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Suppose that an investigator wants to estimate an association between a continuous exposure variable and
an outcome, adjusting for a set of confounders. If the exposure variable suffers classical measurement error,
in which the measured exposures are distributed with independent error around the true exposure, then an
estimate of the covariate-adjusted exposure-outcome association may be biased. We propose an approach to
estimate a marginal exposure-outcome association in the setting of classical exposure measurement error using
a disease score–based approach to standardization to the exposed sample. First, we show that the proposed
marginal estimate of the exposure-outcome association will suffer less bias due to classical measurement error
than the covariate-conditional estimate of association when the covariates are predictors of exposure. Second,
we show that if an exposure validation study is available with which to assess exposure measurement error,
then the proposed marginal estimate of the exposure-outcome association can be corrected for measurement
error more efficiently than the covariate-conditional estimate of association. We illustrate both of these points
using simulations and an empirical example using data from the Orinda Longitudinal Study of Myopia (California,
1989–2001).

bias; cohort studies; epidemiologic methods; regression analysis

In observational epidemiologic studies, the exposure of
interest is not under control of the investigator. Two chal-
lenges that typically arise in observational studies due to lack
of control over exposure assignment are error in estimates
of exposure and potential confounding of the exposure-
outcome association. The first follows because we must esti-
mate exposure rather than assign it, while the second follows
because, unlike in an experimental design, the investigator
cannot rely upon randomization to lead in expectation to
balance between exposure groups in other factors that affect
disease.

Interestingly, the way that we address the challenge of
confounding can exacerbate, or alleviate, the consequences
of exposure measurement error in epidemiologic analyses
of an association between a continuous exposure variable
and outcome. Settings where exposure measurement errors
occur include, but are not limited to, measurements of envi-
ronmental factors, such as ambient levels of an air pollutant;
occupational factors, such as personal dosimetry measures
of ionizing radiation; and nutritional factors, such as serum
measures of Vitamin D (1–3). In fact, exposure measurement
error is likely to be an important limitation of a large propor-
tion of epidemiologic studies (4).

It is well known that if the exposure variable suffers
classical measurement error, in which the measured expo-
sures are distributed with independent error around the true
exposure, then an estimate of the exposure-outcome associ-
ation obtained in a linear regression may be attenuated (5).
Perhaps less well known is that the degree of attenuation due
to classical exposure measurement error tends to increase
as confounding variables, which are by definition predictors
of the exposure, are introduced into the linear regression
model (1, p. 52; 6). Therefore, while covariate adjustment
can potentially reduce bias due to confounding in an estimate
of the exposure-outcome association, it may tend to increase
attenuation due to classical exposure measurement error.

We propose a simple method to avoid the bias inflation
that can occur as confounding variables are included in a
multivariable regression model to obtain covariate-adjusted
estimates of association between the error-prone exposure
and outcome of interest. Assuming one can identify an
unexposed reference group, our approach achieves this by
shifting the covariates to a model for a disease score that is
subsequently used to obtain a marginal estimate of associ-
ation using a model-based standardization, which is a gen-
eralization of direct standardization to the exposed sample



(7). The proposed approach offers a useful method to reduce
bias due to exposure measurement error in observational epi-
demiologic analyses. In addition, we show that if a validation
study is available to assess the measurement error struc-
ture then the proposed marginal estimate of the exposure-
outcome association can be corrected for measurement error
more efficiently than the covariate-conditional estimate of
association.

METHODS

We focus on the setting of an epidemiologic study with a
continuous exposure variable, a set of well-measured con-
founders, and a continuous outcome of primary interest. We
first provide theory and then provide simulations to demon-
strate the proposed method. We also comment on extension
to a regression model for a binary outcome variable. The
motivating setting is one in which the exposure variable of
primary interest is measured on a scale with origin at zero,
and right-skewed, such that exposures are often near the
origin. Let subscript i index subject, Yi, denote the outcome
of interest, Ti denote a nonnegative continuous exposure,
and Zi = {Zi1, . . . ,Zik} denote the k covariates that are
potential confounders of the associations between Ti and Yi.
Suppose that the expectation (denoted E[•]) of the outcome
of interest, Yi, follows a linear model of the form,

E [Yi|Zi, Ti] = ϕ0 +
∑k

j=1
ϕjZij + αTi. (1)

Typically, in an epidemiologic study, the true exposure,
Ti, is not observed. What we observe is a surrogate exposure
variable, Xi, that provides an imperfect measure of Ti. A
simple case is a classical measurement error model in which
the measured surrogate exposures are distributed with inde-
pendent error around the true exposure, of the form

Xi = Ti + ηi, where ηi ∼ N
(
0, σ2

X|T
)
.

