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The disease risk score (DRS) is a summary score that is a function of a potentially large set of covariates. The
DRS can be used to control for confounding by the covariates that went into estimation of the DRS and obtain
a standardized estimate of an exposure’s effect on disease. However, to date, literature on the DRS has not
addressed analyses that focus on estimation of survival or hazard functions, which are common in epidemiologic
analyses of cohort data. Here, we propose a method for standardization of hazard ratios using the DRS in
longitudinal analyses of the association between a binary exposure and an outcome. This approach to handling
a potentially large set of covariates through a model-based approach to standardization may provide a useful tool
for cohort analyses of hazard ratios and may be particularly well-suited to settings where an exposure propensity
score is difficult to model. Simulations are used in this paper to illustrate the approach, and an empirical example
is provided.

cohort studies; disease risk score; regression analysis; standardization

Abbreviations: DRS, disease risk score; EPS, exposure propensity score; IPE, inverse probability of exposure; SMR, standardized
mortality ratio.

Suppose that an investigator wants to estimate the asso-
ciation between an exposure variable and a binary out-
come variable while using standardization to control for
confounding. One approach to achieving standardization in
a regression model framework is to use a balancing score,
such as the exposure propensity score (EPS) or the disease
risk score (DRS), to reduce a potentially large vector of
covariates to a single scalar summary variable (1–5). For risk
ratios or prevalence ratios, recent work has demonstrated
that this can be done using inverse probability of exposure
(IPE) weights or DRS-based methods (3, 5–7). For hazard
ratios, previous work has demonstrated how IPE weights can
be used to obtain a standardized estimate in a proportional
hazards model framework (8–10). However, an approach to
the use of the DRS for analyses of hazard ratios has not been
proposed.

We propose an approach for estimating the effect of a bi-
nary point exposure on the hazard of an outcome in a
regression model framework that leverages the DRS for
covariate control. The DRS may be preferable to the EPS
for multivariable standardization if the exposure is extremely

rare (11, 12), relatively novel (i.e., newly emerging), or diffi-
cult to model (13).

METHODS

Consider a study in which deaths have been ascertained
without loss to follow-up for a closed cohort. Let Xi denote
a binary point exposure of primary interest and Zi denote
baseline covariates (such as age at study entry, race, and sex),
noting that i indexes cohort members and we use subscript i
to denote the values of variables for cohort member i.

Suppose the cohort information is recorded in discrete
time, meaning that continuous time has been divided into a
sequence of contiguous time periods of equal duration (e.g.,
person-years). Define study entry as time 0 and administra-
tive censoring at the end of the study, τ. Denote by Ti person
i’s failure time (possibly occurring after τ, in which case the
person was observed through the end of study), and let di
denote an indicator of failure during the study period (d = 1)
or censoring (d = 0). Denote the time of last observation for



person i, Ti
∗, equal to Ti or τ , whichever occurs first. Here we

focus on analysis in a cohort mortality study, but we note that
the proposed methods readily extend to analysis of incident
first events and also could apply to repeated independent
events.

A person-oriented data structure for a cohort mortality
study may include 1 row of data per person in the cohort
(Figure 1A), which records i, Xi, Zi, τ , Ti, and di. Alterna-
tively, a person-period data structure includes multiple rows
of data per person in the cohort (Figure 1B). Let j index
discrete time from study entry ( j = 0) and let subscript j
denote the values of variables in time period j. Note that,
throughout, Xi and Zi denote baseline covariates that do not
change over time j. Denote by Yij a binary time-varying
indicator of the outcome status associated with person i in
period j that takes a value of 0 except at time Ti, when
Yij is assigned the value of the binary indicator of failure
status for person i, di. In addition, for each record in the data
structure, we define a time-varying variable, qij, that equals
1 for periods j ≤ Ti

∗ and 0 for periods Ti
∗< j ≤ τ .

For the purposes of defining the estimand of interest, let
h(j|Z,X) denote the discrete-time hazard function, and let
hx(j|Z) denote the potential discrete-time hazard function for
the intervention setting X = x. Suppose that i = 1 to p repre-
sent the exposed (X = 1) cohort members (i.e., the cohort has
been sorted by X). We define a ratio of standardized potential
discrete-time hazards contrasting X = 1 with X = 0, where
the target population is the exposed (X = 1), as

∑p
i=1

∑τ
j=0h1( j|Z)S1( j−1|Z1)/

∑p
i=1

∑τ
j=0S1( j−1|Z1)∑p

i=1

∑τ
j=0h0( j|Z)S0( j−1|Z1)/

∑p
i=1

∑τ
j=0S0( j−1|Z1)

,

(1)

where Sx(j|Zi) denotes the probability of surviving through
time j; that is,

Sx(j|Zi) = 1 −
∑j

u=0
hx(u|Z)Sx(u − 1|Zi).

