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The potential for immortal time bias is pervasive in epidemiologic studies with left truncation or time-varying ex-
posures. Unlike other biases in epidemiologic research (e.g., measurement bias, confounding due to unmeasured
factors, and selection based on unmeasured predictors of the outcome), immortal time bias can and should be
avoided by the correct assignment of person-time during follow up. However, even when handing person-time cor-
rectly, allowing late entry into a study or into an exposure group can open the door to more insidious sources of
bias, some of which we explore here. Clear articulation of the study question, including the treatment plans of inter-
est, can provide navigation around these sources of bias and elucidate the assumptions needed for inference given
the available data. Here, we use simulated data to illustrate the assumptions required under various approaches to
estimate the effect of a time-varying treatment and describe how these assumptions relate to the assumptions nec-
essary to estimate single sample rates and risks in settings with censoring and truncation.

causality; epidemiologic methods; risk; survival analysis

Editor’s note: A counterpoint to this article appears on
page 1013.

In this issue of the Journal, Harding and Weiss (1) describe
study design and population characteristics that influence the
magnitude of immortal time bias in cohort studies. The perva-
siveness and importance of immortal time bias has been
highlighted throughout the epidemiologic literature, explaining
phenomena including the implausibly large protective effects
of metformin on cancer outcomes and inhaled corticosteroids
in chronic obstructive pulmonary disease patients (2, 3). We
commend Harding and Weiss for drawing attention to this im-
portant issue. The authors appropriately point out that, where
possible, inclusion of immortal time should be avoided, and,
when not possible (e.g., when interpreting the work of others),
a simple back calculation might provide insight into the true
size of the association between exposure and outcome.

Immortal time bias is one of the many sources of bias that
could explain implausibly large protective findings in real
world evidence studies estimating the effect of medical inter-
ventions. Other sources include unmeasured confounding
due to frailty (4, 5) and healthy-user bias due to selection of
individuals who remain on treatment for prolonged periods of

time (6, 7). However, rather than an inevitable consequence
of missing important information on factors influencing treat-
ment assignment or selection, bias due to the inclusion of
immortal time can usually be avoided by clear articulation of
the study question, appropriate choice of study design, and
thoughtful handling of person-time during analyses.

Here, we delve into some issues beyond immortal person-
time that arise when dealing with censored and truncated data,
both when estimating risks or rates in a single sample and
when estimating treatment effects. Briefly, in the first section,
we review methods to estimate single sample risks and rates in
both closed cohorts and cohorts that are open on the left. Spe-
cifically, we illustrate how the traditional approach used by
Harding and Weiss to estimate rates directly from truncated
data will fail if the hazard is not constant over time. In the sec-
ond section, we review methods to estimate risks and rates
under possible treatment plans, including how to specify a
study question when observed treatments are time-varying.

ESTIMATINGRISKSANDRATES FROMTRUNCATED
DATA

To illustrate issues involved in estimating risks and rates
from truncated data, we begin by analyzing a simulated data



the study. In the estimation of rates, person-time was calculated
as the time between study entry and the first of the event or end
of follow-up. To estimate the risks, we applied an “extended”
version of the Kaplan-Meier estimator that excluded partici-
pants from the risk sets for events occurring before their entry
time (12). Estimated risks matched the true risks for each sce-
nario, but the rate estimated using this approach was correct
only in the scenario with a constant hazard function. In the
scenario where the hazard was decreasing, the estimated rate
was too low, and in the scenario where the hazard was increas-
ing, the estimated rate was too high.

In analysis 4 in Table 1, we analyze a third data set in which
we have induced severe late entry. Specifically, in this simulated
data set, no participants enter the study until 6 months after the
origin. In the scenario with a constant hazard function, the esti-
mated rate was unbiased (although, as in analysis 3, estimated
rates in scenarios 2 and 3 were biased). However, estimating
risks in all 3 scenarios required an assumption that the risk prior
to the first entry time was 0. The plausibility of this assumption
is dependent on the subject area under study; however, in this
simulated example, this assumption is not met and risks are
biased. In most settings, universal late entry points to a need to
redefine the study question to anchor the analysis at a more suit-
able origin.

