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There has been much debate about the relative emphasis of the field of epidemiology on causal inference.
We believe this debate does short shrift to the breadth of the field. Epidemiologists answer myriad questions
that are not causal and hypothesize about and investigate causal relationships without estimating causal
effects. Descriptive studies face significant and often overlooked inferential and interpretational challenges; we
briefly articulate some of them and argue that a more detailed treatment of biases that affect single-sample
estimation problems would benefit all types of epidemiologic studies. Lumping all questions about causality
creates ambiguity about the utility of different conceptual models and causal frameworks; 2 distinct types of causal
questions include 1) hypothesis generation and theorization about causal structures and 2) hypothesis-driven
causal effect estimation. The potential outcomes framework and causal graph theory help efficiently and reliably
guide epidemiologic studies designed to estimate a causal effect to best leverage prior data, avoid cognitive
fallacies, minimize biases, and understand heterogeneity in treatment effects. Appropriate matching of theoretical
frameworks to research questions can increase the rigor of epidemiologic research and increase the utility of

such research to improve public health.
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The future of epidemiologic norms has recently been the
subject of much discussion. In particular, there has been
a debate about the degree of emphasis placed on the use
of explicit and specific causal frameworks and advanced
statistical models for elucidating causes and effects (1-6).
This debate is not new (7-9) and is not constrained to the
literature. In our own institutions, discussions about the
content of epidemiologic methods courses and the focus of
doctoral theses seem imbued with existential angst among
faculty who trained before potential outcomes permeated
many curricula and who decry this new framework as reduc-
tionist and harmful to the advancement of public health and
among students who are clamoring to apply the latest meth-
ods. This angst is not entirely misplaced. As early-career
researchers who were exposed to a “causal” curriculum and
who are now engaged in training new epidemiology students
to refine their research questions and design sound studies,
we have often found ourselves torn between promoting and
defending the use of formal causal frameworks and caution-

ing against the indiscriminate application of causal methods
as spice for otherwise bland research questions. We speak
here to the skeptics of causal inference and to its devoted
practitioners.

Herein, we give examples of the breadth of the field of
epidemiology to give context to questions deriving from
causal effect estimation; estimation of causal effects is only 1
type of epidemiologic question out of many valuable lines of
epidemiologic inquiry (5). We consider how epidemiologic
studies contribute to scientific knowledge about threats and
opportunities in public health. We disambiguate the term
“causal inference.” Specifically, we differentiate between
the act of hypothesizing and theorizing about causes and the
act of estimating a causal effect and, in doing so, suggest
instances in which an explicit causal framework is useful and
when it may not be necessary (3, 10). We finish by briefly
discussing the role of context in epidemiologic studies and
outlining what we believe are the implications of these
arguments for current and future epidemiologists.



THE SCOPE OF EPIDEMIOLOGIC INFERENCE

Epidemiology has been defined as “the study of the occur-
rence and distribution of health-related states and events in
specified populations, including the study of the determi-
nants influencing such states, and the application of this
knowledge to control the health problems.” (11, p. 95).
Under the umbrellas of distribution and determinants live
many research questions, the answers to which can improve
public health (12). Loosely speaking, these research goals
fall along a spectrum with purely descriptive epidemiology
at 1 end; hypothesis generation, prediction, and outbreak
investigation somewhere in the middle; and causal effect
estimation and program evaluation at the other end. Here, we
envision the spectrum signifying the approximate strength of
assumptions required to obtain useful results and perhaps the
temporal order in which investigations tend to unfold (e.g.,
describe the problem, hypothesize about the problem, inter-
vene on the problem, evaluate the intervention). However,
there are always exceptions to this ordering and feedback
loops between related questions. Others have proposed other
frameworks (12, 13).

A comprehensive framework for organizing epidemio-
logic questions is beyond the scope of this commentary, but
it is evident that 1) epidemiologic principles and methods
are applicable to many questions beyond causal effect esti-
mation, and 2) epidemiologic curricula and journals have
prioritized analytic epidemiology and questions related to
identifying (causal) determinants of disease over descrip-
tive epidemiology and questions related to accurately char-
acterizing the health of populations (14, 15). Descriptive
epidemiologic studies are frequently excluded from peer-
reviewed journals for not being generalizable enough. We
contextualize this particular criticism in a later section of this
paper.

Descriptive epidemiology addresses many important
public health questions and accurate answers to these
questions are crucial for prioritizing, targeting, and staffing
interventions. Furthermore, characterizing emerging public
health problems, including estimating crude associations
(e.g., “risk factor analysis”) can help generate hypotheses
for further study.

