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The g-formula and agent-based models (ABMs) are 2 approaches used to estimate causal effects. In the
current issue of the Journal, Murray et al. (Am J Epidemiol. 2017;186(2):131–142) compare the performance
of the g-formula and ABMs to estimate causal effects in 3 target populations. In their thoughtful paper, the
authors outline several reasons that a causal effect estimated using an ABM may be biased when parameter-
ized from at least 1 source external to the target population. The authors have addressed an important issue in
epidemiology: Often causal effect estimates are needed to inform public health decisions in settings without
complete data. Because public health decisions are urgent, epidemiologists are frequently called upon to esti-
mate a causal effect from existing data in a separate population rather than perform new data collection activi-
ties. The assumptions needed to transport causal effects to a specific target population must be carefully stated
and assessed, just as one would explicitly state and analyze the assumptions required to draw internally valid
causal inference in a specific study sample. Considering external validity in important target populations increases
the impact of epidemiologic studies.
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Epidemiology guides decisions related to public health,
which are necessarily made with respect to specific target po-
pulations. Such decisions may involve choosing between 2
(or more) alternative intervention strategies, one of which
may be to continue under the status quo. Ideally, these deci-
sions should optimize the expected intervention impact in
the group of people who would be affected by the decision
(the target population).

With information on the counterfactual outcome distribu-
tions under the candidate interventions in the target population,
it is trivial for a decision maker to choose between intervention
strategies bymaximizing some utility function (1). Counterfac-
tual outcome distributions are not directly observable; 2 ap-
proaches to estimate counterfactual outcome distributions
from epidemiologic data include the parametric g-formula
(2) and ABMs (3).

We commend Murray et al. (4) for their thoughtful article
probing the differences in these approaches. In their notable
work, the authors demonstrated that applying the g-formula
to data from the target population of interest outperformed an
ABM that was parameterized at least partially from other
sources. Murray et al. show that both approaches work well
when parameterized entirely using data from the target popu-
lation (their “base scenario”). This is unsurprising because,
as the authors point out, the same parametric models can be
used for the parametric g-formula and an ABM, and the 2 ap-
proaches are mathematically equivalent when all parameters
are estimated in a single data source. However, in external
target populations defined as high or low risk, the ABM,
which estimated parameters entirely or partially within the
base scenario, suffered from a set of limitations outlined in
their work. Crucially, the performance of the g-formula in



the external target populations was judged after refitting
the g-formula to new data from each target population.

The analysis of Murray et al. was enlightening with respect
to the performance of each approach according to how they
are commonly used. However, comparing ABMs and the
g-formula in this way may conflate the performance of the
methods with the availability of data in settings in which they
are typically applied. As the authors note, the g-formula is
typically applied to estimate causal effects in a target popula-
tion with complete data, while ABMs often use information
from one or more study samples to estimate a causal effect in
an external target population (for which complete data are not
available). It is not surprising that, given a choice between
data sets, more complete data will usually yield more accu-
rate results.

With complete information on confounders, exposure, and
outcome in the target population, users of both g-formula and
ABM approaches would likely leverage this information to
estimate causal effects. In the absence of complete informa-
tion on the target population, Murray et al. aptly describe the
limitations of the ABM when used to make inferences across
populations. The authors posit that the g-formula is not as sus-
ceptible to concerns about transportability because inferences
from the parametric g-formula are typically limited to popula-
tions and time periods similar to the population and time
period for which complete data are available. Of course,
this is to say that the g-formula is not susceptible to concerns
about transportability because it is not often used for transport-
ability. How, then, are we to learn about the effects of interven-
tions in populations for which we have incomplete data?

For epidemiology to be useful to decision makers, we, as
epidemiologists, cannot abdicate a responsibility to provide
evidence to inform necessary decisions in target populations.
Public health decisions are often somewhat urgent—for exam-
ple, delaying a decision in order to collect complete informa-
tion in the target population may leave an unsatisfactory status
quo in place. The cost of delaying a decision can be measured
by reductions in quality of life or life span. Thus, someone
making a decision related to public health must weigh the
costs of collecting additional data (human and monetary)
against the costs and probability of making a suboptimal choice
using incomplete evidence.

Transporting causal effects has long been the domain of
agent-based modelers striving to inform decision making by
estimating the effects of real or imagined interventions in
target populations using inputs from multiple data sources.
Although ABMs suffer from limitations that arise from ob-
taining estimates from a mix of data sources, they have pro-
vided answers to questions on which traditional epidemiology
was often silent. In contrast, traditional epidemiologic studies
have typically ended at estimation of an internally valid causal
effect for a study sample with complete data, rather than esti-
mation of an externally valid causal effect for a target popula-
tion of interest.

