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Abstract

Purpose of review—Measurement error threatens public health by producing bias in estimates 

of the population impact of environmental exposures. Quantitative methods to account for 

measurement bias can improve public health decision making.

Recent findings—We summarize traditional and emerging methods to improve inference under 

a standard perspective, in which the investigator estimates an exposure response function, and a 

policy perspective, in which the investigator directly estimates population impact of a proposed 

intervention.

Summary—Under a policy perspective, the analysis must be sensitive to errors in measurement 

of factors that modify the effect of exposure on outcome, must consider whether policies operate 

on the true or measured exposures, and may increasingly need to account for potentially dependent 

measurement error of two or more exposures affected by the same policy or intervention. 

Incorporating approaches to account for measurement error into such a policy perspective will 

increase the impact of environmental epidemiology.
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Introduction

Environmental epidemiologists work to inform public health decision making by estimating 

the health impacts of potentially toxic exposures. To estimate these impacts, we rely on 

measures of environmental exposures, health outcomes, and important covariates, which 

may be imperfect proxies for the actual quantities of interest. We refer to the difference 

between the quantity of interest and the measured value as measurement error. Exposure 

measurement error, in particular, is commonly known to bias estimates of exposure response 
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in environmental epidemiology (1–5). While measurement error is common in this field, 

users of standard implementations of existing analytic approaches, typically regression 

models, must assume that measurement error is absent.

Measurement error can adversely affect population health by distorting results from 

epidemiologic studies. Results from environmental epidemiology studies are used to inform 

national and international standards on population exposures. For example, exposure 

response parameters from large air pollution studies have been important inputs into the US 

Environmental Protection Agency (EPA) standards on PM 2.5, which drive local and 

national regulation of pollution sources. An alternative to using exposure response 

parameters in this way is to estimate the health effects of policy changes directly in 

observational studies and to use these estimates as inputs into regulatory processes (6,7). 

While this approach has not yet become common in environmental epidemiology, direct 

estimates of the effects of hypothetical interventions have been used to shape international 

guidelines in other fields. For example, WHO guidelines on when to initiate antiretroviral 

therapy in HIV positive individuals were developed based on estimates of mortality under 

various treatment plans from observational studies (8–11). While approaches exist to 

account for measurement error in many regression settings, there has been less work on how 

to account for measurement error when estimating population intervention effects.

Here, we review the types of problems created by measurement error in environmental 

epidemiology and summarize some common methods to account for measurement error. We 

discuss these solutions in the context of estimating the public health impacts of 

environmental contaminants. We review the literature on the unique problems arising due to 

measurement error in population impact studies and comment on open issues regarding 

measurement error in estimating impacts of environmental policies.

What is mismeasured?

Epidemiology relies on measurements of physical quantities, any of which may be 

mismeasured (12). These quantities generally fall into three broad categories: exposures, 

outcomes, and covariates. Mismeasurement of any of these may result in bias. While the 

primary purpose of the current review is to address exposure measurement error, specifically 

as it may lead to bias of population impact estimates, outcome and covariate measurement 

error may also bias estimates of public health impact. We broadly define “exposure” in this 

setting as some external substance or hazard for which we are interested in learning about 

health impacts. We defer to existing literature to differentiate between environmental and 

non-environmental exposures (13,14), but generally we limit our discussion to external 

factors that vary over time and space and could be targets of regulation. We acknowledge 

that the meaning of “environmental exposure” may change according to context, and our 

discussion applies across many of such contexts.

Types of measurement

In general, environmental exposures are measured on a quantitative, or continuous, scale. 

Occasionally we may quantify exposure measures using two or more discrete levels. When 
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an exposure measurement is binary, mismeasurement can be referred to as 

“misclassification” and can be quantified using sensitivity and specificity, which describe the 

probability of being correctly classified. In such cases, sensitivity and specificity (or 

predictive values) can be used to account for misclassification in tabular and regression 

approaches (2,15). Because most environmental chemicals under regulation are quantified 

on a continuous scale, we focus our review on measurement error of continuous exposures.