Given covariates that are potential confounders of the
association of interest, an investigator may fit a regression
model that includes the surrogate exposure measure, X, as
an explanatory variable, along with the measured covariates,
Z, of the form

E [Yi|Zi, Xi] = φ0 +
∑k

j=1
φjZij + βXi. (2)

Alternatively, standardization affords us a way to compare
the mean of Y between groups defined by X, controlling for
confounding by Z. Specifically, assume that the investigator
wants to estimate the exposure effect by comparing the
exposed group mean of the outcome variable Y with the
expected mean of counterfactual outcomes in a group with
the same Z distribution as the exposed (8). This comparison
may be summarized as E(Y|X = x) − E(Y0|Z = z,X = x),

where the potential outcome under the absence of exposure
is denoted Y0. Our proposed approach makes use of a disease
score, F(Z), a function of Z that confers conditional inde-
pendence between the potential outcome under the absence
of exposure and Z (7, 8). Under our proposed approach, the
score is estimated by fitting a regression model to empirical
data for an unexposed reference group. We discuss several
options for identifying an unexposed reference group in the
Discussion. For the case of a single binary regressor variable,
Z = z, the disease score could be estimated by fitting a linear
regression model to the data for the unexposed reference
group, E [Yi|Zi, Xi = 0] = θ0 + θ1Zi, and then setting
F̂ (zi) = θ̂0 + θ̂1zi, for all individuals i in the study sample.
A standardized measure of the change in the expectation
of Y given a unit change in X is quantified in the study
sample as the difference between the mean Y conditional on
exposure and the expected mean of the potential outcomes
in the absence of exposure (8–13). This estimate of the
standardized exposure-outcome association can be obtained
by fitting a regression model to the study sample data (nota
bene, not the reference group) that includes the estimated
score, F̂ (Z), as an offset,

E
[
Yi|F̂ (Zi) , Xi

] = ψ0 + F̂ (Z = zi) + γXi (3)

Nonparametric bootstrap standard errors for the estimated
coefficients can be obtained (Web Appendices 1 and 2, avail-
able at https://doi.org/10.1093/aje/kwaa208).

Note that under equation 1 the association between T and
Y does not vary across levels of Z, and an estimate of the
parameter describing the effect of T on Y , α̂, is collapsible
(i.e., in the absence of confounding by Z, a crude estimate
of α equals the Z-conditional estimate of association). Given
these conditions, we may readily compare the standardized
estimate of association obtained by fitting model equation 3,
γ̂, with the covariate-conditional estimate of association that
would be obtained by fitting model equation 1, α̂, and to the
conditional estimate of association that would be obtained
by fitting model equation 2, β̂. Thus, we can establish the
performance of each estimator relative to a known true
exposure-response, if available, and to exposure-response
estimates that can feasibly be estimated in a given data set.

Bias due to exposure measurement error

Given classical measurement error, we may expect atten-
uation bias in our estimate of the true exposure-outcome
trend due to performing a regression on X, an error-prone
version of T . The expected covariate-conditional estimate of
association derived under equation 2 follows the expression

E (β) = α
σ2

T|Z
σ2

X|Z

where σ2
T|Z denotes the Z-conditional variance of T , and σ2

X|Z
denotes the Z-conditional variance of X. Given a correctly
estimated disease score, the expected covariate-standardized
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estimate of association derived under equation 3 follows the
expression

E (γ) = α
σ2

T

σ2
X

.

Therefore, the expected value for the estimated covariate-
adjusted association between the surrogate measure and
outcome, β, will tend to differ from the expected value for
the covariate-standardized estimate of association, γ, and
our sample estimate of γ̂ will tend to be closer than β̂ to the
true exposure-disease estimate of association of interest, α.