Collecting, analyzing, and interpreting data from a
descriptive study, such as public health surveillance, is chal-
lenging. Yet methods for doing so are given cursory coverage
in most epidemiology curricula or are relegated to elec-
tive courses. An epidemiology curriculum that emphasized
descriptive epidemiology might spend the entirety of the first
term on single-sample estimation problems and describing
the natural course of disease (i.e., the course of disease in
the absence of any interventions). This could be framed
in terms of designing a target study, or an idealized study
that would accurately estimate the descriptive parameter of
interest in the absence of real-world constraints like missing
data and measurement error (foreshadowing introduction of
the target trial as a heuristic for study design for causal effect
estimation but encompassing a broader set of questions).
This task is already challenging. Loss to follow-up, mea-
surement error, selection processes, and other more tradi-
tional sources of missing data blind us from some persons’

characteristics and we are forced to make assumptions about
the value of those missing characteristics (16). This novel
epidemiology curriculum would spend more time defining
target populations and describing how changing population
compositions may affect disease occurrence; sampling
methods and selection bias in single-sample estimation
problems; properties of screening and diagnostic tests and
case definitions; methods for handling information bias; and
missing data mechanisms and techniques for dealing with
nonresponse.

A solid understanding of biases that plague single-sample
estimation problems is made even more urgent as our modes
of communication and transportation and our expectations
of privacy evolve. Staple sampling methodologies such as
random-digit dialing or using Department of Motor Vehicle
registries are becoming less reliable. New sampling methods
(e.g., Internet sampling, respondent-driven sampling) can
reach hidden populations or return large samples quickly
(17-21), but drawing population-level inference may be
challenging. Furthermore, “big data” has made available
massive administrative data sets that may lull us into a false
sense of security about the potential for systematic error by
effectively eliminating considerations of random error (22,
23). Given the reliance of analytic epidemiologic studies on
these data sources, all other study designs would arguably
benefit from such a renewed focus on biases in descriptive
epidemiology.

Ultimately, a fundamental goal of epidemiologic studies is
to inform interventions that could improve public health. The
frequency, distribution, and impact of diseases should influ-
ence where we invest our time and energy. The frequency,
distribution, and manipulability of determinants of disease
influence the impact that interventions on those determinants
will have on improvements to health and realizations of jus-
tice, given limited resources. A novel epidemiology curricu-
lum would include transparent discussions about the metrics
we use to measure improvement in health, whose health is
improved through various interventions, and whether that
improvement comes at the detriment or neglect of others’
health.

WEIGHING THE SCIENCE ON CAUSES AND EFFECTS:
INTEGRATING EVIDENCE ACROSS FIELDS

Ultimately, epidemiologic studies should strive to inform
specific decisions about how and in which populations we
might intervene to achieve such control. Descriptive epi-
demiologic studies are crucial for informing the “in which
populations” part of the decision. With respect to the “how”
part of the decision, we can (and should) distinguish between
best practice for evaluating the scientific evidence to inform
those decisions and best practice for conducting an individ-
ual epidemiologic study such that it contributes maximally to
the scientific evidence. A single epidemiologic study should
not determine the policy most likely to result in improved
public health as a matter of course.

To inform a public health decision, the scientific evidence
need not be represented by an axiom or law of nature but
rather a reasonably accurate, consistent association (within



some target population, perhaps conditional on modifiers)
between some stimuli (e.g., exposure, intervention) and
some health state (e.g., outcome). The degree of accuracy
and consistency required is likely to vary depending
on the consequences of action or inaction. Ideally, the
scientific evidence about a public health challenge could be
weighed after numerous studies are conducted on a subject
across domains of knowledge, spanning from abstract
mathematics and human or animal laboratory studies to
ecological studies, contextual case studies, cohort studies,
and, sometimes, randomized trials. Yet the process through
which we typically integrate evidence is often informal and
iterative. Most public health decisions are necessarily made
with insufficient information. Early studies often provide
inspiration for subsequent studies specifically designed
to address the limitations of prior work. For example,
policy makers have used evidence from uranium miners
to set guidelines for residential radon exposure while the
evidence on the health effects of low-level radon exposure
accumulates from ongoing residential-exposure studies (24).
We conduct postmarketing surveillance for the effects of
drugs because rare adverse events or long-term effects of
drugs are not detected in randomized trials.

It seems obvious that the optimal strategy for integrating
evidence across studies depends on the research question and
the quantity and quality of evidence available. For questions
about the effect of an intervention on an outcome, where
results from multiple randomized trials are available, meta-
analytic methods may be appropriate. In contrast, when
there are few studies or gaps in the available data, Bayesian
reasoning and data fusion methods to integrate multiple
knowledge domains may be best. Triangulation of evidence
from imperfect yet complementary study designs may best
address questions in the presence of multiple sources of
bias (25).