Types of error

The types of measurement error and methods to account for measurement error have been 

described in seminal papers punctuating the history of environmental epidemiology (3–

5,16–19). We briefly review these concepts here, and, in the next section, we connect them 

to contemporary issues in environmental epidemiology.

Measurement error can arise either though deterministic or random mechanisms. Both types 

may be important, and they can be usefully described as separate entities. Deterministic 

measurement error refers to measurements that are incorrect by some set, predictable 

quantity. One common source of deterministic measurement error is “batch effects”, where 

laboratory measurements of exposure vary systematically by the order of analysis due to lab 

contaminants or other factors that vary over time (20,21). Deterministic measurement error 

is generally approached by “de-trending” the exposure measures, which roughly amounts to 

subtracting the batch specific mean from each exposure measurement. This type of analysis 

may be warranted if the analyst has knowledge of contamination at the lab (20) or other 

outside information regarding trends in the exposure measurement. For example, such 

analyses may be warranted in the case of estimating health effects of long term vitamin D 

serum levels from a single measurement, which are known to vary cyclically throughout the 

year (22). This type of analysis can be generalized using flexible approaches (20,22,23).

The random component of measurement error is the sum of the unpredictable forces that 

result in mismeasurement. The magnitude and direction of bias as well as the approaches to 

account for such bias are informed by the structure of the measurement error. The structure 

can be displayed using graphical approaches, such as those outlined by Richardson and 

Gilks (24), Hernán and Cole (25), and Vanderweele and Hernán (26). These graphical 

approaches can be used to distinguish between classical and Berkson measurement error (3) 

as well as differential and nondifferential, and dependent and independent error structures. 

Under special circumstances, the bias from each of these sources of error can be either 

negligible or predictable. Rather than focus on these special cases, we take a more general 

view that each of these error structures is a potential source of bias and that analytic choices 

should depend on the magnitude, instead of the direction of this bias. As shown by 

Richardson and Gilks (24), the error structure can inform how we correct for measurement 

error bias in general settings where either Berkson error, classical measurement error, or a 

combination of the two may be of concern.

Under classical measurement error, the measured exposure is assumed to be randomly 

distributed around the true exposure value such that the expected value of the measured 

exposure is the true exposure (16). Conversely, under Berkson error, the true exposure is 
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assumed to be randomly distributed around the measured exposure value, such that the 

expected value of the true exposure is the measured exposure (1,27). Berkson error may be 

particularly important in air pollution studies where individual measurements are derived 

from an estimated exposure surface (28) or in occupational studies where individual 

measurements are derived from a job-exposure matrix (16). Often, it is useful to think of 

both Berkson and classical components operating simultaneously.

Exposure measurement error can be differential or nondifferential with respect to other 

variables. Usually we use the term “differential exposure measurement error” to refer to the 

scenario where the error in the measured exposure is associated with the outcome. In some 

settings, exposure measurement may be differential with respect to confounders or 

modifiers. Conversely, “nondifferential exposure measurement error” refers to the scenario 

where the error in the measured exposure is independent of the outcome or covariates.

Finally, exposure measurement can also be dependent or independent (26). Dependent 

measurement error occurs when errors in the measurements of exposure and outcome are 

correlated. This can occur when exposure and outcome are measured using a common 

instrument, such as a questionnaire. Independent measurement error occurs when errors in 

measurement of exposure and outcome are independent of each other.

Accounting for measurement error

Ideally, one would eliminate (or reduce) bias due to measurement error by improving the 

measurements taken during the study. However, environmental epidemiologists are often 

tasked with providing estimates to inform policy decisions using existing data. In such 

settings, environmental epidemiologists approaches to account for measurement error may 

be affected by their approaches to informing public health decision making.