As Murray et al. highlighted, an internally valid causal
effect estimate from a study or trial in one population will not
necessarily equal the expected causal effect in another popula-
tion (5–7). Happily, recent work has focused on articulating
the data and assumptions required to generalize or transport
results from a single epidemiologic study to a separate target

population (5, 6, 8). This work has given rise to a suite of meth-
ods to generalize or transport results from trials or observational
studies to external target populations under a set of conditions.
Methods such as the “transport formula” (7) and a variety of
reweighting approaches have been developed in recent years
to transport or generalize results from study samples that are
not representative of the target population (9–13).

Transportability requires data and assumptions beyond
those needed for internal validity (5–8, 14, 15). As the authors
note, obtaining information needed to transport a causal
effect, including the additional covariates needed in the study
sample and all necessary covariates in the target population,
may sometimes be difficult or impossible. However, some
options are available. For some scientific questions in some
target populations, one can obtain information on the joint
distribution of covariates in the target population from pub-
licly available databases, such as census data, the US Agency
for International Development (USAID)’s Demographic and
Health Surveys, the Center for Disease Control and Preven-
tion (CDC)’s Behavioral Risk Factor Surveillance System, or
chronic disease registries. With the rise of “big data,” epide-
miologists may be able to take advantage of emerging data
streams as sources of information on variables important for
transporting causal effects for some causal questions. In the
absence of information on one or more covariates in the target
population, sensitivity analyses could be conducted by simu-
lating different plausible distributions of these variables to
estimate best- and worst-case scenarios for how different
the causal effects expected in the target population may be
from those observed in a separate study sample.

The assumptions required for transportability are strong
(6, 8, 14). Indeed, one may question the value of any outputs
from such an exercise. But what are the alternatives?

Without full data from the target population, the epidemiol-
ogist could restrict inference to the population for which she
has data. As Murray et al. demonstrate, limiting inference to
the population and time period represented by a specific study
obviates the need for additional assumptions required to trans-
port causal effects (and protects the epidemiologist from bias
that can arise if they are not met). However, restricting infer-
ence to populations and time periods for which complete study
data already exist limits the utility and relevance of epidemiol-
ogy. Epidemiology should be more than a historical exercise
describing causal effects that happened in a specific study
population in the past. In much of epidemiology, the purpose
of understanding causal effects is to inform future decisions,
which requires transporting our results, at the very least, to a
future version of our study population (16).

If we, as epidemiologists, absolve ourselves of responsi-
bility for inference in the absence of complete data in the tar-
get population, then the duty falls to decision makers who
may be left with no alternative but to implicitly transport
published causal effects to target populations by assuming
that the causal effect is constant across populations. Or the
published effect estimates may be informally discounted
or inflated for the target population to vaguely reflect some
prior knowledge. In contrast to informal approaches, quantita-
tive methods to transport causal effects lend rigor and trans-
parency to the process of making inferences outside a given
study population.



Epidemiologic data are (almost) always imperfect and incom-
plete (17). Just as we explicitly state the assumptions we make
about unmeasured confounding to draw inference about causal
effects in a specific study sample, we should also be explicit
about the assumptions we make to infer causal effects in
specific populations external to our studies. We can only fully
evaluate the utility of epidemiologic results for improving
health by gauging how well our work meets all of these as-
sumptions. Without such intellectual rigor, we are left with
either limiting inferences to settings with complete data or
informal—and possibly misguided—attempts to broadly apply
results that are highly dependent on the context in which they
were derived. A valuable lesson of the results reported by
Murray et al. (4) is that users of ABMs should consider the as-
sumptions necessary to transport and synthesize findings across
populations to improve the validity of their results. Conversely,
those who are already steeped in the assumptions of causal
inference can increase the impact of their results by generalizing
or transporting causal effects to settings where they may be
used as inputs into decisions rather than simply estimating
internally valid causal effects where complete data exist (18).

Decision makers seek “evidence-based interventions” (19).
The most straightforward way to provide evidence about a
decision in a target population is to conduct a trial in that pop-
ulation or use statistical approaches that emulate a trial using
observational data from that population, such as the g-formula
(20). But the resources required to conduct such studies are
finite and not optimally distributed. Thus, decisions about
public health interventions often require transporting causal
effects from one population to another as a way to inform
public health actions in the face of incomplete information.
Epidemiologists can improve public health by engaging in
this process.
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