If Xi is a perfect proxy for Ti, such that
σ2

T
σ2

X
= σ2

T|Z
σ2

X|Z
= 1

then the estimates, β̂ and γ̂, obtained using the surrogate
measure X suffer no attenuation bias; if Z is independent

of T , such that
σ2

T
σ2

X
= σ2

T|Z
σ2

X|Z
, then the estimates β̂ and γ̂ will

suffer the same degree of attenuation bias due to classical
measurement error, and if α = 0 then the estimates will
tend to be unbiased, β̂ = γ̂ = 0. However, in the setting of
interest, where the surrogate exposure variable, Xi, provides
an imperfect measure of Ti, α �= 0, and covariates Zi are
confounders, attenuation bias will occur and it will be greater
for the covariate-conditional estimate than the standardized

estimate of association because
σ2

T|Z
σ2

X|Z
<

σ2
T

σ2
X

when Zi predict

Ti (noting that under these conditions
σ2

T|Z
σ2

X|Z
= σ2

T|Z
σ2

T|Z+σ2
X|T

<

σ2
T

σ2
X

= σ2
T

σ2
T+σ2

X|T
).

of association, β̂, follows, β̂corr = β̂
σ̂2

X|Z
σ̂2

T|Z
, where

σ̂2
X|Z

σ̂2
T|Z

denotes the ratio of Z-conditional variances of T and X.
The measurement error–corrected standardized regression
estimate of the association of interest γ̂, follows the expres-

sion γ̂corr = γ̂
σ̂2

X
σ̂2

T
. Using a validation study, we can derive

a corrected estimate of the association of interest. Both
measurement error–corrected estimates, β̂corrand γ̂corr, will
tend to be unbiased estimates of the true exposure-disease
estimate of association of interest; however, the approaches
differ in statistical efficiency. Moreover, given a validation
sample of fixed size, reliable estimates of the covariate-
conditional variances, σ2

X|Z and σ2
T|Z , are more difficult to

obtain than reliable estimates of the marginal variances, σ2
X

and σ2
T , and these challenges increase as the dimensionality

of the covariate vector Z increases.
The variance of the measurement error–corrected estimate

of the covariate-adjusted association between the surrogate
measure and outcome, β̂corr, will tend to be greater than
the variance of the measurement error–corrected covariate-
standardized estimate of association, γ̂corr. The relative
advantage of the proposed standardized approach when
compared with correction of bias in a covariate-conditional
model will tend to increase as the covariate vector increases.
Web Appendix 3 includes an expression for approximate
variance estimation of the proposed measurement error–
corrected covariate-standardized estimate.

Simulation example

We use simulated data to illustrate the performance of
the proposed method. We simulated data for 1,000 studies
with 4,500 people in the study sample and 500 people in
an unexposed reference sample to illustrate a setting with
moderate sample sizes, and we simulated 1,000 studies with
5,000 people in the study sample and 5,000 people in an
unexposed reference sample to illustrate a setting with a
large sample sizes. Each person was randomly assigned a
covariate value Z by sampling from a normal distribution,
Z = N(0, 1). In the study sample, true exposure, T , was
generated by sampling from the distribution, T = log(1 +
exp(ωT|ZZ + N(0, 1))), and a surrogate exposure, X, was
assigned under a model of classical additive error, of the
form X = T+N

(
0, σ2

X|T
)
, such that surrogate measures could

take values less than zero due to measurement error. In the
reference sample, T and X were set to 0. The outcome vari-
able Y was assigned by sampling from normal distribution
under a model of the form Y = 1 + 2Z + 1T + N(0, 1).
Simulations were conducted for scenarios where ωT|Z = 0,
1, 2, and for scenarios where σ2

X|T = 0.2, 0.5, 1, similar to
the ranges of measurement errors that have been posited in
simulations in a range of epidemiologic substantive areas
(16–18).

For each simulated data set, we calculated
σ2

T
σ2

X
and

σ2
T|Z

σ2
X|Z

in the study sample. We fitted a regression model for Y
conditional on T and Z to summarize the association under
the data-generating model, and we fitted a model for Y

The arguments above are developed in the context of lin-
ear regression for a continuous outcome variable. Previous 
work suggests that similar qualitative conclusions regarding 
the impact of classical measurement error on estimated 
parameters can be drawn for logistic and log linear regres-
sion models for binary outcomes (14), and an approach for 
incorporation of a disease risk score in regression analyses 
that involve a binary outcome variable has been described 
previously (15). While we focus on a model of additive 
measurement errors of the form, Xi = Ti + ηi, where  
ηi ∼ N

(
0, σ2

X|T 
)
, another measurement error model often 

discussed in environmental and occupational settings is a 
multiplicative measurement error model of the form Xi = 
Ti exp(ηi), or equivalently ln(Xi) = ln(Ti) + ηi. Notably,  
if the model for the true exposure-outcome association is 
linear in ln(Ti), and the investigator fits a regression model 
for ln(Xi), then the description we provide for attenua-
tion holds because the errors are simply additive on a log 
scale (14).