We define Sx(−1|Zi) = 1, and we assume that the discrete-
time hazard in any time interval j is suitably small for this
approximation. Note that the quantities in the numerator
and denominator of this standardized ratio measure have the
form of expected numbers of events divided by expected
times in the study, and consequently these quantities could
be termed rates.

Disease risk score

Using just the records for at-risk person-periods observed
among the unexposed (qij = 1 and Xi = 0), we can estimate
the discrete-time hazard of the outcome in the absence of
exposure, which we refer to as the DRS.

Since Yij is bounded by 0 and 1, the DRS can be modeled
as having a logistic dependence on a set of predictors by
fitting a pooled logistic model of the form

log

(
Pr(Yij = 1|X = 0)

1 − Pr(Yij = 1|X = 0)

)
= αj + Ziβ,

Table 1. Definitions of the Outcome Variable (mijk) and the Antilog
of an Offset (nijk) in a Proposed Regression Model Fitted to an
Expanded Data Structure to Obtain a Standardized Estimate of the
Discrete-Time Hazard Ratio

ka k = 1 k = 0

mijk Yij
b g(j|Zi)S(j|Zi)

c,d

nijk qij
e S(j|Zi)

a Index for 2 rows of information for each person-period. k = 1
corresponds to the information for estimation of the numerator
of the ratio of standardized discrete-time hazards, and k = 0
corresponds to the information for estimation of the denominator
of the ratio.

b Yij is a binary indicator of case status for person i in period j.
c g(j,Z) is the disease risk score.
d S(j,Z) is the survival function.
e qij is a binary indicator of whether person i was “at risk” in

period j.

where the vector of parameters, αj, describes the baseline
hazard function and β is a vector of parameters associated
with covariates Z. Estimation of a vector of j parameters
associated with discrete time intervals of the baseline logit
hazard function, αj, may be inefficient; and often a smooth
function of time, j, might be specified using, for example,
splines or polynomial bases. Also note that product terms
for interaction between the time scale and covariates can
of course be included in the model, if appropriate. Using
the estimated coefficients from the fitted model, the DRS
(Figure 1C) may be calculated for all members of the cohort,
i, and all periods, j, as g( j|Z) = expit(α̂j + Ziβ̂).

Estimating standardized ratios

Estimation of the ratio of standardized discrete-time haz-
ards in equation 1 may be done using the DRS. We proceed
by assuming h1(j|Z) = ĥ(j|Z, X = 1), under consistency,
and h0(j|Z) = g(j|Z), under the additional assumptions of
correct model specification and conditional exchangeability.

Suppose that we expand the person-period data set to
include 2 rows for each person-period: The first corresponds
to the information needed for estimation of the numerator
of the standardized ratio, and the second corresponds to
information needed for estimation of the denominator of the
standardized ratio (Figure 1D). Let k ∈ 0, 1 index these 2
rows of information for each person-period. The expanded
data set includes rows indexed by person i, period j, and
stratum k.

In this expanded data set, k = 1 corresponds to the
information needed for estimation of the numerator of the
ratio (Table 1). When k = 1, mijk = 1 and nijk = 1 correspond
to a binary indicator of case status for person i in period j, Yij,
and an indicator of whether person i was “at risk” in period
j, qij, respectively.



Figure 1. Possible data structures for 2 people in a cohort study. A) A person-level data structure; B), a person-period data structure; C) a
person-period data structure with a disease risk score appended; D) an expanded data structure with 2 records per person-period. In these data
structures, i indexes cohort members, Xi is a binary point exposure of primary interest, Zi denotes baseline covariates, τ is the administrative
end of the study, Ti is person i’s failure time, di denotes a binary indicator of failure during the study period (d = 1) or censoring (d = 0), j indexes
discrete time, Yij is a binary indicator of case status for person i in period j, qij is a binary indicator of whether person i was “at risk” in period
j, g( j|Z) is the disease risk score, k is an index for 2 rows of information for each person-period (where k = 1 corresponds to the information
for estimation of the numerator of the ratio of standardized discrete-time hazards and k = 0 corresponds to the information for estimation of
the denominator of the ratio), S(j, Z) is the survival function, mijk is the outcome variable in the proposed regression model for obtaining a
standardized estimate of the discrete-time hazard ratio (gray fill illustrates which values inform calculation of mijk), and nijk is used to define an
offset in the proposed regression model for obtaining a standardized estimate of the discrete-time hazard ratio (boldface text illustrates which
values inform calculation of nijk).

