.2 Proof of Theorem 2.2 (Theorem 2.4) for T ≥ 2

We first prove (2.13) is Theorem 2.4. To this end, we define

Lϕ,t(ft; ft+1, ..., fT ) = E

[
(Yt + Ut+1(Ht+1; ft+1, ..., fT ))

p(At|Ht)
ϕ(Atft(Ht))

]
,

and

Ṽt = sup
ft∈At(τt)

Vt(ft, f̂t+1, ..., f̂T ), (2.28)

where

Vt(gt, ..., gT ) = E

[
(
∑T

j=t Yj)
∏T
j=t I(Ajgj(Hj) > 0)∏T

j=t p(Aj |Hj)

]
.

Note that the Fisher consistency in Theorem 2.1 indicates that Vt(g∗t , ..., g∗T ) = Vt(f∗t , ..., f∗T ), and it is

equivalent to derive an upper bound for Vt(f∗t , ..., f∗T )− Vt(f̂t, ..., f̂T ).

First, note that by repeating the same argument for T = 1, we can show ∥f̂t∥Gt is bounded by Cn,t =

c
√

(T−1+t)M
c1λn,t

+ σdtn,t with probability at least 1− 2 exp

(
− 2nδ20,tc

2
1

(T−t+1)2M2

)
for any t = 1, .., T . Hence, we

can replace At(τt) in (2.28) by At(τt, Cn,t) and obtain

Vt(f∗t , ..., f∗T )− Vt(f̂t, ..., f̂T )

=Vt(f∗t , ..., f∗T )− Ṽt + Ṽt − Vt(f̂t, ..., f̂T )

≤Vt(f∗t , ..., f∗T )− Ṽt︸ ︷︷ ︸
(I)

+Lϕ,t(f̂t; f̂t+1, ..., f̂T )− inf
ft∈At(τt,Cn,t)

Lϕ,t(ft; f̂t+1, ..., f̂T )︸ ︷︷ ︸
(II)

+(T − t+ 1)Mηn,t,

where

At(τt, Cn,t) =
{
f ∈ Gt

∣∣∣∣∥f∥Gt ≤ Cn,t, E
[
Rtψ(Atf(Ht), ηn,t)

p(At|Ht)

]
≤ τt

}
,
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and to obtain the last inequality we have used the fact that |Qt|∞ ≤ (T − t+ 1)M and the excessive risk

inequality of Lemma 2.3 to replace the difference under 0-1 loss in terms of Vt by the difference under hinge

loss in terms of Lϕ,t.

For (I), we have

(I) ≤Vt(f∗t , ..., f∗T )− sup
ft∈At(τt,Cn,t)

[Vt(ft, f̂t+1, ..., f̂T )− Vt(ft, f∗t+1..., f
∗
T ) + Vt(ft, f∗t+1..., f

∗
T )]

≤Vt(f∗t , ..., f∗T )− sup
ft∈At(τt,Cn,t)

Vt(ft, f∗t+1, ..., f
∗
t ) + c−1

1 |Vt+1(f
∗
t+1, ..., f

∗
T )− Vt+1(f̂t+1, ..., f̂T )|

=c−1
1 |Vt+1(f

∗
t+1, ..., f

∗
T )− Vt+1(f̂t+1, ..., f̂T )|+ (T − t+ 1)Mηn,t,

+ inf
ft∈At(τt,Cn,t)

Lϕ,t(ft; f
∗
t+1, ..., f

∗
T )− Lϕ,t(f

∗
t ; f

∗
t+1, ..., f

∗
T )︸ ︷︷ ︸

(III)

where again we have used the fact that |Qt|∞ ≤ (T −t+1)M and the excessive risk inequality of Lemma 2.3.

To bound the last term in (I), let f∗t,τ ′ denotes the solution of (2.3) of t by replace the risk constraint from τt

to τ ′. Then the second part of Lemma 2.8 indicates that Vσn,t f̌t,τt−ϵ′n,t ∈ At(τt − ϵn,t, Cn,t) ⊆ At(τt, Cn,t),

where f̌t,τt−ϵ′n,t = (σ2n,t/π)f̄t,τt−ϵ′n,t , and

|Lϕ,t(Vσn,t f̌t,τt−ϵ′n,t ; f
∗
t+1, ..., f

∗
T )− Lϕ,t(f

∗
t,τt−ϵ′n,t

; f∗t+1, ..., f
∗
T )| ≤ cσ−αtdtn,t .

Therefore, we have

(III) ≤Lϕ,t(Vσn,t f̌t,τt−ϵ′n,t ; f
∗
t+1, ..., f

∗
T )− Lϕ,t(f

∗
t ; f

∗
t+1, ..., f

∗
T )

≤|Lϕ,t(Vσn,t f̌t,τt−ϵ′n,t ; f
∗
t+1, ..., f

∗
T )− Lϕ,t(f

∗
t,τt−ϵ′n,t

; f∗t+1, ..., f
∗
T )|

+ Lϕ,t(f
∗
t,τt−ϵ′n,t

; f∗t+1, ..., f
∗
T )− Lϕ,t(f

∗
t ; f

∗
t+1, ..., f

∗
T )

≤c(σ−αtdtn,t + ϵ′n,t) ≤ O(ϵ′n,t)

where in the second inequality from the bottom we used the Lipschitz continuity of the value function in

Lemma 2.5 and by definition f∗t = f∗t,τt .
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For (II), we have

(II) ≤Lϕ,t(f̂t; f̂t+1, ..., f̂T ) + λn,t∥f̂t∥2Gt − inf
ft∈At(τt,Cn,t)

Lϕ,t(ft; f̂t+1, ..., f̂T )

=

[
Lϕ,t(f̂t; f̂t+1, ..., f̂T ) + λn,t∥f̂t∥2Gt

− inf
ft∈At,n(τt,Cn,t)

(
Lϕ,t(ft; f̂t+1, ..., f̂T ) + λn,t∥ft∥2Gt

)]
+

[
inf

ft∈At,n(τt,Cn,t)

(
Lϕ,t(ft; f̂t+1, ..., f̂T ) + λn,t∥ft∥2Gt

)
− inf
ft∈At(τt,Cn,t)

Lϕ,t(ft; f̂t+1, ..., f̂T )

]
,

(2.29)

where

At,n(τ, Cn,t) =
{
f ∈ Gt

∣∣∣∣∥f∥Gt ≤ Cn,t,
1

n

n∑
i=1

Ritψ(Aitf(Hit), ηn,t)

p(Ait|Hit)
≤ τt

}
.

The first term on the right-hand side of the inequality (2.29) can be bounded by

Lϕ,t(f̂t; f̂t+1, ..., f̂T ) + λn,t∥f̂t∥2Gt − inf
ft∈At,n(τt,Cn,t)

(
Lϕ,t(ft; f̂t+1, ..., f̂T ) + λn,t∥ft∥2Gt

)
≤2c−1

1 |Vt+1(f
∗
t+1, ..., f

∗
T )− Vt+1(f̂t+1, ..., f̂T )|

+

[
Lϕ,t(f̂t; f

∗
t+1, ..., f

∗
T ) + λn,t∥f̂t∥2Gt − inf

ft∈At,n(τt,Cn,t)

(
Lϕ,t(ft; f

∗
t+1, ..., f

∗
T ) + λn,t∥ft∥2Gt

)]
︸ ︷︷ ︸

(IV )

,

and (IV ) is equal to stochastic error term (I) in the proof of T = 1 with Y being replaced by Qt. Note that

|Qt| ≤ (T − t+ 1)M and consequently (IV ) can be bounded using exactly the same argument for term (I),

which turns out to have order O(ξ
(1)
n,t) with probability at least 1− exp(−xt). For the second term of (2.29),

we have

inf
ft∈At,n(τt,Cn,t)

(
Lϕ,t(ft; f̂t+1, ..., f̂T ) + λn,t∥ft∥2Gt

)
− inf
ft∈At(τt,Cn,t)

Lϕ,t(ft; f̂t+1, ..., f̂T )

≤2c−1
1 |Vt+1(f

∗
t+1, ..., f

∗
T )− Vt+1(f̂t+1, ..., f̂T )|

+

[
inf

ft∈At,n(τt)

(
Lϕ,t(ft; f

∗
t+1, ..., f

∗
T ) + λn,t∥ft∥2Gt

)
− inf
ft∈At(τt,Cn,t)

Lϕ,t(ft; f
∗
t+1,τt+1

, ..., f∗T )

]
︸ ︷︷ ︸

(V )

.
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Note that (V ) is the approximation bias term in (2.29) also with Y being replaced by Qt. Hence, following

the same argument for T = 1, (V ) can be decomposed to terms (II)−(IV ) in (2.29) and bounded separately,

which turns out to have order O(ξ
(2)
n,t) +O(ϵ′n,t) in total with probability at least 1− 2 exp

(
− nδ2t c

2
1

2(T−t+1)2M2

)
.

Combing these results, we conclude that with probability at least 1− hn(t, xt),

Vt(f∗t , ..., f∗T )− Vt(f̂t, ..., f̂T ) ≤5c−1
1 |Vt+1(f

∗
t+1, ..., f

∗
T )− Vt+1(f̂t+1, ..., f̂T )|

+ cη−1
n,t + c(ϵ′n,t)︸ ︷︷ ︸

(III)

+ c(ξ
(1)
n,t + ξ

(2)
n,t + ϵ′n,t)︸ ︷︷ ︸

(IV )+(V )

≤5c−1
1 |Vt+1(f

∗
t+1, ..., f

∗
T )− Vt+1(f̂t+1, ..., f̂T )|

+ c(ξn,t + ϵ′n,t + η−1
n,t)

(2.30)

for some constant c.

On the other hand, according to Lemma 2.8, similar to the prove when T = 1 we can show that

f̂t ∈ At,n(τt, Cn,t) ⊆ At(τt + ϵ′n,t, Cn,t) with probability at least 1 − 2 exp(
nδ2t c

2
1

2(T−t+1)2M2 ). Therefore, we

have

Vt(f∗t , ..., f∗T )− Vt(f̂t, ..., f̂T )

≥Vt(f∗t , ..., f∗T )− sup
ft∈At(τt+ϵ′n,t,Cn,t)

Vt(ft, f̂t+1, ..., f̂T )

≥Vt(f∗t , ..., f∗T )− Vt(f∗t,τt+ϵ′n,t , f
∗
t+1, ..., f

∗
T )

− c−1
1 |Vt(f∗t+1, ..., f

∗
T )− Vt(f̂t+1, ..., f̂T )|

≥cϵ′n,t − c−1
1 |Vt(f∗t+1,τt+1

, ..., f∗T )− Vt(f̂t+1, ..., f̂T )|.

(2.31)

Finally, by combining (2.30) and (2.31), we obtain that with probability at least 1− hn(t, xt),

|Vt(f∗t , ..., f∗T )− Vt(f̂t, ..., f̂T )| ≤ 5c−1
1 |Vt+1(f

∗
t+1, ..., f

∗
T )− Vt+1(f̂t+1, ..., f̂T )|

+ c(ξn,t + ϵ′n,t + η−1
n,t).

Hence, (2.13) in Theorem 2.4 follows by induction starting from t = T to 1. The error bound of risk (2.14)

can be established by repeating the same argument in Corollary 2.1 for each stage. This completes the proof

of Theorem 2.4.
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2.10 Additional Results for Simulation Setting I and II

This section reports the additional simulation results for setting I with τ = 1.5 and setting II with τ = 1.3.

See Figures 2.3 and 2.4 and Table 2.4.
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Figure 2.3: Estimated reward/risk on independent testing data set for simulation setting I, training sample size n = {200, 400}, η =
{0.02, 0.04, ..., 0.1} under linear kernel or Gaussian kernel. The dashed line in reward plots refers to the theoretical optimal reward under given
constraints. The dashed line in risk plots represents the risk constraint τ = 1.5.
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Figure 2.4: Estimated reward/risk on independent testing data set for simulation setting II, training sample size n = {200, 400} and
η = {0.02, 0.04, ..., 0.1} (x-axis) under linear kernel or Gaussian kernel. The dashed line in reward plots refers to the theoretical optimal reward
under given constraints. The dashed line in risk plots represents the risk constraint τ = 1.3.
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CHAPTER 3: CONTROLLING CUMULATIVE ADVERSE RISK IN LEARNING OPTIMAL
DYNAMIC TREATMENT REGIMENS

3.1 Introduction

In Chapter 2, we propose a new method to handle optimal DTRs problems for treating chronic diseases

where aggressive treatment with a better reward is often accompanied by higher toxicity. The problem

can be formulated as an optimal DTRs learning problem with stagewise risk restriction and a backward

induction-based method, BR-DTRs, is proposed to learn optimal DTRs under the stagewise restriction.

However, in practice, more aggressive treatments may lead to a higher efficacy but are also more likely to

induce elevated risk in the long term. For example, when treating type 2 diabetes (T2D), American Diabetes

Association (ADA) recommends intensified insulin therapy when patients fail to reach a safe hemoglobin A1c

level after receiving first and second-line medications (American Diabetes Association, 2022a). However,

several studies have shown that insulin therapies are commonly associated with long-term weight gain, which

can potentially increase the risk of cardiovascular diseases (Wing et al., 2011; Apovian, Okemah and O’Neil,

2019). Thus, weight gain is recommended to be controlled under 5% for T2D patients (Park et al., 2022).

Other examples include aggressive therapies for cancer (e.g., radiotherapy) or kidney failure (e.g., dialysis),

which may treat diseases effectively but often lead to poor quality of life and a high economic burden for

patients.

Most methods in personalized medicine literature that consider benefit-risk trade-offs are restricted to a

single-stage decision problem. One class of methods (Lee et al., 2015; Butler et al., 2018) prespecify a utility

function to combine benefit and risk outcomes into a single composite outcome, and the optimal decision is

obtained by maximizing the utility function. A major limitation of these methods is that it is often difficult

to reach a consensus on how to prespecify the composite outcome, especially when the benefit and risk

outcomes are measured on very different scales. Recent work in reinforcement learning (e.g., Bhatnagar and

Lakshmanan, 2012; Mahdavi, Jin and Yang, 2012; Chow et al., 2017; Yu et al., 2019; Cao, Zhang and Poor,

2021; Ding et al., 2021; Badanidiyuru, Kleinberg and Slivkins, 2018; Cayci, Eryilmaz and Srikant, 2020)

have considered learning optimal policy under safety/budget constraints. However, these methods rely on
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the Markovian decision process assumption (MDP) and require parametric models for the unknown policy,

which do not hold for general DTRs problems.

When the cumulative risk needs to be considered in a DTR problem, the most important challenge is

that due to delayed effects, treatments at one stage may affect both the benefit and risk outcomes in any

of the future stages. Therefore, the estimation of the optimal treatment rule at any stage must take into

account its cumulative impact on future stages. However, commonly used backward algorithms such as

Q-learning or O-learning require the future stage rules to be already estimated optimally. These methods are

no longer applicable because the cumulative risk control depends on not only the future stage rules but also

the treatment decision, which is yet to be estimated at the current stage.

To respond to the real demand from clinical application, in this chapter, we propose a new statistical

learning framework, namely, multistage cumulative benefit-risk (CBR) framework, to estimate the optimal

DTRs that maximize the expected benefit (or reward) outcome but, at the same time, control the expected

cumulative risk below a pre-specified threshold. We propose two methods to solve CBR. First, we introduce

a Lagrange function and obtain its solution via solving an unconstrained DTR problem using a backward

algorithm based on Q-learning or O-learning. Second and more interestingly, we propose a new procedure

under multistage ramp loss (MRL) to estimate the DTRs simultaneously across all stages. The MRL can be

viewed as an extension of the univariate ramp loss to a multivariate setting.

Our work presented in this chapter contains several novel contributions. First, converting the constrained

estimation for DTRs to the unconstrained problem enables us to adopt the backward algorithm from the

existing methods to estimate the optimal DTRs, and we prove that the latter leads to the optimal DTRs

that satisfy the cumulative risk control. Second, in addition to the backward induction algorithm, we also

propose a simultaneous learning method based on MRL, for which the estimation of one decision function

is contingent on other decisions at later stages so that we can estimate the treatment rules using all data at

the same time. Third, we show that the non-asymptotic convergence rates of the expected reward and risk

under the estimated rules can be derived from the unconstrained DTRs associated with the Lagrange function,

which provides the finite sample performance guarantee. We also show that using MRL is guaranteed to yield

Fisher consistent rules for any unconstrained DTRs problem, and consequently, using the multistage ramp

loss along with the proposed estimation procedure will yield the true optimal DTRs.

The remaining chapter is organized as follows. In Section 3.2, we formally introduce the CBR problem

along with assumptions. We then describe a general framework to solve CBR after converting the problem
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to an unconstrained one. In the same section, we present a backward algorithm based on Q-learning and

O-learning, and the new MRL approach to obtain the solutions using empirical data. In Section 3.3, we

obtain the non-asymptotic convergence rates for both the expected reward and risk under the estimated

rules. In Section 3.4, we present results from simulation studies to examine the performance of the proposed

approaches. In Section 3.5, we apply the proposed methods to estimate the optimal DTRs using a two-stage

trial for treating T2D patients. In Section 3.6, we discuss possible future extensions based on our work. The

DC algorithm of conducting MRL is presented in Section 3.7 and the proofs of the main results are given in

Section 3.8 and Section 3.9.

3.2 Method

3.2.1 Problem setup and assumptions

Consider a T -stage decision problem, where T is finite and often small in clinical settings. We use

Y to denote the total reward at the end of stage T and R to denote the cumulative risk at stage T , both

assumed to be bounded by a constant M . We consider a sequence of dichotomous treatments over T

stages and let At ∈ {−1,+1} denote the observed treatment at stage t. Additionally, we let Ht denote all

observed feature variables prior to stage t, including the treatments or any immediate outcomes in previous

stages. Thus, H1 ⊂ H2 ⊂ · · · ⊂ HT . We assume that data are from a sequential multiple assignment

randomized trial (SMART) (Murphy, 2005a), so the observed data for n independent subjects consist of

Hi1, Ai1, Hi2, · · · , AiT , HiT , Yi and Ri for i = 1, ..., n. Like previous chapters, we define a DTR to be any

function from the space:

D = D1 × · · · × DT → {−1,+1}T , where Dt : Ht → {−1,+1}.

To control the cumulative risk, we formulate the CBR problem as seeking the optimal rule D∗ = (D∗
1, ...,D∗

T )

that solves the optimization problem

max
D

ED[Y ],

subject to ED[R] ≤ τ
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for a prespecified risk constraint τ . Here, ED[·] denotes the expectation when At are forced to be Dt(Ht)

for t = 1, ..., T . In other words, the optimal treatment rule yields the maximal reward at stage T among all

feasible rules whose cumulative risk is no greater than the risk threshold τ .

Like the standard DTRs and BR-DTRs, to ensure that ED[·] is estimable given the observed data, we

also require several assumptions.

Assumption 3.1 Stable Unit Treatment Value (SUTV): A subject’s cumulative potential outcome is not

influenced by other subjects’ treatments allocation, i.e.,

(Y,R) = (Y (āT ), R(āT )), if ĀT = āT .

Assumption 3.2 No Unmeasured Confounders (NUC): For any t ∈ {1, ..., T} and āT ∈ {−1,+1}T ,

At ⊥⊥ (Ht+1(āt), ...,HT (āT−1), Y (āT ), R(āT ))
∣∣Ht.

Assumption 3.3 (Positivity) For any t = 1, ..., T , there exists universal constants 0 < c1 ≤ c2 < 1 such

that

c1 ≤ p(At = 1|Ht) ≤ c2 for Ht a.s.

Assumption 3.1 and 3.2 are SUTV and NUC assumptions under the cumulative risk control framework

and Assumption 3.3 is a restatement of the Positivity assumption. In particular, again under Assumption 3.1

to 3.3, Qian and Murphy (2011) showed that the original problem can be reformulated as

max
D

E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
, subject to E

[
R

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
≤ τ. (3.1)

Finally, assuming that the decision rules are determined as the signs of some decision functions (f1, ..., fT ),

i.e., Dt(Ht) = sign(ft(Ht)), then (3.1) becomes

max
(f1,...,fT )∈F1×···×FT

E

[
Y

∏T
t=1 I(Atft(Ht) > 0)∏T

t=1 p(At|Ht)

]
, subject to E

[
R

∏T
t=1 I(Atft(Ht) > 0)∏T

t=1 p(At|Ht)

]
≤ τ,

(3.2)

where Ft denotes the set of all measurable functions from Ht to R
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3.2.2 A general procedure for solving CBR problem

To solve CBR problems, we consider the Lagrange function of (3.1), or equivalently, (3.2). For any

κ ∈ [0,∞], the Lagrange function of (3.1) with multiplier κ is given by

E

[
{Y − κ(R− τ)}

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
.

Letting γ = κ/(1 + κ) ∈ [0, 1], we aim to solve the following problem for each γ:

D∗
γ = (D∗

1,γ , ...,D∗
T,γ) = argmax

D
E

[
{(1− γ)Y − γR}

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
(3.3)

where we omit the constant τ which will not affect the solution when γ is fixed.

Let Y(γ) and R(γ) denote the expected reward and risk associated with the optimal decision rules of

(3.3), i.e.,

Y(γ) = E

[
Y

∏T
t=1 I(At = D∗

t,γ(Ht))∏T
t=1 p(At|Ht)

]
, R(γ) = E

[
R

∏T
t=1 I(At = D∗

t,γ(Ht))∏T
t=1 p(At|Ht)

]
.

To ensure that there exists a non-trivial solution to the above problem, we also require the following regular

assumption:

Assumption 3.4 R(γ) is a continuous function for γ ∈ [0, 1] and R(1) < τ ≤ R(0).

As a note, the restriction R(1) < τ in Assumption 3.4 ensures that there exists at least one feasible DTRs

that satisfy the risk constraint, and τ ≤ R(0) is to exclude the trivial case when the cumulative risk for

the optimal DTR without the constraint is not larger than τ . The continuity assumption in Assumption 3.4

implies that there exists some γ∗, which may not be unique, satisfying R(γ∗) = τ . For any such γ∗, our

following lemma shows that Dγ∗ is indeed the optimal DTRs.

Lemma 3.1 Under Assumption 3.1 to 3.4, both Y(γ) and R(γ) are non-increasing function of γ. Further-

more, EDγ∗ [Y ] ≥ ED[Y ] for any DTRs, D, satisfying ED[R] ≤ τ .

Lemma 3.1 indicates that solving unconstrained problem (3.3) associated with γ∗ produces a solution of

the CBR problem. The proof of Lemma 3.1 is given in the Section 3.8. In addition, the continuity of R(γ)

implies that searching for γ∗ can be carried out using the bisection procedure starting from γmin = 0 and
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γmax = 1 until reaching the termination condition |γmin − γmax| ≤ ϵ for some convergence threshold ϵ. The

complete numerical algorithm based on bisection search is provided in the Section 3.7.

As an important remark, although the lemma implies that the optimal DTRs are associated with a

linear combination of Y and R, it should be noted that the coefficient in this linear combination, i.e, γ∗, is

data-driven and depends on the DTRs. Therefore, this problem is fundamentally different from learning the

optimal DTRs based on a utility function where the linear combination needs to be pre-specified.

3.2.3 Backward algorithm for maximizing the Lagrange function

Since (3.3) is an unconstrained problem for estimating DTRs for fixed γ, many existing methods such

as Q-learning and OWL can be used to learn the optimal DTRs using a backward procedure, after treating

(1− γ)Y − γR as the reward outcome. Specifically, we define Q-function in turn for t = T, T − 1, ..., 1 as

Qt,γ(ht, at) = E[ argmax
at+1∈{−1,+1}

Qt+1,γ(Ht+1, at+1)|Ht = ht, At = at]

with QT+1,γ = (1− γ)Y − γR. Then the optimal solution for D∗
γ is

D∗
t,γ(ht) = sign(Qt,γ(ht, 1)−Qt,γ(ht,−1)), t = 1, ..., T.

A backward Q-learning estimates the conditional expectation in the definitions of Qt,γ using regression

models, in turn from t = T to t = 1, then the estimated DTRs are obtained by plugging the estimated

Q-functions into the above expression (Qian and Murphy, 2011).

A more robust procedure without fitting regression models, namely backward OWL, uses weighted sup-

port vector machines to directly optimize the objective function at each stage (Zhao et al., 2015). Specifically,

let (g∗1,γ , ..., g
∗
T,γ) denotes the optimal decision functions corresponding to the outcomeOγ = (1−γ)Y −γR,

then Zhao et al. (2015) indicates that {g∗t,γ}Tt=1 can be sequentially estimated via

g∗t,γ = argmax
f∈Ft

E

[
Oγ

I(Atft(Ht) > 0)
∏T
s=t+1 I(Asg∗s,γ(Hs) > 0)∏T

s=t p(As|Hs)

]
(3.4)

for t = T, · · · , 1 in a backward order. In other words, the optimal decision function at stage t can be obtained

by maximizing the expected cumulative reward up to stage t among patients whose future observed treatments

follow the optimal treatments. Using empirical data, an estimator of g∗t,γ can be obtained via solving the
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empirical version of (3.4) in a backward order, and by replacing the zero-one function, I(Atft(Ht) > 0), with

some surrogate function. In particular, Zhao et al. (2012) adopted the hinge loss defined as ϕ(x) = (1− x)+

and sequentially solved the following problem

f̂t,γ = argmin
ft∈Gt

1

n

n∑
i=1

{(1− γ)Yi − γRi}
∏T
s=t+1 I(Aisf̂s,γ(His) > 0)∏T

s=t p(Ais|His)
ϕ(Aitft(Hit)) + λn,t∥ft∥2Gt , (3.5)

where Gt is a subspace of Ft. The last term, λn,t∥ft∥2Gt , is a regularization term to mitigate overfitting. When

{Gt}Tt=1 are reproducing kernel Hilbert space (RKHS), the optimization problem (3.5) can be reformulated

as a weighted support vector machine problem (SVM) (Cortes and Vapnik, 1995), which can be efficiently

solved using standard optimization software. Typical choices of RKHS include the space generated by a

linear kernel or a Gaussian kernel with inner product ⟨Hit, Hjt⟩ = e−σ
2∥Hit−Hjt∥22 for bandwidth σ−1. Given

observed data, the tuning parameter {λn,t}Tt=1 and {σn,t}Tt=1 can be selected via cross-validation.

As introduced in Section 1.1, to further improve the performance of OWL, Liu et al. (2018) proposed

the augmented OWL (AOWL) by predicting the expected Q-function of subjects whose observed treatment

assignments do not follow the optimal estimated rules and incorporating such predictions to calculate pseudo-

outcomes through a doubly robust construction. In our subsequent numerical studies, we use both OWL and

AOWL for this backward algorithm to solve the Lagrange function in (3.3) and use O-learning to refer to

either OWL or AOWL when the context is clear.

3.2.4 Simultaneous algorithm for maximizing the Lagrange function

One disadvantage of O-learning is that the estimation of the early stage can only utilize the information

from patients whose observed treatment assignments follow the optimal rules as shown in (3.4). Moreover,

for backward induction methods such as Q-learning and O-learning, the estimation error from later stages

due to either model misspecification or overfitting will be accumulated and always present in early-stage

estimation. To overcome these disadvantages, in this section, we propose a simultaneous algorithm based on

multi-stage ramp loss (MRL) described as follows.