Correction for measurement error

Suppose that we have a validation study in which we 
have measured X and T , along with covariates Z. We may  
correct for attenuation bias in our estimate of the exposure-
outcome using information from the validation study on 
the association between X and T . The measurement error–
corrected association of the covariate-conditional estimate



conditional on X and Z to summarize the biased estimate
of association when fitting a model using the error-prone
variable X rather than T . We then estimated the proposed
standardized regression model, first estimating the disease
score among those in the reference sample, and then incor-
porating the estimated score as a regression model offset in
a model for Y as a function of X fitted to the study sample
(as in equation 3), with a robust variance estimate. We
summarized results from the simulated studies by computing
the mean of the estimated X-Y association, the estimated
standard deviation of the estimates (the empirical standard
error, ESE), and the average estimated standard error of the
estimate (ASE).

In addition, we simulated a small validation study of 100
people in which we observed X and T , along with covari-
ates Z. Using this validation study sample, we calculated a
measurement error–corrected standardized estimate of asso-

ciation as γ̂
σ̂2

X
σ̂2

T
. We also calculated

σ2
T|Z

σ2
X|Z

and calculated a

measurement error–corrected covariate-conditional estimate

of association as β̂
σ̂2

X|Z
σ̂2

T|Z
. We summarized corrected estimates

from the simulated studies by computing the mean of the
corrected estimates of the X-Y association and the estimated
standard deviations of the mean estimates.

To illustrate the impact of classical measurement error
on estimated parameters in regression models in which the
outcome variable was a binary variable, in each simulated
data set we also generated a random binary outcome, D,
that took a value of 1 with probability, p = exp(1T) ×
[exp(−3.5+2Z)/(1+exp(−3.5+2Z))]. We fitted a general
relative risk regression model for D conditional on X and
Z to summarize the association when fitting a model using
the error-prone variable X rather than T . We fitted a logistic
model for D conditional on Z to estimate a disease risk
score among those in the reference sample, and we estimated
a standardized regression estimate by fitting a regression
model for D as a function of X to the study sample with log
link, including the natural log of the disease risk score as an
offset (15).

Empirical example

We illustrate the proposed method in empirical data that
were derived from the Orinda Longitudinal Study of Myopia
(California, 1989–2001), a cohort study of ocular com-
ponent development and risk factors for nearsightedness
among children, including family history of myopia and the
amount and type of visual activity that a child performed
(19). The exposure of primary interest was self-reported
hours per week reading for pleasure (READHR, in units of
hours); and the outcome of interest was spherical equivalent
refraction (SPHEQ, in units of diopter, a measure of the eye’s
effective focusing power). Covariates included age at study
entry (AGE, in years), year of study entry (STUDYYEAR, in
years), sex (GENDER, 1 = female, else 0), maternal history
of myopia (MOMMY, 1 = yes, else 0), and paternal history of
myopia (DADMY, 1 = yes, else 0). Here, we consider those
who reported a complete absence of reading for pleasure
(0 hours) as an accurate indication of the absence of expo-

sure. Among those who reported reading for pleasure, we
assumed that exposure estimates suffer error proportional to
the true value, ln(Xi) = ln(Ti)+ηi. Using data for those 180
children who reported 0 hours per week reading for pleasure,
we fitted a regression model for SPHEQ as a function of
AGE, STUDYYEAR, GENDER, MOMMY, and DADMY,
and we derived an estimated disease score as the predicted
value of SPHEQ given the fitted model and observed covari-
ates. Using data for those 438 children who reported 1 or
more hours per week reading for pleasure, we estimated
the diopter change per log-unit increase in hourly reading
by fitting a regression model for SPHEQ as a function of
ln(READHR), with the estimated disease risk score included
as an offset term. We compared results estimated using the
proposed approach with those estimated using a covariate-
conditional regression model for SPHEQ as a function of
ln(READHR), AGE, STUDYYEAR, GENDER, MOMMY,
and DADMY in the study sample of those children with 1
or more hours per week reported reading for pleasure, and
to a crude regression model for SPHEQ as a function of
ln(READHR).

