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In this paper, we propose a framework for thinking through the design and conduct of descriptive epidemiologic
studies. A well-defined descriptive question aims to quantify and characterize some feature of the health of a
population and must clearly state: 1) the target population, characterized by person and place, and anchored in
time; 2) the outcome, event, or health state or characteristic; and 3) the measure of occurrence that will be used
to summarize the outcome (e.g., incidence, prevalence, average time to event, etc.). Additionally, 4) any auxiliary
variables will be prespecified and their roles as stratification factors (to characterize the outcome distribution) or
nuisance variables (to be standardized over) will be stated. We illustrate application of this framework to describe
the prevalence of viral suppression on December 31, 2019, among people living with human immunodeficiency
virus (HIV) who had been linked to HIV care in the United States. Application of this framework highlights biases
that may arise from missing data, especially 1) differences between the target population and the analytical
sample; 2) measurement error; 3) competing events, late entries, loss to follow-up, and inappropriate interpretation
of the chosen measure of outcome occurrence; and 4) inappropriate adjustment.

bias; checklist; data analysis; description; framework

Abbreviations: HIV, human immunodeficiency virus; NA-ACCORD, North American AIDS Cohort Collaboration on Research and
Design.

Editor’s note: An invited commentary on this article
appears on page 2071, and the authors’ response appears
on page 2073.

Epidemiologic questions arguably exist on a continuum
from purely descriptive to purely causal. To be concise, we
ignore prediction questions here. There are several frame-
works intended to help guide causal analyses (1, 2), but
the literature on theoretical and practical guidance for con-
ducting descriptive analyses is limited. Here we present a
framework for conducting descriptive epidemiologic stud-
ies. Many, if not all, of the considerations discussed in
this framework apply to estimation of valid causal effects
in a population, although they may be frequently over-
looked. Where there may be differences in analytical deci-
sions depending on the type of study question, we highlight
them. We summarize guidance provided herein in Table 1
in the form of a checklist modeled after the Strengthening

the Reporting of Observational Studies in Epidemiology
(STROBE) guidelines (3).

We define a descriptive epidemiologic question as one that
aims to quantify some feature of the health of a population
and, often, to characterize the distribution of that feature
across the population. The estimand for causal analyses
is a contrast of potential outcomes in a single population,
where the potential outcomes are those we would expect
to observe under some hypothetical intervention (1, 4–7).
The fundamental problem of causal inference is that we
cannot observe all of these potential outcomes (8). The
estimand for descriptive analyses is a function of the out-
comes that occurred for everyone in the target population.
The estimation challenge for descriptive analyses is that we
may not completely observe all of the actual outcomes. A
descriptive analysis might be cross-sectional or longitudinal;
it might concern a dichotomous, categorical, or continuous
outcome; and it might attempt to summarize the outcome
in any number of ways (e.g., median time to some event,



Table 1. Items That Should Be Included in Reports of Descriptive Studies

Article Section and Item Item No. Recommendation(s)

Title and abstract 1 Explicitly state that this is a “descriptive study” in the title or the abstract.

2 Summarize the target population and provide an informative and balanced summary
of estimated disease occurrence in the abstract.

Introduction

Background/rationale 3 State the motivation for the study, including, where relevant, the action that might be
informed by the results.

Objectives 4 State the descriptive estimand, explicitly including:
(a) the target population (who would be affected by any decisions made as a

result of the study?);
(b) the health state to be summarized;
(c) the measure of occurrence; and
(d) any stratification variables, if applicable.

Methods

Study design 5 (a) State whether the study is cross-sectional or longitudinal.
(b) Restate the measure of occurrence being targeted.
(c) If the study is longitudinal, specify the time origin and follow-up period for the

measure of occurrence; if the study is cross-sectional, specify the time anchor at
which the health state is summarized for individuals.

Setting 6 Describe any relevant features of the place and time in which the target population
resides and across which data were collected.