We illustrate two potential approaches for how epidemiologists may inform policy decisions 

using the example of radon exposure and lung cancer. As a rough approximation, we 

consider that policy decisions are informed by two important agents: the “epidemiologist” 

and the “regulator.” Panel A of Figure 1 describes a contemporary (“standard”) approach 

used by environmental and occupational epidemiologists, for example that which was used 

by the Committee on the Biological Effects of Ionizing Radiation (BEIR) to estimate 

population lung cancer risk after exposure to ionizing radiation (29). Consider an example in 

which we wish to estimate the population risk of death due to lung cancer after exposure to 

radon gas. In this setting, the primary goal of the epidemiologist is to use data from a study 

(indexed by j) to estimate the study-specific dose-response parameter βj for the increase in 

cancer risk (or rate) after occupational exposure to radon gas among underground uranium 

miners (30–33). The exposure response parameter βj is a function of the exposure 

distribution in the study Xj, the study-specific covariate distribution Zj, information about 

measurement error π, and some statistical model that may be unique to the study. Each βj 

can be assumed to be internally valid for the study population j, after correcting for 

measurement error using the information in π.
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In the standard approach, the regulator then meta-analytically combines the βj to calculate 

the average parameter value across populations β̄. This average parameter is used to estimate 

the effect of a specific policy at the population level (ψgC), typically using a life-table 

analysis of a standard target population defined by a covariate (e.g. age, sex) distribution, 

given by Zg under the population exposure under some policy, given by Xg. For example, the 

BEIR committee estimates the change in the population risk of lung cancer mortality in the 

US population of men and women of all ages (Zg), if radon exposure in the United States 

(Xg) could be eliminated.

Under what we term a policy or population health perspective (34), the division of labor 

between the epidemiologist and the regulator changes, as shown in Panel B of Figure 1. 

Using modern epidemiologic approaches, one can combine study population information 

(Xj, Zj) with measurement error information (π), information about the target population 

(Xg, Zg), and information about the potential intervention in a single model. The output from 

this type of analysis is a study-specific estimate of the policy target, ψgj, or the change in 

health outcomes we would expect to see in the target population if the intervention were 

implemented, based on results from study j. The regulator can then combine these study 

specific estimates into an overall estimate of population risk under a policy, given by ψgM. 

For example, if we wish to estimate the effects of various interventions on radon exposure 

on lung cancer mortality, we can estimate the change in risk under potential interventions 

directly (6,7,35). We note that the numerical value for ψgM need not equal ψgC if β varies 

across populations.

The policy perspective is appealing simply for the reduction in the number of steps required 

for an epidemiologic study to inform policy. Such an approach has been conceptualized as 

casting observational data into the framework of randomized trials (36). Furthermore, using 

a policy perspective to analyze observational environmental studies as though they were 

randomized trials of proposed policies reduces bias in some settings, such as when exposure 

may vary over time (37).

The perspective of the investigator (“standard” vs “policy”) and the parameter of interest 

(i.e., βj vs ψgj) affect the issues to be considered when accounting for mismeasured 

variables. However, under both perspectives, all approaches to estimate an exposure 

response parameter rely on additional information about the measurement process. 

Information needed to estimate an exposure response parameter in the presence of 

measurement error can be encoded in a validation study, a reliability study, parametric 

assumptions, or the investigator’s prior knowledge of the measurement process. The data 

alone cannot identify any exposure response parameter, but must be accompanied by 

assumptions regarding (among other factors) the extent and nature of measurement error 

(38).

Quantitative methods to account for measurement error rely on additional information about 

the measurement process to act as a lever when accounting for measurement bias. In a 

validation study, a “gold standard” version of the exposure is measured on a group of 

subjects in addition to the routinely measured exposure. Validation studies can be internal 

(i.e., conducted among a subset of study participants) or external (i.e., conducted among a 
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group of people outside the study). In a reliability study, the routinely measured exposure is 

measured multiple times for a subset of study participants (39). If no validation data are 

available, approaches to account for measurement error can be based on prior information 

about the measurement process. For example, in a study of occupational radon exposure, 

Stram et al. used prior estimates of the coefficient of variation in radon measurements to 

help correct for radon-measurement error in a cohort of uranium miners (40). Alternatively, 

one can make parametric assumptions about the relationship between the effect estimate and 

amount of error in measured variables, as we discuss below in an example of simulation-

based methods in another cohort of miners (41).