Rates appear to be intuitive and straightforward summaries
of the risk function. With complete data (i.e., no late entry or
loss to follow-up), we were able to estimate the rate correctly
under constant, increasing, or decreasing hazard functions.
However, with late entry, estimated rates were too low or too
high in settings with decreasing and increasing hazard functions,
respectively, even after excluding the immortal person-time. In
the next section, we explore the consequences of allowing late
entry into specific exposure groups when estimating the effects
of exposures that might vary over time.

CONSIDERATIONSWHENESTIMATING TREATMENT
EFFECTS

Harding and Weiss (1) explored an example comparing 2
treatment plans among a target population of women diag-
nosed with cataracts. The potential for immortal time bias
arises because, although all women were observed from the
origin, treatment (cataract surgery) occurred at different times.

In any study, clear specification of the study question is im-
portant. For study questions with clear implications for clini-
cal decision making, it is useful to think about mimicking a
randomized trial as closely as possible using observational
data (13). While the potential for unmeasured confounding
exists in nonexperimental studies, framing the study question
in terms of an idealized “target trial” helps clarify issues
regarding the target population (who should be included in
the analysis?), the origin (when would randomization have
occurred?), the follow-up period (over which time period do
the results apply?), and the treatment plans to be compared.

To explore issues related to estimating treatment effects in
the setting explored byHarding andWeiss, we simulated a ran-
dom exposure time for each woman included in the “full data”
for scenarios 1 through 3, used in analysis 1 of Table 1. Specifi-
cally, 20% of women were assigned “immediate” treatment at

set designed roughly to mimic the study explored by Harding 
and Weiss. Consider a hypothetical study to estimate the 
10-year risk of mortality after cataract diagnosis among a 
group of women diagnosed with cataracts (regardless of 
whether or not they had cataract surgery). Using the data re-
ported in Tseng et al. (8; retracted and replaced (9)), we esti-
mated that the overall mortality rate was about 2 deaths per 
100 person-years. Based on this rate, we simulated data com-
patible with the summary data presented in the paper under 3 
data-generating mechanisms: 1) a scenario with a constant 
hazard of mortality over the 10 years; 2) a scenario with a 
decreasing hazard function; and 3) a scenario with an increas-
ing hazard function. Figure 1 displays the true hazard functions 
(panels A through C) and risk functions (panels D through F) 
under each of the 3 scenarios. In the simulated data, we esti-
mated rates as the number of deaths divided by the number of 
person-years, where the number of person-years was simply 
the time from the origin to the first of death or the end of 
follow-up. We estimated risks as the complement of the 
Kaplan-Meier estimate of the survival function (10). In all sce-
narios, the 10-year risk of mortality was 18%, and the overall 
rate was 2.00 deaths per 100 person-years (Table 1). Further 
details on the data-generating mechanism can be found in Web 
Appendix 1 (available at https://academic.oup.com/aje).

An ideal study design would recruit all participants at the 
origin (also known as time zero), here cataract diagnosis. 
However, in many studies, some participants are unable to be 
observed from the origin. For example, consider the hypo-
thetical scenario in which data were unavailable for a subset 
of participants until they transferred into a study clinic at 
some time after cataract diagnosis. We induced this situation 
in the simulated data by generating a time of study entry for 
each participant Wi, and we set Wi to have a mean of 3 years 
after the origin.

Including these participants in the study is appealing to increase 
sample size and possibly extend the length of follow-up. How-
ever, when some participants enter the study after the origin, data 
for other women who would have entered the study—but who 
died (or had the event) prior to study entry—are truncated (11). 
Moreover, the time between the origin and study entry is “immor-
tal” because people who enter the study at time Wi cannot have 
had the event prior to Wi, by definition. Inclusion of this immortal 
person-time in the estimation of risks and rates produces a down-
ward bias in the estimates. To see why, consider that events con-
tributed by truncated women to the risks and rates are not 
counted, but the person-time contributed by women who survive 
until their entry time is included, producing a downward bias in 
the absolute risks and rates.

Analysis 2 in Table 1 displays estimated risks and rates if 
the immortal person-time is included. Specifically, to esti-
mate the rates in analysis 2, we calculated person-time as the 
time from the origin to the first of the time of death or end of 
follow-up for all participants (including those who entered 
the study late). When estimating the risks, we allowed parti-
cipants who entered the study late to be included in the risks 
sets for event times prior to their study entry. As expected, 
these risks and rates are too low. The estimators for rates and 
risks used in each analysis are available in Web Appendix 2.