Participants 7 (a) Describe the target population thoroughly in terms of person, place, and time.
(b) Describe sampling into the study population (whether sampling was explicit or

implicit, e.g., by inclusion in an administrative database); this includes eligibility
criteria (see recommendations on data sources in item 10 below).

(c) Describe any restrictions on the analytical sample.

Outcome(s) 8 (a) State when and how the outcome is measured.
(b) Include estimates or discussion of the sensitivity and specificity of the study

outcome definition relative to the gold standard.
(c) List secondary outcomes or competing events of interest.

Covariates 9 Specify any stratification or adjustment variables—clearly define how variables were
collected or constructed.

Data sources/measurement 10 Clearly delineate any inclusion/exclusion criteria for membership in the data source,
including the original purpose for which the data were collected, if not for the
study at hand.

Bias 11 Describe any assumptions or methods used to extrapolate data from the analytical
sample to the study population and from the study population to the target
population.

Statistical methods 12 (a) Describe the primary statistical methods used to estimate the measure of disease
occurrence being targeted; discuss assumptions of that method in light of data
limitations (e.g., assumption of independent censoring for people lost to follow-up).

(b) If any adjustment/standardization will be done, state the goal of such adjustment.

Results

Participants 13 Report numbers of individuals at each study stage (this is likely to be approximate for
the target population); consider summarizing this information in a f low diagram.

Descriptive data 14 (a) Report on the characteristics of the analytical sample in a “Table 1.”
(b) Indicate the number of participants with missing data for each variable used in the

analysis.
(c) If any weighting or imputation is done to reconstruct the study sample or target

populations, include columns for those populations.

Outcome data 15 (a) Present an overall (unstratified) estimate of the measure of occurrence of interest.
(b) Report “crude” (raw data in the analytical sample) and (if applicable) “corrected”

(after any weighting or imputation) estimates.

Other analyses 16 Present prespecified stratum-specific or adjusted/standardized results.

Table continues



Table 1. Continued

Article Section and Item Item No. Recommendation(s)

Discussion

Key results 17 Summarize key results with reference to the study objectives.

Limitations 18 Summarize potential sources of selection bias and measurement error and any
attempts to mitigate these biases. Discuss both the direction and magnitude of
any potential bias. Integrating quantitative bias analysis into the study to guide
these discussions is encouraged.

Interpretation 19 (a) Avoid causal interpretations of descriptive results; avoid overinterpreting
stratum-specific differences in measures of occurrence.

(b) Describe how results of this study might inform or improve public health or clinical
practice.

living with HIV who had been linked to HIV care (i.e.,
saw a clinician who was aware of their HIV status and had
the ability to prescribe antiretroviral therapy) in the United
States? We will explore specific components of this question
to make it more well-defined (and tie those components to
analytical decisions) below.

SPECIFYING THE TARGET POPULATION (AND ITS
RELATIONSHIP TO THE STUDY SAMPLE)

For a descriptive question, we define the target population
as the group in which we would like to characterize the
distribution of the outcome. The choice of target population
is directly linked to the purpose of asking the question. The
target population might be, for example, the population for
which we will be providing public health services. The target
population is not necessarily enumerated (in contrast to a
cohort or a sample), but we do need to be able to define
membership in terms of person, place, and time (here, time
is used to define membership in the target population and
does not relate directly to measurement of the outcome).
For our example question, the target population is everyone
living in the United States (place) who was aged ≥18 years,
was infected and diagnosed with HIV, and attended ≥1
clinical visit for HIV care with a clinician who was aware of
their infection and could prescribe antiretroviral medication
(person) before December 31, 2019, and was alive through
December 31, 2019 (time).