RESULTS

Simulation

Table 1 reports the simulation results for varying degrees
of measurement error, σ2

X|T (0.2, 0.5, or 1.0), and for varying
magnitudes of the association between covariate Z and T ,
ωT|Z . In all simulations, the average estimated parameter,
α̂, was equal to 1. In all simulations, the average estimated

parameter β̂ corresponded to α̂
(

σ̂2
T|Z

σ̂2
X|Z

, such that the Z-

conditional estimate of association obtained using the error-
prone proxy X was attenuated relative to the simulation setup
for the underlying association between T and Y conditional
on Z. As the degree of exposure measurement error, σ2

X|T ,
increased, the attenuation relative to the simulation setup
increased in β̂. In general, the ratio σ̂2

T|Z/σ̂2
X|Z increased

toward 1 as the variance of the measurement error, σ2
X|T ,

decreased toward 0, and as the Z-conditional variance of
T increased toward positive infinity. In all simulation sce-
narios, the empirical standard error of α̂ conformed to the
average of the estimated standard errors, and the empirical
standard error of β̂ conformed to the average of the estimated
standard errors (Web Table 1).

Proposed approach: continuous outcome variable

Under the simulation conditions examined, the proposed
marginal estimate of the exposure-outcome association
(model 3) suffered less bias due to classical measurement
error than the covariate-conditional estimate of association
(model 2) when the covariate Z was associated with true
exposure T (i.e., ωT|Z > 0). When exposure was independent
of covariates (i.e., ωT|Z = 0) the standardized estimate
of the X-Y association tended to equal the Z-conditional
estimate of the X-Y association (γ̂ = β̂). The standardized and



Table 1. Results of Simulations of Associations Between a Continuous Covariate, Continuous Exposure,
Mismeasured Continuous Surrogate Exposure, and Continuous Outcome

Simulation Setup Simulated Data Characteristics Estimates Obtained From Fitted Models

σ2
X|T ωT|Z σ̂

2
T σ̂

2
T/σ̂

2
X σ̂

2
T|Z/σ̂

2
X|Z Model Parametera Estimate SEb

0.2 2 1.51 0.88 0.72

E
[
Yi|Zi, Ti

]
α̂ 1.00 0.02

E
[
Yi|Zi, Xi

]
β̂ 0.72 0.02

E
[
Yi|F̂(Zi), Xi

]
γ̂ 0.88 0.01

1 0.57 0.74 0.61

E
[
Yi|Zi, Ti

]
α̂ 1.00 0.03

E
[
Yi|Zi, Xi

]
β̂ 0.61 0.02

E
[
Yi|F̂(Zi), Xi

]
γ̂ 0.74 0.02

0 0.27 0.58 0.58

E
[
Yi|Zi, Ti

]
α̂ 1.00 0.03

E
[
Yi|Zi, Xi

]
β̂ 0.58 0.02

E
[
Yi|F̂(Zi), Xi

]
γ̂ 0.58 0.02

0.5 2 1.51 0.75 0.50

E
[
Yi|Zi, Ti

]
α̂ 1.00 0.02

E
[
Yi|Zi, Xi

]
β̂ 0.50 0.02

E
[
Yi|F̂(Zi), Xi

]
γ̂ 0.75 0.01

1 0.57 0.53 0.39

E
[
Yi|Zi, Ti

]
α̂ 1.00 0.03

E
[
Yi|Zi, Xi

]
β̂ 0.39 0.02

E
[
Yi|F̂(Zi), Xi

]
γ̂ 0.53 0.02

0 0.27 0.35 0.35

E
[
Yi|Zi, Ti

]
α̂ 1.00 0.03

E
[
Yi|Zi, Xi

]
β̂ 0.35 0.02

E
[
Yi|F̂(Zi), Xi

]
γ̂ 0.35 0.02

1.0 2 1.51 0.60 0.34

E
[
Yi|Zi, Ti

]
α̂ 1.00 0.02

E
[
Yi|Zi, Xi

]
β̂ 0.34 0.01

E
[
Yi|F̂(Zi), Xi

]
γ̂ 0.60 0.01

1 0.57 0.36 0.24

E
[
Yi|Zi, Ti

]
α̂ 1.00 0.03

E
[
Yi|Zi, Xi

]
β̂ 0.24 0.01

E
[
Yi|F̂(Zi), Xi

]
γ̂ 0.36 0.01

0 0.27 0.21 0.21

E
[
Yi|Zi, Ti

]
α̂ 1.00 0.03

E
[
Yi|Zi, Xi

]
β̂ 0.21 0.01

E
[
Yi|F̂(Zi), Xi

]
γ̂ 0.21 0.01

Abbreviations: SE, standard error; T, continuous exposure; X, mismeasured continuous surrogate exposure; Y,
continuous outcome; Z, continuous covariate.