Our key idea is to replace the multivariate zero-one indicator function in (3.3) with a continuous surrogate

function to be directly optimized without any backward algorithm. Specifically, define ψ(·) as a piecewise

linear function given by ψ(x) = max(min(x, 1), 0), then we consider solving the following surrogate
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Figure 3.1: 3D plot of multivariate ramp loss, min(ψ(x1), ψ(x2)).

problem to substitute (3.3):

max
(f1,...,fT )∈F1×···×FT

E

[
O+
γ

min(ψ(A1f1(H1)), ..., ψ(AT fT (HT )))∏T
t=1 p(At|Ht)

]
+ E

[ ∑
at∈{−1,+1}, at ̸=At

O−
γ

min(ψ(a1f1(H1)), ..., ψ(aT fT (HT )))∏T
t=1 p(At|Ht)

]
,

(3.6)

Here, O+
γ and O−

γ denote the positive and negative part of Oγ respectively, i.e., O+
γ = max(Oγ , 0) and

O−
γ = max(−Oγ , 0). When Oγ is non-negative, the optimization problem (3.6) can be viewed as a

minimization problem with loss function

L(f) = −E[min(ψ(A1f1(H1)), ..., ψ(AT fT (HT )))] + 1.

Figure 3.1 presents a three-dimensional visualization of this loss function (i.e., T = 2). In other words, L

can be considered as a multivariate extension of the univariate ramp loss function proposed by Huang, Shi

and Suykens (2014). Numerically, MRL can be more robust against extreme errors in ft’s than O-learning

because MRL is bounded between 0 and 1 and is closer to the 0-1 loss compared with the hinge loss used

in O-learning. Note that the expression (3.6) does not require the decision function ft1 to be estimated

before or after another decision function ft2 . This implies that MRL indeed solves the optimal decision rules

simultaneously so that all patients’ information will be used during the estimation, and updating the decision

functions in early stages will also update the decision functions of later stages. The second augmentation term

of (3.6) changes the negative response variable to a positive value by reverting the observed treatments to any
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other treatment sequences. This expression ensures that the weights in each term are always non-negative

even if Oγ is negative. The following lemma ensures that MRL is a valid surrogate problem for (3.3).

Lemma 3.2 If (f∗1 , ..., f
∗
T ) is a solution to (3.6), then (sign(f∗1 ), ..., sign(f∗T )) maximizes (3.3).

The proof of Lemma 3.2 is provided in the Section 3.9. Using the empirical data, we propose to solve

max
(f1,...,fT )∈G1×···×GT

1

n

n∑
i=1

O+
i,γ

min(ψ(Ai1f1(Hi1)), ..., ψ(AiT fT (HiT )))∏T
t=1 p(Ait|Hit)

+
1

n

n∑
i=1

∑
at∈{−1,1},at ̸=Ait

O−
i,γ

min(ψ(a1f1(Hi1)), ..., ψ(aT fT (HiT )))∏T
t=1 p(Ait|Hit)

−
T∑

t=1

λn,t∥ft∥2Gt
,

(3.7)

where Oi,γ = (1 − γ)Yi − γRi. Again, we introduce a regularization term
∑T

t=1 λn,t∥ft∥2Gt to prevent

overfitting.

As a remark, note that in (3.3), the optimal solution is not affected after we subtract any function of H1

from response variable Oγ . Similar to the augmentation technique used in AOWL, we can replace Oi,γ by

Ôi,γ = Oi,γ − m̂(Hi1), where m̂(H1) is an estimator of the conditional expectation of Oγ given baseline

feature variables H1. The refined empirical problem then becomes

max
(f1,...,fT )∈G1×···×GT

1

n

n∑
i=1

Ô+
i,γ

min(ψ(Ai1f1(Hi1)), ..., ψ(AiT fT (HiT )))∏T
t=1 p(Ait|Hit)

+
1

n

n∑
i=1

∑
at∈{−1,1},at ̸=Ait

Ô−
i,γ

min(ψ(a1f1(Hi1)), ..., ψ(aT fT (HiT )))∏T
t=1 p(Ait|Hit)

−
T∑
t=1

λn,t∥ft∥2Gt .

(3.8)

When context is clear, we will use (f̂1,γ , ..., f̂T,γ) to denote the solution of (3.7) and (3.8).

Computationally, the objective function of (3.8) can be further decomposed as the difference between

two convex functions. Therefore, one can adopt the difference of convex (DC) algorithm (Tao and An, 1997)

to solve (3.8) iteratively. When {Gt}Tt=1 are RKHS, in each iteration of the DC algorithm, the optimization

problem can be further reduced to a quadratic programming problem so can be efficiently solved using

existing software. The details are given in Section 3.7.
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3.2.5 Estimating γ∗ using the risk control

Finally, to determine the estimate for γ∗, since the empirical estimator of the risk, i.e.,

1

n

n∑
i=1

Ri

∏T
t=1 I(Aitf̂t,γ(Hit) > 0)∏T

t=1 p(Ait|Hit)
,

is not continuous in γ, a small change of γ may lead to a significant risk control violation. Thus, we propose

to estimate γ∗ based on a smooth approximation to the above function. Specifically, we obtain γ∗’s estimator,

denoted by γ̂, via bisection method to solve equation

1

n

n∑
i=1

Ri
min(ψ(Ai1f̂1,γ̂(Hi1)/η), ..., ψ(AiT f̂T,γ̂(HiT )/η))∏T

t=1 p(Ait|Hit)
= τ. (3.9)

Here, η ∈ (0, 1] is a small shifting parameter to be chosen data dependently.

3.3 Theoretical Results

In this section, we present the theoretical results for the expected reward and risk under the estimated

DTRs. Recall that (g∗1,γ , ..., g
∗
T,γ) are the optimal decision functions of unconstrained problem (3.3) and let

(g∗1, ..., g
∗
T ) denote the optimal decision function of original CBR problem (3.1), then Lemma 3.1 indicates

(g∗1, ..., g
∗
T ) can be selected as (g∗1,γ∗ , ..., g

∗
T,γ∗). We wish to obtain a non-asymptotic lower bound for

V(f̂1,γ̂ , ..., f̂T,γ̂)− V(g∗1, ..., g∗T ) = E

[
Y

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− E

[
Y

∏T
t=1 I(Atg∗t (Ht) > 0)∏T

t=1 p(At|Ht)

]
(3.10)

and an upper bound for

E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− τ, (3.11)

where {f̂t,γ̂}Tt=1 are either from the O-learning algorithm or the simultaneous learning algorithm. We assume

{Gt}Tt=1 to be Gaussian RKHS with bandwidth σ−1
n,t .

We need additional assumptions to characterize the complexity of true optimal decision functions of each

unconstrained DTRs under different multipliers γ. Similar to Chapter 2, for any given t and γ, we define

Ht,γ,1 = {ht ∈ Ht|g∗t,γ(ht) > 0}, Ht,γ,−1 = {ht ∈ Ht|g∗t,γ(ht) < 0},
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and the ∆-function to be

∆t,γ(ht) = d(ht,Ht,γ,1)I(ht ∈ Ht,γ,−1) + d(ht,Ht,γ,−1)I(ht ∈ Ht,γ,1),

where d(x,S) denote the Euclidean distant from point x to set S. We assume the following conditions for

t = 1, ..., T .

Assumption 3.5 For any γ ∈ [0, 1], there exist universal positive constants {αt}Tt=1 and K > 0 such that

∫
Ht

e−
∆2
t,γ (h)

s Pt(dh) ≤ Ksαtdt/2

holds for t = 1, ..., T . Here, dt denotes the dimension of Ht and Pt denotes the density function of the

random variable Ht.

As a note, Assumption 3.5 is the general version of the geometric noise exponent assumption under the

framework of CBR and will hold for arbitrary αt like Assumption 2.5 when data is sparse near the decision

rule. Our next assumption concerns the discrimination property of Q-function between the two treatments,

which is sufficient to establish the convergence rate for the risk control.

Assumption 3.6 For any γ ∈ [0, 1], t = 1, ..., T , set Dt ⊆ Ht and η1 > 0,

E[|Qt,γ(Ht, At = 1)−Qt,γ(Ht, At = −1)|I(Ht ∈ Dt)] ≤ η1

implies that P (Ht ∈ Dt) ≤ K1η1 for some fixed positive constant K1.

The following theorem gives the non-asymptotic convergence rates for the estimated DTRs using the

O-learning algorithm.

Theorem 3.1 Under Assumption 3.1 to 3.6, for any 0 < θt, 0 < θ′t, 0 < νt < 2, 0 < ν ′t < 2 for t = 1, ..., T ,

assume that λn,t → 0, σn,t → ∞ and λn,tσdtn,t → 0 where dt denotes the dimension of Ht. For sufficient

small δ ≥ 0, let

ϵn =

T∑
t=1

c
−(1−t)
1 C1,t

(
1√
n
σ
(1−νt/2)(1+θt)dt/2
n,t λ

−νt/4
n,t + λn,tσ

dt
n,t + σ−αtdtn,t

)
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and

ξn = Tc−2T
1

T∑
t=1

C2,t
1√
n
σ
(1−ν′t/2)(1+θ′t)dt/2
n,t λ

−ν′t/4
n,t ϵ

−ν′t/2
n .

Then for {f̂t,γ̂}Tt=1 estimated from the O-learning approaches, we have

V(f̂1,γ̂ , ..., f̂T,γ̂)− V(g∗1, ..., g∗T ) ≥ −C4{C3Tc
−T
1 (δ + ϵn) + ξn}

and

E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− τ ≤ C4{C3Tc

−T
1 (δ + ϵn) + ξn}

holds with probability at least 1 −
∑T

t=1 e
−c′tδ2n − e−

1
2
c2T1 M−2δ2n, where γ̂ is determined via (3.9) with

η = ϵn/M . Here, C1,t denotes a positive constant depending on parameters (νt, θt, dt, c1,M,K), C2,t

denotes a positive constant depending on parameters (ν ′t, θ
′
t, dt, c1,M), c′t denotes a positive constant

depending on parameters (νt, θt, dt, c1,M) for t = 1, ..., T , C3 is a positive constant depending on (M,K1)

and C4 is a positive constant depending on risk constraint τ .

Let νt → 0, ν ′t → 0, θt → 0, θ′t → 0 and assume that parameter αt in Assumption 3.5 can be arbitrarily large

for any t = 1, ..., T , then Theorem 3.1 indicates that the left-hand side of (3.10) and (3.11) can be both lower

and upper bounded by a term of order as close as O(n−1/2). Hence, Theorem 3.1 shows that under the ideal

case, the beneficial reward under the estimated rules will be expected as high as the reward under optimal

decision rules up to a small loss of order O(n−1/2), with an induced adverse risk no exceeding than τ plus an

error term also up to order O(n−1/2).

Similar to O-learning, we can obtain the non-asymptotic convergence rate for the DTRs in the MRL

approach using the Gaussian kernel. When γ̂ is determined via (3.9), a slightly different discrimination

assumption is needed to quantify the impact of using γ̂ as an approximation or multiplier γ∗ associated with

τ . To this end, we assume

Assumption 3.7 For any γ ∈ [0, 1], Dt ⊆ Ht × {−1,+1}, t ∈ {1, ..., T} and η2 > 0, we assume that

E

[
I((Ht, At) ∈ Dt)∏t

s=1 p(As|Hs)
Ut+1(Ht+1; g

∗
t+1,γ , ..., g

∗
T,γ ; γ)

]
≤ η2
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implies P ((Ht, At) ∈ Dt) ≤ K2η2 for some fixed positive constant K2. Here,

Ut(Ht; ft, ..., fT ; γ) = E

[
O+

γ

∏T
s=t I(Asfs(Hs) > 0)∏T

s=t p(As|Hs)
+

∑
as∈{−1,+1}, as ̸=As

O−
γ

∏T
s=t I(asfs(Hs) > 0)∏T

s=t p(As|Hs)

∣∣∣∣Ht

]
.

The following theorem gives the theoretical results for the MRL approach.

Theorem 3.2 Under Assumption 3.1 to 3.5 and 3.7, for any 0 < θt, 0 < θ′t, 0 < νt ≤ 2, 0 < ν ′t ≤ 2 for

t = 1, ..., T , assume that λn,t → 0, σn,t → ∞ and λn,tσdtn,t → 0 where dt denotes the dimension of Ht. For

sufficient small δ ≥ 0, let

ϵn = c−T1

T∑
t=1

C1,t

(
1√
n

(√
T + (T 2c−3T

1 )νt/4σ
(1−νt/2)(1+θt)dt/2
n,t λ

−νt/4
n,t

)
+ λn,tσ

dt
n,t + c−T1 σ−αtdtn,t

)

and

ξn = Tc−2T
1

T∑
t=1

C2,t

(
1√
n
c
−Tν′t/4
1 σ

(1−ν′t/2)(1+θ′t)dt/2
n,t λ

−ν′t/4
n,t

)
.

Then for {f̂t,γ̂}Tt=1 estimated from the MRL approach, we have

V(f̂1,γ̂ , ..., f̂T,γ̂)− V(g∗1, ..., g∗T ) ≥ −C4{C3Tc
−T
1 (δ + ϵn) + ξn}

and

E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− τ ≤ C4{C3Tc

−T
1 (δ + ϵn) + ξn}

holds with probability at least 1− 3e−
1
2
c2T1 M−2δ2n where γ̂ is determined via (3.9) with η = ϵn. Here, C1,t

denotes a positive constant depending on parameters (νt, θt, dt, c1,M,K), C2,t denotes a positive constant

depending on parameters (ν ′t, θ
′
t, dt, c1,M), C3 is a positive constant depending on (M,K2) and C4 is a

positive constant depending on τ .

Similar to before, let νt → 0, ν ′t → 0, θt → 0, θ′t → 0 and assume that parameter αt in Assumption 3.5 can

be arbitrarily large for any t = 1, ..., T , then Theorem 3.2 implies that the right-hand side of (3.10) and (3.11)

can also be lower and upper bounded by a term of order as close as O(n−1/2), the same order as for the

estimated DTRs using O-learning approach.

The main challenge to establish Theorem 3.1 and Theorem 3.2 is to show that the estimated multiplier γ̂

determined via (3.9) satisfies with a high probability that the expected risk under (f̂1,γ̂ , ..., f̂T,γ̂) is close to
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τ . This can be guaranteed by showing that each unconstrained DTRs problem (3.3) can be uniformly well

estimated for fixed γ ∈ [0, 1] under Assumption 3.5. The proof of both theorems is given in Section 3.9.

3.4 Simulation Studies

In the first simulation setting, we consider a 2-stage SMART. We first generate 7 baseline feature

variables independently from Unif[-1,1], denoted as (X1, ..., X7). To mimic the patient’s evolving health

status, we also generate a time-dependent covariate at the two stages, denoted as (X8,1, X8,2), using X8,1 =

ω0 + ω1, X8,2 = ω0 + ω2, where ω0, ω1 and ω2 are independently from Unif[−0.5, 0.5]. Treatments at the

two stages, A1 and A2, take values 1 or −1 with equal probability. Finally, the cumulative reward variable Y

and risk variable R are obtained using the following models:

Y = 1−X1 +X2 +A1(X1 + 0.25X8,1 + 0.5) +A2(X8,2 +A1 + 0.25) + ϵY ,

R = 2 +X1 +X2 +A1(X1 −X2 + 0.5) +A2(0.5X1 + 0.5X3 −X8,2 + 1) + ϵR,

where ϵY = ϵ0 + ϵ1, ϵR = ϵ0 + ϵ2 with ϵ0 from N(0, 1) truncated at ±0.25 and ϵ1 and ϵ2 both from N(0, 1)

truncated at ±0.5. In the second simulation setting, the feature variables are generated the same as before

except that 7 baseline feature variables are from independent Unif[0,1] and ω0 is from unif[0.5, 1]. The

cumulative reward Y and risk R are generated using the following nonlinear models:

Y = 1 + 2X2 +A1(X
2
8,1 + 1) +A2(X

2
8,2 +X2

1 ) + ϵY ,

R = 2−X2 +A1(X1 + 1) +A2(A1X8,2 + 1) + ϵR,

where ϵY and ϵR are generated the same way as in the first simulation setting. Note that for both simu-

lation settings, the feature variables at each stage are H1 = (X1, ..., X7, X8,1) and H2 = (H1, A1, X8,2),

respectively. We choose the risk constraint τ = 1 for the first simulation setting and τ = 1.5 for the second

simulation setting.

For each simulation setting, we randomly generate the training data with sample sizes n = 200

and n = 400. For O-learning and MRL, both linear kernel and Gaussian radial basis kernel are

implemented. When the Gaussian kernel is used, we follow Wu, Zhang and Liu (2010) to choose
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σ−1
n,t = 1.25 ∗ medianAit ̸=Ajt∥Hit −Hjt∥. To choose the tuning parameters (λ1, λ2), we fix the tuning

grid of nλ1 and nλ2 to be from (2−8, 2−6, · · · , 26, 28). The optimal tuning parameters are then determined

via two-fold cross-validation, which yields the highest reward on the testing data.

Specifically to each algorithm in our proposed method, O-learning is conducted following both original

OWL from Zhao et al. (2015) and AOWL from Liu et al. (2018). For MRL, we replace the original

response variable with its residual as described in Section 3.2, where we estimate the conditional mean via

Lasso regression. For each stage, the initial values of MRL are set to be estimated from regression Yi on

the kernel basis functions. The quadratic optimization problem in the DC algorithm can be solved using

standard R functions such as solve osqp() from package osqp (https://cran.r-project.org/web/

packages/osqp/index.html). For both O-learning and MRL we determine γ̂ via (3.9) where we set

shifting parameter η = 10−4 and bisection termination condition ϵ = 10−3. We also include Q-learning for

comparison, where at each stage of the backward learning, the Q-function is estimated using linear regression

with the kernel basis functions and their interactions with treatments as predictors. Finally, to examine the

impact of imposing risk control when learning DTRs, we also estimate the unconstrained optimal DTRs by

setting τ = ∞.

All simulation studies are repeated 500 times for each setting. To evaluate the performance of different

methods, an independent testing dataset of sample size 5,000 is generated, and the estimated reward and risk

on the independent testing data from each method are reported. To further quantify the benefit-risk tradeoff,

we also report the efficacy ratio, one common measure to evaluate the benefit-risk tradeoff (Guo et al., 2010)

defined as r(D) = (ED[Y ] − ED0 [Y ])/(ED[R] − ED0 [R]), where D denotes the treatment rules being

assessed and D0 represents the standard treatments. In our simulation study, the standard treatments are

selected to be the safest treatment rules which induce the lowest cumulative risk among all four possible

one-size-fits-all treatment rules. Since the standard comparison is set to be the treatment that yields the lowest

expected risk, a higher efficacy ratio indicates that the treatment rule will gain more reward under the same

risk increment as compared to a treatment rule with a lower efficacy ratio. Clearly, a treatment rule with a

large efficacy ratio is preferable.

Table 3.1 presents the simulation results. For the first linear simulation setting, we note that when no

risk constraint is imposed, the expected adverse risk under the unconstrained optimal rules is greater than

3.2, which is significantly higher than the prespecified risk constraint of τ = 1. When the risk constraint is

imposed, using either MRL, OWL, AOWL, or Q-learning yields the rules that give an expected risk below
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or close to the risk constraint on the independent testing data. This suggests that the proposed estimation

procedure is effective in finding the estimated rules that meet the risk restriction. In terms of the reward

outcome, the theoretical maximum reward under the risk constraint τ = 1 is approximately 2.17. As shown

in Table 3.1, we note that the testing rewards of all four methods are all close to the optimal value. This

demonstrates that our proposed estimation procedure does find the treatment rules that improve the beneficial

reward while preserving safety. For O-learning, using either OWL or AOWL yields a similar result, with

OWL having better performance in risk control. Comparing different methods, under the linear kernel,

MRL and OWL tend to yield more stable and safer rules with median testing risk strictly lower than the

risk constraint and with a smaller variability. In contrast, AOWL and Q-learning tend to underestimate the

expected risk, leading to a testing risk close to or slightly higher than the risk constraint with larger variability.

The performance of the four methods under the Gaussian kernel is similar to the performance under the

linear kernel, except that OWL also tends to underestimate the expected risk and produces higher risk under

the Gaussian kernel. In general, MRL tends to have the best risk control compared to OWL, AOWL, and

Q-learning. No significant difference is observed between different kernels.

For the second simulation setting, the risk under the unconstrained optimal rules can be as high as 4.6

when no risk constraint is imposed, which is also significantly higher than the risk constraint τ = 1.5. When

risk restriction is imposed, and the linear kernel is used, the result shows that all methods can still well

control the risk below or close to the risk constraint on the testing data. In terms of reward, the theoretical

maximum reward under τ = 1.5 is approximately 3.29. The expected reward on testing data using the linear

kernel are all below but also close to the theoretical optimal reward indicating that our proposed estimation

procedure can maintain its performance and balance reward and adverse risk under a different simulation

setting. Compared with AOWL and Q-learning, MRL and OWL still shows better control of the adverse risk,

with MRL having stricter risk control and more stability. When the Gaussian kernel is used, the performance

of MRL, OWL, and Q-learning slightly improve, but AOWL starts to underestimate the risk with testing risk

considerably exceeding τ = 1.5. When the sample size is increased, all four methods using either linear

or Gaussian kernel will improve, but AOWL under Gaussian kernel remains to underestimate the risk. The

simulation results indicate that under this nonlinear setting, MRL, OWL, and Q-learning can still perform

well, with MRL showing better control of the risk similar to the first simulation setting, while AOWL under

the Gaussian kernel fails to strictly control the risk.
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In terms of the efficacy ratio, in the first simulation setting, OWL has a higher efficacy ratio under the

linear kernel, and Q-learning has a higher value under the Gaussian kernel. In the second simulation setting,

MRL has roughly the same high efficacy ratio as OWL and a higher efficacy ratio than AOWL and Q-learning

under the linear kernel. When the Gaussian kernel is used, MRL tends to achieve the highest efficacy ratio

among the four methods. In summary, these simulation results show that MRL, OWL, AOWL, and Q-learning

using our proposed estimation procedure can yield the rules that meet the risk restriction while maintaining a

high beneficial reward for a CBR problem. MRL tends to have an overall better performance with stricter

risk control. Additionally, we conduct a simulation setting with T = 4 and allow the treatment assignment

probabilities to depend on the covariates at later stages. The results are reported in Section 3.10 and show a

similar conclusion: MRL has better risk control and a higher efficacy ratio compared to the other competing

methods.

3.5 Application to DURABLE Trial

In this section, we apply our proposed CBR framework to the DURABLE study and the description of

DURABLE can be found in Section 2.5. For T2D, the A1c level is the main efficacy outcome measuring

the patient’s health condition, and we choose HbA1c reduction by the end of week 48 compared to baseline

level (week 0) as the cumulative reward outcome. Weight gain is one of the common long-term side effects

of insulin therapy, and in the analysis, we choose cumulative risk outcome to be BMI change by the end of

week 48, with a lower BMI increment indicating a better risk control. Due to the DURABLE study design,

not all patients were re-randomized during the second phase of the study. To implement CBR, we again make

a practical assumption like Section 2.4 that for patients who had reached HbA1c of 7% at the end of the first

phase and entered the maintenance study, their treatments received at the second phase of the study were

optimal. Hence, for the patients who entered the maintenance study, only their first-stage treatment needs to

be evaluated and optimized. With this assumption, for MRL, we solve the modified empirical problem

max
(f1,f2)∈G1×G2

1

n

∑
i∈I1

Ô+
i

min(ψ(Ai1f1(Hi1)), ψ(Ai2f2(Hi2)))

p(Ai1|Hi1)p(Ai2|Hi2)

+
1

n

∑
i∈I1

∑
at∈{−1,1},at ̸=Ait

Ô−
i

min(ψ(a1f1(Hi1)), ψ(a2f2(Hi2)))

p(Ai1|Hi1)p(Ai2|Hi2)

+
1

n

∑
i∈I2

Ô+
i

ψ(Ai1f1(Hi1))

p(Ai1|Hi1)
+

1

n

∑
i∈I2

∑
a1∈{−1,1},a1 ̸=Ai1

Ô−
i

ψ(a1f1(Hi1))

p(Ai1|Hi1)
−

2∑
t=1

λn,t∥ft∥2Gt ,
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where I1 and I2 denote the set of patients who entered the intensification study and maintenance study,

respectively. For Q-learning and O-learning, in stage 2, only patients who entered the intensification study

are used for estimation. In the first stage, we use all patients for estimation but update the outcomes by their

estimated Q-functions for Q-learning, or inverse probability estimator YiI(Ai2f̂2(Hi2) > 0)/p(Ai2|Hi2) for

the patients from the intensification study when applying O-learning.

To estimate the optimal decision rules, we extract 20 relevant feature variables as the baseline variables

H1. These variables include baseline HbA1c level, heart rate, systolic/diastolic blood pressure, body weight,

body height, BMI, and 7 points self-monitored blood glucose measured at week 0, and demographic variables

including patient’s age, gender, along with the duration of T2D and 3 indicator variables of whether patients

were receiving oral antihyperglycemic agent of metformin, thiazolidinedione, or sulfonylureas. The second

stage feature variables H2 include all variables in H1, as well as the patient’s stage 1 treatment assignment,

heart rate, systolic/diastolic blood pressures, HbA1c, body weight, body height, BMI and the same 7 points

self-monitored blood glucose measured at the beginning of phase 2 study (24 weeks). All covariates are

normalized to have mean zero and variance one.

Our analysis includes 573 patients from the intensification study and 771 patients from the maintenance

study. To reduce the impact due to sampling variability, we repeatedly sample 30% of patients as training

data and use the remaining 70% of data as testing data to evaluate the performance of estimated rules.

The population average BMI change is approximately 1.5, and we repeat the analysis with τ from 1.5 to

1.65, increased by 0.05. We still implement both OWL and AOWL for O-learning, and the tuning grid of

(nλ1, nλ2) for O-learning and MRL is chosen to be the same as used in the simulation study but exclude the

pairs when max(λ1, λ2)/min(λ1, λ2) > 4, with η = 10−4 and ϵ = 10−3. Preliminary exploratory analyses

indicate that the optimal decision function is highly nonlinear, and hence we use the Gaussian kernel and

select the bandwidth also similar to the simulation studies. For each risk constraint, we repeat the analysis

100 times using MRL, OWL, AOWL, and Q-learning. For comparison, we also conduct MRL and set the risk

constraint to be infinite to estimate the globally optimal decision rules with no risk control.