Analysis 3 of Table 1 displays risks and rates estimated by 
incorporating knowledge of the participants’ entry times into

https://academic.oup.com/aje
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Figure 1. Hazard functions (A, B, and C) and risk functions (D, E, and F) for all-cause mortality after cataract diagnosis under simulated scenario 1 (constant hazard function; A and D), simu-
lated scenario 2 (decreasing hazard function; B and E), and simulated scenario 3 (increasing hazard function; C and F).



immediate surgery will likely go on to receive surgery later in
the course of follow-up. In the simulated data for scenario 1,
89% of untreated women who did not receive immediate sur-
gery went on to receive surgery during follow-up. An alternative
trial might compare more strict treatment plans that dictate
whether or not a woman receives surgery for the entire duration
of follow-up. Such a trial might compare the plan to receive
immediate surgery (or surgery within some grace period) with a
second plan that prevents a womanwith cataracts from receiving
surgery during the entire follow-up period (15).

There are several approaches to estimate contrast 2. In the first
approach, we classified participants as “treated” or “untreated”
according to whether or not they received the surgery immedi-
ately after diagnosis. Risks and rates under the “immediate sur-
gery” plan were computed as in the first analysis. However,
participants in the “no surgery” group were censored on the date
that they later received surgery. Risks and rates were then esti-
mated in this modified data set, meaning that, in the untreated
group, person-time and events were not counted after a woman
had surgery, and women were not included in the risk sets for
events occurring after they had surgery. Typically, in both experi-
mental and nonexperimental settings, such censoring is informa-
tive and requires handling using analytical approaches (e.g.,
inverse probability of censoring weights) (15, 16). In the simu-
lated data, exposure assignment and timingwere random.

Using this first approach to estimate the effect of immediate
surgery compared with no surgery, we recovered the true (null)
risk and hazard ratios in all 3 scenarios. The estimated rate ratio
was correct in scenario 1 but too low in scenario 2 and too high
in scenario 3 (analysis 2 in Table 2). To understand why, con-
sider that the rates under the “immediate surgery” plan remained
correct at about 2 deaths per 100 person-years. However, under
the “no surgery” plan, womenwere censoredwhen they had sur-
gery. This means that some of the later person-time (and corre-
sponding events), when the hazard was lower in scenario 2 and
higher in scenario 3 was not included, leading to estimated rates
that were too high and too low, respectively, even though the
person-time was correctly allocated (i.e., immortal time was
avoided). Note that, in settings where treatment affects the out-
come, we would expect the difference in mortality between
these plans to be larger than the difference in mortality between
the “immediate surgery” and “no immediate surgery” plans.

Table 1. Overall Rates Over 10 Years and 10-Year Risks of Mortality for a Simulated Cohort of 100,000Women at Cataract Diagnosis Under 3
Hypothetical Scenarios for Study Entry

Analysis

Scenario 1a Scenario 2b Scenario 3c

No. of
Cases

No. of
Person-Years Rate Risk No. of

Cases
No. of

Person-Years Rate Risk No. of
Cases

No. of
Person-Years Rate Risk

1: Immediate study entry 18,161 906,712 2.03 18.2 18,034 877,031 2.06 18.0 18,077 952,832 1.89 18.1

2: Late entry; include
immortal time

11,395 890,217 1.28 12.2 7,379 861,796 0.86 8.3 16,454 944,203 1.74 16.8

3: Late entry; exclude
immortal time

11,395 568,158 2.01 17.4 7,379 552,214 1.34 17.1 16,454 601,245 2.74 17.9

4: Severe late entry; exclude
immortal time

9,864 416,582 2.01 16.6 5,182 405,943 1.28 12.3 13,350 440,356 3.03 17.6

a Hazard function was constant over time.
b Hazard function decreased over time.
c Hazard function increased over time.

cataract diagnosis, and the remaining women were assigned a 
random time for treatment drawn from a Weibull distribution, 
as described in Web Appendix 1. In the simulated data, treat-
ment had no effect on mortality. In each scenario, we estimated 
absolute risks and rates under each treatment plan, as well as 
risk, rate, and hazard ratios corresponding to several contrasts 
of interest.