a The estimated parameter α̂ quantifies the association between T and Y, adjusted for Z; the estimated parameter
β̂ quantifies the association between X and Y, adjusted for Z; and the estimated parameter γ̂ quantifies the
association between X and Y standardized to the Z-distribution among the exposed.

b Empirical standard error.



Table 2. Correction for Classical Exposure Measurement Error Using a Validation Subsample, Showing Results
of Simulations of Associations Between a Continuous Covariate, Continuous Exposure, Mismeasured Continuous
Surrogate Exposure, and Continuous Outcome

Simulation Setup
Model Correctiona Estimate SEb

σ2
X|T ωT|Z

0.2 2 E
[
Yi|Zi, Xi

]
β̂
(
σ2

X|Z/σ2
T|Z

)
1.02 0.18

E
[
Yi|F̂(Zi), Xi

]
γ̂
(
σ2

X/σ2
T

)
1.01 0.07

1 E
[
Yi|Zi, Xi

]
β̂
(
σ2

X|Z/σ2
T|Z

)
1.03 0.21

E
[
Yi|F̂(Zi), Xi

]
γ̂
(
σ2

X/σ2
T

)
1.02 0.12

0 E
[
Yi|Zi, Xi

]
β̂
(
σ2

X|Z/σ2
T|Z

)
1.03 0.21

E
[
Yi|F̂(Zi), Xi

]
γ̂
(
σ2

X|Z/σ2
T|Z

)
1.02 0.15

0.5 2 E
[
Yi|Zi, Xi

]
β̂
(
σ2

X|Z/σ2
T|Z

)
1.04 0.25

E
[
Yi|F̂(Zi), Xi

]
γ̂
(
σ2

X/σ2
T

)
1.02 0.11

1 E
[
Yi|Zi, Xi

]
β̂
(
σ2

X|Z/σ2
T|Z

)
1.06 0.29

E
[
Yi|F̂(Zi), Xi

]
γ̂
(
σ2

X/σ2
T

)
1.05 0.20

0 E
[
Yi|Zi, Xi

]
β̂
(
σ2

X|Z/σ2
T|Z

)
1.06 0.31

E
[
Yi|F̂(Zi), Xi

]
γ̂
(
σ2

X/σ2
T

)
1.08 0.30

1.0 2 E
[
Yi|Zi, Xi

]
β̂
(
σ2

X|Z/σ2
T|Z

)
1.06 0.30

E
[
Yi|F̂(Zi), Xi

]
γ̂
(
σ2

X|Z/σ2
T|Z

)
1.03 0.18

1 E
[
Yi|Zi, Xi

]
β̂
(
σ2

X|Z/σ2
T|Z

)
1.07 0.34

E
[
Yi|F̂(Zi), Xi

]
γ̂
(
σ2

X/σ2
T

)
1.08 0.34

0 E
[
Yi|Zi, Xi

]
β̂
(
σ2

X|Z/σ2
T|Z

)
1.05 0.32

E
[
Yi|F̂(Zi), Xi

]
γ̂
(
σ2

X/σ2
T

)
1.10 0.46

Abbreviations: SE, standard error; T, continuous exposure; X, mismeasured continuous surrogate exposure; Y,
continuous outcome; Z, continuous covariate.

a The estimated parameter β̂ quantifies the association between X and Y, adjusted for Z, and the estimated
parameter γ̂ quantifies the association between X and Y standardized to the Z-distribution among the exposed.

b Empirical standard error.

covariate conditional estimates of association had similar
precision (i.e., the empirical standard error of γ̂ was equal
to the empirical standard error of β̂). Under the simulation
conditions, the average of the estimated robust standard
errors was similar to the empirical standard error of γ̂ (Web
Table 1), whereas in simulation scenarios with a smaller
unexposed reference group, robust standard errors were not
always conservative and suggest bootstrap-based confidence
intervals may be preferred for γ̂ (Web Table 1).