A well-defined question specifies the target population
a priori. When data are available on a full census of the
target population (e.g., through administrative records or
public health surveillance), no sampling is needed. However,
when data on the entire population cannot be obtained, we
rely on data from a sample of the target population or a
population that we hope is sufficiently representative of the
target population with respect to both measured and unmea-
sured characteristics. The study sample is the enumerated
set of individuals whose information is captured in a data
set, among whom we attempt to measure occurrence of the
outcome (after inclusion and exclusion criteria have been
applied, if data were not collected using these criteria (e.g.,
administrative data)). Many descriptive and causal questions

mean value, etc.). While much discussion focuses on the 
most common scenarios (e.g., dichotomous outcomes), this 
framework is intended to be applied to descriptive analy-
ses for any combination of study designs, outcomes, and 
estimands.

A WELL-DEFINED QUESTION

We start with the premise that good epidemiologic 
questions are impactful and well-defined. An impactful 
question, if answered, would lead to knowledge that could 
inform action in the population it concerns (7). A well-
defined question should be stated with enough specificity 
and clarity that answering it is at least theoretically 
possible.

A well-defined research question (causal or descriptive) 
states: 1) the target population, characterized by person 
and place, and anchored in time; 2) the outcome, event, 
or health state or characteristic; and 3) the measure of 
occurrence that will be used to summarize the outcome 
(e.g., incidence, prevalence, average time to event, etc.). A 
causal question requires specifying additional components, 
such as exposures and covariates that are thought to be 
confounders, effect modifiers, or mediators. For descriptive 
questions, consideration of additional variables is optional, 
but if auxiliary variables will be considered, a well-
defined descriptive question will 4) prespecify any other 
variables of interest and how they will be considered 
(e.g., to characterize the population, as a stratification 
factor to characterize the outcome distribution, or as 
a “nuisance” variable that we would like to adjust for 
or standardize over). For a descriptive question, indis-
criminate adjustment for these other variables can lead 
to uninterpretable results that may mislead (9); as such, 
researchers should be clear as to the purpose of adjustment 
in descriptive studies, understand the implications of such 
adjustments, and be cautious in interpreting adjusted statis-
tics (10).

Example: We illustrate application of this framework to 
description of one portion of the human immunodeficiency 
virus (HIV) care continuum (11): What was the prevalence 
of viral suppression on December 31, 2019, among adults



are answered using convenience samples without a clear
sampling frame (e.g., people recruited using Web-based
surveys, frequent clinic attendees, or people who sought
medical care in a particular hospital system) and implicitly
assume that the study sample is a random sample (perhaps
conditional on covariates with known sampling probabil-
ities) of the target population. Achieving a representative
sample may involve considerable work and may be very
resource-intensive (12). However, use of convenience sam-
ples often results in study samples that are different from
the target population in unmeasurable ways, particularly
when subjects must actively seek out or opt into participa-
tion (13).

On the topic of sampling and selection, it is also use-
ful to define the analytical sample as a proper subset of
the study sample in which disease occurrence is measured
given practical limitations (e.g., excluding individuals in the
study sample who are missing information on the outcome).
We might use information from the analytical sample to
attempt to quantify disease occurrence in the study sample,
but we must rely on assumptions to do so (e.g., assuming
data are missing at random and imputing missing data or
reweighting study participants with complete data). For valid
inferences, the incidence of the outcome in the sample must
be able to stand in for the incidence in the target population.
Here, the “sample” is either the analytical sample or the
study sample represented by the analytical sample after any
attempts to handle missing data. Given the many practical
challenges enumerated above, the samples we rely on in our
studies are rarely representative of the target population. If
the distribution of risk factors for the health state differs
between the study sample and the target population, we have
a lack of generalizability (14–16); the absolute value (risk,
prevalence, rate) of the outcome in the sample will differ
from what we would have observed in the target population.
Without applying quantitative approaches to generalize data
from the sample to the target population, descriptive results
will be biased. Except in special cases (e.g., when the
selected estimand is the one scale on which effect measure
modification is absent), if absolute measures differ between
the sample and the target, most contrasts of the outcome
across exposure groups in the sample will also be biased
for the same contrasts in the target population (causal results
will be biased) (14–16). If the underlying joint distribution
of all causes of the outcome differs between the analytical
sample and the study sample, we have selection bias (17, 18).
To recover an estimand relevant to the target population from
an analytical sample with a different distribution of causes
of the outcome, stratification and standardization methods
may be appropriate.