The estimated reward and risk on testing data are reported in Table 3.2. From the results, we first

note that when no constraint is imposed, the unconstrained estimated optimal treatment rules will yield an

overall increment of BMI approximately equal to 1.75 with a gain of 1.70% HbA1c reduction over 48 weeks

period, which is close to the expected BMI increment and HbA1c reduction induced by the most aggressive

LMx2-MMx3 rules among all four one-size-fits-all rules shown in Table 3.3. In contrast, when the risk
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τ Method BMI Increment HbA1c Reduction Efficacy Ratio
Percentage of

LMx2
during Phase I

Percentage of
LMx2/MMx3

during Phase II

1.50

MRL 1.508(0.190) 1.589(0.089) 0.516(0.118) 0.1 100.0
OWL 1.493(0.082) 1.555(0.057) 0.482(0.177) 38.2 74.2
AOWL 1.516(0.080) 1.585(0.064) 0.450(0.130) 53.5 85.5
Q-learning 1.556(0.097) 1.583(0.057) 0.428(0.113) 64.3 64.2

1.55

MRL 1.541(0.187) 1.609(0.081) 0.547(0.150) 24.6 100.0
OWL 1.491(0.083) 1.563(0.053) 0.482(0.164) 36.0 81.7
AOWL 1.536(0.074) 1.593(0.058) 0.471(0.168) 55.7 88.1
Q-learning 1.568(0.097) 1.584(0.046) 0.428(0.104) 69.3 86.1

1.60

MRL 1.615(0.139) 1.609(0.079) 0.527(0.115) 99.8 100.0
OWL 1.506(0.082) 1.561(0.051) 0.482(0.168) 37.3 79.9
AOWL 1.567(0.086) 1.596(0.049) 0.466(0.114) 65.8 93.9
Q-learning 1.580(0.102) 1.585(0.055) 0.436(0.103) 72.9 68.8

1.65

MRL 1.622(0.140) 1.614(0.086) 0.502(0.125) 99.8 100.0
OWL 1.512(0.084) 1.556(0.056) 0.455(0.150) 45.0 83.2
AOWL 1.552(0.088) 1.589(0.058) 0.455(0.165) 61.6 86.4
Q-learning 1.594(0.092) 1.592(0.056) 0.423(0.104) 75.4 70.9

∞ Unconstrained 1.746(0.056) 1.694(0.056) 0.501(0.065) 100.0 100.0

Table 3.2: Analysis results for the DURABLE study. Results are reported in median(dev) format as the
simulation study. BMI, HbA1c, and efficacy ratio are estimated on repeatedly sampled testing data. Efficacy
ratios are calculated using G-BBT as reference rules. The percentage of LMx2 during phase I is the proportion
of patients recommended with LMx2 treatment as initial treatment. The percentage of LMx2/MMx3 during
phase II is the proportion of patients recommended with LMx2/MMx3 as second phase intensification
treatment when failed to reach HbA1c ≤ 7.0%. Treatment recommendation is estimated for all patients using
maximum voting based on 100 repeated analyses.

constraint is imposed, the expected increment of BMI can decrease from 1.60 to roughly 1.50, which is

significantly lower than the unconstrained expected BMI increment at the price of a smaller HbA1c reduction

decreasing from 1.61% to roughly 1.56%. Comparing four different methods, both MRL, OWL, AOWL,

and Q-learning can yield treatment rules with an expected BMI increment below or close to the prespecified

constraint under different choices of τ . However, in terms of beneficial reward, MRL can always lead to an

equal or higher HbA1c reduction than OWL, AOWL, and Q-learning under all choices of τ . The results

indicate that all four proposed methods will still successfully yield treatment rules that meet the risk restriction

in real data application, and MRL tends to have top performance with both ideal control over risk and higher

gain in beneficial reward compared to OWL, AOWL, and Q-learning.

We also evaluate the capability of balancing the benefit-risk via efficacy ratio against the standard

treatment rules. According to Table 3.3, assigning all patients with insulin glargine as the initial treatment and
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Table 3.3: Mean HbA1c reduction/BMI increment at week 48 under 4 one-size-fits-all treatment rules.
Efficacy ratios are calculated using G-BBT as reference rules.

Treatment Rules Mean BMI Increment Mean HbA1c Reduction Efficacy Ratio

LMx2-MMx3 1.738 1.699 0.519
LMx2-BBT 1.683 1.640 0.456
G-LMx2 1.437 1.563 0.610
G-BBT 1.205 1.422 Ref
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Figure 3.2: Scatter plot of baseline HbA1c against age or baseline BMI. The color indicates the treatment
recommendation estimated from MRL given τ = 1.55. The linear decision boundary is calculated using
logistic regression.

reassigning patients who fail to reach HbA1c 7% with BBT (G-BBT) yields the lowest risk with an average

increment of BMI equal to 1.20 and HbA1c reduction equal to 1.42%. When G-BBT is selected to be the

standard treatment, the results in Table 3.2 show that MRL still achieves an overall higher efficacy ratio than

OWL, AOWL, and Q-learning. Moreover, MRL can yield treatment rules with an efficacy ratio close to or

higher than the unconstrained optimal rules for all τ . This demonstrates that considering risk impact can also

lead to a better treatment regimen design with more efficient benefit-risk balancing in DURABLE, and MRL

tends to have better performance compared with OWL, AOWL, and Q-learning.

The proportion of patients recommended to each treatment arm by MRL is displayed in Table 3.2. MRL

recommends almost all patients to G-LMx2 rules when the risk constraint is τ = 1.50 and almost all patients

to LMx2-MMx3 when the risk constraint is above 1.60. When τ = 1.55, the treatment rules estimated

from MRL will recommend LMx2-MMx3 to 24.6% of patients and G-LMx2 to the remaining patients.

We show the treatment recommendation distribution in Figure 3.2, which suggests that younger and more

overweight patients with lower baseline HbA1c are more likely to be recommended with the less intensive
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insulin glargine therapy as the initial treatment. Younger patients with lower HbA1c levels are in better

health conditions, and thus less intensive insulin therapy is preferable following the general T2D management

guidance. Moreover, clinical studies suggest that obesity is associated with insulin resistance (Saha and

Schwarz, 2017), and additional exogenous insulin will cause increased weight gain among T2D patients with

insulin resistance (McFarlane, 2009). Therefore, patients with higher BMI are more likely to be resistant to

insulin and should be treated with less intensive insulin therapy to reduce the risk of weight gain unless the

patient’s HbA1c level is high. Figure 3.2 indicates that the treatment rules learned from MRL are consistent

with clinical evidence and practices. These results suggest that our proposed method is capable of learning

treatment rules that are clinically meaningful in practice while meeting the risk constraint in a real-world

application.

3.6 Discussion

In this chapter, we proposed a general estimation procedure to solve the CBR problem where the goal is

to find optimal treatment rules that maximize the cumulative reward, but the induced risk is no more than a

pre-specified threshold. Our approach converts constrained optimization into solving a series of unconstrained

optimization problems. Consequently, the proposed procedure can be easily implemented using many existing

standard DTR methods or using the proposed simultaneous algorithm. Simulation studies and the real data

example indicated that either using MRL, O-learning, or Q-learning along with the proposed procedure would

yield well-performed DTRs with the risk being controlled under or close to the risk constraint.

The proposed MRL can be used to solve unconstrained DTRs problems. The key advantage of MRL

is that it estimates the DTRs jointly without distinguishing early stages from later stages. This special

property would allow one to impose a joint structure on stagewise decision rules to conduct simultaneous

variable selection across all stages, which is not feasible using backward Q-learning or O-learning. From the

computational perspective, the DC algorithm may be inefficient with a large sample size or a large number

of stages. Possible improvement can be to use coordinate descent along with stochastic gradient descent to

reduce the computation cost of each DC iteration or to consider a more smooth approximation to the objective

functions so that quasi-Newton’s methods are applicable.

In some applications, more than one adverse event needs to be controlled in the long run, and CBR can

be generalized to handle multiple risk constraints. In addition, CBR can be extended to solve combined
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short-term stagewise risk control along with cumulative risk control in DTRs. However, for the case with

multiple constraints, further development is needed to address the computational challenges. The proposed

method can also be extended to consider multicategory or even continuous treatments (Laber et al., 2018).

Although we focused on clinical trials, our method is applicable to analyze observational studies

except that the treatment assignment probabilities, i.e., propensity scores, must be estimated from the data.

Theoretically, when the propensity scores are estimated via parametric models, following the same arguments

in Chen, Zeng and Wang (2021), the extra error due to this estimation, which is of order O(n−
1
2 ), should not

affect the error bounds given in our results. Finally, when the positivity assumption is a concern, especially for

observational studies, some existing techniques such as pessimistic learning (Fu et al., 2022; Zhou et al., 2023)

can be incorporated into our framework to learn suboptimal DTRs by working on pessimistic Q-functions.

3.7 Details of the DC algorithm for solving MRL

The complete algorithm for solving the CBR problem via bisection is presented as Algorithm 2. To solve

MRL, we consider the equivalent minimization problem

min
(f1,...,fT )∈G1×···×GT

T∑
t=1

Cn,t∥ft∥2Gt −
n∑
i=1

Oi
min(ψ(Ai1f1(Hi1)), ..., ψ(AiT fT (HiT )))∏T

t=1 p(Ait|Hit)

−
∑
i∈I−

O−
i

min(ψ(|f1(Hi1)|), ..., ψ(|fT (HiT )|))∏T
t=1 p(Ait|Hit)

.

where we let Cn,t = nλn,t in this section, and I− denotes the indices of subjects whose response variable is

negative, i.e., {i : Oi < 0}. Original expression (6) can be recovered by adding and subtracting the term

1

n

n∑
i=1

O−
i,γ

min(ψ(Ai1f1(Hi1)), ..., ψ(AiT fT (HiT )))∏T
t=1 p(Ait|Hit)

.

The derivation is based on utilizing the decomposition property

min(ψ(x1), ..., ψ(xT )) = min(x1, ..., xT , 1)−min(x1, ..., xT , 0)
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Algorithm 2 General Algorithm for Solving CBR Problem
Input: Training data (Y,R,H1, ...,HT ), risk constraint τ and termination condition ϵ.

Start with γmax = 0 and γmin = 1, and solve the unconstrained problem

max
D

E

[
{(1− γ)Y − γR}

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]

for γ = γmin and γ = γmax.

Let D∗
γmin /max

denote the solution associated with γmin/γmax respectively, we define

τmax = E

[
R

∏T
t=1 I(At = D∗

t,γmax
(Ht))∏T

t=1 p(At|Ht)

]
,

τmin = E

[
R

∏T
t=1 I(At = D∗

t,γmin
(Ht))∏T

t=1 p(At|Ht)

]
.

if τ ≥ τmax then return D∗
γmax

else

while |γmax − γmin| > ϵ do

Set γ = 1
2 (γmin + γmax) and solve the unconstrained problem associated with new γ

Obtain the current risk

τnow = E

[
R

∏T
t=1 I(At = D∗

t,γ(Ht))∏T
t=1 p(At|Ht)

]
.

if τnow ≤ τ then update γmin by γ

else update γmax by γ.

end if

end while

end if

Output: Return D∗
γmin

as the solution under risk constraint τ .

and noticing that

−min(ψ(|f1(H1)|), ..., ψ(|fT (HT )|))

=max(−|f1(H1)|, ...,−|fT (HT )|,−1)−max(−|f1(H1)|, ...,−|fT (HT )|, 0)

=max(−|f1(H1)|, ...,−|fT (HT )|,−1)

=max(
∑
t̸=1

|ft(Ht)|, ...,
∑
t̸=T

|ft(Ht)|,
T∑
t=1

|ft(Ht))| − 1)−
T∑
t=1

|ft(Ht)|.

99



Two equations above imply that the objective function can be written as the difference of two convex functions

S̃1 − S̃2 where

S̃1 =
n∑
i=1

|Oi|max(−Ai1f1(Hi1), ...,−AiT fT (HiT ),−di)

+
∑
i∈I−

O−
i max(

∑
t̸=1

|ft(Hit)|, ...,
∑
t̸=T

|ft(Hit)|,
T∑
t=1

|ft(Hit)| − 1)

+
T∑
t=1

Cn,t∥ft∥2Gt ,

S̃2 =
n∑
i=1

|Oi|max(−Ai1f1(Hi1), ...,−AiT fT (HiT ),−(1− di))

+
∑
i∈I−

O−
i

T∑
t=1

|ft(Hit)|.

where di = I{Oi > 0}. Assuming that {Gt}Tt=1 are RKHS, given initial coefficients {β(0)t }Tt=1 and

intercepts {β(0)0t }Tt=1, one can use standard DC algorithm to solve the optimization problem where we

update (β
(s+1)
1 , β

(s+1)
01 , ..., β

(s+1)
T , β

(s+1)
0T ) sequentially via solving the optimization problem

argmin
β1,β01,...,βT ,β0T

T∑
t=1

Cn,tβ
T
t Ktβt +

T∑
t=1

Cn,tβ
2
0t + S̃1(β1, β01, ..., βT , β0T )

−
T∑
t=1

∂S̃2
∂βt

(β
(s)
1 , β

(s)
01 , ..., β

(s)
T , β

(s)
0T )(βt − β

(s)
t )

−
T∑
t=1

∂S̃2
∂β0t

(β
(s)
1 , β

(s)
01 , ..., β

(s)
T , β

(s)
0T )(β0t − β

(s)
0t ).

Here, we add additional term
∑n

i=1Cn,tβ
2
0t to avoid determining optimal β0t through exhausted search and

speed up the estimation. Kt denotes the kernel matrix of stage t where the (i, j) entry is equal to ⟨Hit, Hit⟩

and ∂S̃2
∂β denotes the subgradients of S̃2 w.r.t. β.

To avoid involving subgradients and further improve the numerical performance, we adopt the smooth

approximation technique from Nesterov (2005) and consider the smooth approximation function

l(x1, ..., xK) = µ log

(
1

K

K∑
k=1

e
xk
µ

)
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to replace non-smooth function max(x1, ..., xK). When µ is sufficient small, l is a good differentiable

approximation of max(x1, ..., xK). Simulation shows that µ = 10−8 is sufficiently small and we recommend

using µ = 10−8 in MRL. By introducing the smooth approximation function l, we can replace S̃2 by

differentiable function

S̄2 =
n∑
i=1

|Oi|µ log
(

1

T + 1

T∑
t=1

e−Aitft(Hit)/µ +
1

T + 1
e−(1−di)/µ

)

+
∑
i∈I−

O−
i

T∑
t=1

µ log

(
1

2
eft(Hit)/µ +

1

2
e−ft(Hit)/µ

)

By introducing slack variables ξi, ηi, ωit, the optimization is equivalent to

min
βt,β0t,ξi,ηi,ωit

T∑
t=1

Cn,tβ
T
t Ktβt +

T∑
t=1

Cn,tβ
2
0t +

n∑
i=1

|Oi|ξi +
∑
i∈I−

O−
i ηi

−
T∑
t=1

∂S̄2
∂βt

(β
(s)
1 , β

(s)
01 , ..., β

(s)
T , β

(s)
0T )(βt − β

(s)
t )

−
T∑
t=1

∂S̄2
∂β0t

(β
(s)
1 , β

(s)
01 , ..., β

(s)
T , β

(s)
0T )(β0t − β

(s)
0t ),

subject to ξi ≥ −Ait(Kitβt + β0t), ξi ≥ −di, ηi ≥
∑
s ̸=t

ωis, ηi ≥
T∑
t=1

ωit − 1, ∀{i, t},

ωit ≥ −(Kitβt + β0t), ωit ≥ Kitβt + β0t, ∀i ∈ I− and t ∈ {1, ..., T}.

(3.12)

Here, Kit denotes the i-th row of kernel matrix Kt. The Lagrange function of (3.12) is given by

L(uit, ui, vit, vi, l
+
it , l

−
it ) =

T∑
t=1

Cn,tβ
T
t Ktβ

T +

T∑
t=1

Cn,tβ
2
0t +

n∑
i=1

|Oi|ξi +
∑
i∈I−

O−
i ηi

+

n∑
i=1

T∑
t=1

C
(s)
it |Oi|Ait(Kitβt + β0t) +

∑
i∈I−

T∑
t=1

C
−(s)
it O−

i (Kitβt + β0t)

−
n∑
i=1

T∑
t=1

uit(ξi +Ait(Kitβt + β0t))−
n∑
i=1

ui(ξi + di)

−
∑
i∈I−

T∑
t=1

vit(ηi −
∑
s ̸=t

ωis)−
∑
i∈I−

vi(ηi −
T∑
t=1

ωit + 1)

−
∑
i∈I−

T∑
t=1

l+it (ωit +Kitβt + β0t)−
∑
i∈I−

T∑
t=1

l−it (ωit −Kitβt − β0t),
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where

C
(s)
it =

e−Ait(Kitβ
(s)
t +β

(s)
0t )/µ∑T

t=1 e
−Ait(Kitβ

(s)
t +β

(s)
0t )/µ + e−(1−di)/µ

, (3.13)

C
−(s)
it =

e−(Kitβ
(s)
t +β

(s)
0t ) − e(Kitβ

(s)
t +β

(s)
0t )

e(Kitβ
(s)
t +β

(s)
0t ) + e−(Kitβ

(s)
t +β

(s)
0t )

. (3.14)

Taking derivatives w.r.t. ξi, ηi and ωit and setting the derivatives equal to 0, we can obtain

|Oi| −
T∑
t=1

uit − ui = 0,

O−
i −

T∑
t=1

vit − vi = 0,

−l+it − l−it +
∑
s ̸=t

vit + vi = 0.

The equations above yield

ui = |Oi| −
T∑
t=1

uit,

vit = O−
i − l+it − l−it ,

vi =
T∑
t=1

(l+it + l−it )− (T − 1)O−
i .

Plugging in ui, vit and vi back to L and taking derivatives w.r.t. βt and β0t yields

βt =
1

Cn,t

[
At(Ut −WC

(s)
t ) + I−n (L

+
t − L−

t −W−C
−(s)
t )

]

β0t =
1

Cn,t

[
1nAt(Ut −WC

(s)
t ) + 1

−
n (L

+
t − L−

t −W−C
−(s)
t )

]
.

Here, 1n and 1(−)
n denote the one vector of length n and size of I−, I−n denote the submatrix of identical matrix

In where only columns within index set I− are kept, W = diag{|Oi|}, W− = diag{O−
i }, At = diag{Ait},

Ut = {u1t, ..., unt}T , L+
t = {l+it}Ti∈I− , L−

t = {l−it}Ti∈I− , C(s)
t = {C(s)

1t , ..., C
(s)
nt }T , C−(s)

t = {C−(s)
it }Ti∈I−

defined in (3.13) and (3.14).
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Plug in the expression of βt and β0t back to L and include the constraints uit ≥ 0, ui ≥ 0, vit ≥ 0,

vi ≥ 0, l+it ≥ 0, l−it ≥ 0, we can obtain that the dual problem of (3.12) is given by

min
Ut,L

+
t ,L

−
t

T∑
t=1

C−1
n,t

[
AtWC

(s)
t + I−nW

−C
−(s)
t −AtUt − I−n L

+
t + I−n L

−
t

]T
·K

·
[
AtWC

(s)
t + I−nW

−C
−(s)
t −AtUt − I−n L

+
t + I−n L

−
t

]
+

T∑
t=1

C−1
n,t

[
1nAtWC

(s)
t + 1

−
nW

−C
−(s)
t − 1nAtUt − 1

−
nL

+
t + 1

−
nL

−
t

]T
·
[
1nAtWC

(s)
t + 1

−
nW

−C
−(s)
t − 1nAtUt − 1

−
nL

+
t + 1

−
nL

−
t

]
−

n∑
i=1

T∑
t=1

uitdi +
∑
i∈I−

T∑
t=1

(l+it + l−it )

subject to
T∑
t=1

uit ≤ |Oi|, uit ≥ 0, ∀{i, t}

l+it + l−it ≤ O−
i ,

T∑
t=1

(l+it + l−it ) ≥ (T − 1)O−
i ,

l+it ≥ 0, l−it ≥ 0, ∀ i ∈ I−, t ∈ {1, ..., T},

or equivalently

min
Ut,L

+
t ,L

−
t

T∑
t=1

C−1
n,t

[
AtWC

(s)
t + I−nW

−C
−(s)
t −AtUt − I−n L

+
t + I−n L

−
t

]T
· (K + 1

T
n1n)

·
[
AtWC

(s)
t + I−nW

−C
−(s)
t −AtUt − I−n L

+
t + I−n L

−
t

]
−

n∑
i=1

T∑
t=1

uitdi +
∑
i∈I−

T∑
t=1

(l+it + l−it )

subject to
T∑
t=1

uit ≤ |Oi|, uit ≥ 0, ∀{i, t}

l+it + l−it ≤ O−
i ,

T∑
t=1

(l+it + l−it ) ≥ (T − 1)O−
i ,

l+it ≥ 0, l−it ≥ 0, ∀ i ∈ I−, t ∈ {1, ..., T},

The last optimization is a standard quadratic optimization and can be efficiently solved using the standard

method such ADMM solver (Stellato et al., 2020).
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3.8 Proof of Lemma 3.1 and Lemma 3.2

3.8.1 Proof of Lemma 3.1

We first verify that R(γ) and Y(γ) are non-increasing functions for γ ∈ [0, 1]. By definition, for any γ1

and γ2 we have

E

[
{(1− γ1)Y − γ1R}

∏T
t=1 I(At = D∗

t,γ1(Ht))∏T
t=1 p(At|Ht)

]
≥ E

[
{(1− γ1)Y − γ1R}

∏T
t=1 I(At = D∗

t,γ2(Ht))∏T
t=1 p(At|Ht)

]

and

E

[
{(1− γ2)Y − γ2R}

∏T
t=1 I(At = D∗

t,γ2(Ht))∏T
t=1 p(At|Ht)

]
≥ E

[
{(1− γ2)Y − γ2R}

∏T
t=1 I(At = D∗

t,γ1(Ht))∏T
t=1 p(At|Ht)

]
.

By reorganizing and adding the two inequalities above, we have

(1− γ1)(Y(γ1)−Y(γ2))

=(1− γ1)

(
E

[
Y

∏T
t=1 I(At = D∗

t,γ1(Ht))∏T
t=1 p(At|Ht)

]
− E

[
Y

∏T
t=1 I(At = D∗

t,γ2(Ht))∏T
t=1 p(At|Ht)

])
≥γ1

(
E

[
R

∏T
t=1 I(At = D∗

t,γ1(Ht))∏T
t=1 p(At|Ht)

]
− E

[
R

∏T
t=1 I(At = D∗

t,γ2(Ht))∏T
t=1 p(At|Ht)

])
=γ1(R(γ1)−R(γ2))

(3.15)

and

(1− γ2)(Y(γ1)−Y(γ2))

=(1− γ2)

(
E

[
Y

∏T
t=1 I(At = D∗

t,γ1(Ht))∏T
t=1 p(At|Ht)

]
− E

[
Y

∏T
t=1 I(At = D∗

t,γ2(Ht))∏T
t=1 p(At|Ht)

])
≤γ2

(
E

[
R

∏T
t=1 I(At = D∗

t,γ1(Ht))∏T
t=1 p(At|Ht)

]
− E

[
R

∏T
t=1 I(At = D∗

t,γ2(Ht))∏T
t=1 p(At|Ht)

])
=γ2(R(γ1)−R(γ2)).

(3.16)

Hence, suppose that γ1 < γ2 and R(γ1) < R(γ2), then by combining (3.15) and (3.16) we can obtain

γ1
1− γ1

≥ γ2
1− γ2

104



and consequently γ1 ≥ γ2, which is a contradiction. Therefore, we must have R(γ2) ≤ R(γ1) for any

γ1 < γ2. By exactly the same argument, we can also show that Y(γ2) ≤ Y(γ1) for any γ1 < γ2. Hence, we

have shown that both R(γ) and Y(γ) are non-increasing functions of γ.

We now complete the proof of Lemma 3.1. Suppose that R(γ∗) = τ and let D = (D1, ...,DT ) be

arbitrary decision rules such that

E

[
R

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
≤ τ,

then it is sufficient to verify that one must have

E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
≤ Y(γ∗).

We prove the result by contradiction. Suppose that

E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
> Y(γ∗), (3.17)

then we consider two possible cases:

Case 1: Suppose that

E

[
R

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
= R(γ∗) = τ,

then Assumption 3.4 implies that γ∗ < 1 since τ is assumed to be greater than R(1) and we have

0 <(1− γ∗)

(
E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
−Y(γ∗)

)
=

(
(1− γ∗)E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
− γ∗E

[
R

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

])

−
(
(1− γ∗)E

[
Y

∏T
t=1 I(At = D∗

t,γ∗(Ht))∏T
t=1 p(At|Ht)

]
− γ∗E

[
R

∏T
t=1 I(At = D∗

t,γ∗(Ht))∏T
t=1 p(At|Ht)

])
,

which implies that D should be the optimal solution of unconstrained problem (3) associated with multiplier

γ∗ and is contradictory to the definition of D∗
γ∗ .
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Case 2: Suppose that

R(1) < E

[
R

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
= τ ′ < τ = R(γ∗),

then by the continuity and non-increasing property of R(γ) and recall that R(1) < τ , we can always find γ′

such that R(γ′) = τ ′ for some γ∗ < γ′ < 1. Hence, by definition we have

0 ≤
(
(1− γ∗)E

[
Y

∏T
t=1 I(At = D∗

t,γ′(Ht))∏T
t=1 p(At|Ht)

]
− γ∗E

[
R

∏T
t=1 I(At = D∗

t,γ′(Ht))∏T
t=1 p(At|Ht)

])
−
(
(1− γ∗)E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
− γ∗E

[
R

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

])

=(1− γ∗)

(
E

[
Y

∏T
t=1 I(At = D∗

t,γ′(Ht))∏T
t=1 p(At|Ht)

]
− E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

])
=(1− γ∗)

(
Y(γ′)− E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

])
,

which implies that

E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
≤ Y(γ′).

On the other hand, the non-increasing property of Y(γ) indicates that Y(γ′) ≤ Y(γ∗) and, hence, we have

E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
≤ Y(γ∗),

which is contradictory to the assumption (3.17).

Hence, combine Case 1 and Case 2 and we obtain that

E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
≤ Y(γ∗)

holds for any decision rules D such that

E

[
R

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
≤ τ,

which indicates that D∗
γ∗ is one of the optimal solutions of (3.1) under risk constraint τ .
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3.8.2 Proof of Lemma 3.2

First note that for arbitrary weight O, by adding an additional term E
[
O−/

∏T
t=1 p(At|Ht)

]
which is

independent of the choice of decision functions {ft}Tt=1, one can notice that the optimization problem

argmax
(f1,...,fT )∈F1×···×FT

E

[
O

∏T
t=1 I(Atft(Ht) > 0)∏T

t=1 p(At|Ht)

]

is equivalent to maximizing

E

[
O

∏T
t=1 I(Atft(Ht) > 0)∏T

t=1 p(At|Ht)

]
+ E

[
O−∏T

t=1 p(At|Ht)

]
=E

[
O+

∏T
t=1 I(Atft(Ht) > 0)∏T

t=1 p(At|Ht)

]
+ E

[ ∑
at∈{−1,+1}, at ̸=At

O−
∏T
t=1 I(atft(Ht) > 0)∏T

t=1 p(At|Ht)

]

where now both O+ and O− are non-negative random variables. Hence, it is sufficient to prove Lemma 3.2

for non-negative weight O.

From now on, we assume that O ≥ 0 and let

(f∗1 , ..., f
∗
T ) ∈ argmax

(f1,...,fT )∈F1×···×FT
E

[
O
min(ψ(A1f1(H1)), ..., ψ(AT fT (HT )))∏T

t=1 p(At|Ht)

]
(3.18)

and

(g∗1, ..., g
∗
T ) ∈ argmax

(f1,...,fT )∈F1×···×FT
E

[
O

∏T
t=1 I(Atft(Ht) > 0)∏T

t=1 p(At|Ht)

]
denote arbitrary optimal decision rules of MRL and the original problem for an arbitrary non-negative

response variable O. Our goal is to show that (sign(f∗1 ), ..., sign(T ∗
T )) is one of the choices for (g∗1, ..., g

∗
T ).