Measurement error correction using a validation study

The simulation results in Table 2 illustrate that when an
exposure validation study is available with which to assess
exposure measurement error, the proposed marginal esti-
mate of the continuous exposure variable–continuous out-
come variable association can be corrected for measurement
error more efficiently than the covariate-conditional estimate
of association. The proposed approach led to corrected esti-
mates of association that tended to be very close to the true
association specified under the simulation setup, α̂ = 1.

When the covariate Z is a confounder, and therefore asso-
ciated with true exposure T (i.e., ωT|Z > 0), the empirical
standard errors for measurement error–corrected measures
of association derived using the proposed approach tended
to be smaller than the empirical standard errors for mea-
surement–error corrected covariate-conditional estimates of
association.

Proposed approach: binary outcome variable

Web Table 2 reports results of simulations in which the
outcome is a binary variable. The average covariate-adjusted
estimated parameter β̂ obtained using the error-prone proxy
X is attenuated relative to the simulation setup for the under-
lying association. The average covariate-standardized esti-
mated parameter, γ̂, tended to suffer less attenuation bias
than the covariate-adjusted association, β̂. Only, when T and
Z are uncorrelated (i.e., ωT|Z = 0), was the standardized
estimate equal to the Z-conditional estimate of the exposure-
outcome association (γ̂ = β̂).



Empirical results

The proposed standardized estimate of the association
between reading for pleasure and spherical equivalent
refraction was −0.0704 (95% confidence interval: −0.1392,
−0.0015) diopter change per log-unit increase in hourly
reading for pleasure each week. The covariate conditional
estimate of the association between reading for pleasure
and spherical equivalent refraction was −0.0277 (95%
confidence interval: −0.1062, 0.0508) diopter change per
log-unit increase in hourly reading for pleasure each week.
The crude estimate of the association (−0.0630; 95%
confidence interval: −0.1412, −0.0151) is fairly close to
the standardized estimate (and fairly far from the covariate
conditional estimate), which would suggest that there is not
much net confounding bias being addressed by conditioning
on the set of covariates but quite a bit of inflation of
attenuation bias due to measurement error occurring upon
conditioning on these covariates.

extends to multivariable regressions, as illustrated in our
empirical example. In this study we did not address the set-
ting where the confounder also is measured with error. Prior
work suggests that when classical measurement error affects
confounders, as well as the exposure of interest, there will be
residual confounding in a multivariable regression estimate
of the exposure-outcome of primary interest coupled with
the inflation of attenuation bias due to classical measurement
error in the exposure variable of interest that occurs upon
conditioning for covariates that are predictors of exposure
(6). The proposed marginal estimator also is expected to
be susceptible to residual confounding when covariates are
measured with error; however, as in the setting of interest
in the present study (where only the exposure of interest
is measured with error), the proposed marginal estimator
is not susceptible to the bias inflation that can occur as
confounding variables are included in a multivariable regres-
sion model. In simulations, while the true exposure is non-
negative, we allowed that the explanatory variable included
in the regression model could be negative due to classical
measurement error. In occupational settings, for example,
negative values may occur when background exposures must
be subtracted from personal exposure readings, and in the
context of multiplicative errors, if the investigator fits a
regression model for ln(Xi), that explanatory variable may
be negative (although T and X are nonnegative).

The proposed approach relies upon a disease score that
is estimated in an unexposed reference group. An inves-
tigator may have multiple options for defining the unex-
posed reference group to be used when estimating a disease
score. If the exposure of interest is newly emerging, a well-
defined unexposed group may be defined using historical
information. For example, in a study of the safety of a
newly introduced agent, one could use historical data to
model the disease score before introduction of the new
agent. Such settings arise in occupational and environmental
studies when a novel environmental contaminant or a change
in industrial process occurs; one could use historical data
to model the disease score prior to the introduction of the
environmental or occupational hazard. Historical reference
groups, and external reference groups, are often used in
the literature on disease risk score models as basis for
estimation of a disease risk score (22, 23). Alternatively,
in some settings an investigator will undertake a qualitative
analysis to identify the presence or absence of exposure
prior to a quantitative analysis to determine the magnitude or
concentration of exposure. Given an accurate determination
of the absence of exposure by the initial test, there may be
no need to perform a quantitative assessment of exposure
on subjects for whom there were negative reports obtained
by the initial test. Other settings arise in environmental
studies where knowledge of process or exposure transport
is used to define an unexposed group, such that quantitative
estimates of the magnitude or concentration of exposure are
derived only for those presumed to have exposure poten-
tial. In some studies, the agent of concern is ubiquitous,
and an “unexposed” reference group is constituted by a
group with a minimal background level of exposure or
constituted by those for whom measured values were below
the minimal limit of detection. We then proceed by using