Accounting for measurement error under the standard perspective

Under the paradigm of Panel A of Figure 1, characterized by a focus on regression 

coefficients and here termed the “standard perspective,” mismeasurement of exposure Xj or 

covariates Zj may bias estimated regression coefficients. In the example scenario where we 

wish to estimate the relationship between radon exposure and lung cancer mortality, 

exposure measurement error can arise from two sources: 1) assignment of exposure values 

based on an area-level average exposure (such as a job exposure matrix), resulting in 

Berkson-type error and 2) error in the radon monitoring station measurements, resulting in 

classical error (42). If we are interested in estimating the parameters of the excess relative 

rate model for the relationship between radon exposure, and lung cancer mortality, estimated 

regression coefficients and resulting inference may be biased (40,41,43–46). The degree of 

bias resulting from measurement error arising from use of a job exposure matrix was 

recently explored by Greenland et al (47).

Under the standard perspective, environmental epidemiologists have made significant 

progress in accounting for measurement error to yield a valid estimate of βj. Here, we briefly 

describe these approaches and point interested readers to papers describing recent 

applications. The choice of methods used to account for exposure measurement error is 

driven by the error structure and information available about the measurement process.

As noted above, a data analyst can sometimes account for exposure measurement error using 

parametric assumptions or prior knowledge. For example, the simulation extrapolation 

(SIMEX) approach (48) relies on simulating estimates of the parameter of interest β under a 

scenarios in which additional measurement error is added to exposure or covariates and then 

extrapolating results back to a scenario with no measurement error. SIMEX requires 

specifying a parametric form for the relationship between the amount of measurement error 

added and the estimated regression coefficient. SIMEX is appealing in many settings 

because it does not require validation data. In addition, under each measurement error 

scenario, β may be estimated with standard models and statistical software (49). In a 

simulation study based on historical radon exposures in miners, Allodji et al showed that 

SIMEX compared favorably with other likelihood based approaches to estimate a relative 

rate parameter (45). The authors used the approach to correct for both Berkson and classical 

error, which they suggest may have resulted in large biases in previously estimated exposure 

response parameters in occupational studies of radon exposure (41). However, the authors 
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showed that SIMEX may be unreliable when parametric assumptions about measurement 

error are inaccurate.

Alternatively, one could encode knowledge or beliefs about the measurement error process 

using likelihood-based approaches. These approaches can be Bayesian, in which a prior 

distribution is specified for parameters governing the measurement process (50,51), or non-

Bayesian, in which these parameters are assumed to be fixed. The non-Bayesian approaches 

(described by Carrol (1)) have seen little use in the literature, in part due to the relatively 

simple implementation in the Bayesian framework. Fearn et al showed that regression 

calibration provided a reasonable approximation to a full-likelihood implementation in the 

context of domestic radon exposures and lung cancer (52) an approach that was motivated 

by the bias that results from using likelihood approaches with many parameters (53).

If data from a validation or reliability study are available, a host of other methods may be 

used. Regression calibration (17) can be used to account for measurement error in point and 

interval estimates from regression models by adjusting these estimates using the estimated 

association between gold standard and observed exposure from a validation or reliability 

study. Regression calibration approaches have been valuable in environmental and 

nutritional epidemiology (18,54), but may have limited utility when misclassification is 

differential with respect to the outcome (55). Multiple imputation and full likelihood 

approaches offer a way forward in this setting. Multiple imputation leverages information 

from a validation study to adjust individual-level exposures prior to estimating exposure 

effects (56), while full and pseudo-likelihood approaches simultaneously estimate the 

parameters of interest in the outcome model with the parameters determining the 

measurement process (57).