EVIDENCE ON WHAT?

Epidemiologic studies for which the aim is to inform
actions for improved public health are inherently causal.
However, there are at least 2 types of causal questions and
ambiguity about the type of causal question being asked may
derail the investigation (26). One type of question involves
looking back in time to try to identify the causes of some
health state, and another involves quantifying the changes in
a health state we might expect to see as a result of toggling
1 or more of its causes (3). These 2 types of questions have
not always been clearly delineated and would both seem to
be causal inference. Yet we argue that identifying the causes
of prevalent health states is much more of a hypothesis-
generating exercise and best guided by conceptual models,
whereas estimating causal effects is more amenable to
hypothesis testing and best guided by potential outcomes/
graphical causal models. There is some circularity in this
statement: If we determine that an intervention has an effect
on some outcome, we may deduce the intervention is a
cause of that outcome for at least some subset of individuals.
But in general, we contend the most reliable, reproducible
conclusions about causal relationships result from studies

designed to investigate the effect of a limited subset of
interventions (i.e., causal effect estimation), rather than
studies designed to identify causes of an outcome (27, 28).
That said, some have argued that reliance on the poten-
tial outcomes framework for causal inference inhibits other
forms of epidemiologic inquiry. We find sympathy with
these concerns, but we would separate the framework from
its practitioners and learners. We hope this commentary
allays some of these concerns about the framework while
addressing how we might produce more well-rounded prac-
titioners that select a framework based on a question, rather
than the reverse. As we have outlined, causal-effect estima-
tion is only 1 of many possible goals of epidemiologic stud-
ies and only 1 possible goal of causal inference. The poten-
tial outcomes framework is often unnecessary for investi-
gating a causal relationship (29), particularly in the early
stages of investigation when hypothesis generation rather
than hypothesis testing is more efficient (30-32). Other
times, the link between association and causation is strong,
immediate, and obvious: We can do a case-control study
after a foodborne outbreak, estimate the increased odds of
gastrointestinal illness due to the potato salad, and interpret
this odds ratio causally because the induction period is short,
the biologic mechanism is known, and, perhaps, we have
confirmatory laboratory evidence of the offending pathogen.
Other causal relationships may not lend themselves to causal
effect estimation, such as when an intervention cannot be
clearly defined; in these instances, researchers may justifi-
ably seek to demonstrate a persistent association between 2
variables despite accounting for other possible explanations.

ESTIMATION OF CAUSAL EFFECTS IN EPIDEMIOLOGY

Undertaking any epidemiologic study requires making
many decisions about study design and analyses, among
other things. Crucial study design features include inclu-
sion/exclusion criteria, the time origin, and follow-up time;
estimating causal effects requires specifying interventions or
treatment regimens of interest, as well (33). These features
are likely to determine the magnitude and perhaps even
direction of the effect we estimate. Without a framework for
organizing lessons learned from prior missteps (34—36), how
to do we efficiently and reliably design our studies to best
leverage prior data, avoid cognitive fallacies, and minimize
bias in our results (37)?

Despite the many theoretical, statistical, and computing
advances in the field, epidemiology is still a relatively new
science. This may explain the paucity of comprehensive con-
ceptual frameworks to organize the lessons learned and best
practices. We have multiple frameworks for thinking about
how causal relationships might manifest in an observed
association (e.g., Koch’s postulates, Bradford-Hill’s causal
considerations, Rothman’s causal pies, Neyman’s potential
outcomes) (38—40). One can find multipage lists of biases
that have been identified over the years as threats to inferring
causation (though often not expressed in terms of causality)
(41). There has been a recent push to classify these more
than 200 specific biases into 1 of 3 classes: confounding
bias, selection bias, and information bias (14, 41, 42), but



even that classification is not always clear. Is inappropriately
including a variable in a regression model, such that it
induces bias between exposure and outcome (i.e., condition-
ing on a collider) a form of confounding bias, selection bias,
or model misspecification bias, and to that end, where would
model misspecification bias fall (43-45)?