In the expanded data set, k = 0 corresponds to the infor-
mation needed for estimation of the denominator of the ratio
(Table 1). When k = 0, mijk = 0 and nijk = 0 correspond to

j

log(E[mijk]) = δ0 + δ1k + log(nijk),

where the antilog of estimated parameter δ1 estimates the
standardized ratio comparing the observed discrete-time
hazard at X = 1 with the expected discrete-time hazard
among persons with X = 1 had their exposure been set to
X = 0. When nijk = 0, a small constant is added to allow

g(j|Zi)S(j|Zi) and S(j|Zi) = 1 − 
∑

t 0g(t|Zi)S(t − 1|Zi), 
respectively, where S(j,Z) is the survi

=
val function and we

define S(−1|Zi) = 1.
Using just the records with X = 1, a regression model

fitted to the expanded data structure may take the form



calculation of log(nijk). Estimation of robust confidence
intervals is recommended given the 2-stage regression (first
estimation of the DRS and second fitting the marginal
structural model) (14). In the Web Appendix (available
at https://academic.oup.com/aje), we provide illustrative
SAS code (SAS Institute, Inc., Cary, North Carolina) for
obtaining discrete-time hazard ratios with both robust
confidence intervals and bootstrapped confidence intervals.

Simulation example

We use simulated data under a cohort study design to
demonstrate the implementation of the proposed approach
and as confirmatory of the mathematical results (rather than
as a comprehensive analysis of finite sample properties).
Data were simulated for 1,000 cohort studies with 10,000
members in each cohort. In each simulation, at baseline
we generated 10 covariates, denoted Z1–Z10. Among these,
Z1–Z4 were confounders associated with both exposure and
outcome, Z5–Z7 were exposure predictors, and Z8–Z10 were
outcome predictors. Z1, Z3, Z5, Z6, Z8, and Z9 were random
binary variables, and the others were continuous variables
assigned as the absolute value of standard normal random
variables with mean 0 and variance 1. The relationships
between variables follow the structure described by Lee et al.
(15), with correlations induced between several of the vari-
ables (Figure 1). We generated a random binary exposure,
X, with an exposure prevalence of approximately 10%; we
encoded dependence of X on covariates by specifying that
X took a value of 1 with probability 1/{1 + exp[−(−0.1 –
1 × Z1 – 0.5 × Z2 – 0.5 × Z3 – 0.5 × Z4 – 0.5 × Z5 –
0.5 × Z6 – 0.5 × Z7)]}.

Each person entered the study at t = 0 and was followed
until t = 20. Each person-year, we generated a random binary
outcome Y in which we encoded dependence of the outcome
on X, covariates, and time in the study. Two simulation sce-
narios were examined. In the first simulation scenario, there
was homogeneity of stratum-specific ratios, such that Y took
a value of 1 with probability exp(−3 + 0.1 × log(t) + 1 ×
X − 0.5 × Z1 – 0.1 × Z2 – 0.5 × Z3 – 0.1 × Z4 – 0.5 ×
Z8 – 0.5 × Z9 – 0.1 × Z10). In the second simulation sce-
nario, there was heterogeneity of stratum-specific ratios,
such that Y took a value of 1 with probability exp(−3 + 0.1 ×
log(t) + 1 × X – 0.5 × Z1 – 0.1 × Z2 – 0.5 × Z3 – 0.1 × Z4 –
0.5 × Z8 – 0.5 × Z9 – 0.1 × Z10 + 1 × X × Z1).

First, we estimated the crude discrete-time hazard ratio
by fitting a regression model for Y as a function of X, and
we estimated a covariate-adjusted hazard ratio by fitting a
regression model for Y as a function of X, log(t), and Z1–Z10,
including each covariate as a main effect in the regression
model (and not including any product terms for interaction
between covariates or between covariates and the exposure
of interest, X).

Next, we estimated the DRS by fitting a regression model
to predict Y as a function of log(t) and Z1–Z10 among the
unexposed (X = 0), including each covariate as a main effect
in the regression model (and not including any product terms
for interaction between covariates). We used the method
described in this paper (and the SAS code shown in the Web

Appendix) to obtain a standardized estimate of the discrete-
time hazard ratio, and we used the robust variance estimator.