Example: Recall that the target population is everyone
living in the United States who had been linked to clinical
care for HIV before December 31, 2019. There is mandated
reporting in the United States of new HIV diagnoses and
HIV viral load test results to public health surveillance agen-
cies under national notifiable disease regulations, and the
Centers for Disease Control and Prevention aggregates these
data from all states and dependent areas. This might seem
like a census of the target population. However, despite these
mandates, not all diagnoses are reported, and people who

move across state lines may be double-counted because of
challenges with deduplication. Thus, the number of people
with HIV infection may be inaccurate. Additionally, data
rely on HIV viral load and CD4 cell-count laboratory tests as
a proxy for clinical visits, and the proxy is imperfect (19, 20);
thus, we cannot accurately apply the second inclusion crite-
rion for target population membership: linkage to clinical
care. Alternatively, we might use data from the North Amer-
ican AIDS Cohort Collaboration on Research and Design
(NA-ACCORD) (21) or another clinical cohort of people
with HIV who have been linked to care. However, clinical
cohort studies are often nested within academic medical
centers, where the quality of care and wraparound services
may differ (and thus the probability of the outcome, viral
suppression, may differ), and may have stricter enrollment
criteria (to preserve study resources) than we have used to
define linkage to care for our target population.

There are other options for study samples we might try to
leverage. We might even choose to estimate the parameter of
interest in multiple samples and triangulate the results. The
point is that there is rarely a single, perfect, existing study
sample that can stand in for the target population. Therefore,
if we wish to use existing data, identifying ways in which
the study sample and the target population differ provides a
framework for thinking about sources of bias and how we
might adjust the estimate for better inferences.

INTERMISSION: MISSING DATA

A theme of many threats to descriptive and causal
epidemiologic inference is that they can often be cast as
missing-data problems (22). The ideal data set for answering
our descriptive epidemiologic question includes a row for
everyone in the target population and columns with values
for the outcome and any covariates of interest. When the
study sample is not a census of the target population, anyone
in the target population who is not in the study sample
will have missing data in some, if not all, columns. Indeed,
without a clear sampling frame, we do not even know how
many rows are missing from our ideal data set (and we
cannot quantify the amount of missing data from this ideal
study). Analyzing the study sample as if it were a random
sample of the target population is akin to assuming that data
are missing completely at random. If, instead, it is plausible
to assume that data are missing at random conditional on
covariates that are available for target population members
who were not selected for the study sample, we could
reweight or standardize the study sample to represent the
full target population.

Example: The surveillance data include everyone in the
target population (age ≥18 years, alive, diagnosed with HIV,
and ≥1 HIV care visit before December 31, 2019), but they
also include some people who are not in the target population
(they include people who did not make ≥1 HIV care visit
with a clinician who might prescribe antiretroviral medica-
tions), and we are unable to definitively identify people in the
surveillance data who do not meet the inclusion criteria for
the target population (we have to rely on laboratory tests as a
proxy for clinical visits) (19). However, the surveillance data
likely are closer to representing the target population than the



the complete picture about the distribution of the outcome
in the target population. Incidence tells us something about
how frequently an event occurs over time. There are multiple
measures of incidence; in the interest of space, we will
restrict our discussion to risks and rates. If individuals are
not followed over time and the event can recur, it may be
difficult to distinguish the number of affected individuals
from the number of events. Prevalent outcomes are often not
of interest in causal investigations, as temporality is more
challenging to determine and reverse causation is a potential
problem. In addition, survival bias might affect results when
considering prevalent exposures (31, 32). Finally, preva-
lence is a function of the incidence of the condition and its
duration, such that, if incidence is what is relevant to the
question at hand, prevalence might be a misleading proxy.
However, for descriptive questions designed to inform
public-health planning for secondary or tertiary prevention
measures, prevalence might be the most relevant measure of
occurrence, as it reflects the population of people who might
access those services.