Measurement error may also arise when measurements are subject to limits of detection 

(LOD), in which the exposure measure is known only to be below some threshold, or limits 

of quantification (LOQ), in which the exposure is known to be present (i.e., nonzero) but 

cannot be given an exact value below some threshold (58,59). In these settings, the quality of 

the measurement of exposures subject to LOD and LOQ are subject to the restrictions 

imposed by technology used to quantify exposure. Exposure values that are below the LOD 

or LOQ threshold are generally considered to be missing data, which can be imputed in a 

variety of ways. Importantly, if these imputations are based on the distribution of measured 

exposure for values above the LOD/LOQ, measurement error of these values can result in 

poorer performance of such imputations (60). Thus, accounting for measurement error of 

exposure above the LOD/LOQ threshold and handling measurements below the LOD/LOQ 

threshold are issues that could be usefully considered simultaneously. We focus the 

remainder of the review on problems in which LOD/LOQ is not considered.

Recent examples from the standard perspective

To assess the recent use of these approaches in environmental epidemiology, we performed a 

brief narrative review of literature on measurement error in environmental epidemiology 

from 2015–2016. Several themes emerged. First, with improvements in GIS technology, 

there is increasing focus on accounting for measurement error arising spatial misalignment 

(61). As in settings where exposure measurement is based on a job exposure matrix, 
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measurement error in of spatial exposures often has both Berkson-like and Classical-like 

components (28,62). For example, air pollution studies rely on estimates of individual 

exposure based on measurements from individual air monitors, which may be subject to 

classical error, and a spatial model assigning exposure to individuals located at specific 

points in space, which may be subject to Berkson error. Sheppard et al present an overview 

of the history of accounting for measurement error in spatially misaligned data (63). More 

recently, Huque et al demonstrated that the expected amount of bias depends on the 

correlation between exposure and the random error from the regression model, and proposed 

parametric (64) and semiparametric (65) approaches to address this bias. Other recent work 

has addressed such spatial misalignment between measurements of exposures, covariates, 

and health outcomes using a variety of methods, including corrections in two-stage exposure 

models (66), SIMEX (67), and likelihood-based approaches (68).

Even outside spatial epidemiology, investigators are recognizing classical and Berkson 

sources of bias in their studies and wishing to account for both simultaneously. Such 

approaches are increasingly common in occupational studies, where both types of error may 

be present, with several examples mentioned above (40,41). In another example, Masiuk et 

al compare several methods (“new” regression calibration, efficient SIMEX, and a novel 

modified score equation) to account for measurement error characterized by additive 

classical error and multiplicative Berkson error in estimates of radiation risk on thyroid 

cancer (69). Finally, study questions involving exposure mixtures and multiple pollutants 

have mandated approaches to account for simultaneous, possibly dependent, 

mismeasurement of 2 or more quantities (5,70,71).

Accounting for measurement error under a policy perspective

Under a policy perspective, measurement error has been less frequently addressed. While 

approaches to estimate the effects of interventions on exposures, rather than exposure 

response parameters, have been applied (6,7,35,72–76), few have quantitatively accounted 

for measurement error. Panel B of Figure 1 clarifies additional considerations when using 

epidemiologic results to inform policy.

First, we may be interested in how measurement error of all of the features that lead to a 

population impact estimate, which include confounders, multiple exposures, and effect 

modifiers, affect the results, rather than only measurement error of exposures and 

confounders. For example, when using results from studies of underground uranium miners 

to inform guidelines on residential radon exposure, we would take into account error in the 

measurement of any effect modifiers that differed between the mining population and the 

general population (77–79).

Policies to change levels of environmental exposures will often affect multiple pollutants 

(80), each of which is subject to mismeasurement. Because these exposures share a common 

source or arise due to similar activities, they are often correlated. In the radon example, 

dictating that a miner stops accessing the mine after his radon exposure reached a certain 

threshold would simultaneously reduce his exposure to other health hazards found in the 

mine, such as diesel exhaust, silica, or arsenic (81). Because multiple mismeasured variables 

may be present, accounting for measurement error will require knowledge not only about 
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single exposure-disease relationships, but also about the covariance structure. Approaches 

such as multiple imputation and Bayesian methods, which rely on simulating values of the 

true exposure from a hypothesized distribution, may be relatively straightforward to 

implement in this framework.