To prove this, by conditioning on HT the conditional objective function of (3.18) is equal to

E

[
O∏T

t=1 p(At|Ht)
min(ψ(A1f1(H1)), ..., ψ(AT fT (HT )))

∣∣∣∣HT

]
=
min(c, ψ(|fT (HT )|))I(fT (HT ) > 0)∏T−1

t=1 p(At|Ht)
E[O|HT , AT = 1]

+
min(c, ψ(|fT (HT )|))I(fT (HT ) < 0)∏T−1

t=1 p(At|Ht)
E[O|HT , AT = −1],

(3.19)
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where

c = min(ψ(A1f1(H1)), ..., ψ(AT−1fT−1(HT−1))).

Note that the weight term min(c, ψ(|fT (HT )|)) in (3.19) is non-negative and is maximized for any fT (·)

such that |fT (HT )| ≥ 1 due to the definition of ψ(·). Thus, in the interval where fT (HT ) > 0, the above

term has the maximum value min(c, ψ(1))E[O|HT , AT = 1]/
∏T−1
t=1 p(At|Ht) which is attained for any

fT (HT ) ≥ 1; in the interval where fT (HT ) < 0, the maximum value is min(c, ψ(1))E[O|HT , AT =

−1]/
∏T−1
t=1 p(At|Ht) and it is attained for any fT (HT ) ≤ −1. Comparing these two values, we conclude

that f∗T (HT ) can be any function taking form ω(HT )sign(E[O|HT , AT = 1]−E[O|HT , AT = −1]) where

ω(HT ) ≥ 1.On the other hand, according to Zhao et al. (2015) function {g∗t }Tt=1 should satisfy

sign(g∗t (Ht)) = sign(E[U∗
t+1(Ht+1)|Ht, At = 1]− E[U∗

t+1(Ht+1)|Ht, At = −1])

almost surely, where

U∗
t (Ht) = E

[
O

∏T
s=t I(Asg∗s(Hs) > 0)∏T

s=t p(As|Hs)

∣∣∣∣Ht

]
with U∗

T+1 = O. Immediately, we have sign(g∗T (HT )) = sign(f∗T (HT )), which indicates that f∗T is a Fisher

consistent estimator of g∗T .

By plugging f∗T into (3.18), we can verify that (f∗1 , ..., f
∗
T−1) should maximize

E

[
O
min(ψ(A1f1(H1)), ..., ψ(AT−1fT−1(HT−1)), ψ(AT f

∗
T (HT )))∏T

t=1 p(At|Ht)

]
=E

[
E

[
O
I(AT f∗T (HT ) > 0)

p(AT |HT )

∣∣∣∣HT

]
min(ψ(A1f1(H1)), ..., ψ(AT−1fT−1(HT−1)), 1)∏T−1

t=1 p(At|Ht)

]
=E

[
U∗
T (HT )

min(ψ(A1f1(H1)), ..., ψ(AT−1fT−1(HT−1)))∏T−1
t=1 p(At|Ht)

]

and the last inequality holds since ψ(·) ≤ 1. Repeating the same argument for T − 1, we can also show that

sign(f∗T−1(HT−1))

=sign(E[U∗
T (HT )|HT−1, AT−1 = 1]− E[U∗

T (HT )|HT−1, AT−1 = −1])

=sign(g∗T−1(HT−1))
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and (f∗1 , ..., f
∗
T−2) should maximize

E

[
O
min(ψ(A1f1(H1)), ..., ψ(AT−1f

∗
T−1(HT−1)), ψ(AT f

∗
T (HT )))∏T

t=1 p(At|Ht)

]
=E

[
E

[
O
I(AT f

∗
T (HT ) > 0)I(AT−1f

∗
T−1(HT−1) > 0)

p(AT |HT )p(AT−1|HT−1)

∣∣∣∣HT−1

]
min(ψ(A1f1(H1)), ..., ψ(AT−2fT−2(HT−2)))∏T−2

t=1 p(At|Ht)

]
=E

[
U∗
T−1(HT−1)

min(ψ(A1f1(H1)), ..., ψ(AT−2fT−2(HT−2)))∏T−2
t=1 p(At|Ht)

]
.

(3.20)

The first equality in (3.20) holds since previous arguments indicate that |f∗T (HT )| ≥ 1 and |f∗T−1(HT−1)| ≥ 1

almost surely, which implies that

min(ψ(AT−1f
∗
T−1(HT−1)), ψ(AT f

∗
T (HT ))) =


1, if AT−1f

∗
T−1(HT−1) > 0 & AT f

∗
T (HT ) > 0

0, if AT−1f
∗
T−1(HT−1) < 0 or AT f∗T (HT ) < 0

,

and consequently,

min(ψ(A1f1(H1)), ..., ψ(AT−2fT−2(HT−2)), ψ(AT−1f
∗
T−1(HT−1)), ψ(AT f

∗
T (HT )))

=I(AT−1f
∗
T−1(HT−1) > 0)I(AT f∗T (HT ) > 0)min(ψ(A1f1(H1)), ..., ψ(AT−2fT−2(HT−2))),

The proof is completed by repeating the argument from T − 2 to 1.

3.9 Proof of Theorem 3.1 and Theorem 3.2

We aim to prove Theorem 3.1 and Theorem 3.2 in this section. The structure is organized as follows: in

section Section 3.9.1, we prove a general preliminary lemma which will be used to derive the non-asymptotic

rates in Theorem 3.1 and Theorem 3.2. We then complete the proof of Theorem 3.1 and state the propositions

and lemmas used in the proof in Section 3.9.2. The proof of Theorem 3.2 is given in Section 3.9.3 along

with additional lemmas used to complete the proof. The proof relies on the covering number property

Proposition 2.1 stated in Section 2.9.

109



3.9.1 Proof of a general lemma

We start with proving a general lemma for establishing the non-asymptotic convergence in Theorem 3.1

and Theorem 3.2. Recall that we use {(g∗1,γ , ..., g∗T,γ)}γ∈[0,1] to denote the true optimal decision functions of

unconstrained DTRs problem with response variable Oγ = (1− γ)Y − γR. Lemma 3.1 indicates that the

true optimal decisions functions of a CBR problem under risk constraint τ are given by

(g∗1, ..., g
∗
T ) = (g∗1,γ∗ , ..., g

∗
T,γ∗).

Let {(f̂1,γ , ..., f̂T,γ)}γ∈[0,1] be arbitrary estimators of {(g∗1,γ , ..., g∗T,γ)}γ∈[0,1] and let γ̂ denote an arbitrary

estimator of true multiplier γ∗. Given constants 0 < an, 0 < bn and ζ ∈ (0, 1), for arbitrary δ1 > 0 and

δ2 > 0 we consider following three conditions:

(C1) sup
γ∈[0,1]

∣∣∣∣E[
{(1− γ)Y − γR}

∏T
t=1 I(Atf̂t,γ(Ht)>0)∏T

t=1 p(At|Ht)

]
− E

[
{(1− γ)Y − γR}

∏T
t=1 I(Atg

∗
t,γ(Ht)>0)∏T

t=1 p(At|Ht)

]∣∣∣∣ ≤ an + δ1

(C2)
∣∣∣∣E[

R
∏T

t=1 I(Atf̂t,γ̂(Ht)>0)∏T
t=1 p(At|Ht)

]
− τ

∣∣∣∣ ≤ bn + δ2

(C3) γ̂ < 1− ζ.

The main result of this section is stated as Lemma 3.3 below:

Lemma 3.3 Suppose that there exist 0 < an, 0 < bn and ζ ∈ (0, 1) such that conditions (C1)-(C3) hold

with probability at least 1− ce−c
′ min(δ21 ,δ

2
2)n for any sufficient small δ1 > 0 and δ2 > 0. Then, we also have

E

[
Y

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
≥ E

[
Y

∏T
t=1 I(Atg∗t (Ht) > 0)∏T

t=1 p(At|Ht)

]
− 1

ζ
(an + bn + δ1 + δ2) (3.21)

holds with probability at least 1− ce−c
′ min(δ21 ,δ

2
2)n. Here, c and c′ are two arbitrary positive constants that

do not depend on sample size n.

Remark: Note that condition (C2) characterizes the expected adverse risk under the estimated decision

functions against risk constraint τ , which provides an upper bound of the expected risk. Lemma 3.3 indicates

that if in addition the estimation of each unconstrained DTRs problem w.r.t. response variable Oγ can be

uniformly good for any γ ∈ [0, 1] and the estimated multiplier γ̂ is guaranteed to be bounded away from 1,

i.e. conditions (C1) and (C3) also hold, then the characterization of the expected adverse risk will also ensure
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that the beneficial reward under this estimated rules will not be significantly lower than the optimal expected

reward. In the proof of Theorem 3.1 and Theorem 3.2, we will verify that conditions (C2) and (C3) can be

obtained from condition (C1) under Assumption 3.6 and Assumption 3.7. Hence, the establishment of the

non-asymptotic convergence rates consists of first establishing the uniform concentration inequality (C1) and

then verifying conditions (C2) and (C3).

Proof: Condition (C1) implies that

E

[
{(1− γ̂)Y − γ̂R}

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]

≥ E

[
{(1− γ̂)Y − γ̂R}

∏T
t=1 I(Atg∗t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− an − δ1

with probability at least 1− ce−c
′ min(δ21 ,δ

2
2)n. Moreover, by the definition of (g∗1,γ , ..., g

∗
T,γ) we also have

E

[
{(1− γ̂)Y − γ̂R}

∏T
t=1 I(Atg∗t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
≥ E

[
{(1− γ̂)Y − γ̂R}

∏T
t=1 I(Atg∗t (Ht) > 0)∏T

t=1 p(At|Ht)

]
.

Hence, the two inequalities above imply that

(1− γ̂)E

[
Y

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− (1− γ̂)E

[
Y

∏T
t=1 I(Atg∗t (Ht) > 0)∏T

t=1 p(At|Ht)

]
≥γ̂E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− γ̂E

[∏T
t=1 I(Atg∗t (Ht) > 0)∏T

t=1 p(At|Ht)

]
− an − δ1

=γ̂

(
E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− τ

)
− an − δ1.

(3.22)

Note that condition (C2) indicates that (3.22) is further lower bounded by −(an + bn + δ1 + δ2) with

probability at least 1− ce−c
′ min(δ21 ,δ

2
2)n. Since γ̂ < 1− ζ , by dividing 1− γ̂ from both side of (3.22) we have

E

[
Y

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
≥ E

[
Y

∏T
t=1 I(Atg∗t (Ht) > 0)∏T

t=1 p(At|Ht)

]
− 1

ζ
(an + bn + δ1 + δ2),

hold with probability at least 1− ce−c
′ min(δ21 ,δ

2
2)n, which completes the proof of lemma. □

111



3.9.2 Proof of Theorem 3.1

We complete the proof of Theorem 3.1 in this section. Throughout Section 3.9.2, we let

ϵn =

T∑
t=1

c
−(1−t)
1 C1,t

(
1√
n
σ
(1−νt/2)(1+θt)dt/2
n,t λ

−νt/4
n,t + λn,tσ

dt
n,t + σ−αtdtn,t

)
,

ξn = Tc−2T
1

T∑
t=1

C2,t
1√
n
σ
(1−ν′t/2)(1+θ′t)dt/2
n,t λ

−ν′t/4
n,t ϵ

−ν′t/2
n .

The proof is completed by verifying (C1) to (C3).

Step 1 - verify condition (C1): Let

Vt(ft, ..., fT ; γ) = E

[
{(1− γ)Y − γR}

∏T
s=t I(Asfs(Hs) > 0)∏T

s=t p(As|Hs)

]

and

Vϕ,t(ft, ..., fT ; γ) = −E
[
{(1− γ)Y − γR}

∏T
s=t+1 I(Asfs(Hs) > 0)∏T

s=t p(As|Hs)
ϕ(Atft(Ht))

]
.

Then following the same proof of Theorem 3.4 in Zhao et al. (2012) and Theorem 3.4 in Zhao et al. (2015),

under Assumption 3.5 it can be shown that both

0 ≤Vt(g∗t,γ , ..., g∗T,γ ; γ)− Vt(f̂t,γ , ..., f̂T,γ ; γ)

≤
T∑
s=t

c
−(t−s)
1 C1,t

(
1√
n
σ
(1−νt/2)(1+θt)dt/2
n,t λ

−νt/4
n,t + λn,tσ

dt
n,t + σ−αtdtn,t

)
+ δ

≤ϵn + δ

(3.23)

0 ≤Vϕ,t(g∗t,γ , ..., g∗T,γ ; γ)− Vϕ,t(f̂t,γ , ..., f̂T,γ ; γ)

≤
T∑
s=t

c
−(t−s)
1 C1,t

(
1√
n
σ
(1−νt/2)(1+θt)dt/2
n,t λ

−νt/4
n,t + λn,tσ

dt
n,t + σ−αtdtn,t

)
+ δ

≤ϵn + δ

(3.24)

holds with probability for at least 1−
∑T

s=t e
−c′tδ2n for any δ > 0, γ ∈ [0, 1] and t ∈ {1, ..., T}, where c′t is

a positive constant which depend on (νt, θt, dt,M, c1) and are independent of n for t=1,...,T.

Remark: Liu et al. (2018) shows that using AOWL to estimate an unconstrained optimal DTRs problem
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will lead to the same non-asymptotic errors as OWL obtained in (3.23) and (3.24). Hence, the proof of OWL

and AOWL can follow exactly the same proof scheme which leads to the same error bounds as stated in

Theorem 3.1.

In particular, when t = 1 we can obtain that for any δ > 0, γ ∈ [0, 1] and t = 1, ..., T ,

0 ≤V1(g
∗
1,γ , ..., g

∗
T,γ ; γ)− V1(f̂1,γ , ..., f̂T,γ ; γ)

=

∣∣∣∣E[
{(1− γ)Y − γR}

∏T
t=1 I(Atf̂t,γ(Ht) > 0)∏T

t=1 p(At|Ht)

]
− E

[
{(1− γ)Y − γR}

∏T
t=1 I(Atg∗t,γ(Ht) > 0)∏T

t=1 p(At|Ht)

]∣∣∣∣
≤ϵn + δ

holds with probability for at least 1−
∑T

t=1 e
−c′tδ2n, which indicates that condition (C1) holds by choosing

an = ϵn and δ1 = δ.

Step 2 - verify condition (C2): To verify (C2), following the proof of Theorem 3.4 in Zhao et al. (2012) one

can also show that f̂t,γ̂ ∈ BGt(Mc−1
1 λ

−1/2
n,t ) and Lemma 3.4 given at the end of this section implies that

∣∣∣∣E[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)

]
− τ

∣∣∣∣ ≤ δ + ξn (3.25)

holds with probability at least 1− e−
1
2
c2T1 M−2δ2n where ξn is the term defined in (3.41) which depends on

the shifting parameter η.

One the other hand, let

ĝt,γ̂(Ht) =


f̂t,γ̂(Ht), if |f̂t,γ̂(Ht)| ≤ 1

sign(f̂t,γ̂(Ht)), if |f̂t,γ̂(Ht)| > 1,

which is equal to f̂t,γ̂ truncated at ±1 for t = 1, ..., T . Using the definition of the hinge loss function and,

without loss of generality, assuming that (1− γ̂)Y − γ̂R are non-negative, which can always be achieved

via simply adding constant M to the response variable or using the augmentation, we can obtain that the

surrogate regret under γ = γ̂ up to stage t satisfies
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Vϕ,t(g∗t,γ̂ , ..., g
∗
T,γ̂ ; γ̂)− Vϕ,t(f̂t,γ̂ , ..., f̂T,γ̂ ; γ̂)

≥Vϕ,t(g∗t,γ̂ , ..., g
∗
T,γ̂ ; γ̂)− Vϕ,t(ĝt,γ̂ , f̂t+1,γ̂ , ..., f̂T,γ̂ ; γ̂)

=− E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
ϕ(Atg

∗
t,γ̂(Ht))

]

+ E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
ϕ(Atĝt,γ̂(Ht))

]

− E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
ϕ(Atĝt,γ̂(Ht))

]

+ E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asf̂s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
ϕ(Atĝt,γ̂(Ht))

]
.

(3.26)

Since (g∗1,γ̂ , ..., g
∗
T,γ̂) are the optimal decision functions associated with response variable (1− γ̂)Y − γ̂R,

the first two terms in the last expression of (3.26) is lower bounded by

− E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
ϕ(Atg

∗
t,γ̂(Ht))

]

+ E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
ϕ(Atĝt,γ̂(Ht))

]

≥− E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
I(|ĝt,γ̂(Ht)| ≤ ϵn)ϕ(Atg

∗
t,γ̂(Ht))

]

+ E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
I(|ĝt,γ̂(Ht)| ≤ ϵn)ϕ(Atĝt,γ̂(Ht))

]

=− E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
I(|f̂t,γ̂(Ht)| ≤ ϵn)ϕ(Atg

∗
t,γ̂(Ht))

]

+ E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
I(|f̂t,γ̂(Ht)| ≤ ϵn)ϕ(Atf̂t,γ̂(Ht))

]
.

(3.27)

Moreover, using conclusion (3.23) with t+ 1 the third and fourth terms of (3.26) is lower bounded by

− E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
ϕ(Atĝt,γ̂(Ht))

]

+ E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asf̂s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
ϕ(Atĝt,γ̂(Ht))

]
≥− (ϵn + δ)

(3.28)
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with probability at least 1−
∑T

t=1 e
−c′tδ2n. Hence, by combining (3.27) and (3.28) we can obtain that

Vϕ,t(g∗t,γ̂ , ..., g
∗
T,γ̂ ; γ̂)− Vϕ,t(f̂t,γ̂ , ..., f̂T,γ̂ ; γ̂)

≥− E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
I(|f̂t,γ̂(Ht)| ≤ ϵn)ϕ(Atg

∗
t,γ̂(Ht))

]

+ E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
I(|f̂t,γ̂(Ht)| ≤ ϵn)ϕ(Atf̂t,γ̂(Ht))

]
− (ϵn + δ)

(3.29)

holds with probability at least 1−
∑T

t=1 e
−c′tδ2n. On the other hand, note that

E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗s,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
ϕ(Atg

∗
t,γ̂(Ht))

∣∣∣∣Ht = ht

]
=− 2min(Qt,γ̂(ht, 1), Qt,γ̂(ht,−1))

and

E

[
{(1− γ̂)Y − γ̂R}

∏T
s=t+1 I(Asg∗t,γ̂(Hs) > 0)∏T

s=t p(As|Hs)
I(|f̂t,γ̂(Ht)| ≤ ϵn)ϕ(Atf̂t,γ̂(Ht))

∣∣∣∣Ht = ht

]
≤max{(1 + ϵn)Qt,γ̂(ht, 1) + (1− ϵn)Qt,γ̂(ht,−1), (1− ϵn)Qt,γ̂(ht, 1) + (1 + ϵn)Qt,γ̂(ht,−1)},

we can show that (3.29) is lower bounded by

Vϕ,t(g∗t,γ̂ , ..., g
∗
T,γ̂ ; γ̂)− Vϕ,t(f̂t,γ̂ , ..., f̂T,γ̂ ; γ̂)

≥ (1− ϵn)E[|Qt,γ̂(Ht, 1)−Qt,γ̂(Ht,−1)|I(|f̂t,γ̂(Ht)| ≤ ϵn)]− (ϵn + δ).

(3.30)

Assumption 3.6 implies that we either have

PH(|f̂t,γ̂(Ht)| ≤ ϵn) ≤ 3K1(ϵn + δ)

or

E[|Qt,γ̂(Ht, 1)−Qt,γ̂(Ht,−1)|I(|f̂t,γ̂(Ht)| ≤ ϵn)] ≥ 3(ϵn + δ). (3.31)
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When the second case happens and assume that ϵn is sufficient small, (3.30) will then imply that

Vϕ,t(g∗t,γ̂ , ..., g
∗
T,γ̂ ; γ̂)− Vϕ,t(f̂t,γ̂ , ..., f̂T,γ̂ ; γ̂) > ϵn + δ.

Since the inequality above will only hold with probability no more than
∑T

t=1 e
−c′tδ2n according to (3.24),

therefore we must have

PH(|f̂t,γ̂(Ht)| ≤ ϵn) ≤ 3K1(ϵn + δ) (3.32)

holds with probability no more than
∑T

t=1 e
−c′tδ2n for t = 1, ..., T .

Consequently, let

D = {(H1, ...,HT ) : ∃t such that |f̂t,γ̂(Ht)| ≤ ϵn},

then by taking union of (3.32) for t = 1 to T , with probability at least 1−
∑T

t=1 e
−c′tδ2n we have

P (D) ≤ 3K1T (ϵn + δ).

As a result, when η ≤ ϵn we have

E

[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)

]
=E

[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)
I((H1, ...,HT ) ∈ D)

]
+ E

[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)
I((H1, ...,HT ) ∈ Dc)

]
≥E

[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)
I((H1, A1, ...,HT ) ∈ Dc)

]
=E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)
I((H1, ...,HT ) ∈ Dc)

]
≥E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)
I((H1, ...,HT ) ∈ D)

]
≥E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− 3K1TMc−T1 (ϵn + δ).
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In addition, by definition we also have

E

[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)

]
≤ E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
. (3.33)

Hence, combine the two inequalities above we can obtain that

∣∣∣∣E[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− E

[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)

]∣∣∣∣ ≤ C3Tc
−T
1 (ϵn + δ)

holds with probability at least 1−
∑T

t=1 e
−c′tδ2n. Along with (3.25), we have

∣∣∣∣E[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− τ

∣∣∣∣ ≤ C3Tc
−T
1 (ϵn + δ) + ξn

holds with probability at least 1−
∑T

t=1 e
−c′tδ2n − e−

1
2
cT1 M

−2δ2n. Therefore, condition (C2) is satisfied by

choosing η = ϵn and bn = C3Tc
−T
1 ϵn + ξn which will hold with probability at least 1−

∑T
t=1 e

−c′tδ2n −

e−
1
2
cT1 M

−2δ2n for δ2 = C3Tc
−T
1 δ.

Step 3 - verify condition (C3): We will verify that γ̂ is bounded away from 1 with high probability in this step.

Recall that

R(γ) = E

[
R

∏T
t=1 I(Atg∗t,γ(Ht) > 0)∏T

t=1 p(At|Ht)

]
,

and in the proof of Lemma 3.1, we have shown that R(γ) is a non-increasing function of γ.

Since we have also assumed R(γ) is continuous w.r.t. γ and τ > R(1) in Assumption 3.4, one can

always find τ > τ0 > R(1) and ζ > 0 such that

R(1− ζ) ≤ τ0 < τ

and

ζ ≤ min

{
τ − τ0
6M

,
1

3

}
.

Without loss of generality, we assume that ζ is the largest positive constant that satisfies the two requirements

above.
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We complete the proof by verifying that

P (γ̂ > 1− ζ) ≤ 1−
T∑
t=1

e−c
′
tδ

2n − e−
1
2
cT1 M

−2δ2n

holds for any 0 < δ and n such that xn ≤ τ−τ0
6 where we define xn = C3Tc

−T
1 (ϵn + δ) + ξn. We now show

that γ̂ > 1− ζ implies

∣∣∣∣E[
{(1− γ̂)Y − γ̂R}

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
−E

[
{(1− γ̂)Y − γ̂R}

∏T
t=1 I(Atg

∗
t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]∣∣∣∣ ≥ ϵn+δ. (3.34)

We verify this by contradiction. If not, then it follows that

0 ≥ E

[
{(1− γ̂)Y − γ̂R}

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]

− E

[
{(1− γ̂)Y − γ̂R}

∏T
t=1 I(Atg∗t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
≥ −ϵn − δ.

(3.35)

By rearranging (3.35), we can obtain that

− γ̂

(
E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− E

[
R

∏T
t=1 I(Atg∗t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

])
≥− ϵn − δ − 2M(1− γ̂)

≥− ϵn − δ − 2Mζ

≥− ϵn − δ − τ − τ0
3

>− 1

2
(τ − τ0)

(3.36)

where the last inequality since ϵn + δ ≤ xn assuming that K1 ≥ 1 without loss of generality and xn ≤ τ−τ0
6

by requirement. On the other hand, since we have also assumed that γ̂ > 1− ζ, the non-increasing property

of R(γ) obtained in Lemma 3.1 implies that

E

[
R

∏T
t=1 I(Atg∗t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
≤ τ0.
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Moreover, in step 2 we have shown that

∣∣∣∣E[∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− τ

∣∣∣∣ ≤ xn.

holds with probability at least 1 −
∑T

t=1 e
−c′tδ2n − e−

1
2
cT1 M

−2δ2n. Therefore, the left-hand side of (3.36)

satisfies

− γ̂

(
E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− E

[
R

∏T
t=1 I(Atg∗t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

])
≤γ̂xn − γ̂(τ − τ0)

≤xn −
2

3
(τ − τ0)

(3.37)

with probability at least 1−
∑T

t=1 e
−c′tδ2n− e−

1
2
cT1 M

−2δ2n. Again, since xn ≤ τ−τ0
6 , (3.36) and (3.37) imply

that

−1

2
(τ − τ0) < −2

3
(τ − τ0) +

1

6
(τ − τ0) ≤ −1

2
(τ − τ0)

which is a contradiction. This indicates that γ̂ > 1 − ζ implies (3.35) holds with probability at least

1−
∑T

t=1 e
−c′tδ2n − e−

1
2
cT1 M

−2δ2n. Consequently, according to condition (C1) verified in step 1 we have

P (γ̂ > 1− ζ)

≤P
(∣∣∣∣E[

{(1− γ̂)Y − γ̂R}
∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]

− E

[
{(1− γ̂)Y − γ̂R}

∏T
t=1 I(Atg∗t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]∣∣∣∣ ≥ ϵn + δ

)
+O(

T∑
t=1

e−c
′
tδ

2n + e−
1
2
cT1 M

−2δ2n)

≤O
( T∑
t=1

e−c
′
tδ

2n + e−
1
2
cT1 M

−2δ2n
)
.

(3.38)

Indeed, the proof can be completed by conditioning on two events

∣∣∣∣E[
{(1−γ̂)Y −γ̂R}

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
−E

[
{(1−γ̂)Y −γ̂R}

∏T
t=1 I(Atg∗t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]∣∣∣∣ ≤ ϵn+δ
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and ∣∣∣∣E[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− τ

∣∣∣∣ ≤ C3Tc
−T
1 (ϵn + δ) + ξn,

which will improve the inequality (3.38) to

P (γ̂ > 1− ζ) ≤ 1−
T∑
t=1

e−c
′
tδ

2n − e−
1
2
cT1 M

−2δ2n.

Complete the proof of Theorem 3.1: step1 - 3 indicate that both condition (C1), (C2) and (C3) hold with

probability at least 1 −
∑T

t=1 e
−c′tδ2n − e−

1
2
cT1 M

−2δ2n with an = ϵn, bn = C3Tc
−T
1 ϵn + ξn, δ1 = δ and

δ2 = C3Tc
−T
1 δ for sufficient large n and sufficient small δ. Thus, Theorem 3.1 will be proved by directly

applying the conclusion of Lemma 3.3 up to a constant C3Tc
−T
1 for δ. ’

We now state and prove Lemma 3.4 used in the proof of Theorem 3.1. The goal of Lemma 3.4 is to

establish a concentration inequality for the smooth estimator on the left-hand side of (3.39). Recall that by

the choice of γ̂ we have

Pn
[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)

]
= τ. (3.39)

The additional Proposition 3.1 used to complete the proof of Lemma 3.4 is stated by the end of the proof.