Contrast 1: Comparing “immediate surgery” with “no 
immediate surgery”

Rather than compare “people who had cataract surgery” 
with “people who did not have cataract surgery,” a hypothet-
ical trial might compare a plan to provide cataract surgery 
immediately after cataract diagnosis in one group with a plan 
not to provide cataract surgery immediately after cataract 
diagnosis in the other group. In this hypothetical trial, partici-
pants randomized not to receive immediate cataract surgery 
might (or might not) later receive surgery.

To emulate this trial using the simulated “nonexperimen-
tal” data, we classified women who received surgery imme-
diately after diagnosis as “treated” and women who did not 
receive immediate surgery as “untreated.” With these static 
exposure groups clearly defined, computation of rates or 
risks is straightforward. When estimating this contrast, we 
correctly recovered the true (null) risk, rate, and hazard ratios 
in all 3 scenarios (analysis 1 in Table 2).

As a side note, there are many settings where true immedi-
ate treatment is infeasible. For example, even if a participant 
were randomized to receive immediate surgery, it is likely 
that there would be a short delay before the surgery could be 
scheduled and carried out. In such settings, trials might 
employ a grace period to allow a 2-week or 1-month window 
for women to receive the surgery. Nonexperimental studies 
might also allow such a grace period using a variety of meth-
ods beyond the scope of this commentary (13, 14).

Contrast 2: Comparing the “immediate surgery” plan with 
a plan that prohibits surgery throughout follow-up

Regardless of whether or not a grace period is employed, in 
this first study design, some women randomized not to receive



In some nonexperimental settings, the number of partici-
pants receiving immediate treatment is small or the length of
follow-up among participants meeting the criteria for imme-
diate exposure is short. Under a set of assumptions, a second
approach to estimate contrast 2 allows participants censored
from the “untreated” group on the date they became exposed
to enter into the treated group as “late entries” on that date.

Allowing late entries into the “immediate treatment” group re-
quires the same analytical approach as allowing late entries into
the study when estimating a single sample rate or risk. Specifi-
cally, as Harding andWeiss emphasize, the time between the ori-
gin and entry into the treated group should not be counted as
treated (rather, this untreated person-time should remain with the
untreated group). Moreover, allowing late entries into the treated
group typically requires an assumption that there is no cumulative
effect of treatment on the outcome of interest.

To implement this second approach to compare immediate
surgery with no surgery, we again censored untreated women
from the “no treatment” arm when they had the surgery, but
we also allowed them to enter late into the treated arm at this
time. Allowing them to enter late into the treated arm implies
that we correctly allocated their person-time prior to surgery
as untreated and did not include them in the risk sets for the
treated group until after their surgery. After implementing this
approach, we recovered the true (null) risk, rate, and hazard
ratios in scenario 1 (analysis 3 in Table 2). In scenarios 2 and
3, estimated risk and hazard ratios were correct, but rate ratios
were biased because the estimated rate in the treated arm was
too low (scenario 2) or too high (scenario 3). Bias in estimated
rates for the treated arm in scenarios 2 and 3 stems from pref-
erential inclusion of later person-time in the treated group, in
which the hazard was lower (scenario 2) or higher (scenario

3). Estimated risks, risk ratios, and hazard ratios were not
biased because the estimators we used allowed us to appropri-
ately assign those entering the treated group after the origin to
risk sets for events occurring after their treatment times.

Estimating contrast 2 when no patients receive
immediate treatment

Finally, we examined an extreme setting in which no
women received immediate surgery. Specifically, we altered
the data used above so that the first women to receive surgery
did so at 4 years after cataract diagnosis. In this setting, contrast
1 could not be estimated because no women received immediate
treatment. Similarly, the first approach to estimate contrast 2
could not be used, because no women were classified as treated
from the origin. However, the second approach to estimate con-
trast 2, which allowed women to have late entry into the treated
group, could be implemented.

Calculation of rates, rate ratios, and hazard ratios in this
setting was straightforward: all women began the study as
untreated and accrued person-time in the untreated group.
After surgery, person-time and events were allocated to the
treated group. Calculation of risks required the additional
assumption that the true risk under the plan “provide immedi-
ate surgery” was 0 up until the time the first women received
the surgery and entered the treated group.