We, like many others, see utility in the potential out-
comes framework and causal graph theory for conceptu-
alizing questions about causal effect estimation, particu-
larly when the interventions or exposures under study have
delayed effect, or are complex, time varying, or dynamic.
A full introduction to potential outcomes can be found in
articles by Little and Rubin (46) and Herndn and Robins
(47), and an introduction to causal graph theory presented
by Greenland et al. (48) and Pearl (49); the 2 theories share
many underlying principles and assumptions, and have been
formally integrated in Single-World Intervention Graphs in
an article by Richardson and Robins (50). A key benefit of
any of these frameworks is that they allow us to formally
define “effect” and write down the estimand of interest.
Then, we can evaluate the data and consider the causal
assumptions that would allow us link the observed data to the
causal estimand (16, 51, 52). In being so explicit about the
inferential goal, we may avoid logical pitfalls (37). We can
imagine a target trial or public health intervention we would
conduct, absent ethical or logistic constraints, and attempt to
emulate it with observational data (51-54). Distinguishing
the causal estimand from the statistical estimator makes
explicit the assumptions we must make for valid causal
and statistical inference, which, in turn, allows for scientific
debate on, and revision of, those assumptions (51, 52). In
most cases, the potential outcomes framework or causal
graph theory does not imply a particular statistical method-
ology is necessary and there will be many instances where
generalized linear models are sufficient to execute the anal-
ysis. However, for certain questions (particularly when there
is time-varying confounding affected by prior exposure), so-
called g-methods give us a better chance at getting the right
answer than do traditional methods (4, 55, 56). Our advocacy
for teaching and using the potential outcomes framework
and causal graph theory is not an argument for more complex
methods; rather, it is an argument for employing useful tools
that can help us ask more clearly defined research questions
and to have a clearer understanding of the assumptions
needed to answer such questions with data using the least
complex approach necessary.

A PRACTICAL APPROACH TO EXPLICIT CAUSAL
FRAMEWORKS

Conceptual models and theoretical frameworks are useful
for guiding research programs and discussing bodies of
evidence. These frameworks may benefit from including
on them the big, nebulous social determinants of disease,
such as poverty or racism. However, the same constructs
are not sufficiently well defined to be provide useful guid-
ance in a study designed to estimate their causal effects.
Arguably, a strength of the potential-outcomes framework
and causal graph theory are that they force us to imagine

the interventions that might alter the system, linking our
research more closely to policy decisions. An interven-
tion on poverty might involve giving housing vouchers or
increasing wages or permitting collective bargaining, for
example (26). If we do not have the data to identify the
effects of interest, that is a practical, rather than a theoret-
ical, problem. There are exposure-outcome pairs for which
confounding is intractable and exposures of importance that
are not well defined. In such instances, 1 reaction has been
to answer a question about a different exposure that can
be answered, rather than the question of initial interest.
This reaction certainly contributes to the perception that the
potential outcomes framework and causal graph theory are
somehow inherently limiting with respect to the exposures
that are “valid” to study. Although we sympathize with this
sentiment, this is not a limitation of the potential outcomes
theory itself but rather an uncomfortable reality (4). Alter-
natively, we can attempt to answer the original questions,
acknowledging that the exposures we study are inherently
poorly defined, interpreting our resultant estimates of effect
accordingly, and attempting to refine our exposure definition
in subsequent investigations.

A strength of the potential-outcomes framework and
causal graph theory is that they allow us to articulate clearly
the assumptions sufficient to identify a causal effect from
data. A limitation, and caution to researchers new to the
field, is that there has been a misconception that by clearly
stating the causal effect of interest, researchers can then
interpret the association they estimate as a causal effect.
Reciting identification assumptions like catechism or an
incantation does not make them true. We must consider
carefully whether they are met in each circumstance and
design better studies to address instances in which they
are not. Formalizing statistical assumptions using potential
outcomes and probability logic, or drawing causal diagrams,
can help determine whether an effect is identifiable
from data. Causal diagrams can help identify a sufficient
adjustment set—under the assumption that the diagrams
are correct enough for the question at hand. We should be
honest about the possible errors in our causal models, which
are expressed in the diagrams. The assumptions sufficient
for drawing causal conclusions from observational data are
heroic and we should not lose sight of that. As reviewers of
our peers’ work, we should embrace the open and precise
statements about uncertainty when it exists rather than
letting uncertainty diminish the importance of a result or
method. Otherwise, we risk over-certainty in our literature,
and we also risk the trust of the public when we are inevitably
both certain and wrong. Furthermore, we should continue
our work to educate nonscientists on the importance of
acknowledging uncertainty in decision-making.