We also estimated a standardized ratio using an IPE-
weighted marginal structural log binomial model, with
robust variance (16). We fitted a logistic model to each sim-
ulated cohort at baseline to predict X as a function of Z1,
Z2, . . . , Z10, including each covariate as a main effect in the
regression model (and not including any product terms for
interaction between covariates). The predicted probability of
exposure from the fitted model is the EPS. We constructed
standardized mortality ratio (SMR) weights to estimate the
standardized ratio where the target population is the exposed
group (2, 17); exposed cohort members are given a weight of
1, while unexposed cohort members are given weights that
are defined as the ratio of the estimated propensity score to
1 minus the estimated propensity score. We also constructed
stabilized IPE weights to estimate the ratio for scenarios
where the target population is the total study population;
exposed cohort members are given a weight defined as the
ratio of the marginal probability of exposure to the estimated
propensity score, while unexposed cohort members are
given a weight defined as the ratio of 1 minus the marginal
probability of exposure to 1 minus the estimated propensity
score. In each analysis, we summarized results from 1,000
simulated cohorts by computing the mean log discrete-
time hazard ratio (log hazard ratio), the estimated standard
deviation of the 1,000 log hazard ratios, and the average
estimated robust standard error of the log hazard ratio.
Simulations were conducted over the 1,000 cohorts, and the
mean values of the exposure group-specific log hazard ratios
and associated 95% confidence intervals were calculated.

Empirical example

We used the method described in this paper to estimate a
standardized ratio, and also estimated a standardized ratio
using an IPE-weighted marginal structural log binomial
model, in empirical data from Kalbfleisch and Prentice (18)
that were derived from the Veteran’s Administration Lung
Cancer Trial, a study in which there was imbalance in covari-
ates across treatment arms. The data concerned a cohort of
137 male patients with advanced, inoperable lung cancer
who were given either standard therapy or experimental
chemotherapy. The exposure of primary interest was a binary
variable coded “1” for treatment by the test chemotherapy
or “0” for standard therapy, and the outcome of interest
was vital status (1 = deceased, 0 = censored), with survival
time recorded in days; in the current analysis, we assumed
administrative censoring at 999 days. Covariates included
histological type of the tumor (coded 1 for squamous cell
carcinoma, 2 for small cell carcinoma, 3 for adenocarci-
noma, or 4 for large cell carcinoma), age at study entry
(in years), Karnofsky performance score for overall patient
status at study entry (range, 0–100), time between diagnosis
and start of the study (in months), and a binary indicator for
whether the patient had received prior therapy. We derived
standardized estimates of the discrete-time hazard ratio for
scenarios where the target population was the exposed group
and used the robust variance estimator.

https://academic.oup.com/aje


Table 2. Estimated Difference in the Mean Log Discrete-Time
Hazard Ratio, Empirical Standard Error, and Average Estimated
Standard Error for 1,000 Cohorts With 1,000 Observations

Simulation Setup
Simulation Result

Log HR ESE ASEa

Simulation scenario 1
(homogeneity)

Crude 1.13 0.05 0.05

Adjusted in multivariable
outcome model

1.00 0.05 0.05

EPS-weighted (ATE) 0.93 0.06 0.06

EPS-weighted (ATT) 0.93 0.05 0.05

DRS-based (equation 1; ATT) 0.93 0.05 0.04

Simulation scenario 2
(heterogeneity)

Crude 1.38 0.04 0.04

Adjusted in multivariable
outcome model

1.28 0.05 0.05

EPS-weighted (ATE) 1.38 0.05 0.06

EPS-weighted (ATT) 1.18 0.05 0.05

DRS-based (equation 1; ATT) 1.18 0.05 0.04

In the second simulation scenario, there was heterogeneity
of stratum-specific ratios (Table 2). Again, the DRS-based
method yielded an estimate of association that was equiva-
lent to the estimates obtained from marginal structural log-
binomial models using SMR weights. Given heterogeneity
of the discrete-time hazard ratio across levels of covari-
ates, the choice of target population does matter, and the
IPE-weighted estimate of the ratio (which targets the total
population) differs from the estimate obtained using SMR-
type weights (which, like the proposed DRS-based method,
targets the exposure effect among the exposed).