Results are provided in analysis 4 in Table 2. As in analy-
sis 3, the estimated rate ratio was correct (i.e., null) in sce-
nario 1, while it was biased in scenarios 2 and 3. Estimated
risk ratios were biased downward in all scenarios because
risks under the “immediate surgery” arm were too low due to
reliance on the assumption that risk was 0 prior to the first

Table 2. Rates, Risks, and Rate, Risk, and Hazard Ratios Comparing Mortality Over 10 Years of Follow-Up Between 2 Treatment Plans
Implemented at Cataract Diagnosis in a Simulated Cohort of 100,000WomenUnder Various Analytical Approaches

Analysis

Scenario 1a Scenario 2b Scenario 3c

Rate Rate
Ratio Risk Risk

Ratio
Hazard
Ratio Rate Rate

Ratio Risk Risk
Ratio

Hazard
Ratio Rate Rate

Ratio Risk Risk
Ratio

Hazard
Ratio

1: Immediate surgery vs. no
immediate surgery

Immediate surgery 1.98 0.99 17.9 0.99 0.99 2.12 1.01 18.5 1.01 1.01 1.86 0.99 17.8 0.99 0.99

No immediate surgery 2.00 1.00 18.1 1.00 1.00 2.09 1.00 18.3 1.00 1.00 1.89 1.00 18.0 1.00 1.00

2: Immediate surgery vs. no surgery

Immediate surgery 1.98 0.98 17.9 0.98 0.97 2.12 0.66 18.5 1.00 1.00 1.86 2.52 17.8 1.00 0.99

No surgery during follow-up 2.01 1.00 18.4 1.00 1.00 3.21 1.00 18.6 1.00 1.00 0.73 1.00 17.7 1.00 1.00

3: Immediate surgery vs. no surgery
(allowing late surgery)

Immediate surgery 1.99 0.99 17.4 1.00 0.97 1.62 0.50 17.5 1.03 1.01 2.37 3.21 17.8 1.01 0.97

No surgery during follow-up 2.01 1.00 17.3 1.00 1.00 3.21 1.00 17.0 1.00 1.00 0.74 1.00 17.6 1.00 1.00

4: Immediate surgery vs. no surgery
(with only extremely late
surgery)

Immediate surgery 1.96 0.99 10.4 0.61 1.00 1.12 0.50 7.8 0.43 0.95 3.71 2.84 17.3 0.98 1.04

No surgery during follow-up 1.98 1.00 17.2 1.00 1.00 2.37 1.00 18.0 1.00 1.00 1.30 1.00 17.7 1.00 1.00

a Hazard function was constant over time.
b Hazard function decreased over time.
c Hazard function increased over time.



hazard ratios required an assumption that the hazard ratio was
constant over time. Nonparametric estimation of the risk func-
tions relied on the assumption that the risk under the “immedi-
ate surgery” plan was 0 until the first women received surgery.
Without additional information, it is impossible to know which
(if any) of these assumptions holds.

Situations in which no (or few) study participants follow
the exposure plan of interest suggest that the data might be
inadequate to answer the intended study question and that the
study question itself might not be realistic. For example, if no
women receive cataract surgery immediately after cataract
diagnosis in a real-world setting, this might not be a feasible
strategy due to logistical or other clinical constraints. In this
setting, a more useful study question might compare mortal-
ity under exposure plans anchored to an alternative clinical
decision point using a treatment-decision design (18).

Beyond improving interpretability and impact of results,
moving to a treatment-decision design (that compares exposure
plans actually followed in the observed data from a clinical
“decision point”) can reduce the potential for bias due to acci-
dental inclusion of immortal time or the other issues explored
above in several ways. First, if the study is anchored on a true
decision point, the data set likely contains enough individuals
following each plan from baseline that contrast 1 can be esti-
mated using standard methods, and contrast 2 can be estimated
by simply censoring people from each plan when they deviate
from that plan (as in analysis 2 in Table 2) and applying censor-
ing weights as necessary. Without late entry into either exposure
plan, the potential for immortal time bias is eliminated.