ADDITIONAL CONSIDERATIONS FOR USING
EPIDEMIOLOGIC STUDIES TO IMPROVE POPULATION
HEALTH

The potential-outcomes framework can help us define a
causal estimand in a specific population and also help us
understand why the causal effect of a well-defined exposure



may differ across populations (10, 57-65). Briefly, an inter-
nally valid estimate of effect may not generalize or transport
from 1 population to another because 1) there is effect
modification and the distribution of modifiers differs across
populations; 2) the way in which treatment or exposure
occurs (the version of treatment) makes a difference in the
magnitude of the effect observed, and the treatment is not
dispensed similarly across populations; 3) there is interfer-
ence, spillover, or disseminated effects and the distribution
of exposures differs across populations; or 4) the exposure
or outcome is measured with different degrees of accuracy
across populations. It is useful to remember that we are
not working in a field that studies fundamental laws of the
universe, rather epidemiology studies the mechanisms or
effects of exposures in specific populations, contexts, and
times; the distribution of other determinants of disease shift
with those contexts and thus the relative influence of the
exposure under investigation will surely change. The idea
that epidemiologists should aim to identify and intervene
in determinants of disease that are the largest levers for
improving health and supporting justice implies that the
largest levers may differ across and within populations.
When we find different effect estimates from different stud-
ies in different populations, the explanation is not always
bias. The importance of sample composition and context
when drawing epidemiologic inference again underscores
the need for good descriptive epidemiology. Quantitative
solutions to estimating effects relevant to target populations
of interest depend on having high-quality descriptions of
those target populations (58, 59, 61, 65-67).

IMPLICATIONS FOR THE FIELD OF EPIDEMIOLOGY

What are the implications of our assertions for the future
of epidemiology and, in particular, for how we train the
next generation of epidemiologists? First, let us agree that
epidemiologists can and should bring unique skill sets,
knowledge, perspectives, and critical frameworks to scien-
tific inquiry. If this were not the case, there would be no need
for epidemiologic methods courses; epidemiology students
would just enroll in some combination of biostatistics,
ecology, microbiology, and physiology courses, to name
a few. Certainly, 1 strength of epidemiology is its focus on
interdisciplinary collaboration. Yet, if we epidemiologists
abandon our emphasis on well-defined study questions
(causal or not) that are linked to appropriate study design
and analysis, what do we contribute to interdisciplinary
collaborations?

We are not suggesting that expertise in causal diagrams,
potential outcomes, and g-methods are necessary for all epi-
demiologists to do good epidemiologic research. However,
we argue that our ability to answer epidemiologic questions
of interest is improved by the formalization of theory and
language. Interdisciplinary collaborations can help identify
important questions, draw a conceptual model (even if one
does not choose to use a causal diagram to formalize that
process), and provide context for interpreting our results.
But the epidemiologic perspective and skill set is necessary
to refine the research question, link the estimand of interest

with a statistical estimation strategy (e.g., choose the model
form), determine what goes into the model, choose which
associations to report, and appropriately interpret those asso-
ciations. Only if we understand how the numbers underlying
associations relate to possible change we could observe in
the world can we begin to link observations to causes, and
epidemiology to actions. Again, we may not always, or even
typically, need advanced methods to make those links. But
ignorance of such methods guarantees that, unless we are
lucky, we will always be worse off when those methods are
needed.

CONCLUSIONS

Epidemiology is an applied science—one aimed at
improving population health. We need to re-emphasize the
importance and impact of asking and answering descriptive
questions. Yet some important public health questions are
causal. Indeed, frequently, causal and descriptive questions
go hand-in-hand: Descriptive analyses are necessary to
identify public health problems and targets for interven-
tion; causal analyses are necessary to inform how we
should improve the health of populations; and descriptive
analyses are necessary to track the implementation of our
interventions. When asking causal questions, if we cannot
ultimately produce actionable information, we have failed in
our charge. If we focus on associations because we cannot
reliably estimate causal effects, we abdicate responsibility
and obfuscate our intent (68).

When designing studies to answer causal questions, the
potential-outcomes framework and causal graph theory
allow new epidemiologists to build a foundation for causal
inference in which sources of bias can be identified from first
principles, such that the burden of memorizing lists of biases
and rules of thumb (which often have important exceptions)
is removed. We cannot simply try to teach intuition or many
rules of thumb for identifying potential sources of bias; this
intuition is not reliably transferable across institutions and
instructors.

Ultimately, we cannot abdicate responsibility to identify
causes or attempt to estimate effects of interventions from
imperfect data. We should arm ourselves with the most
reliable tools to accomplish this goal. As summarized by
Jenicek, “Epidemiology suffers often from its ‘yes — but’
approach. Let us not forget, that ultimately...we must
always make a ‘yes or no’ decision ... We are in our posi-
tions for this kind of decision making and it is expected from
us” (69, p. 192). Let us take the best frameworks and ideas
on offer and not be afraid to make our science more rigorous.
Not only will the field benefit, the public’s health will, too.
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