Empirical example

The empirical cohort included 137 patients, of whom
68 (49.6%) received chemotherapy and 128 (93.4%) were
deceased by the end of follow-up. Chemotherapy-treated
patients were more likely to have squamous cell carcinoma
(57% vs. 43%) or adenocarcinoma (67% vs. 33%) than
standard therapy patients. Chemotherapy-treated patients
were slightly older than standard-therapy patients (mean
age = 59 years vs. 57 years). Chemotherapy-treated patients
were similar to standard therapy patients with respect to
Karnofsky performance score, time between diagnosis and
the start of the study, and proportion of patients who had
received another type of therapy before the current one.

Fitting the proposed DRS-based model yielded a stan-
dardized discrete-time hazard ratio estimate of 0.85 (95%
confidence interval: 0.60, 1.18). Fitting a marginal structural
model with SMR weights yielded a standardized hazard ratio
estimate of 0.86 (95% confidence interval: 0.55, 1.33) when
the target population was the exposed cohort. Similarly to
the simulations, the proposed DRS-based model yielded an
estimated discrete-time hazard ratio that was very similar to
the SMR-weighted estimate obtained using marginal struc-
tural models with weights derived using the EPS.

DISCUSSION

This paper has focused on implementation of regression
models using a DRS to obtain estimates of standardized
discrete-time hazard ratios. The proposed DRS-based model
may be appealing in study settings where the EPS is difficult
to model well. In simulations and in our empirical example,
it was feasible to estimate both the DRS and the EPS; how-
ever, in practice there are settings in which one approach or
the other may be preferable or most feasible. Use of the DRS
may be attractive, for example, if the exposure of interest is
newly emerging or extremely rare, because under such con-
ditions it may be difficult to reliably model the EPS. When
exposure does not occur in some strata of covariates, the EPS
may be difficult or impossible to estimate. For example, in a
study of the safety or effectiveness of a newly introduced
therapy, the DRS may be appealing, relative to the EPS,
if there are historical data with which to model the DRS
before introduction of the new therapy. Similar settings arise
in occupational and environmental studies, where a novel
environmental contaminant or a change in industrial process
occurs, if there are historical data with which to model the
DRS prior to that change. Our proposed approach focuses

Abbreviations: ASE, average standard error; ATE, average treat-
ment effect in the total population; ATT, average treatment effect 
in the treated; DRS, disease risk score; EPS, exposure propensity 
score; ESE, empirical standard error; HR, hazard ratio.

a For crude and multivariable-adjusted estimates, ASE is the 
average standard error estimated across 1,000 simulated cohorts. 
For DRS- and EPS-based estimates, ASE is the average robust 
standard error.

RESULTS

Simulations

In the first simulation scenario, there was homogeneity 
of stratum-specific ratios. The crude estimate differed from 
the value specified under the simulation setup (Table 2). The 
covariate-adjusted estimate was equivalent to the specified 
value.

The hazard ratio is not a collapsible measure of associ-
ation, meaning that the standardized marginal estimate of 
the hazard ratio need not equal the covariate-adjusted hazard 
ratio estimate, even in the absence of confounding (19, 20). 
Consistent with that fact, the DRS-based estimate does not 
equal the covariate-adjusted estimate. However, the DRS-
based method yielded an estimate of association that was 
equivalent to the estimates obtained from marginal structural 
log-binomial models using IPE weights and SMR weights 
(Table 2). Note that when there is homogeneity of the effect 
measure across levels of covariates, the choice of target 
population does not affect estimates of the standardized 
ratios, and the IPE- and SMR-weighted estimates will be 
equivalent.



on estimation of the exposure effect among the exposed,
and therefore it pertains only to strata of covariates where
there were exposed cohort members. The proposed approach
leverages a DRS model fitted using the data for the unex-
posed cohort members to estimate the potential outcomes
expected among the exposed had they been unexposed.

An issue that has received attention in the literature on the
DRS is what group to use to fit the model for estimation
of the DRS (13). We note that in the proposed approach
we split the data, estimating the DRS only in the records
for the unexposed and estimating the standardized discrete-
time hazard ratio only using records for the exposed. The
problem of “overfitting” to the unexposed by estimating the
DRS in the same sample as that used for the calculated
predictions may be minimized in this way; however, further
work on this topic is warranted. We note that the DRS,
g(j, Z), could be estimated in a well-chosen out-of-sample
group, and estimation of the discrete-time hazard ratio would
proceed in the same fashion as when the DRS is estimated
in an unexposed in-sample group.