To state Lemma 3.4, let G denote a Gaussian RKHS defined on Rd, then we use BG(r) to denote the ball of

radius r centered at 0 for G w.r.t. the norm induced by the inner product equipped by G.

Lemma 3.4 Suppose that the estimated decision functions (f̂1,γ̂ , ..., f̂T,γ̂) satisfy

f̂t,γ̂ ∈ BGt(λ
−1/2
n,t ), t = 1, ..., T

with probability 1, then for any 0 < ν ′t ≤ 2, 0 < θ′t for t = 1, ..., T , we have

P

(∣∣∣∣E[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)

]
− τ

∣∣∣∣ ≥ δ + ξn

)
≤ e−

1
2
c2T1 M−2δ2n, (3.40)

where

ξn = Tc−2T
1

( T∑
t=1

C2,tσ
(1−νt/2′)(1+θ′t)dt/2
n,t λ

−ν′t/4
n,t η−ν

′
t/2/

√
n
)
. (3.41)
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Here, C2,t is a positive constants which depend on parameters (ν ′t, θ
′
t, dt) and M but does not depend on

sample size n for t = 1, ..., T .

Proof: Since (f̂1,γ̂ , ..., f̂T,γ̂) satisfy (3.39), it suffices to derive a uniform bound for

sup
f∈W

|Pn[f ]− E[f ]|,

where

W =

{
R
min(ψ(A1f1(H1)/η), ..., ψ(AT fT (HT )/η))∏T

t=1 p(At|Ht)
: f1 ∈ BG1(λ

−1/2
n,1 ), ..., fT ∈ BGT (λ

−1/2
n,T )

}
.

To establish the uniform bound, let f1 and f2 be two functions from set W associated with stagewise

decision functions (f11, ..., f1T ) and (f21, ..., f2T ), then the square of the empirical L2 norm, which we give

the definition by the end of this section and denote it as L2(Pn), between f1 and f2 satisfies

1

n

n∑
i=1

(f1(xi)− f2(xi))
2

(i)

≤ 1

n

n∑
i=1

M2c−2T
1 (

T∑
t=1

|ψ(Aitf1t(Hit)/η)− ψ(Aitf2t(Hit)/η)|)2

(ii)

≤ 1

n

n∑
i=1

T∑
t=1

TM2c−2T
1 [ψ(Aitf1t(Hit)/η)− ψ(Aitf2t(Hit)/η)]

2

(iii)

≤
T∑
t=1

TM2c−2T
1 η−2

n

n∑
i=1

(f1t(Hit)− f2t(Hit))
2

(3.42)

Here, inequality (i) is guaranteed by Proposition 3.1 stated by the end of the proof and note that

|R/
∏T
t=1 p(At|Ht)| ≤ Mc−T1 , (ii) is followed by the Cauchy-Schwarz inequality and the last inequal-

ity (iii) holds by noting that ψ(·/η) is a η−1-Lipschitz function. Inequality (3.42) implies that

N (ϵ;W, L2(Pn)) ≤
T∏
t=1

N (M−1T−1cT1 ηϵ;BGt(λ
−1/2
n,t ), L2(Pn)). (3.43)

By Theorem 4.10 from Wainwright (2019), for any δ > 0 we have

P ( sup
f∈W

|E[f ]− Pn[f ]| ≥ δ + 2Radn(W)) ≤ e−
c2T1
2M2 nδ

2

, (3.44)
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where Radn(F) denotes the Rademacher complexity of F defined as

Radn(F) = EXEϵ

∣∣∣∣sup
f∈F

1

n

n∑
i=1

f(Xi)

∣∣∣∣, ϵi ∼ i.i.d. P (ϵi = ±1) = 0.5.

Following Example 5.24 from Wainwright (2019), the covering number inequalities (3.43) and the covering

number bound from Proposition 2.1 stated in Section 2.9, we can obtain

Radn(W) ≤ 24√
n
E

[ ∫ 2Mc−T1

0

√
logN (M−1T−1cT1 ηϵ;W, L2(Pn))dϵ

]

≤ 24√
n
E

[ ∫ 2Mc−T1

0

√√√√( T∑
t=1

C2,tσ
(1−ν′t/2)(1+θ′t)dt
n,t λ

−ν′t/2
n,t (M−1T−1cT1 ηϵ)

−ν′t

)
dϵ

]

≤
T∑
t=1

C2,t
c−2T
1 T√
n

σ
(1−ν′t/2)(1+θ′t)dt/2
n,t λ

−ν′t/4
n,t η−ν

′
t/2,

which completes the proof. □

Proposition 3.1 shows that the difference of the objective function of MRL is bounded by the sum of the

difference of each entry.

Proposition 3.1 For any zt ∈ R, z′t ∈ R and t ∈ {1, ..., T}, we have

|min(ψ(z1), ..., ψ(zT ))−min(ψ(z′1), ..., ψ(z
′
T ))| ≤

T∑
t=1

|zt − z′t|.

Proof: Without loss of generality, we assume that

min(ψ(z′1), ..., ψ(z
′
T )) ≤ min(ψ(z1), ..., ψ(zT ))

and suppose that min(ψ(z′1), ..., ψ(z
′
T )) = z′t0 , then it is easy to verify that

min(ψ(z1), ..., ψ(zT ))−min(ψ(z′1), ..., ψ(z
′
T )) =min(ψ(z1), ..., ψ(zT ))− ψ(z′t0)

≤|ψ(zt0)− ψ(z′t0)|

≤
T∑
t=1

|ψ(zt)− ψ(z′t)|

≤
T∑
t=1

|zt − z′t|
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where in the last inequality we have used the fact that ψ is a 1-Lipschitz function, which completes the proof.

□

3.9.3 Proof of Theorem 3.2

We complete the proof of Theorem 3.2 in this section. For convenience, we define

V(f1, ..., fT ) = E

[
O

∏T
t=1 I(Atft(Ht) > 0)∏T

t=1 p(At|Ht)

]

and define the surrogate reward under MRL to be

Vψ(f1, ..., fT ) =E
[
O
min(ψ(A1f1(H1)), ..., ψ(AT fT (HT )))∏T

t=1 p(At|Ht)

]
+ E

[
O−min(ψ(|f1(H1)|), ..., ψ(|fT (HT )|))∏T

t=1 p(At|Ht)

]
.

Moreover, let

L1(f1, ..., fT ) = −min(ψ(A1f1(H1)), ..., ψ(AT fT (HT ))) + 1,

L2(f1, ..., fT ) = −min(ψ(|f1(H1)|), ..., ψ(|fT (HT )|)) + 1,

and let Oγ = (1− γ)Y − γR. Then by definition, we have

(g∗1,γ , ..., g
∗
T,γ) = argmin

(f1,...,fT )∈F1×···×FT
E[L(f1, ..., fT ; γ)],

where

L(f1, ..., fT ; γ) = Oγ
L1(f1, ..., fT ; γ)∏T

t=1 p(At|Ht)
+O−

γ

L2(f1, ..., fT ; γ)∏T
t=1 p(At|Ht)

.

From now on, given finite sample we use f̂γ = (f̂1,γ , ..., f̂T,γ) to denote the solution of

min
(f1,...,fT )∈G1×···×GT

Pn[L(f1, ..., fT ; γ)] +
T∑
t=1

λn,t∥ft∥2Gt .

where Gt = G(σn,t). Throughout Section 3.9.3, we let

ϵn = c−T1

T∑
t=1

C1,t

(
1√
n

(√
T + T νt/2c

−3Tνt/4
1 σ

(1−νt/2)(1+θt)dt/2
n,t λ

−νt/4
n,t

)
+ λn,tσ

dt
n,t + c−T1 σ−αtdtn,t

)
,

123



ξn = Tc−2T
1

T∑
t=1

C2,t

(
1√
n
c
−Tν′t/4
1 σ

(1−ν′t/2)(1+θ′t)dt/2
n,t λ

−ν′t/4
n,t

)
,

and use cx to denote a constant that depends on parameter x. The proof of Theorem 3.2 is also completed by

checking conditions (C1) to (C3).

Step 1 - verify condition (C1): According to Lemma 3.5 given at the end of the section, we have

V(g∗1, ..., g∗T )− V(f1, ..., fT ) ≤ Vψ(g∗1, ..., g∗T )− Vψ(f1, ..., fT )

hold for any (f1, ..., fT ), it is sufficient to prove

P

(
sup
γ∈[0,1]

|E[L(f̂1,γ , ..., f̂T,γ ; γ)]− E[L(g∗1,γ , ..., g
∗
T,γ ; γ)]| ≥ δ + ϵn

)
≤ 2e−

1
2
c2T1 M−2δ2n. (3.45)

The key is to construct an adequately good approximation of g∗t,γ from Gt for any t = 1, .., T and γ ∈ [0, 1],

which will be denoted as f̃t,γ from now on.

The construction of such f̃t,γ basically follows the idea of the proof of Theorem 2.7 in Steinwart and

Scovel (2007). Specifically, our goal is to find function f̃t,γ ∈ Gt such that

∥f̃t,γ∥2Gt ≤ cdtσ
dt
n,t (3.46)

and

|f̃t,γ(ht)− g∗t,γ(ht)| ≤ 8e−σ
2
n,t∆

2
t,γ(ht)/2dt (3.47)

holds for any ht ∈ Ht.

The proof follows the same argument used for proving Theorem 2.7 in Steinwart and Scovel (2007).

Using the same argument, we can construct an extension of g∗t,γ , denoted as ḡt,γ , such that ḡt,γ is well defined

on 3H̄t and g∗t,γ(ht) = ḡt,γ(ht) holds for any ht ∈ Ht. The construction of f̃t,γ will use the fact that the

linear operator Vσ : L2(Rd) → Gσ defined by

Vσg(x) =
(2σ)d/2

πd/4

∫
Rd
e−2σ2∥x−y∥2g(y)dy
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is an isometric isomorphism. Let g̃t,γ = (σ2n,t/π)
dt/4ḡt,γ , then one can verify that

∥g̃t,γ∥2L2
≤ Vol(dt)2σdtn,t = cdtσ

dt
n,t,

where Vol(dt) is the volume of the unit ball in Rdt .

We now show that f̃t,γ = Vσn,t g̃t,γ satisfies the requirements (3.46) and (3.47). Since Vσn,t is an isometric

isomorphism, we have

∥f̃t,γ∥2Gt = ∥Vσn,t g̃t,γ∥2Gt = ∥g̃t,γ∥2L2
≤ cdtσ

dt
n,t.

On the other hand, following the argument of Lemma 4.1 from Steinwart and Scovel (2007) it can be shown

that for any ht such that g∗t,γ(ht) = 1, by construction we will have ḡt,γ(h) = 1 for any h ∈ B(ht,∆t,γ(ht)).

Consequently, we have

1 ≥ Vσn,tg(ht) =

(
2σn,t
π

)dt/2 ∫
Rdt

e−2σ2
n,t∥ht−y∥ḡt,γ(y)dy

≥
(
2σn,t
π

)dt/2 ∫
B(ht,∆t,γ(ht))

e−2σ2
n,t∥ht−y∥(ḡt,γ(y) + 1)dy − 1

= 2

(
2σn,t
π

)dt/2 ∫
B(ht,∆t,γ(ht))

e−2σ2
n,t∥ht−y∥dy − 1

≥ 1− 2P (|U | ≥ ∆t,γ(ht)),

where U is a random variable following spherical Gaussian distribution in Rdt . Hence, we can obtain

|f̃t,γ(ht)− 1| = |f̃t,γ(ht)− g∗t,γ(ht)| ≤ 1− 2P (|U | ≥ ∆t,γ(ht))

for any ht such that g∗t,γ(ht) = 1. Using inequality (3.5) from Ledoux and Talagrand (1991), the right-hand

side of the inequality above is bounded by

1− 2P (|U | ≥ ∆t,γ(ht)) ≤ 1− 8e−σ
2
n,t∆

2
t,γ(ht)/2dt (3.48)

By repeating the same argument, we can verify that (3.48) will also hold for any ht ∈ {h ∈ Ht : g
∗
t,γ(h) < 0}.
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We now show that using (3.48) and Assumption 3.5, we can obtain that (f̃1,γ , ..., f̃T,γ) satisfies

E[L(f̃1,γ , ..., f̃T,γ ; γ)] +

T∑
t=1

λn,t∥f̃t,γ∥2Gt − E[L(g∗1,γ , ..., g
∗
T,γ ; γ)] ≤

T∑
t=1

cdt,K,M (λn,tσ
dt
n,t + c−T1 σ−αtdtn,t ).

(3.49)

To prove (3.49), first note that (3.46) indicates that

T∑
t=1

λn,t∥f̃t,γ∥2Gt ≤
T∑
t=1

cdtλn,tσ
dt
n,t.

On the other hand, Proposition 3.1 implies that

E

[
OγL1(f̃1,γ , ..., f̃T,γ)∏T

t=1 p(At|Ht)

]
− E

[
OγL1(g

∗
1,γ , ..., g

∗
T,γ)∏T

t=1 p(At|Ht)

]
≤Mc−T1 E[|L1(f̃1,γ , ..., f̃T,γ)− L1(g

∗
1,γ , ..., g

∗
T,γ)|]

(i)

≤Mc−T1

T∑
t=1

E[|f̃t,γ(Ht)− g∗t,γ(Ht)|]

(ii)

≤Mc−T1

T∑
t=1

E[e−σ
2
n,t∆

2
t,γ(Ht)/2dt ]

(iii)

≤ CM,Kc
−T
1

T∑
t=1

σ−αtdtn,t ,

where to obtain (i) we implement the inequality in Proposition 3.1, (ii) is ensured by (3.47) and (3.48), (iii)

follows from applying Assumption 3.5. Similarly, using the fact that ||x1| − |x2|| ≤ |x1 − x2| we can also

show that

E

[
O−
γ L2(f̃1,γ , ..., f̃T,γ)∏T

t=1 p(At|Ht)

]
− E

[
O−
γ L2(g

∗
1,γ , ..., g

∗
T,γ)∏T

t=1 p(At|Ht)

]
≤ cM,Kc

−T
1

T∑
t=1

σ−αtdtn,t

which completes the verification of (3.49).

We now start verifying condition (C1). Note that for any γ, we have following decomposition

0 ≤E[L(f̂1,γ , ..., f̂T,γ ; γ)]− E[L(g∗1,γ , ..., g
∗
T,γ ; γ)]

≤E[L(f̂1,γ , ..., f̂T,γ ; γ)]− Pn[L(f̂1,γ , ..., f̂T,γ ; γ)]︸ ︷︷ ︸
(I)
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+ Pn[L(f̂1,γ , ..., f̂T,γ ; γ)] +
T∑
t=1

λn,t∥f̂t,γ∥2Gt − Pn[L(f̃1,γ , ..., f̃T,γ ; γ)]−
T∑
t=1

λn,t∥f̃t,γ∥2Gt︸ ︷︷ ︸
(II)

+ Pn[L(f̃1,γ , ..., f̃T,γ)]− E[L(f̃1,γ , ..., f̃T,γ)]︸ ︷︷ ︸
(III)

+ E[L(f̃1,γ , ..., f̃T,γ)] +
T∑
t=1

λn,t∥f̃t,γ∥2Gt − E[L(g∗1,γ , ..., g
∗
T,γ ; γ)]︸ ︷︷ ︸

(IV )

,

By the definition of {f̂t,γ}Tt=1, we know that (II) ≤ 0. Moreover, (3.49) indicates that

(IV ) ≤
T∑
t=1

cdt,K,M (λn,tσ
dt
n,t + c−T1 σ−αtdtn,t ).

Hence, it remains to establish a non-asymptotic upper bound for (I) and (III) w.r.t. γ. Note that by definition

Pn[L(f̂1,γ , ..., f̂T,γ ; γ)] +
T∑
t=1

λn,t∥f̂t,γ∥2Gt

≤Pn[L(0, ..., 0; γ)] + 0

≤Mc−T1 ,

and consequently, we have

T∑
t=1

λn,t∥f̂t,γ∥2Gt ≤ −Pn[L(f̂1,γ , ..., f̂T,γ)] + Pn[L(0, ..., 0; γ)] ≤ 2Mc−T1 .

The previous inequality implies that

f̂t,γ ∈ BGt((2M)−1/2c
−T/2
1 λ

−1/2
n,t ), (3.50)

and (3.46) indicates that

f̃t,γ ∈ BGt(cdtσ
dt/2
n,t ).

Since we assumed λn,tσdtn,t → 0, without loss of generality we can further assume that both f̂t,γ and f̃t,γ

belong to BGt(cdt,Mc
−T/2
1 λ

−1/2
n,t ) for some positive constant cdt,M . Therefore, it is sufficient to obtain a
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uniform concentration inequality for |Pn[L(f1, ..., fT )] − E[L(f1, ..., fT )]| for any γ ∈ [0, 1] and ft ∈

BGt(cdt,Mc
−T/2
1 λ

−1/2
n,t ) with t = 1, ..., T .

To achieve this, recall that

L(f1, ..., fT ; γ) = Oγ
L1(f1, ..., fT ; γ)∏T

t=1 p(At|Ht)
+O−

γ

L2(f1, ..., fT ; γ)∏T
t=1 p(At|Ht)

.

Thus, it suffices to establish the uniform value bounds for both

sup
f∈W1

|E[f ]− Pn[f ]|, sup
f∈W2

|E[f ]− Pn[f ]|,

where

W1 =

{
{(1− γ)Y − γR}L1(f1, ..., fT ) : γ ∈ [0, 1], ft ∈ BGt(cdt,Mc

−T/2
1 λ

−1/2
n,t ), t = 1, ..., T

}
,

W2 =

{
{(1− γ)Y − γR}−L2(|f1|, ..., |fT |) : γ ∈ [0, 1], ft ∈ BGt(cdt,Mc

−T/2
1 λ

−1/2
n,t ), t = 1, ..., T

}
.

We first derive a concentration inequality for sup
f∈W1

|E[f ]− Pn[f ]|. Again, by Theorem 4.10 from Wainwright

(2019), for any δ > 0 we have

P ( sup
f∈W1

|E[f ]− Pn[f ]| ≥ δ + 2Radn(W1)) ≤ e−
1
2
c2T1 M−2δ2n, (3.51)

and following Example 5.24 from Wainwright (2019) and the upper bound of covering number obtained in

Lemma 3.6 given by the end of the section we have

Radn(W1)

≤ 24√
n
E

[ ∫ 2Mc−T
1

0

√
logN (ϵ;W1, L2(Pn))dϵ

]

≤ 24√
n
E

[ ∫ 2Mc−T
1

0

√√√√cM,c1

(
− log ϵ+ T +

T∑
t=1

logN (cT1 ϵ/(2MT );BGt
(cdt,Mc

−T/2
1 λ

−1/2
n,t ), L2(Pn))

)
dϵ

]
(i)

≤ 24√
n
E

[ ∫ 2Mc−T
1

0

√√√√cM,c1

(
− log ϵ+ T +

T∑
t=1

c
−3Tνt/2
1 T νtσ

(1−νt/2)(1+θt)dt

n,t λ
−νt/2
n,t ϵ−νt

)
dϵ

]

≤CM,c1√
n
c−T
1

(√
T +

T∑
t=1

C1,tT
νt/2c

−3Tνt/4
1 σ

(1−νt/2)(1+θt)dt/2
n,t λ

−νt/4
n,t

)
,

(3.52)
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where to obtain (i) we again use the covering number property Proposition 2.1. The last inequality in (3.52)

implies

P

(
sup
f∈W1

|E[f ]− Pn[f ]| ≥ δ +
CM,c1√

n
c−T1

(√
T +

T∑
t=1

C1,tT
νt/2c

−3Tνt/4
1 σ

(1−νt/2)(1+θt)dt/2
n,t λ

−νt/4
n,t

))
≤ e−

1
2
c2T1 M−2δ2n.

Repeating analogous argument for W2, we can also show that

P

(
sup
f∈W2

|E[f ]− Pn[f ]| ≥ δ +
CM,c1√

n
c−T1

(√
T +

T∑
t=1

C1,tT
νt/2c

−3Tνt/4
1 σ

(1−νt/2)(1+θt)dt/2
n,t λ

−νt/4
n,t

))
≤ e−

1
2
c2T1 M−2δ2n.

Combine two concentration inequalities above, we can obtain that

P

(
sup |Pn[L(f1, ..., fT ; γ)]− E[L(f1, ..., fT ; γ)]|

≥ δ +
CM,c1√

n
c−T1

(√
T +

T∑
t=1

C1,tT
νt/2c

−3Tνt/4
1 σ

(1−νt/2)(1+θt)dt/2
n,t λ

−νt/4
n,t

))
≤ 2e−

1
2
c2T1 M−2δ2n

(3.53)

where the supreme in (3.53) is taken w.r.t.

γ ∈ [0, 1], (f1, ..., fT ) ∈ BG1(cd1,Mc
−T/2
1 λ

−1/2
n,1 )× · · · × BGT (cdT ,Mc

−T/2
1 λ

−1/2
n,T ).

Apply (3.53) to (I) and (III), we can show that both two terms are bounded by the left-hand side of (3.53)

with probability at least 1− 2e−
1
2
c2T1 M−2δ2n. The verification is completed by combing (I)− (IV ).

Step 2 - verify condition (C2): We complete verifying (C2) by first proving a preliminary inequality. Let

Γ(ϵ) =

T∑
t=1

PH

({
Ht ∈ Ht :

t∏
s=1

I(Asf̂s,γ̂(Hs) > 0) = 1, |f̂t,γ̂(Ht)| ≤ ϵ

})
.

Here, we again use index H to emphasize that the expectation is taken w.r.t. to HT with {f̂t,γ̂}Tt=1 being

treated as fixed function, so Γ(ϵ) is a random variable w.r.t. sample. Our goal is to show that for any
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ω ≥ 2(ϵn + δ), we will obtain

P (Γ(ϵn/M) > K2Tω) ≤ 3e−
1
2
c2T1 M−2δ2n. (3.54)

To verify (3.54), we first note that according to the augmentation decomposition used in the proof of

Lemma 3.5 presented at the end of this section, the U-function defined in Assumption 3.7 can be written as

the summation of expectations w.r.t. non-negative response variables. Therefore, without loss of generality,

we can assume that Oγ is non-negative during the proof. In this case, Ut in Assumption 3.7 can be simplified

as

Ut(Ht; ft, ..., fT ; γ) = E

[
Oγ

∏T
s=t I(Asfs(Hs) > 0)∏T

s=t p(As|Hs)

∣∣∣∣Ht

]
.

For convenience, we use ĝt to denote sign(f̂t,γ̂) and let

Ŝt = {Ht ∈ Ht : |f̂t,γ̂(Ht)| ≤ ϵn/M},

and

D̂t =

{
(H1, A1, ...,Ht, At) :

t∏
s=1

I(Asf̂s,γ̂(Hs)) = 1, Ht ∈ Ŝt

}
.

We consider two situations:

Case 1: Suppose

E

[
I(Ht ∈ D̂t)∏t
s=1 p(As|Hs)

Ut+1(Ht+1; g
∗
t+1,γ̂ , ..., g

∗
T,γ̂)

]
≤ ω,

then by Assumption 3.7 we have PH(D̂t) ≤ Cω.

Case 2: Otherwise, suppose

E

[
I(Ht ∈ D̂t)∏t
s=1 p(As|Hs)

Ut+1(Ht+1; g
∗
t+1,γ̂ , ..., g

∗
T,γ̂)

]
> ω, (3.55)

in this case, we aim at showing that

E

[
Oγ̂

min(ψ(A1g
∗
1,γ̂(H1)), ..., ψ(AT g

∗
T,γ̂(HT )))∏T

s=1 p(As|Hs)

]
− E

[
Oγ̂

min(ψ(A1f̂1,γ̂(H1)), ..., ψ(AT f̂T,γ̂(HT )))∏T
s=1 p(As|Hs)

]
≥ ϵn + δ.
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First, using the fact that

E

[
Oγ̂

min(ψ(A1g
∗
1,γ̂(H1)), ..., ψ(AT g

∗
T,γ̂(HT )))∏T

s=1 p(As|Hs)

]
≥E

[
Oγ̂

min(ψ(A1ĝ1(H1)), ..., ψ(Atĝt(Ht)), ψ(At+1g
∗
t+1,γ̂(Ht+1)), ..., ψ(AT g

∗
T,γ̂(HT )))∏T

s=1 p(As|Hs)

]

and

E

[
Oγ̂

min(ψ(A1f̂1,γ̂(H1)), ..., ψ(AT f̂T,γ̂(HT )))∏T
s=1 p(As|Hs)

]
≤E

[
Oγ̂

min(ψ(A1ĝ1(H1)), ..., ψ(At−1ĝt−1(Ht−1)), ψ(Atf̂t,γ̂(Ht)), ψ(At+1ĝt+1(Ht+1)), ..., ψ(AT ĝT (HT )))∏T
s=1 p(As|Hs)

]

where the first inequality is guaranteed by the optimality of (g∗1,γ̂ , ..., g
∗
T,γ̂) and the second inequality is

guaranteed by noting that ψ(·) is a non-decreasing function, we can obtain that

E

[
Oγ̂

min(ψ(A1g
∗
1,γ̂(H1)), ..., ψ(AT g

∗
T,γ̂(HT )))∏T

s=1 p(As|Hs)

]
− E

[
Oγ̂

min(ψ(A1f̂1,γ̂(H1)), ..., ψ(AT f̂T,γ̂(HT )))∏T
s=1 p(As|Hs)

]
≥E

[
Oγ̂

min(ψ(A1ĝ1(H1)), ..., ψ(Atĝt(Ht)), ψ(At+1g
∗
t+1,γ̂(Ht+1)), ..., ψ(AT g

∗
T,γ̂(HT )))∏T

s=1 p(As|Hs)

]
−E

[
Oγ̂

min(ψ(A1ĝ1(H1)), ..., ψ(At−1ĝt−1(Ht−1)), ψ(Atf̂t,γ̂(Ht)), ψ(At+1ĝt+1(Ht+1)), ..., ψ(AT ĝT (HT )))∏T
s=1 p(As|Hs)

]
.