Finally, a policy-oriented approach must assess whether the intervention or policy would 

target the error-prone measures of exposure or the true exposure values. In the radon 

example, a policy that forced a miner to leave the mine after reaching a certain exposure 

threshold would be based on the measured, error-prone exposure, rather than the true 

exposure.

In principle, a policy perspective approach can account for each of these issues explicitly. 

Methods to account for measurement error in the tools typically used to estimate population 

intervention effects exist, and have been applied to estimate more traditional parameters with 

these tools (82–84). In addition, the sophisticated tools developed to account for 

measurement error in traditional regression models can be integrated into approaches to 

estimate population impact. In the simplest approach (e.g., in settings with a time-fixed 

exposure), one could specify a regression model for the outcome of interest, account for 

measurement error using existing or novel tools to account for measurement error in 

regression models, and simulate the predicted health outcomes under various interventions 

on the exposure distribution. This is a basic form of g-computation (85), which has been 

used in more complex settings to estimate health effects of workplace policy changes (6,7), 

changes to social norms (72), and the effects of multiple, simultaneous interventions on 

lifestyle factors (76,86,87).

We have recently demonstrated a Bayesian approach to estimating the effect of new limits 

on radon exposure on lung cancer mortality in a cohort of American Indian miners from the 

Colorado plateau (ψgj) while accounting for Berkson error (88). This preliminary work, 

which builds on a general Bayesian approach to estimating intervention effects (89), 

suggested that there was a small, downward bias from measurement error in the estimation 

of the impacts of occupational policies on radon exposure.

When using estimates of parameters from epidemiologic studies to make decisions about 

public health policies, the uncertainty in the parameter estimate is important (90). An 

analysis that acknowledges substantial potential for measurement error in the text of a 

manuscript but fails to account for measurement error quantitatively in the analysis or 

assumes that the measurement error parameters are known will underestimate the 

uncertainty in the final estimate of population impact. This overconfidence could lead to 

suboptimal decision making (91). Bayesian approaches (50,51,89,92), which naturally 

incorporate uncertainty in the parameters determining the measurement process and 

propagate this uncertainty through to the final posterior distribution of the parameter of 

interest, offer a formal approach to quantify uncertainty about such nonidentified bias 

sources.
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Conclusions

We close with the proposition that measurement error itself can be harmful to human health. 

One of the central tasks of public health research is the generation of scientific results that 

inform policy and decision making processes. Policy decisions regarding regulation of the 

myriad of exposures that make up our external environment, many of which are at odds with 

a healthy state of humans’ internal homeostasis, are threatened by measurement error. Such 

error may bias estimates of population impact and obscure or amplify uncertainty in the 

results.

Much of the current literature addressing measurement error is focused on estimating 

unbiased regression coefficients. This approach captures one aim of epidemiology: being the 

basic science of public health. Further refining our results to increase their utility for the 

end-products of epidemiology, namely policy decisions, will lead us towards “an 

epidemiology of consequence” (93,94). Under such a policy approach, many of the issues 

arising from measurement error in regression models remain, and new considerations 

emerge. However, accounting for measurement error in estimates of population impact that 

feed directly into regulatory decisions will increase the relevance and importance of results 

from environmental epidemiology.
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Figure 1. 
Diagrams showing how results from environmental epidemiology inform policy under A) 
the standard perspective, and B) a policy perspective. Legend: j indexes individual studies of 

environmental exposures. Xj represents the exposure distribution in study j, Zj represents the 

covariate distribution in study j, and βj is the estimated exposure response function from 

study j. g indexes specific target populations where interventions or policies may be applied. 

Xg is the distribution of exposure in the population g, Zg is the distribution of covariates in 

population g. π represents assumptions and information about the measurement error. ψ̄gC, 

is the estimated population impact under the standard framework presented in panel A, 

which is estimated using β̄ averaged across all studies. ψ̄gM is the estimated population 

impact under the policy approach in panel B, based on the average ψjg estimated across all 

studies.
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