One challenge to using a DRS-based method is the dif-
ficulty of assessing whether the model for estimation of
the DRS is appropriately specified. Wyss et al. (21) have
suggested a “dry-run” analysis in which the referent group
is partitioned into pseudo-exposed and pseudo-unexposed
groups so that differences in the observed covariates resem-
ble differences between the actual exposed and unexposed
populations but the adjusted (pseudo-)exposure–outcome
association is expected to be null. Under their proposed
approach, a DRS model is evaluated by its ability to retrieve
an unconfounded null estimate after adjustment in this “dry-
run” analysis. Such an approach could also be applied in the
setting considered in the current paper, where the target of
estimation is the standardized discrete-time hazard ratio.

In this paper we focused on analyses of a single outcome
of interest, setting aside the issue of competing risks. We
note that this approach can be extended to analyses of
cause-specific mortality in which we model 2 (or more)
competing risks for mortality. As in standard estimates of the
cause-specific hazard ratio, common risk factors should be
controlled for in the analytical approach (e.g., via regression
adjustment or weighting), and such approaches may be
necessary with DRS-based estimates of the discrete-time
hazard ratio as well.

Classical approaches to standardization of rates com-
mence with categorization of covariates and cross-classifica-
tion of person-time and events into these categories. The
alternative approach considered here commences with a
balancing score, which we refer to as the DRS. Using a re-
gression model, this approach can allow us to reduce a
potentially large vector of covariates to a single scalar sum-
mary variable; the approach accommodates continuous co-
variates as well as ordinal or nominal categorical variables,
and rather than complete saturation of the model, as imple-
mented classically by the cross-classification of information
by levels of all covariates, simpler models for the DRS may
be fitted if appropriate.

Hansen (6) laid out a basis for understanding the DRS
as a method for inducing prognostic balance in observed
data for studies of response to treatment. Here we have

extended the use of the DRS to induce prognostic balance
in time-to-event analyses, by which, in the absence of right-
censoring, we are referring to a setting where the potential
time to the event of interest under the control treatment is
independent of covariates, Zi, conditional on the DRS. In
our setting of estimation of a ratio of standardized discrete-
time hazards, where the target population is the exposed,
this is achieved by taking the DRS as an estimate of h0(j|Z)
and using this quantity to generate potential times to event
among the exposed had they been unexposed. Prognostic
balance hinges upon our estimated DRS function g(j|Z)
being sufficient to serve this purpose. Further work, formally
demonstrating the properties of prognostic balance in the
setting of discrete-time hazards, is beyond the scope of the
current paper but would make a useful contribution to the
literature on the DRS. Other investigators have described
related approaches to using a DRS in the context of pro-
portional hazards regression, implemented through match-
ing, stratification, or covariate adjustment (e.g., entering the
score by means of indicator terms for categories) (22, 23).
In this paper we describe an approach to estimation of a
ratio of standardized discrete-time hazard ratios that avoids
coarsening (as might occur when matching, stratifying, or
adjusting for categories defined by the DRS) or the need
to specify a parametric form when including the DRS as a
continuous explanatory variable in a regression model.

The approach described here focuses on a setting where
Zi denotes baseline covariates. We have not addressed the
setting of time-varying covariates, and notably have not
addressed settings of time-varying covariates affected by
prior exposure. Extension of the DRS to these more analyt-
ically complex settings is beyond the scope of the current
paper but is an important direction for future work.

We have focused on a setting involving a contrast defined
by a binary point exposure of primary interest. In recent
work, we have discussed conditions and approaches to anal-
ysis of standardized risk ratios using the DRS when the
exposure variable has more than 2 levels (24). Extension
of the present approach to a contrast involving more than
2 categories may be considered in future work involving
estimation of standardized discrete-time hazard ratios when
the exposure variable has more than 2 levels.

The proposed approach yields a standardized discrete-
time hazard ratio that may be useful for summarization of
research findings. This standardized ratio corresponds to an
estimate of a causal contrast, the exposure effect among the
exposed. This has the appeal of conveying an estimate that
pertains to a well-defined target population, and it is a useful
summary measure of potential interest in a range of settings.
In a study of the safety or effectiveness of a therapy, the
treatment effect among the treated is often what is desired;
similarly, in occupational settings, a manager or regulator
considering a policy or intervention designed to reduce
exposure to an agent often desires an estimate of the expo-
sure’s effect among the exposed. In such settings, a marginal
estimate of the exposure’s effect, in the form of the proposed
standardized ratio, is one potentially appealing quantitative
summary. As illustrated in the Web Appendix, calculation of
the proposed DRS-based standardized discrete-time hazard
ratio is readily performed.
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