(3.56)

Sequentially taking conditional expectation w.r.t. HT to Ht+1 in backward order, the last term of (3.56) is

equal to

E

[
Oγ̂

min(ψ(A1ĝ1(H1)), ..., ψ(Atĝt(Ht)), ψ(At+1g
∗
t+1,γ̂(Ht+1)), ..., ψ(AT g

∗
T,γ̂(HT )))∏T

s=1 p(As|Hs)

]
− E

[
Oγ̂

min(ψ(A1ĝ1(H1)), ..., ψ(At−1ĝt−1(Ht−1)), ψ(Atf̂t,γ̂(Ht)), ψ(At+1ĝt+1(Ht+1)), ..., ψ(AT ĝT (HT )))∏T
s=1 p(As|Hs)

]
=E

[
min(ψ(A1ĝ1(H1)), ..., ψ(Atĝt(Ht)))∏t

s=1 p(As|Hs)
Ut+1(Ht+1; g

∗
t+1,γ̂ , ..., g

∗
T,γ̂)

]
− E

[
min(ψ(A1ĝ1(H1)), ..., ψ(Atĝt(Ht)))∏t

s=1 p(As|Hs)
|ψ(f̂t,γ̂(Ht))|Ut+1(Ht+1; ĝt+1, ..., ĝT )

]
(3.57)

Since we have

|ψ(f̂t,γ̂(Ht))|Ut(Ht; f̂t,γ̂ , ..., f̂T,γ̂) ≤ Ut(Ht; f̂t,γ̂ , ..., f̂T,γ̂) ≤ Ut(Ht; g
∗
t,γ̂ , ..., g

∗
T,γ̂),
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(3.57) is further lower bounded by

E

[
min(ψ(A1ĝ1(H1)), ..., ψ(Atĝt(Ht)))∏t

s=1 p(As|Hs)
Ut+1(Ht+1; g

∗
t+1,γ̂ , ..., g

∗
T,γ̂)

]
− E

[
min(ψ(A1ĝ1(H1)), ..., ψ(Atĝt(Ht)))∏t

s=1 p(As|Hs)
|ψ(f̂t,γ̂(Ht))|Ut+1(Ht+1; ĝt+1, ..., ĝT )

]
≥E

[
min(ψ(A1ĝ1(H1)), ..., ψ(Atĝt(Ht)))∏t

s=1 p(As|Hs)
I(Ht ∈ Ŝt)Ut+1(Ht+1; g

∗
t+1, ..., g

∗
T )

]
− E

[
min(ψ(A1ĝ1(H1)), ..., ψ(Atĝt(Ht)))∏t

s=1 p(As|Hs)
I(Ht ∈ Ŝt)|ψ(f̂t,γ̂(Ht))|Ut+1(Ht+1; ĝt+1, ..., ĝT )

]
=E

[∏t
s=1 I(Asf̂s,γ̂(Hs) > 0)∏t

s=1 p(As|Hs)
I(Ht ∈ Ŝt)Ut+1(Ht+1; g

∗
t+1,γ̂ , ..., g

∗
T,γ̂)

]
− E

[∏t
s=1 I(Asf̂s,γ̂(Hs) > 0)∏t

s=1 p(As|Hs)
I(Ht ∈ Ŝt)|f̂t,γ̂(Ht)|Ut+1(Ht+1; f̂t+1,γ̂ , ..., f̂T,γ̂)

]
=E

[
I(Ht ∈ D̂t)∏t
s=1 p(As|Hs)

Ut+1(Ht+1; g
∗
t+1,γ̂ , ..., g

∗
T,γ̂)

]
− E

[∏t
s=1 I(Asf̂s,γ̂(Hs) > 0)∏t

s=1 p(As|Hs)
I(Ht ∈ Ŝt)|f̂t,γ̂(Ht)|Ut+1(Ht+1; f̂t+1,γ̂ , ..., f̂T,γ̂)

]

(3.58)

Hence, when (3.55) holds, (3.58) will be lower bounded by

E

[
I(Ht ∈ D̂t)∏t
s=1 p(As|Hs)

Ut+1(Ht+1; g
∗
t+1,γ̂ , ..., g

∗
T,γ̂)

]
− E

[∏t
s=1 I(Asf̂s,γ̂(Hs) > 0)∏t

s=1 p(As|Hs)
I(Ht ∈ Ŝt)|f̂t,γ̂(Ht)|Ut+1(Ht+1; f̂t+1,γ̂ , ..., f̂T,γ̂)

]
≥ω − E

[∏t
s=1 I(Asf̂s,γ̂(Hs) > 0)∏t

s=1 p(As|Hs)

ϵn
M
M

]
>ϵn + δ.

(3.59)

Combine (3.56), (3.57), (3.58) and (3.59), we have shown that (3.55) implies

E

[
Oγ̂

min(ψ(A1g
∗
1,γ̂(H1)), ..., ψ(AT g

∗
T,γ̂(HT )))∏T

s=1 p(As|Hs)

]
− E

[
Oγ̂

min(ψ(A1f̂1,γ̂(H1)), ..., ψ(AT f̂T,γ̂(HT )))∏T
s=1 p(As|Hs)

]
≥ ϵn + δ,

which holds with probability no more than 2e−
1
2
c2T1 M−2δ2n as verified in step 1.

The discussion of case 1 and case 2 indicates that

PH(D̂t) > Cω
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can only hold with probability no more than 2e−
1
2
c2T1 M−2δ2n. Note that the argument of case 1 and case 2

holds for any t ∈ {1, ..., T}, taking summation w.r.t. t we can obtain that

P (Γ(ϵn/M) ≥ K2Tω)

=P (
T∑
t=1

PH(D̂t) ≥ K2Tω)

≤P (sup
t
PH(D̂t) > Cω)

≤2e−
1
2
c2T1 M−2δ2n,

which completes the verification of (3.54).

We now begin to verify (C2) by utilizing (3.54). Recall that our goal is to verify

∣∣∣∣E[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− τ

∣∣∣∣ ≤ c(ϵn + ξn + δ).

Note that the estimated decision functions satisfy (3.50), by applying Lemma 3.4 we can obtain that the

inequality (3.40) also holds with high probability. Hence, the key to complete the proof is to show that

∣∣∣∣E[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)

]
− E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]∣∣∣∣ ≤ O(ϵn).

To achieve this, we let

D :=

{
(H1, A1, ...,HT , AT ) :

T∏
t=1

I(Atf̂t,γ̂(Ht) > 0) = 1,∃t ∈ {1, ..., T} such that |f̂t,γ̂(Ht)| ≤
ϵn
M

}

⊆
T⋃

t=1

{
(H1, A1, ...,Ht, At) :

t∏
s=1

I(Asf̂t,γ̂(Hs) > 0) = 1, |f̂t,γ̂(Ht)| ≤
ϵn
M

}

and choose ω = 2(ϵn + δ), then (3.54) implies that

PH(D) ≤ 2K2T (ϵn + δ) (3.60)

holds with probability of at least 1− 2e−
1
2
c2T1 M−2δ2n. Therefore, we have
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E

[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)

]
=E

[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)
I((H1, A1, ...,HT , AT ) ∈ D)

]
+ E

[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)
I((H1, A1, ...,HT , AT ) ∈ Dc)

]
≥E

[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)
I((H1, A1, ...,HT , AT ) ∈ Dc)

]
(i)
=E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)
I((H1, A1, ...,HT , AT ) ∈ Dc)

]
≥E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)
I((H1, A1, ...,HT , AT ) ∈ D)

]
(ii)

≥E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− C3Tc

−T
1 T (ϵn + δ).

(3.61)

holds with probability at least 1 − 2e−
1
2
c2T1 M−2δ2n. Here, equality (i) is followed by noting that for any

η ≤ ϵn
M , |f̂t,γ̂(Ht)| ≥ ϵn

M implies

ψ(Atf̂t,γ̂(Ht)/η) = I(Atf̂t,γ̂(Ht) > 0),

and (ii) is guaranteed by (3.60). Combine (3.61) and (3.33), we obtain that

∣∣∣∣E[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)

]
− E

[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]∣∣∣∣ ≤ C3(ϵ+ δ).

On the other hand, recall that the estimated decision functions satisfy (3.50), by applying Lemma 3.4 we can

obtain that ∣∣∣∣E[
R
min(ψ(A1f̂1,γ̂(H1)/η), ..., ψ(AT f̂T,γ̂(HT )/η))∏T

t=1 p(At|Ht)

]
− τ | ≤ ξn + δ

holds with probability at least 1− e−
1
2
c2T1 M−2δ2n. Combining the two inequalities above, we have that

∣∣∣∣E[
R

∏T
t=1 I(Atf̂t,γ̂(Ht) > 0)∏T

t=1 p(At|Ht)

]
− τ

∣∣∣∣ ≤ O(ϵn + ξn + δ)
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holds with probability at least 1− 3e−
1
2
c2T1 M−2δ2n. Hence, (C2) holds by choosing bn = C3Tc

−T
1 ϵn + ξn,

δ2 = C3Tc
−T
1 δ with η choosing to be η = ϵn/N in ξn.

Step 3 - verify condition (C3): Using exactly the same argument of step 3 in the proof of Theorem 3.1, we

can show that

P (γ̂ > 1− ζ) ≤ 1− 3e−
1
2
c2T1 M−2δ2n

holds for any 0 < δ and n such that C3Tc
−T
1 (ϵn + δ) + ξn ≤ τ−τ0

6 , which completes the verification of (C3).

Complete the proof of Theorem 3.2: step1 - 3 indicate that both condition (C1), (C2) and (C3) hold with

probability at least 1 − 3e−
1
2
c2T1 M−2δ2n with an = ϵn, bn = C3Tc

−T
1 ϵn + ξn, δ1 = δ and δ2 = C3Tc

−T
1 δ

for sufficient large n and sufficient small δ. Therefore, Theorem 3.2 will again be proved by directly applying

the conclusion of Lemma 3.3.

We complete the proof of two additional lemmas used in the proof of Theorem 3.2. Lemma 3.5 shows

that the excessive risk of arbitrary decision function (f1, ..., fT ) is upper bounded by the excessive risk under

the surrogate objective function of MRL.

Lemma 3.5 For any random variable O and any decision functions (f1, ..., fT ),

V(g∗1, ..., g∗T )− V(f1, ..., fT ) ≤ Vψ(g∗1, ..., g∗T )− Vψ(f1, ..., fT ).

Proof: Lemma 3.2 ensures that Vψ(g∗1, ..., g∗T ) = V(g∗1, ..., g∗T ). Moreover, using the augmentation decom-

position we have

V(g∗1, ..., g∗T )− V(f1, ..., fT )

=

(
V(g∗1, ..., g∗T ) + E

[
O−∏T

t=1 p(At|Ht)

])
−
(
V(f1, ..., fT ) + E

[
O−∏T

t=1 p(At|Ht)

])
=E

[
O+

∏T
t=1 I(Atg∗t (Ht) > 0)∏T

t=1 p(At|Ht)

]
+ E

[ ∑
at∈{−1,+1}, at ̸=At

O−
∏T
t=1 I(atg∗t (Ht) > 0)∏T

t=1 p(At|Ht)

]

− E

[
O+

∏T
t=1 I(Atft(Ht) > 0)∏T

t=1 p(At|Ht)

]
− E

[ ∑
at∈{−1,+1}, at ̸=At

O−
∏T
t=1 I(atft(Ht) > 0)∏T

t=1 p(At|Ht)

]
,
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and by definition

Vψ(g∗1, ..., g∗T )− Vψ(f1, ..., fT )

=E

[
O+min(ψ(A1g

∗
1(H1)), ..., ψ(AT g

∗
T (HT )))∏T

t=1 p(At|Ht)

]
+ E

[ ∑
at∈{−1,+1}, at ̸=At

O−min(ψ(a1g
∗
1(H1)), ..., ψ(aT g

∗
T (HT )))∏T

t=1 p(At|Ht)

]

− E

[
O+min(ψ(A1f1(H1)), ..., ψ(AT fT (HT )))∏T

t=1 p(At|Ht)

]
− E

[ ∑
at∈{−1,+1}, at ̸=At

O−min(ψ(a1f1(H1)), ..., ψ(aT fT (HT )))∏T
t=1 p(At|Ht)

]
,

where now both O+ and O− are non-negative response variables. Hence, without loss of generality, it is

sufficient to prove the result for non-negative weight O.

When O is non-negative, we have

Vψ(f1, ..., fT ) = E

[
O
min(ψ(A1f1(H1)), ..., ψ(AT fT (HT )))∏T

t=1 p(At|Ht)

]
.

Note that

min(ψ(A1f1(H1)), ..., ψ(AT fT (HT ))) ≤
T∏
t=1

I(Atft(Ht) > 0)

holds for any (H1, A1, ...,HT , At). Consequently, Vψ(f1, ..., fT ) ≤ V(f1, ..., fT ) holds for any decision

functions which implies that

V(g∗1, ..., g∗T )− V(f1, ..., fT ) ≤ Vψ(g∗1, ..., g∗T )− Vψ(f1, ..., fT ).

This completes the proof of Lemma 3.5. □

Lemma 3.6 provides an upper bound of the covering number of MRL. In the proof of Lemma 3.6, we

abuse the notation and use Ft to denote an arbitrary set of measurable functions defined on Ht.

Lemma 3.6 Let

W1 =

{
{(1− γ)Y − γR}L1(f1, ..., fT ) : γ ∈ [0, 1], f1 ∈ F1, ..., fT ∈ FT

}
,
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W2 =

{
{(1− γ)Y − γR}−L2(|f1|, ..., |fT |) : γ ∈ [0, 1], f1 ∈ F1, ..., fT ∈ FT

}
,

then for any positive ϵ→ 0 we have

logN (ϵ;W1, L2(Pn)) ≤ C(− log ϵ+ T +
T∑
t=1

logN (cT1 ϵ/(2MT );Ft, L2(Pn))) (3.62)

and

logN (ϵ;W2, L2(Pn)) ≤ C(− log ϵ+ T +
T∑
t=1

logN (cT1 ϵ/(2MT );Ft, L2(Pn))), (3.63)

where C is a positive constant that only depends on (M, c1).

Proof: We first prove the conclusion (3.62). Note that any function in W1 is the product of two functions

from functional space

W11 = {(1− γ)Y − γR|γ ∈ [0, 1]}

and

W12 =

{
min(ψ(A1f1(H1)), ..., ψ(AT fT (Ht)))∏T

t=1 p(At|Ht)

∣∣∣∣f1 ∈ F1, ..., fT ∈ FT
}
.

Hence, for any function l1 and l2 in W1, using inequality

(a+ b)2 ≤ 2a2 + 2b2 ∀a, b

the L2(Pn) distance between l1 and l2 satisfies

1

n

n∑
i=1

(l1(xi)− l2(xi))
2 =

1

n

n∑
i=1

(g1(xi)f1(xi)− g2(xi)f2(xi))
2

=
1

n

n∑
i=1

(g1(xi)f1(xi)− g1(xi)f2(xi) + g1(xi)f2(xi)− g2(xi)f2(xi))
2

≤ 2

n

n∑
i=1

g21(xi)(f1(xi)− f2(xi))
2 +

2

n

n∑
i=1

f22 (xi)(g1(xi)− g2(xi))
2

≤2M2

n

n∑
i=1

(f1(xi)− f2(xi))
2 +

2c−2T
1

n

n∑
i=1

(g1(xi)− g2(xi))
2
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where g1, g2 ∈ W11 and f1, f2 ∈ W12. The inequality above implies that

N (ϵ;W1, L2(Pn)) ≤ N (cT1 ϵ/2;W11, L2(Pn))N (ϵ/(2M);W12, L2(Pn)).

For W11, it is easy to verify

N (cT1 ϵ/2;W11, L2(Pn)) ≤ 2M/cT1 ϵ.

Furthermore, analogous to the proof of Lemma 3.4 we can show that

1

n

n∑
i=1

(f1(xi)− f2(xi))
2

(i)

≤ 1

n

n∑
i=1

c−2T
1 (

T∑
t=1

|ψ(Aitf1t(Hit))− ψ(Aitf2t(Hit))|)2

(ii)

≤ 1

n

n∑
i=1

T∑
t=1

Tc−2T
1 [ψ(Aitf1t(Hit))− ψ(Aitf2t(Hit))]

2

(iii)

≤
T∑
t=1

Tc−2T
1

n

n∑
i=1

(f1t(Hit)− f2t(Hit))
2

(3.64)

where again we use fit to denote the t-th stage decision function of fi, i.e., fi = L1(fi1, ..., fiT ). Inequality

(i) is guaranteed by Proposition 3.1 and note that any function from W12 is bounded by c−T1 , (ii) is followed

by the Cauchy-Schwarz inequality and the last inequality (iii) holds by noting that ψ(·) is a 1-Lipschitz

function. Inequality (3.64) implies that

N (ϵ;W12, L2(Pn)) ≤
T∏
t=1

N (T−1cT1 ϵ;Ft, L2(Pn)). (3.65)

Taking logarithm transformation, we have

logN (ϵ;W1, L2(Pn))

≤ logN (cT1 ϵ/2;W11, L2(Pn)) + logN (ϵ/(2M);W12, L2(Pn))

≤ log(2Mc−T1 )− log ϵ+
T∑
t=1

logN (cT1 ϵ/(2MT );Ft, L2(Pn))

=C(− log ϵ+ T +
T∑
t=1

logN (cT1 ϵ/(2MT );Ft, L2(Pn)))

(3.66)
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which completes the proof of (3.62).

Inequality (3.63) can be established using the same argument and the fact that l(x) = x− and l(x) = |x|

are both 1-Lipschitz functions. Specifically, let

W21 = {[(1− γ)Y − γR]−|γ ∈ [0, 1]},

W22 =

{
min(ψ(f1), ..., ψ(fT ))∏T

t=1 p(At|Ht)

∣∣∣∣f1 ∈ |F1|, ..., fT ∈ |FT |
}

where |Ft| = {|f | : f ∈ Ft}, then by repeating the same argument for W1 we can obtain

N (ϵ;W21, L2(Pn)) ≤ N (ϵ;W11, L2(Pn)),

and

N (ϵ;W22, L2(Pn)) ≤
T∏
t=1

N (cT1 ϵ/(2MT ); |Ft|, L2(Pn))

≤
T∏
t=1

N (cT1 ϵ/(2MT );Ft, L2(Pn)),

and (3.63) can be obtained via exactly the same argument as (3.66). □

3.10 Additional Simulation Results

In the first part, we present the additional simulation result with T = 4 under a more complicated

treatment design. In this simulation, (Z1, ..., Z8) are 8 independent baseline feature variables generated from

the uniform distribution U [0, 1]. We use (Y0, ..., Y4) and (R0, ..., R4) to denote the reward and risk outcome

at baseline and time point t = 1, ..., 4. Y0 and R0 are generated according to

Y0 = Z1 + Z2/2 + ϵ,

R0 = Z1/2 + Z2 + ϵ.

where ϵ denotes the noisy term generated from independent normal distribution N[0,1] truncated at ±0.5. For

t = 1, .., 4, (At, Yt, Rt) are generated according to
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• t = 1:

logitP (A1 = 1|H1) = 0.5,

Y1 = Z1 +A1(Y0 − 1) + ϵ,

R1 = Z2 +A1(R0 − 1) + ϵ.

• t = 2:

logitP (A2 = 1|H2) = 0.5,

Y2 = Z1 +A2(Y1 − 1) + ϵ,

R2 = Z2 +A2(R1 − 1) + ϵ,

• t = 3:

logitP (A3 = 1|H3) ∼ Y2/4−R2/4,

Y3 = Z1 + 2A3(Y2/2 +R2/2− 0.5) + ϵ,

R3 = Z2 + 2A3(R2 − 0.5) + ϵ,

• t = 4:

logitP (A4 = 1|H4) ∼ Y3/4−R3/4,

Y4 = Z1 + 2A4(Y3/2 +R3/2 + 0.5) + ϵ,

R4 = Z2 + 2A4(+R3 − 0.5) + ϵ.

The feature variable at each stage is set to be

H1 = (Z1, ..., Z8, Y0, R0),

H2 = (Z1, ..., Z8, Y0, R0, A1, Y1, R1),

H3 = (Z1, ..., Z8, Y0, R0, ..., A2, Y2, R2),

H4 = (Z1, ..., Z8, Y0, R0, ..., A3, Y3, R3),
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N Kernel Method Testing Reward Testing Risk Efficacy Ratio

200

Linear

MRL 2.320(0.431) 1.312(0.500) 1.916(0.376)
OWL 2.520(0.347) 1.657(0.418) 1.670(0.206)
AOWL 2.333(0.439) 1.686(0.425) 1.490(0.136)
Q-learning 3.131(0.638) 2.248(0.857) 1.486(0.250)
Unconstrained 3.980(0.138) 3.802(0.188) 1.102(0.025)

Gaussian

MRL 2.568(0.455) 1.720(0.515) 1.564(0.221)
OWL 2.532(0.474) 2.165(0.471) 1.271(0.078)
AOWL 2.627(0.447) 2.120(0.452) 1.325(0.087)
Q-learning 2.962(0.636) 2.200(0.770) 1.460(0.221)
Unconstrained 3.974(0.145) 3.854(0.161) 1.095(0.017)

400

Linear

MRL 2.491(0.378) 1.465(0.438) 1.859(0.299)
OWL 2.647(0.289) 1.677(0.337) 1.710(0.174)
AOWL 2.335(0.408) 1.606(0.414) 1.511(0.142)
Q-learning 3.020(0.451) 2.103(0.603) 1.540(0.209)
Unconstrained 4.058(0.150) 3.892(0.171) 1.106(0.026)

Gaussian

MRL 2.605(0.396) 1.725(0.474) 1.619(0.213)
OWL 2.806(0.307) 2.278(0.300) 1.326(0.074)
AOWL 2.603(0.297) 2.053(0.314) 1.357(0.065)
Q-learning 2.835(0.599) 1.935(0.756) 1.580(0.253)
Unconstrained 4.001(0.128) 3.866(0.148) 1.096(0.018)

Table 3.4: Summary table for additional simulation result. The results are reported in median(dev) format the
same as Section 3.4.

and the cumulative reward and risk outcomes are set to be Y =
∑4

t=1 Yt and R =
∑4

t=1Rt.

In this simulation, we assume that the treatment assignment probability at each stage is unknown and

estimate the treatment assignment probability using training data repeatedly via Lasso logistic regression. We

analyze the training data of size n = 200 and 400 and repeat the analyses 500 times. The risk constraint is

set to be τ = 2 and we repeated the analysis for both MRL, OWL, AOWL, and Q-learning following the

same setting in Section 3.4, except that for MRL, OWL, and AOWL, we reduce the tuning grid by forcing

λ1 = · · · = λ4 and choose the optimal tuning parameters from λt ∈ 2−8,−6,··· ,+6,+8. The performance of

the estimated rules is estimated on independent testing data of size n = 5, 000. The efficacy ratio is also

reported with the reference treatment rules set to be the safest rules that induce the minimum risk among 16

possible one-size-fits-all rules. The analysis result is summarized in Table 3.4. From the table, we observe

that MRL still achieves the best risk control with the highest efficacy ratio compared with OWL, AOWL, and

Q-learning under both n = 200 and n = 400 for both two kernels. This result is consistent with the findings

in Section 3.4.

141



η Method Testing Reward Testing Risk Efficacy Ratio

10−2

MRL 1.667(0.150) 0.845(0.156) 1.041(0.151)
OWL 1.797(0.114) 0.893(0.143) 1.292(0.179)
AOWL 1.878(0.123) 0.975(0.171) 1.287(0.198)
Q-learning 1.868(0.106) 1.096(0.174) 1.028(0.143)

10−3

MRL 1.649(0.162) 0.840(0.175) 1.020(0.170)
OWL 1.795(0.118) 0.896(0.152) 1.284(0.183)
AOWL 1.875(0.122) 0.959(0.165) 1.291(0.188)
Q-learning 1.846(0.107) 1.066(0.170) 1.042(0.146)

10−4

MRL 1.658(0.165) 0.837(0.167) 1.022(0.158)
OWL 1.792(0.118) 0.894(0.146) 1.289(0.181)
AOWL 1.875(0.122) 0.962(0.160) 1.290(0.187)
Q-learning 1.844(0.107) 1.062(0.172) 1.043(0.149)

10−5

MRL 1.635(0.175) 0.829(0.173) 1.017(0.173)
OWL 1.792(0.118) 0.894(0.146) 1.289(0.181)
AOWL 1.875(0.122) 0.962(0.161) 1.288(0.186)
Q-learning 1.844(0.108) 1.062(0.173) 1.044(0.149)

Table 3.5: Sensitive analysis of CBR under the different choice of η.

In the second part, we repeat the simulation study under Setting I with n = 200 in Section 3.4 under

different η to evaluate the impact of parameter η on the performance of each method. The simulation is

conducted following the same description as Section 3.4 except that η is varied in {10−2, ..., 10−5}. The

results are displayed in Table 3.5. From the table, we observe that when η decreases from 10−2 to 10−5,

the risk control of all four methods will slightly improve but the performances are roughly the same under

different choices of η. This indicates that Algorithm 2 is not sensitive against η when η is small.
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CHAPTER 4: SIMULTANEOUS VARIABLE SELECTION AND LEARNING FOR
DYNAMIC TREATMENT REGIMENS

4.1 Introduction

The demand for identifying key biomarkers that helps treatment design in precision medicine has raised

the concern of developing new DTRs method with the capability of both maximizing patients’ beneficial

outcome and eliminating unimportant variables that have little contribution to improving patients’ health

condition. Driven by this, many new DTRs methods have been designed to address both goals. Among

them, most of the proposed methods refine and extend existing regression-based approaches and achieve

variable selection by incorporating additional penalty terms to impose sparsity over the estimated decision

rules. These methods include A-learning based methods (Gunter, Zhu and Murphy, 2011; Shi et al., 2018),

Q-learning based methods (Qian and Murphy, 2011; Song, Wang, Zeng and Kosorok, 2015; Ghosh et al.,

2022), G-estimation based method (Bian et al., 2021) or semi-parametric modeling method (Guo, Zhou and

Ma, 2021). For machine learning-based approaches, the variable selection is usually achieved by adding

proper penalty term with variable selection capability to the objective function and the optimal DTRs are then

learned via optimizing the penalized objective function, existing methods including L∞-penalty extension

of O-learning (Lu, Zhang and Zeng, 2013; Li et al., 2018; He et al., 2021), SCAD-penalty extension of

O-learning (Song, Kosorok, Zeng, Zhao, Laber and Yuan, 2015) and ramp loss L∞-penalty method (Huang,

2015).

However, serval limitations exist for each type of method. For regression-based methods, method

performance will be significantly affected when regression models are misspecified like the standard case.

For machine learning-based approaches, the methods mentioned early are all designed to handle single-stage

optimal treatment regimen problems. More importantly, though existing single-stage machine learning-based

approaches mentioned early can be extended to multistage DTRs setting by adopting the backward induction

technique introduced in Zhao et al. (2015), to our best knowledge, all existing regression-based and machine

learning-based approaches are only capable of learning optimal DTRs stage by stage separately in backward

order. This causes a main disadvantage for existing methods that the decision rule estimation and variable
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selection of later stages cannot fully utilize the information from the early stage, while in practice an important

biomarker for early stages’ treatment decision-making is also a strong implication that the biomarker will be

important in later stages’ decision making.

To overcome the disadvantages of existing methods, in this chapter, we propose a new machine learning-

based approach to learn optimal DTRs with simultaneous variable selection capability across all stages.

Specifically, we extend the multistage ramp loss (MRL) function proposed in Chapter 3 by incorporating

an additional Lasso-type penalty term to impose sparsity over the estimated coefficients. We name this

new method as L1-MRL. Our proposed method learns the optimal DTRs by maximizing a single objective

function in terms of unknown decision functions of all stages, which is guaranteed to use all information to

learn DTRs and conduct variable selection across all stages. Numerically, the optimization problem can be

efficiently solved using DC algorithm (Tao and An, 1997) where the optimization problem can be reduced to

a simple optimization problem of a piecewise linear function in each DC iteration.

The remaining sections are organized as follows. In Section 4.2, we briefly introduce the MRL and

present the details of the L1-MRL framework in the same section. Theoretical justification of L1-MRL

is provided in Section 4.3. In Section 4.4, the performance of our proposed method is demonstrated via

extensive simulation studies and comparisons with some of the existing methods. In Section 4.5, we apply

our method to real observational electronic health record (EHR) data of type II diabetes (T2D) patients.

The discussion and future extension of this chapter are presented in Section 4.6. The algorithm for solving

L1-MRL and proofs are presented in Section 4.7 and Section 4.8.