Traditional prospective cohort studies require investiga-
tors to specify an origin when individuals become eligible,
recruit participants at or before this origin, and follow partici-
pants over time. Because such data are typically collected
with the study question in mind, the origin is often clear and
exposure plans are well defined. In contrast, with the increas-
ing availability and utilization of routinely collected, large
health-care databases for epidemiologic studies, investiga-
tors are more often creating analytical cohorts from existing
data collected for a variety of purposes (e.g., clinical man-
agement and billing) (6). In these settings, it is up to the
investigator to select the appropriate origin and identify par-
ticipants following various exposure plans in the existing
data. In contrast to traditional prospective cohort studies, co-
horts constructed from existing databases allow investigators
access to participant data unconstrained by a specific origin
or follow-up period, which means that clear articulation of
the study question might occur after one has seen the data.
Moreover, access to entire exposure histories increases the
number of opportunities for inappropriately assigning cohort
membership and exposure based on future values, also referred
to as “crystal ball” design (6, 19).

To summarize, clear articulation of the study question—
including the origin, exposure plans compared, event defini-
tion, and follow-up period of interest—is an important part
of epidemiologic data analysis (20) and minimizes the pro-
pensity for immortal time bias. If exposure categorization in
the analytical data set is static (and based on information col-
lected at baseline), estimation of risks and rates under each
plan is often straightforward. However, estimating the effect
of a time-varying exposure by simply comparing rates with

late entry into the treated group. Estimated hazard ratios 
were approximately null in all scenarios.

DISCUSSION

Harding and Weiss raised important points about the dangers 
of including immortal person-time when dealing with time-
varying exposures. They illustrated the distortion of estimated rate 
ratios due to inappropriate categorization of person-time, provid-
ing an intuitive, hands-on example for readers.

Here, we’ve highlighted some additional considerations 
for epidemiologists when estimating the effects of time-
varying exposures. First, the study question should be clearly 
articulated. Producers and consumers of research findings 
should be able to identify the origin, the event under study, 
the relevant follow-up period, and the treatment plans being 
compared. In addition, investigators should be up front about 
how epidemiologic measures under various plans are com-
puted. For example, do all observed participants follow one 
of the prescribed plans exactly? If not, how are outcome his-
tories handled for people who switch treatments during the 
course of follow-up, and what assumptions allow investiga-
tors to estimate risks or rates under a given treatment plan 
when some participants do not follow that plan for the entire 
follow-up period? Do at least some participants follow all 
plans of interest? Finally, investigators should summarize 
outcomes in a way that minimizes bias given the above con-
siderations while remaining interpretable to readers.

While rates are convenient summaries of the risk functions 
and allow apparently straightforward calculation, they are likely 
to be biased in settings with censoring or truncation when the 
hazard function is not constant over time, even when person-
time is allocated appropriately between treatment groups. In 
these settings, rates and rate ratios could be calculated separately 
for different points along the timescale of interest, or the hazard 
ratio could be used in place of the rate ratio. However, neither 
rate nor hazard ratios are ideal for estimating causal effects. Over-
all rate and hazard ratios are nearly always a function of the 
length of follow-up, and time-specific rate and hazard ratios are 
subject to selection bias (17).

Moreover, quantifying the effects of time-varying expo-
sures using rate ratios and hazard ratios might obscure im-
portant limitations in the data. For example, in the setting 
described in analysis 4 in Table 2, the parameter of interest 
was a comparison of a plan to provide immediate surgery 
and a plan to prevent women from receiving surgery for all 
of follow-up. However, the first women to receive surgery 
did so extremely late during follow-up. Estimation of the 
rates was straightforward despite this extreme late entry into 
the exposed group: The analyst simply needed to add up the 
person-time and number of events occurring before versus 
after surgery, estimate the rates, and compare them. How-
ever, this simple calculation belies the more insidious issue 
of extreme nonpositivity: No one in the study sample fol-
lowed one of the treatment plans of interest!

As a result, estimation of risk, rate, and hazard ratios relied 
on assumptions that could not be tested in the data. Specifi-
cally, estimation of rates and rate ratios relied on an assump-
tion that the hazard was constant over time, and estimation of



events and person-time allocated to exposure plans in a time-
varying fashion invokes strong, hidden assumptions that are
brought to light by clearly articulating the plans being compared.
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