DISCUSSION

This paper discusses regression analysis of an exposure-
response association with an error-prone exposure variable. 
First, we reviewed relevant theory as well as providing sim-
ulations to illustrate that a multivariable regression analysis 
that adjusts for confounders may suffer greater attenuation 
bias due to classical exposure measurement error than a 
covariate-standardized linear regression analysis (Table 1). 
Second, we illustrated that when a gold-standard assessment 
is available and a validation study has been conducted, 
measurement error correction using the marginal estimates 
of (true and surrogate) exposures derived in a validation 
study may be substantially more statistically efficient than an 
approach to correction for measurement error that requires 
covariate-conditional estimates of exposures (Table 2).

In the classical exposure measurement error setting, a 
covariate-conditional linear regression estimate of associ-
ation suffers bias. Attenuation bias due to classical mea-
surement tends to increase as covariates that are associated 
with exposure are introduced into the regression model. 
Interestingly, this poses a notable challenge to the logic 
of any “change in estimate” approach to variable selection 
for regression modeling (20, 21) because, in settings where 
there is classical exposure measurement error, an investi-
gator cannot distinguish between a change-in-estimate of 
the exposure-outcome association that results from control 
for confounding bias upon inclusion of a covariate in the 
regression model and a change-in-estimate of an exposure-
outcome association that occurs due to increasing attenua-
tion bias from classical exposure measurement error upon 
inclusion of a covariate in the model. Our proposed approach 
reduces attenuation bias to the ratio of marginal variances,
σ2

T /σ
2
X , and the degree of attenuation bias will not depend 

upon the adjustment set of covariates.
In simulations we focused on a simple setting with a 

single covariate assumed to be measured without error. The 
simple setting allowed us to illustrate that simple expecta-
tions from theory concur with simulation results obtained 
when applying the proposed model. The approach readily



this group for estimation of a disease score; observations
below the limit of detection contribute to covariate stan-
dardization while the slope of the exposure-outcome trend
is estimated based on the observations above the limit of
detection.

The proposed approach targets estimation of the expo-
sure effect among the exposed, such that different groups
defined by levels of exposure are not necessarily mutually
standardized to a common target population. Lack of mutual
standardization is inconsequential when the exposure effect
measures are homogeneous over levels of covariates. This
was the setting described by the data-generating model we
presented in equation 1 and conforms to the conditions we
specified in our simulations. We have recently described a
model that facilitates assessment of when conditions hold
for examination of trends using a disease risk score (24). A
key condition for the proposed approach to hold is that the
estimated coefficients for the covariates, Z, derived in the
disease score model corresponds to the values for those coef-
ficients that we would derive if we fit the fully conditional
model in equation 2 (i.e., in a model that included T , the true
exposure). One suggested approach to assess whether the
model for estimation of a disease risk score is appropriately
specified is a “dry-run” analysis in which the referent group
is partitioned into pseudo-exposed and pseudo-unexposed
groups so that differences in the observed covariates resem-
ble differences between the actual exposed and unexposed
populations, but the adjusted (pseudo-)exposure-outcome
association is expected to be null. Therefore, the disease
risk score model is evaluated by its ability to retrieve an
unconfounded null estimate after adjustment in this “dry-
run” analysis (25).

Exposure measurement error and confounding are
ubiquitous in observational studies. The proposed approach
provides a useful approach to reduce bias due to classical
exposure measurement error in settings where there is
potential confounding that may be controlled through
standardization by a set of measured covariates. Moreover,
when a validation study is available, the proposed approach
may provide an efficient way to correct for bias due to
exposure measurement error. While in the text we focus on
a setting of an underlying disease model where the outcome
follows a linear regression for a continuous outcome, this is
largely to focus on a framework where the biases under each
approach can be readily calculated based on prior methods
in the literature. As illustrated in the simulations with
binary outcome variables, the approach has applicability
to nonlinear regression settings, including risk regressions
where similar patterns of attenuation are expected (6, 14).
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