4.2 Method

4.2.1 Learning optimal DTRs via multistage ramp loss (MRL)

Consider a T-stage decision-making problem with Y denoting the cumulative reward observed by the

end of stage T and {At}Tt=1 denoting the treatment assignment at each stage. Throughout this chapter, we

assume that a higher value of Y indicates the better decision strategy and we assume two treatments, denoted

as {−1,+1}, are available at each stage. For each t, we use Ht to denote patients’ feature variables prior to

stage t and let Ht ⊂ Rdt denote the feature space at each t. A dynamic treatment regimen is any function
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from functional space

D : D1 × · · · × DT → {−1,+1}T , Dt : Ht → {−1,+1},

and the optimal DTRs D∗ is defined to be the decision rules that maximize

D∗ = argmax
D

ED[Y ],

where ED[·] denotes the expectation with At forcing to be D(Ht).

To estimate D∗, additional causal assumptions are required to ensure that ED[Y ] is estimable given

observed data. Throughout this chapter, we assume that three standard causal assumptions made in Chapter 1

hold and repeat the assumptions below:

Assumption 4.1 Stable Unit Treatment Value (SUTV): A subject’s cumulative potential outcome is not

influenced by other subjects’ treatment allocation, i.e., Y = Y (āT ) if ĀT = āT .

Assumption 4.2 No Unmeasured Confounders (NUC): For any t ∈ {1, ..., T} and āT ∈ {−1,+1}T ,

At ⊥⊥ (Ht+1(āt), ...,HT (āT−1), Y (āT ))
∣∣Ht.

Assumption 4.3 Positivity: For any t ∈ {1, ..., T}, there exists universal constants 0 < c1 ≤ c2 < 1 such

that the treatment assignment probability at stage t satisfies c1 ≤ p(At = 1|Ht) ≤ c2 for Ht almost surely.

Again under Assumption 4.1 to 4.3, Qian and Murphy (2011) shows that

ED[Y ] = E

[
Y

∏T
t=1 I(At = Dt(Ht))∏T

t=1 p(At|Ht)

]
.

Furthermore, suppose that the optimal DTRs are given by the signs of a series of optimal decision functions,

i.e., there exists f∗t ∈ Ft, where Ft denotes the set of all measurable functions from Ht to R, such that

D∗(Ht) = sign(f∗t (Ht)) almost surely for t = 1, ..., T , then estimating the optimal DTRs is equivalent to

the optimization problem

(f∗1 , ...., f
∗
T ) = argmax

(f1,...,fT )∈F1×···×FT
E

[
Y

∏T
t=1 I(Atft(Ht) > 0)∏T

t=1 p(At|Ht)

]
. (4.1)
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Note that solving (4.1) directly is NP-hard due to the existence of the indicator functions, several methods

have been proposed to address the computation challenge and estimate the optimal decision functions

efficiently. In this chapter, we consider the multistage ramp loss (MRL) framework proposed in Chapter 3.

Specifically, in Chapter 3 we consider the surrogate optimization problem

max
(f1,...,fT )∈F1×···×FT

E

[
Y +min(ψ(A1f1(H1)), ..., ψ(AT fT (HT )))∏T

t=1 p(At|Ht)

]
+ E

[ ∑
at ̸=At

Y −min(ψ(a1f1(H1)), ..., ψ(aT fT (HT )))∏T
t=1 p(At|Ht)

]
,

(4.2)

where Y + and Y − denote the positive and negative part of Y defined as Y + = max(Y, 0) and Y − =

max(−Y, 0), and ψ(x) = max(min(x, 1), 0). The objective function above can be viewed as a multistage

extension of the shifted ramp loss function proposed in Huang, Shi and Suykens (2014). As one of the key

properties of MRL, Lemma 3.2 in Chapter 3 shows that the optimization problem (4.2) is guaranteed to yield

Fisher consistent estimators of (f∗1 , ..., f
∗
T ). Moreover, from the expression (4.2) one can notice that ft1 is not

necessary to be a decision function before or after ft2 for any t1 and t2. This special property indicates that

MRL does determine the optimal decision function simultaneously without identifying early stages from later

stages, which, unlike other methods such as Q-learning or OWL that must determine each stage’s decision

function separately, ensures that all information is used while determining the decision functions of all stages.

As one of the main advantages due to the simultaneous property, for MRL the estimation of the early stage

can provide feedback to the estimation of later stages; while for the backward induction-based method, the

estimation error of later stages will be fixed and cumulated into the estimation of early stages once the later

stages’ decision rules have been estimated.

4.2.2 Variable selection via penalized MRL with adaptive coefficients

In many real applications, identifying important variables that contribute to treatment optimization is

as important as finding optimal DTRs that yield the highest possible reward. In this chapter, we consider

the specific decision-making problem where Ht = (Ot,Wt) with Ot having fixed length P for t = 1, ..., T .

From now on, we focus on linear decision rules and assume that the optimal decision function is linear in

terms of feature variables, i.e., there exists θ∗
t = (α∗

t ,β
∗
t , γ

∗
t ) ∈ Rdt+1 for t = 1, ..., T such that

f∗t (Ht) =W T
t α

∗
t +OTt β

∗
t + γ∗t .
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We assume that {β∗
t }Tt=1 are sparse and our goal is to learn optimal DTRs while recovering the sparsity within

{β∗
t }Tt=1. In real applications,Wt can be viewed as already-unknown important variables for decision-making,

such as treatment assignment from previous stages, so variable selection is not necessary for these features.

{(O1p, ..., OTp)}Pp=1 can be selected as P candidate variables for tailoring treatment to patients, which can

take the same value to represent the impact of certain time-independent baseline covariates, or different

values for time-varying variables such as patient’s health test results obtained prior to each decision stage.

To substantiate variable selection while learning the optimal rules, we consider adding a penalty term to

MRL (4.2) to enforce sparsity over {βt}Tt=1. Specifically, when treatment rules are assumed to be linear, we

introduce L1-penalty to MRL and consider following the L1-MRL optimization problem

max
θ

E

[
Y +min(ψ(A1(H

T
1 θ1)/ηn), ..., ψ(AT (H

T
T θT )/ηn))∏T

t=1 p(At|Ht)

]
+ E

[ ∑
at ̸=At

Y −min(ψ(a1(H
T
1 θ1)/ηn), ..., ψ(aT (H

T
T θT )/ηn))∏T

t=1 p(At|Ht)

]

− λn

P∑
p=1

T∑
t=1

|βt,p|√∑T
s=1 |β̃s,p|2

.

(4.3)

Here, we assume that Ht includes an intercept term to simplify the notation, and we also abuse the notation

and use {β̃t,p} to denote the optimal solution of (4.1) normalized so that ∥(β̃t,1, ..., β̃t,P )∥2 = 1 for all t.

The L1-penalty is a typical choice of penalty term to impose sparsity over the estimated coefficients and

the additional adaptive coefficient 1/
√∑T

t=1 |β̃t,p|2 aims at imposing a stronger penalty to coefficients that

are not significant across all stages. Like standard Lasso, λn is the tuning parameter to control the sparsity,

and we also introduce shifting parameter ηn ∈ (0, 1] as an additional tuning parameter to adjust for possible

model misspecification under linearity assumption. We note that when T = 1, the L1-MRL framework will

reduce to the ramp loss framework studied in Huang (2015).

Given finite samples, we estimate θ∗ = (θ∗
1, ...,θ

∗
T ) by solving the empirical version of (4.3)

θ̂ = argmax
θ

1

n

n∑
i=1

Y +
i

min(ψ(Ai1(H
T
i1θ1)/ηn), ..., ψ(AiT (H

T
iTθT )/ηn))∏T

t=1 p(Ait|Hit)

+
1

n

n∑
i=1

∑
at ̸=Ait

Y −
i

min(ψ(a1(H
T
i1θ1)/ηn), ..., ψ(aT (H

T
iTθT )/ηn))∏T

t=1 p(Ait|Hit)

− λn

P∑
p=1

T∑
t=1

|βt,p|√∑T
s=1 |

̂̃
βs,p|2

,

(4.4)
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where ̂̃
βt,p can be arbitrary estimators of β̃t,p without penalty over coefficients. In application, we recommend

using O-learning (Zhao et al., 2015; Liu et al., 2018) to estimate the unpenalized optimal coefficients. As

another advantage of MRL, though being a non-convex optimization problem, the objective function of the

minimization equivalence of (4.4) can be written as the difference between two convex functions. Hence, the

empirical problem (4.4) can be solved efficiently via the DC algorithm. When the optimal decision functions

are linear as assumed in this chapter, in each DC iteration the problem can be reduced to an optimization

problem with the objective function being piecewise linear, which can be further solved efficiently by

calculating the derivatives explicitly and grid search. In particular, note that (4.1) is invariant if we subtract Y

by any function of H1, one can further refine (4.4) as

θ̂ = argmax
θ

1

n

n∑
i=1

Ŷ +
i

min(ψ(Ai1(H
T
i1θ1)/ηn), ..., ψ(AiT (H

T
iTθT )/ηn))∏T

t=1 p(Ait|Hit)

+
1

n

n∑
i=1

∑
at ̸=Ait

Ŷ −
i

min(ψ(a1(H
T
i1θ1)/ηn), ..., ψ(aT (H

T
iTθT )/ηn))∏T

t=1 p(Ait|Hit)

− λn

P∑
p=1

T∑
t=1

|βt,p|√∑T
s=1 |

̂̃
βs,p|2

,

(4.5)

where we replace Yi by corresponding estimated residual Ŷi = Yi − Ê[Yi|Hi1] following the idea of AOWL,

which turns out to have better performance under the MRL framework with the proposed L1-penalty term. In

practice, we proposed to estimate E[Y |H1] via standard linear or Lasso regression. A coordinate descent DC

algorithm-based procedure for solving (4.4) and (4.5) is provided in Section 4.7.

L1-MRL requires that treatment assignment probability {p(At|Ht)}Tt=1 are known which can be satisfied

when data is collected from a simple randomized clinical trial or a SMART. When {p(At|Ht)}Tt=1 are

unknown such as in an observational study, to implement L1-MRL one can assume that {p(At|Ht)}Tt=1 can

be consistently estimated from observed data and replace p(At|Ht) by p̂(At|Ht) for t = 1, ..., T in (4.4) or

(4.5) respectively.

4.2.3 Choose optimal tuning parameters

When implementing L1-MRL, one must prespecify the choice of tuning parameters (λn, ηn). In practice,

we propose to choose the optimal tuning parameters via cross-validation and consider following AIC-type
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(Bozdogan, 1987) criterion

n ∗ log
(
R̂(θ̂(λn, ηn), ηn)

R̂(θ̂(0, ηn), ηn)

)
− k(λn, ηn). (4.6)

Here,

R̂(θ, η) =
n∑
i=1

Ŷ +
i

min(ψ(Ai1(H
T
i1θ1)/η), ..., ψ(AiT (H

T
iTθT )/η))∏T

t=1 p(Ait|Hit)

+
n∑
i=1

∑
at ̸=Ait

Ŷ −
i

min(ψ(a1(H
T
i1θ1)/η), ..., ψ(aT (H

T
iTθT )/η))∏T

t=1 p(Ait|Hit)

denotes the empirical estimator of the MRL objective function with coefficients θ and shifting parameter

η. θ̂(λ, η) denotes the estimated coefficients of (4.4) or (4.5) under tuning pair (λ, η) and k(λ, η) denotes

the number of nonzero coefficients of θ̂(λ, η). Similar BIC-type criteria were early adopted in Shi et al.

(2018) under an A-learning framework and He et al. (2021) under a doubly robust outcome weighted learning

framework. When implementing L1-MRL, we choose the optimal tuning parameter that maximizes (4.6) on

testing data under cross-validation.

4.3 Theoretical Results

We present the theoretical result and show that the estimated coefficients obtained via L1-MRL enjoy the

oracle property under mild conditions in this section. To state the necessary conditions, we let

L(θ) =− E

[
Y
min(ψ(A1H

T
1 θ1/η), ..., ψ(ATH

T
T θT /η))∏T

t=1 p(At|Ht)

]
− E

[
Y −min(ψ(|HT

1 θ1|/η), ..., ψ(|HT
T θT |/η))∏T

t=1 p(At|Ht)

]
,

so θ∗ = (θ∗
1, ...,θ

∗
T ) will be the minimizer of L(θ) by definition. In addition to the standard causal

assumptions, we assume that the following two assumptions hold.

Assumption 4.4 Ht ⊂ Rdt is compact for t = 1, ..., T . Moreover, there exists a constant B > 0 such that

∥θ∗
t ∥∞ ≤ B holds for t = 1, ..., T .

Assumption 4.5 L(θ) is three times differentiable,

∂L
∂θ

(θ∗) = 0, ∇2L(θ∗) ≻ 0,
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and the third order derivatives of L(θ) is bounded.

Assumption 4.4 and 4.5 are regularity assumptions analogous to the regularity assumptions adopted in Fan and

Li (2001) for establishing the oracle property for non-convex penalized regression. Basically, Assumption 4.4

and 4.5 ensure that the optimal solution for the unpenalized problem exists and the objective function is

locally strictly convex near the optimal. Under the additional assumptions, we have

Theorem 4.1 Assume that Assumption 4.4 and Assumption 4.5 also hold and for any fixed ξ ∈ (0, 12), we

have ann
1
4
− ξ

2 = O(1) where

an = max{λnp : |β∗tp| ≠ 0}.

Let shifting parameter η be a fixed constant, then there exists a local minimizer θ̂n of the empirical problem

(4.4) such that

∥θ∗ − θ̂n∥2 = Op(n
− 1

4
+ ξ

2 + an).

Consequently, we have P (max{|β̂n,tp| : β∗tp = 0} = 0) = 1.

Theorem 4.1 implies that as n goes to infinite, there always exists a local minimizer of the empirical problem

(4.4) within the ball of radius Op(n−
1
4
+ ξ

2 ) centered true optimal solution θ∗. Consequently, θ̂n can recover

the true sparsity of θ∗ with probability 1 as the sample size n goes to infinity. The proof of Theorem 4.1 is

presented in Section 4.8.

4.4 Simulation Studies

We conduct simulation studies to assess the performance of L1-MRL in this section. We consider a

two-stage SMART design and first generate 12 time-dependent baseline covariates (Z1, ..., Z12) from a

multivariate normal distribution with mean 0, variance 1 and

Cov(Zi, Zj) =


0.2, ∀1 ≤ i < j ≤ 6,

0, for all other i ̸= j.
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In addition, we generate 3 time-dependent covariates, denoted as (X11, X12), (X21, X22) and (X31, X32),

independently according to

Xi1 = Z1ωi + αi + ϵi1

Xi2 = Z1ωi + αi(1 +A1/2) + ϵi2,

where {ωi}i=1,2,3 are independently sampled from uniform distribution Unif[0, 1], {αi}i=1,2,3 are indepen-

dently sampled from standard normal distribution N(0,1), and {(ϵi1, ϵi2)}i=1,2,3 are independent noisy terms

sampled from standard normal distribution N(0,1).

In the simulation study, we consider the following two settings:

• Setting I:

Y = 1 + Z1 + Z3

+A1(3Z1 + 3Z2 − 2Z7 − 2Z8 − 2X11)

+A2(3Z1 + 3Z2 − 2Z7 − 2Z8 − 2X12) + ϵY .

• Setting II:

Y = 1 + Z1 + Z2 +
1

2
(Z2

3 + Z2
4 )

+A1

(
(Z1 + 3)2 + (Z2 + 3)2 + (Z7 − 3)2 + (Z8 − 3)2 +

2

3
(X11 − 5)2 − 60

)
+A2

(
(Z1 + 3)2 + (Z2 + 3)2 + (Z7 − 3)2 + (Z8 − 3)2 +

2

3
(X12 − 5)2 − 60

)
+ ϵY .

For both settings, ϵY is generated from a standard normal distribution N(0,1) and treatments are randomly

assigned following the regression model

logit P (A1 = 1|Z,X11, X21, X31) =
1

3
X11,

logit P (A2 = 1|Z,X12, X22, X32, A1) =
1

3
X12 +

1

2
A1.
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In this simulation, we assume that the treatment assignment models are unknown. The feature variables for

each stage are set to be

H1 = (Z1, ..., Z12, X11, X21, X31), H2 = (Z1, ..., Z12, X12, X22, X32, A1),

and we repeatedly conduct the analyses for two settings 100 times with a training sample size of n=200 and

400. The performance under each setting is evaluated on an independent testing dataset of size 5,000 where

the expected reward under the estimated rules is approximated via the Monte-Carlo method.

For L1-MRL, we solve the refinement problem (4.5) and select the optimal tuning parameters from

tuning grid (λn, ηn) ∈ 10−3:−5 × 20:10 according to AIC criterion (4.6) via two-folds CV. In this study,

we use standard Lasso regression to estimate the conditional mean model E[Y |H1]. When estimating the

coefficients given tuning parameter (λn, ηn), we choose the initial iteration point of the DC algorithm to

be the estimated coefficients of (4.5) under (0, ηn) and using the solution of AOWL proposed by Liu et al.

(2018) as the initial iteration point when estimating the coefficients under (0, ηn). For the second stage, A1 is

excluded from variable selection, leaving P = 15 and only 12 time-independent and 3 time-dependent being

penalized.

To demonstrate the performance of L1-MRL, we also compare our method with the following 4 competing

methods:

• Q-learning with L1-penalty (Qian and Murphy, 2011): assume that the Q-function, which is defined as

Qt(ht, at) = E[ max
at+1∈{−1,+1}

Qt+1(Ht+1, at+1)|Ht = ht, At = at],

follows linear regression model

Qt(Ht, At) = HT
t ωt +AtH

T
t θt,

where we again assume that Ht includes an intercept term. Then, it can be shown that

D∗(Ht) = sign(Qt(Ht, 1)−Qt(Ht,−1)).
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almost surely. The Q-learning with L1-penalty (Qian and Murphy, 2011) estimates the optimal

decision functions and substantiates variable selection through estimating Qt(Ht, At) via standard

Lasso regression and backward induction from t = T to t = 1.

• A-learning (Shi et al., 2018): the A-learning approach assumes that the Q-function satisfies

Qt(Ht, At) = HT
t ωt +

1

2
(1 +At)H

T
t θt.

In Shi et al. (2018), Qt(Ht, At) is estimated by solving a Danzig selector optimization problem Candes

and Tao (2007), which will impose an L1-penalty over the estimated coefficients and ensure sparsity

over the final estimated rules.

• Weight least square (Bian et al., 2021): Bian et al. (2021) proposes to use G-estimation (Robins, 2004)

to estimate the optimal DTRs and conduct variable selection by imposing a hierarchical Lasso type

penalty to enforce sparsity.

• L1-penalty O-learning: Zhao et al. (2015) proposes to estimate the optimal DTRs by solving a series

of weighted support vector machine (SVM) (Cortes and Vapnik, 1995) problem

θ̂t = argmin
θ

n∑
i=1

∏T
s=t+1 I(AisHT

isθ̂
∗
s > 0)∏T

s=t p(Ais|His)
ϕ(AitH

T
itθ) + λn∥θ∥22

via backward induction, where ϕ(·) denotes the hinge loss function defined as ϕ(x) = (1 − x)+.

To incorporate variable selection, we consider the modified L1-penalty O-learning and estimate the

coefficients by solving

θ̂t = argmin
θ

n∑
i=1

∏T
s=t+1 I(AisHT

isθ̂
∗
s > 0)∏T

s=t p(Ais|His)
ϕ(AitH

T
itθ) + λn∥θ∥1

also in backward order. In the final simulation study, we implement the AOWL where all standard

weighted SVM optimizations involved are replaced by corresponding L1-penalized weighted SVM.

For L1-MRL and all competing methods requiring known treatment assignment probability, we use Lasso

logistic regression to estimate the treatment assignment probability using all available feature variables as
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predictors, which will yield consistent estimators of the true treatment assignment probability because of the

choice of true treatment assignment models.

The simulation results are displayed in Table 4.1. For setting I, we first notice that in terms of the

reward, L1-MRL and A-learning can attain an average reward of around 9 on testing data under n=200 and

400. In contrast, Q-learning, O-learning and pdwols can only attain a significantly lower average reward of

less than 7. This indicates that Q-learning, O-learning and pdwols fail to achieve reward optimization after

incorporating variable selection. Compared with A-learning, when the sample size is n=200, L1-MRL tends

to yield a lower expected reward on testing data with slightly more selected variables than A-learning and

higher variability. When the sample size is increased to n=400, the performance of L1-MRL is improved

with higher reward, fewer selected variables around 4.5 for both stages and lower variability, which becomes

closer to the performance of A-learning under n=400, but the reward of A-learning is still slightly higher

than L1-MRL. As the conclusion, for the first setting and when treatment effects are approximately linear in

terms of feature variables, L1-MRL and A-learning tend to have superior performance than other competing

methods, with L1-MRL tending to have worse small sample performance and analogous but still slightly

worse performance than A-learning. Note that A-learning is a regression-based method and under the first

linear setting the decision rule of the second stage is correctly specified. This indicates that L1-MRL has a

performance close to a regression-based approach with nearly correctly specified regression models when the

sample size is large.

For the second simulation setting, in terms of the reward we still observe that L1-MRL and A-learning

can attain an average reward of around 20 which is significantly higher than the reward of Q-learning,

O-learning and pdwols, which only have an average reward lower than 13. This is consistent with the first

setting that competing methods Q-learning, O-learning and pdwols fail to preserve reward optimization while

implementing the variable selection. Compared with A-learning, L1-MRL now tends to attain a higher reward

under both n=200 and 400, with L1-MRL selecting around 6 important variables and A-learning selecting

around 3 important variables for each stage. Note that in the second setting, reward Y is generated according

to a nonlinear function w.r.t. feature variables, so the linear decision function is misspecified. The lower

expected reward of A-learning implies that the performance of A-learning will be affected and worsened by

the model misspecification, leading to relatively worse performance in terms of maximizing the beneficial

reward. In contrast, L1-MRL is designed to maximize (a surrogate function of) the expected reward directly,

which can be more robust against model misspecification and maintain a high reward when decision function
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models are incorrect. In terms of variable selection, we notice that A-learning tends to select much fewer

variables than L1-MRL. By simulation design, Z1 is an important variable that correlates with X1 and Z2

and will consequently both directly and indirectly influence the cumulative reward. By checking the selected

variables when n=400, A-learning is less in favor of selecting Z1 as an important variable for both two stages,

which only has a 27% selecting rate during the first stage and a 16% selecting rate during the second stage,

while L1-MRL will select Z1 as an important variable with more than 90% selection rate for both two stages

among 100 repeated analyses. The failure of selecting Z1 as an important variable and a significantly lower

number of selected variables implies that A-learning tends to be overconservative and omits important feature

variables under the second simulation setting compared with L1-MRL when the model is misspecified. To

sum up, under the second simulation setting L1-MRL tends to have better performance than A-learning

and significantly superior performance than the other 3 competing methods. As an overall conclusion,

simulation studies suggest that L1-MRL and A-learning have overall better performance than other competing

methods, with L1-MRL tending to have slightly worse but comparable performance than A-learning when

the simulation setting is close to being linear, while tending to be more robust and have significantly better

performance than A-learning when models are misspecified.

4.5 Application to T2D EHR Data

We apply L1-MRL to an observational electronic health record (EHR) data of T2D patients. The raw

data consists of EHR data of 55,246 T2D patients collected from the Ohio State University Hospital system

between 2008 to 2018. The final cumulative reward Y is set to be

Y = −
(
Y3 − Y1
T3 − T1

)
∗ 365,

which is the cumulative HbA1c reduction at 180 days since the initial of the second stage treatment rescaled

to 1 year, so higher Y indicates better treatment performance. The feature variables of the first stage H1

consist of all 3 time-independent variables and 6 time-dependent variables at T1, and the second stage

feature variables H2 consist of all 3 time-independent variables and 6 time-dependent variables at T2 plus the

treatment assignment of the first stage and the duration of the first stage treatment.

In this section, we implement L1-MRL and also compare the performance with 4 competing methods

in the simulation studies. For each method, we conducted repeated analysis 100 times by sampling 50% of
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patients as training data and evaluating the expected reward under the estimated rules using the remaining

50% data as testing data. Since EHR data is observational data, we estimate the treatment assignment

probability model via Lasso logistic regression using sampled training data and use the estimated model

to calculate the treatment assignment probability for testing data repeatedly. To eliminate the impact of

extreme weights, the treatment assignment probability is truncated at 25% and 75% quantile of the estimated

treatment assignment probability of training data. For L1-MRL, we impose variable selection for 3 time-

independent and 6 time-dependent variables. The implementation of L1-MRL follows the same description

as the simulation studies, except that we fix the adaptive coefficients to be the coefficients calculated from

the estimated coefficients obtain from AOWL using all available data as training data, without recalculating

the adaptive coefficients for each sampled training data. Ohio State University Hospital between 2008 to

2018. Patients’ treatment stage and medication received are inferred using patients’ medication prescription

records where two medication prescriptions that happened less than 90 days are combined and counted into

the same treatment stage (which extends the treatment ending time correspondingly). In the screening stage,

we require that qualified candidate patients must satisfy the following criteria:

1. Patients must have three identifiable treatment stages since 2008.

2. The duration of the first and second treatment stage must be both longer than 180 days.

3. Patients’ inferred treatment of the first stage must be either fast-acting insulin monotherapy or fast-

acting insulin plus long-acting insulin combined therapy.

4. Let T1, T2 denote the starting point of the first and second stage treatment, then patients must have at

least one HbA1c lab test result before T1, one test result between (T1, T2] and one lab test results after

T2.

After the screening stage, 624 patients satisfy the screening requirements. To apply L1-MRL, we generate a

two-stage dataset with two arms available at each stage. The treatment arm is defined as follows:

• Stage I:

– Fast-acting insulin (F) arm: if patient adopted fast-acting insulin monotherapy.

– Fast-acting + long-acting insulin (FL) arm: if patient adopted fast-acting insulin plus long-acting

insulin combined therapy.
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• Stage II:

– Intensified arm (I): for the fast-acting insulin arm, patients are classified into intensified arm if

patients kept using fast-acting insulin plus long-acting insulin or at least one type of other types

T2D medication; for fast-acting + long-acting insulin arm, patients are classified into intensified

arm if patients kept using fast-acting and long-acting plus at least one type of other types T2D

medication.

– Maintained/Reduced arm (MR): for fast-acting insulin arm, patients are classified into main-

tained/reduced arm if patients maintained fast-acting insulin monotherapy or stopped using

fast-acting insulin; for fast-acting plus long-acting insulin arm, patients are classified into main-

tained/reduced arm if patients maintained fast-acting plus long-acting insulin combined treatment,

or stopped using either fast-acting insulin or long-acting insulin.

For each patient, we extract 3 time-independent feature variables including patients’ age, gender, and smoking

status at the beginning of the first stage. We also extract 6 time-dependent biomarkers including patients’

BMI, systolic blood pressure, level of low-density lipoprotein, high-density lipoprotein, triglyceride and

HbA1c level measured at the beginning of each treatment stage. For time-dependent variables apart from

HbA1c, the value at each time point is approximated via linear interpolation using the most recent test results

before and after the time point, and missing values for patients who have insufficient lab tests are imputed by

the population mean. Extreme observed values greater than 95% or smaller than 5% quantile are truncated at

95%/5% quantiles before imputation to eliminate the impact of extreme values for 5 time-dependent variables.

For HbA1c level, we let T3 = T2 + 180 and use (Y1, Y2, Y3) to denote the HbA1c level at (T1, T2, T3)

respectively. In this analysis, we impute Y1 using the most recent HbA1c test result before T1 and similarly

impute Y2 using the most recent HbA1c test result between (T1, T2]. For Y3, the HbA1c level is either

imputed using the most recent lab test result within [T3 − 90, T3 + 90] if any lab test result exists in the time

interval or impute the value by fitting a simple linear regression using all lab test results since T2 (assume

that the imputed value at T2 is the true HbA1c level at T2) till the end of the second stage treatment if no lab

test result exists within [T3 − 90, T3 + 90]. For patients with Y3 imputed using linear regression, extreme

imputed HbA1c values greater than 14% and below 4% are truncated at 14% and 4 % correspondingly.
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The final cumulative reward Y is set to be

Y = −
(
Y3 − Y1
T3 − T1

)
∗ 365,

which is the cumulative HbA1c reduction at 180 days since the initial of the second stage treatment rescaled

to 1 year, so higher Y indicates better treatment performance. The feature variables of the first stage H1

consist of all 3 time-independent variables and 6 time-dependent variables at T1, and the second stage

feature variables H2 consist of all 3 time-independent variables and 6 time-dependent variables at T2 plus the

treatment assignment of the first stage and the duration of the first stage treatment.

In this section, we implement L1-MRL and also compare the performance with 4 competing methods

in the simulation studies. For each method, we conducted repeated analysis 100 times by sampling 50% of

patients as training data and evaluating the expected reward under the estimated rules using the remaining 50%

data as testing data. Since EHR data is observational data, we estimate the treatment assignment probability

model via Lasso logistic regression using sampled training data and use the estimated model to calculate the

treatment assignment probability for testing data repeatedly. To eliminate the impact of extreme weights, the

treatment assignment probability is truncated at 25% and 75% quantile of the estimated treatment assignment

probability of training data. For L1-MRL, we impose variable selection for 3 time-independent and 6 time-

dependent variables. The implementation of L1-MRL follows the same description as the simulation studies,

except that we fix the adaptive coefficients to be the coefficients calculated from the estimated coefficients

obtain from AOWL using all available data as training data, without recalculating the adaptive coefficients

for each sampled training data.

The real data analysis results are displayed in Table 4.2. From the table, we first note that compared with

4 competing methods, MRL produces the highest reward on testing data, which indicates that the treatment

rules learned by L1-MRL have the best clinical performance. In particular, the expected testing reward

under the estimated rules of L1-MRL is significantly higher than all 4 possible one-size-fits-all rules. This

suggests that the L1-MRL method can preserve treatment optimization capability and improve the treatment

decision via personalizing treatments to patients while conducting variable selection at the same time on real

observational data, where competing methods including A-learning fail to achieve comparable reward gain.

In terms of variable selection, L1-MRL tends to select 4.5 important variables for the first stage and

roughly the same number of important variables for the second stage, which is higher than A-learning and
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Method Testing Reward (%) N1 N2

L1-MRL 0.101(0.049) 4.550(2.728) 4.630(2.493)
A-learning 0.091(0.045) 2.410(0.767) 2.480(1.150)
Q-learning 0.079(0.045) 2.190(2.465) 1.790(2.056)
O-learning-L1 0.078(0.046) 1.250(1.666) 4.710(2.630)
pdwols 0.068(0.031) 3.150(2.066) 0.050(0.500)

FL-I FL-MR F-I F-MR

Reward 0.072(0.037) 0.060(0.041) 0.037(0.037) -0.013(0.021)

Table 4.2: Summary of the expected testing reward, the number of selected variables under the estimated
rules and the expected testing reward under all 4 possible one-size-fits-all rules. Estimation results are
reported in the same format as simulation studies. Variables with estimated coefficients with an absolute
value greater than 10−6 are identified as important variables. Expected rewards are calculated using the
stabilized inverse probability estimator defined as the inverse probability estimator divided by the mean of
the inverse propensity weight.

Variable
L1-MRL A-learning Q-learning O-learning-L1 pdwols

Stage I Stage II Stage I Stage II Stage I Stage II Stage I Stage II Stage I Stage II
Age 48 52 9 37 28 26 18 74 30 1
Gender 67 74 74 51 27 41 45 1 55 1
Smoking 51 46 21 19 25 11 14 62 23 0
BMI 88 69 59 4 22 4 0 59 12 1
SBP 44 71 3 37 20 28 3 67 15 0
LDL 25 14 9 4 16 4 12 40 26 0
HDL 26 21 7 9 26 6 10 46 23 0
Triglyceride 37 21 10 17 24 13 9 44 31 1
HbA1c 69 95 49 70 31 46 14 78 100 1
Jaccard Index 0.389 0.474 0.370 0.306 0.300 0.312 0.317 0.441 0.422 0.981

Table 4.3: Selected time as important variables for each candidate feature variable and average Jaccard index
between selected variables across 100 repeated analyses.

other competing methods. However, by checking the number of times selected as important variables for each

candidate variable in Table 4.3, we note that Q-learning, O-learning-L1 and pdwols fail to produce reasonable

variable selection results. For Q-learning and O-learning-L1, the decision rule of the first stage learned by

Q-learning shows no preference for any variable, while the decision rule learned by O-learning-L1 tends to

only prefer gender as an important variable for stage I but discontinue to select the same variable during

the second stage, both of which is less meaningful from the clinical perspective. For pdwols, the method

only identifies important variables for the first stage and strongly prefers HbA1c, but selects no variable

and does not conduct any personalization during the second stage, which is also less meaningful in practice.

The unideal variable selection performance of 3 methods is consistent with the result in Table 4.2 where
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Q-learning, O-learning-L1 and pdwols can only attain a lower expected reward compared with L1-MRL

and A-learning due to worse variable selection performance. For L1-MRl and A-learning, L1-MRl tends to

keep gender, BMI, and HbA1c level as important variables for both two stages, while A-learning tends to

select only gender as an important variable for both two stages but consider BMI and HbA1c as important

only during the first stage. Since the ideal method is expected to yield stable variable selection results

when repeatedly implemented, to quantify the stability of variable selection results, we calculate the average

pairwise Jaccard index between the sets of selected variables under 100 repeated analyses, where the Jaccard

index between two repeated analyses is defined as

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

.

Here, S1 and S2 denote the set of indices among 9 candidate feature variables selected as important under

two repeatedly analyses and we let J(S1, S2) = 1 if both S1 and S2 are both empty set. By definition, a

larger Jaccard index closer to 1 indicates higher similarity between the sets of selected variables and more

stable variable selection results. By checking the average Jaccard index between L1-MRL and A-learning

also reported in Table 4.3, we can notice that L1-MRL and A-learning have similar average Jaccard index

during the first stage but the Jaccard index of L1-MRL during the second stage will be significantly higher

than A-learning. This suggests that the variable selection of L1-MRL is more stable and consistent across

both two stages compared with A-learning under repeated analyses. From the clinical application perspective,

HbA1c is known and adopted as one of the most important health biomarkers to make the treatment decision

for T2D patients (American Diabetes Association, 2022b), and studies have also unveiled that overweight

will also affect the response of insulin therapy to T2D patients (Yki-Järvinen et al., 1997). Thus, compared

with A-learning, L1-MRL also produces more meaningful variable selection results, which tends to select

both HbA1c and BMI as important variables for both two stages and is consistent with clinical guidance and

evidence. The better variable selection performance of MRL also explains the result in Table 4.2 that L1-MRL

can lead to higher reward gain by producing more stable variable selection and including known important

biomarkers to tailor treatments to patients, where the lack of sufficient variable selection of A-learning

matches the observation in simulation studies that A-learning can be overconservative under certain scenarios.

To sum up, the real data example shows that L1-MRL remains to have overall the best performance compared
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with the other 4 competing methods when applied to real observational data, with both higher reward, more

stable and clinically meaningful variable selection results.

4.6 Discussion

Incorporating variable selection in learning optimal DTRs has drawn increasing attention in recent years

driven by the clinical demand for treating chronic diseases. To respond to the challenge, in this chapter, we

propose a new machine learning-based approach, namely L1-MRL, to estimate the optimal decision rules and

identify important variables that contribute to treatment optimization at the same time. As one of the main

distinctness, due to the simultaneous property of the MRL, the proposed framework is able to estimate the

decision rules and conduct variable selection contingently across all stages, where existing methods, up to our

best knowledge, can only estimate the decision rules and conduct variable selection stage by stage separately.

The simulation studies and the real data example indicate that L1-MRL has overall better performance than

the compared existing DTRs methods with variable selection capability.

Apart from the variable selection, incorporating additional restrictions over tolerable adverse risk or

allowable treatment budget and learning the optimal treatment rules under restriction has also been studied

in recent years. As one of the possible extensions, L1-MRL can also be extended to substantiate variable

selection in learning optimal DTRs under consideration of additional restriction by including corresponding

constraints to the optimization problem. However, since the objective of L1-MRL is non-convex, the penalty

term needs to be carefully designed to facilitate numerical efficiency while preserving theoretical property to

guarantee that the estimation will lead to the optimal sparse rules. Future extensions over L1-MRL or novel

new methods are still expected to address the variable selection challenge when additional restrictions over

the rules need to be satisfied.

Moreover, it is worth noting that apart from the cross-stage variable selection, because of the simultaneous

property of the MRL framework, the MRL framework can also be extended to address other cross-stage

restrictions over the decision rules in learning optimal DTRs via adding different penalty terms. One possible

extension is to incorporate appropriate penalty terms over the similarity between recommended treatments

over time for each patient to impose smoothness restriction over the treatment trajectory at the individual

level. Such extension can be used to address the real application when treatment rules need to be designed to

avoid frequency switching of treatment in a short period of time to reduce potential risk and medical burden
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caused to patients due to treatment change. Further studies of different penalty terms are expected to reflect

such as the variation of treatment over time or other cross-stage restrictions over the decision rules to tackle

real problems with additional restrictions over decision rules across multiple stages.

4.7 Details of Coordinate Decent DC Algorithm for Solving L1-MRL

For convenience, we let

Oi =
1

n

Yi∏T
t=1 p(Ait|Hit)

or Oi =
1

n

Ŷi∏T
t=1 p(Ait|Hit)

.

By subtracting and adding an additional term

n∑
i=1

O−
i min(ψ(Ai1H

T
i1θ1/ηn), ..., ψ(AiTH

T
iTθn/ηn))

in (4.4) or (4.5), one can obtain that L1-MRL problem is equivalent to maximizing

L(θ) =
n∑
i=1

Oimin(ψ(Ai1H
T
i1θ1/ηn), ..., ψ(AiTH

T
iTθn/ηn))

+
n∑
i=1

O−
i min(ψ(|HT

i1θ1|/ηn), ..., ψ(|HT
iTθn|/ηn))− λn

P∑
p=1

T∑
t=1

|θt,p|√∑T
s=1 θ̃

2
s,p

=
n∑
i=1

|Oi|min(Ai1H
T
i1θ1/ηn, ..., AiTH

T
iTθn/ηn, di)

−
n∑
i=1

|Oi|min(Ai1H
T
i1θ1/ηn, ..., AiTH

T
iTθn/ηn, 1− di)

+

n∑
i=1

O−
i min(|HT

i1θ1|/ηn, ..., |HT
iTθn|/ηn)− λn

P∑
p=1

T∑
t=1

|θt,p|√∑T
s=1 θ̃

2
s,p

,

where we have abused the notation and used θt,p to denote all unknown parameters and assume that the first

P coefficient needs to be penalized. In the previous equations, di = I(Oi ≥ 0) and to obtain the second

equality, we have used the fact that

min(ψ(x1), ..., ψ(xT )) = min(x1, ..., xT , 1)−min(x1, ..., xT , 0).
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By reorganizing the objective function, we can equivalently minimize the new objective function

L′(θ) =
n∑
i=1

|Oi|max(−Ai1HT
i1θ1/ηn, ...,−AiTHT

iTθn/ηn,−di)

−
n∑
i=1

O−
i min(|HT

i1θ1|/ηn, ..., |HT
iTθn|/ηn)

+ λn

P∑
p=1

T∑
t=1

|θt,p|√∑T
s=1 θ̃

2
s,p

−
n∑
i=1

|Oi|max(−Ai1HT
i1θ1/ηn, ...,−AiTHT

iTθn/ηn,−(1− di)).

To obtain an estimated solution for the L1-MRL problem, we consider solving the minimization above via

the coordinate decent. For convenience, we let

θ
(k)
t = (θ

(k)
t,1 , ..., θ

(k)
t,Kt

),

θ
(k+1,k)
t,−p = (θ

(k+1)
t,1 , ..., θ

(k+1)
t,p−1 , θ

(k)
t,p+1, ..., θ

(k)
t,Kt

),

Hit,−p = (Hit,1, ...,Hit,p−1, Hit,p+1, ...,Hit,Kt),

where we use Kt to denote the number of unknown parameters at stage t. Given current parameter vector

(θ
(k+1)
1,1 , ..., θ

(k+1)
t,p−1 , θ

(k)
t,p , ..., θ

(k)
T,KT

), we update θ(k)t,p by fixing remaining parameters as constants and solving

the optimization problem

θ
(k+1)
t,p = argmin

θ
S1(θ)− S2(θ), (4.7)

where

S1(θ) =
n∑
i=1

|Oi|max(−Ait(Hit,pθ +HT
it,−pθ

(k+1,k)
t,−p )/ηn, cit)

+
n∑
i=1

O−
i g2((Hit,pθ +HT

it,−pθ
(k+1,k)
t,−p )/ηn, c

′′
it) + γt,pλn

|θ|√∑T
s=1 θ̃

2
s,p

S2(θ) =

n∑
i=1

|Oi|max(−Ait(Hit,pθ +HT
it,−pθ

(k+1,k)
t,−p )/ηn, cit′)

+
n∑
i=1

O−
i g1((Hit,pθ +HT

it,−pθ
(k+1,k)
t,−p )/ηn),
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with γt,p = 1 if θt,p needs to be penalized and γt,p = 0 otherwise,

g1(x) = |x|, g2(x, c) = max(−x− c, 0) + max(x− c, 0),

cit = max(−Ai1H
T
i1θ

(k+1)
1 /ηn, ...,−Ai,t−1H

T
i,t−1θ

(k+1)
t−1 /ηn,

−Ai,t+1H
T
i,t+1θ

(k)
t+1/ηn, ...,−AiTH

T
iTθ

(k)
T /ηn,−di),

c′it = max(−Ai1H
T
i1θ

(k+1)
1 /ηn, ...,−Ai,t−1H

T
i,t−1θ

(k+1)
t−1 /ηn,

−Ai,t+1H
T
i,t+1θ

(k)
t+1/ηn, ...,−AiTH

T
iTθ

(k)
T /ηn,−(1− di)),

c′it = max(|HT
i1θ

(k+1)
1 |/ηn, ..., |HT

i,t−1θ
(k+1)
t−1 |/ηn, |HT

i,t+1θ
(k)
t+1|/ηn, ..., |H

T
iTθ

(k)
T |/ηn).

Note that both S1 and S2 are convex function of θ, therefore (4.7) can be solved by applying the DC-algorithm

(Tao and An, 1997) where we iteratively solve

θ(s+1) = min
θ

S1(θ)−
∂S2
∂θ

(θ(s))(θ − θ(s)) (4.8)

until converging starting from θ(0) = θ
(k)
t,p . To further reduce the computational complexity, we approximate

the subgradient ∂S2
∂θ (θ) by

∂S̃2
∂θ

(θ) =
n∑
i=1

1

ηn
|Oi|(−AitHit,p)

e−Ait(Hit,pθ+H
T
it,−pθ

(k+1,k)
t,−p )/ηn

e−Ait(Hit,pθ+H
T
it,−pθ

(k+1,k)
t,−p )/ηn + ec

′
it

+
n∑
i=1

1

ηn
O−
i Hit,pI(Hit,pθ +HT

it,−pθ
(k+1,k)
t,−p > 0)

−
n∑
i=1

1

ηn
O−
i Hit,pI(Hit,pθ +HT

it,−pθ
(k+1,k)
t,−p < 0)

using the smoothing technique from Nesterov (2005). For fixed t and p, the optimization of (4.8) w.r.t.

θ becomes a minimization problem w.r.t. a piecewise linear function which can be efficiently solved by

calculating the derivatives at each ending point. For each t and p, we update θ(k)t,p until the DC procedure (4.8)

converges, and the coordinate decent algorithm terminates until θ(k) = {θ(k)
1 , ...,θ

(k)
T } converges.
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4.8 Proof of Theorem 4.1

We complete the proof by first verifying the lemma below:

Lemma 4.1 For any compact subset Xt ⊂ Rdt and B > 0, let {Xt}Tt=1 be T random vectors defined on

spaces {Xt}Tt=1. Define

W =

{
min(ψ(XT

1 θ1), ..., ψ(X
T
T θT )) : ∥θt∥∞ ≤ B, βt ∈ Rdt , t = 1, ..., T

}
,

then for any δ > 0, we have

P

(
sup
w∈W

|Pn[w]− E[w]| ≥ c

√∑
t dt log(BTdt)√

n
+ δ

)
≤ c′e−nδ

2

holds for constants c and c′ which do not depend on sample size n.

Proof: Without loss of generality, we assume that Xt is the unit ball of Rdt for t = 1, ..., T . Let B denote the

center of a ϵ
dtT

covering of interval [−B,B] under Euclidean distance. For arbitrary w ∈ W associated with

coefficient {θt}Tt=1, we can find centers bt ∈ Bdt for t = 1, ..., T such that

∥bt − θt∥∞ ≤ ϵ

dtT
.

Using the fact from Proposition 3.1 that for any (x1, .., xT ) and (x′1, ..., x
′
T ), we have

|min(ψ(x1), ..., ψ(xT ))−min(ψ(x′1), ..., ψ(x
′
T ))| ≤

T∑
t=1

|xt − x′t|,

we can obtain that

sup
(X1,...,XT )∈XT

∣∣∣∣w −min(ψ(XT
1 θ), ..., ψ(X

T
T θT ))

∣∣∣∣
≤

T∑
t=1

dt∥bt − θt∥∞

≤ϵ,
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where to obtain the first inequality we have used the fact that ψ(x) is 1-Lipsitz function. Since

N ([−B,B], ϵ; ∥ · ∥∞) ≤ B

ϵ
,

the previous inequality implies that

N (W, ϵ; ∥ · ∥∞) ≤
T∏
t=1

(
BTdt
ϵ

)dt
.

Now, we show that the concentration inequality stated holds. Using Theorem 4.10 from Wainwright, we can

show that

P

(
sup
w∈W

|Pn[w]− E[w]| ≥ 2Radn(W) + δ

)
≥ ce−nδ

2

holds for any δ > 0 where Radn(W) denotes the Rademacher complexity of W defined as

Radn(W) = sup
w∈W

EXEϵ

∣∣∣∣ 1n
n∑
i=1

ϵiw(Xi)

∣∣∣∣, P (ϵi = ±1) = 0.5.

Here, we abuse the notation and use w(Xi) to denote i.i.d. replication of function w evaluated at Xi. Using

Example 5.24 from Wainwright we have

Eϵ

∣∣∣∣ 1n
n∑
i=1

ϵiw(Xi)

∣∣∣∣ ≤ 24√
n

∫ 2

0

√
logN (W, ϵ; ∥ · ∥Pn)dϵ,

where ∥ · ∥Pn denotes the empirical L2-norm defined as

∥w1 − w2∥2Pn =
1

n

n∑
i=1

(w1(xi)− w2(xi))
2.

Since ∥w1 − w2∥Pn ≤ ∥w1 − w2∥∞, we have

N (W, ϵ; ∥ · ∥Pn) ≤ N (W, ϵ; ∥ · ∥∞)

and consequently

Eϵ

∣∣∣∣ 1n
n∑
i=1

ϵiw(Xi)

∣∣∣∣ ≤ c

√∑
t dt logBTdt√

n
.

The inequality is verified by taking expectation w.r.t. X . □
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We now complete the proof of Theorem 4.1 using Lemma 4.1.

Proof: For convenience, we define

L1(θ) = −E
[
Y
min(ψ(A1H

T
1 θ1/η), ..., ψ(ATH

T
T θT /η))∏T

t=1 p(At|Ht)

]
,

L2(θ) = −E
[
Y −min(ψ(|HT

1 θ1|/η), ..., ψ(|HT
T θT |/η))∏T

t=1 p(At|Ht)

]
and use Q1(θ) and Q2(θ) to denote the empirical version of L1(θ) and L2(θ) respectively. Hence, we have

Q(θ) = Q1(θ) +Q2(θ) +
∑
t,p

λnp|βtp|

Let αn = an + n−
1
4
+ η

2 where an = max{λnp : |β∗tp| ≠ 0}, our goal is to show that

Q(θ ∗+αnδ) > Q(θ∗)

holds for any ∥δ∥2 = C for some sufficiently large C that does not depend on sample size n where δ is a

vector in R
∑T
t=1 dt .

To show this, we first note that for any ξ ∈ (0, 12) we have

Q(θ∗ + αnδ)−Q(θ∗) ≥− |L1(θ
∗ + αnδ)−Q1(θ

∗ + αnδ)| − |L2(θ
∗ + αnδ)−Q2(θ

∗ + αnδ)|

− |L1(θ
∗)−Q1(θ

∗)| − |L2(θ
∗)−Q2(θ

∗)|

+ L(θ∗ + αnδ)− L(θ∗) +
∑
t,p

λnp|βtp + αnδtp| −
∑
t,p

λnp|βtp|︸ ︷︷ ︸
I

.

By doing Taylor expansion of L(θ∗ +αnδ) at θ∗ and use Assumption 4.5, the term I on the left-hand side of

the inequality above is lower bounded by

I ≥ 1

2
η−2α2

nδ
T∇2L(θ∗)δ + op(1)− sη−3Canαn, (4.9)

for some constant s that does not depend on sample size n and constant C.
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Since it is assumed that ann
1
4
− ξ

2 = O(1) and ∇2L(θ∗) is positive definite, we can choose sufficiently

large C such that η−2α2
nδ

T∇2L(β∗)δ dominates sη−3Canαn for any ∥δ∥2 = C. Hence, term I has order

α2
n = n−

1
2
+ξ up to a positive constant that does not depend on n. On the other hand, fixingC to be sufficiently

large, then Assumption 4.4 and Lemma 4.1 imply that

|L1(θ
∗ + αnδ)−Q1(θ

∗ + αnδ)| = Op(n
− 1

2 ), |L2(θ
∗ + αnδ)−Q2(θ

∗ + αnδ)| = Op(n
− 1

2 ),

|L1(θ
∗)−Q1(θ

∗)| = Op(n
− 1

2 ), |L2(θ
∗)−Q2(θ

∗)| = Op(n
− 1

2 ).

Combine with (4.9), we can obtain that

Q(θ∗ + αnδ)−Q(θ∗) > Op(n
− 1

2 ) + I = I(1 + +op(1)) > 0

for a sufficiently large n.

The discussion above indicates that for any ϵ > 0

P

(
inf

∥δ∥2=C
Q(θ∗ + αnδ) ≥ Q(θ∗)

)
≥ 1− ϵ,

for sufficient large n, which further indicates that there always exists a local minimum θ̂n such that ∥θ̂n −

θ∗∥2 = Op(n
− 1

4
+ ξ

2 + an). This completes the proof of the theorem □
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CHAPTER 5: EXTENSIONS AND FUTURE WORK

As discussed in previous chapters, in real application especially for treating chronic diseases, aggressive

treatment may induce multiple negative impacts on patients including but not limited to adverse medical

risks, excessive medical cost or deteriorated life quality. Though our proposed methods in this work can

be easily refined to accommodate problems with multiple constraints, it lacks theoretical justification to

ensure that the choice of surrogate functions used in this work can still lead to consistent estimated rules

under mild conditions. Moreover, due to the non-convexity of the surrogate functions adopted, finding a valid

initial point and efficiently solving the optimization problem can be hard when the number of constraints is

more than one. Hence, future extensions and studies are still expected to improve or develop new efficient

methods to tackle the multiple constraints problems in learning optimal DTRs. Also, to our best knowledge,

no existing method has ever been proposed to address the variable selection challenge when constraints are

imposed in learning optimal DTRs. Future research is also expected to provide statistical tools with variable

selection capability under restrictions.

For our work, we focus on handling the problem when the number of available treatments is finite and

can be encoded as discrete random variables. For some applications such as drug dosage optimization, the

treatment intervention will be a continuous variable and can no longer be fitted into the framework studied in

this work. To handle the optimal DTRs problem with continuous treatments, when no additional constraints

are considered, a flourishing number of methods have been proposed to learn the optimal rules, the works

including Thall, Nguyen and Estey (2008); Chen, Zeng and Kosorok (2016); Li et al. (2020); Zhu et al.

(2020); Zhou, Zhu and Zeng (2021); Chen, Li and Yu (2022); Ding, Li and Song (2022); Park, Chen and

Yu (2023). In opposed, only a few methods have also been proposed to tackle the optimal DTRs problem

with both continuous treatments and additional constraint. These methods include Bayesian approaches

such as Thall and Cook (2004); Thall (2012); Lee et al. (2015) and policy learning approach Laber et al.

(2018). However, the implementation of the methods mentioned requires strong model assumptions and

are lack theoretical justification to guarantee that the learned rules are nearly optimal. New methods with

solid theoretical justification and numerical efficiency are still expected for optimal DTRs problems with
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continuous treatment under consideration of additional constraints. Also, throughout this work, we have

always assumed that the three standard causal assumptions - SUTV, NUC and positivity assumption - hold

for the problem studied. However, such assumptions can be violated in real applications, particularly for

observational data. As listed at the end of Section 1.2.2, a series of works have been done to tackle the

policy learning problem when one of three standard causal assumptions is violated without consideration of

additional constraint over the optimal policy. Hence, future work can focus on developing new methods to

learn the optimal DTRs under consideration of additional constraints when either one or multiple standard

causal assumptions are violated.

Lastly, our work focuses on the problem when treatments are imposed at a fixed and finite number of

time points. When the time horizon is closed to be infinite, a number of studies have been completed to

learn the optimal treatment rules with infinite decision points (Luckett et al., 2020; Hu et al., 2021; Liao,

Klasnja and Murphy, 2021; Shi et al., 2022; Zhou, Zhu and Qu, 2022; Gao, Shi and Song, 2023), and the

methods are particularly useful when data is collected from mobile health devices. More recently, studies

also explore the problem when the treatment intervention time can be adjusted based on the patient’s health

condition (Xu et al., 2016; Nahum-Shani et al., 2018; Nie, Brunskill and Wager, 2021; Hua et al., 2021;

Chen et al., 2022) and recent research has also started developing new methods when medical surveillance

time/method can also be optimized for patients at personal level stimulated by the concept of precision

surveillance. With the rapid growth of the concept of precision medicine, how to unify all concerns in

precision medicine and personalize the optimal treatment regimens for every patient still remains an open

question. From a broad view, novel methods are expected to substantiate treatment personalization with

finite/infinite treatment stages, discrete/continuous interventions, unevenly spread predictors, violation of

standard causal assumptions, possible multiple constraints, and capability of variable selection particular for

the case when patient’s gene or long-term longitudinal health information data is available.
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