Risk (the proportion of people free from disease at base-
line who develop the outcome during the study period) is
the foundation of many causal epidemiologic studies (33),
particularly as the target trial framework (1) has gained in
popularity. Risk is arguably the most easily interpretable
measure of disease occurrence for the general public (33).
We discuss rates (the number of events divided by a sum
of person-time) as an alternative measure of incidence in
a few paragraphs. Two complications for obtaining valid
estimates of either measure of incidence, however, are com-
peting events and incompletely observed person-time (left-
truncation and right-censoring).

Competing events are events that preclude the event of
interest from occurring and are theoretical if not practical
problems for all outcomes other than all-cause mortality
(34). In the presence of competing events, we have the
option to report the conditional or unconditional risk (i.e.,
cumulative incidence function) (35). The conditional risk
is the proportion of people free from disease at baseline
that we would expect to develop the outcome during the
study period if all competing events were prevented with-
out changing the hazard of the event of interest; it is the
risk “conditional” on removal of the competing event. It is
estimated by censoring persons who experience a competing
event and is the first and sometimes only estimand of risk
that students of epidemiology are taught (36). It is also
implied by the exponential formula for converting rates to
risks. However, complete removal of the competing event
is a hypothetical intervention, and the conditional risk is
the risk under that often-infeasible intervention. If our goal
is to describe the world as it exists, absent hypothetical
interventions, the cumulative incidence function is recom-
mended when the number of competing events is nontrivial
(37). The cumulative incidence function (or, as is implied
but is a less commonly used term, the unconditional risk)
is the proportion of people free from disease at baseline
who would develop the outcome of interest during the study
period in the real world in which a competing event might
remove them from follow-up and preclude them from ever
developing the outcome of interest.

NA-ACCORD data (which do not include everyone in the 
target population, although they do not include anyone who 
should be excluded from the target population). Therefore, 
we might use surveillance data for our primary analyses, 
but we might conduct secondary analyses that leverage the 
relative strengths of the different study samples and, for 
example, reweight NA-ACCORD data that include visits to 
resemble the target population implied by the surveillance 
data.

DEFINING THE OUTCOME

To describe the occurrence, frequency, or relative fre-
quency of an outcome, we need an unambiguous definition 
of that outcome, and we must be able to apply that definition 
in our data. In the absence of a gold standard or the ability 
to apply that gold standard due to data or resource con-
straints, we must understand how imperfect sensitivity and 
specificity might affect our results. Measurement error has 
previously been described as a missing-data problem (22) 
in which the true outcome is missing and we overwrite that 
missing value with a mismeasured outcome. To the extent to 
which the mismeasured outcome is a poor substitute for the 
true outcome, our inferences will be biased.

Example: Our outcome is “viral suppression” on Decem-
ber 31, 2019, but there is no single, standard threshold 
for suppression. Prior studies have used plasma HIV RNA 
levels of <20, <50, <200, or <400 copies/mL (23). Lower 
thresholds will result in a lower estimate of the prevalence 
of viral suppression; for example, in an HIV clinical cohort 
in Baltimore, Maryland, the proportion of patients estimated 
to have a suppressed viral load in a given year from 2010 to 
2018 was 75% if the threshold for suppression was set at 
<20 copies/mL but 89% if the threshold was set at <400 
copies/mL (24). Failure to suppress viral load below a lower 
threshold may also be a more sensitive indicator of sub-
sequent morbidity and mortality (24–28), but suppression 
below a higher threshold is more relevant as an indicator 
of an individual’s transmission potential (29, 30), so our 
choice of threshold may depend on how our results will be 
used. Additionally, not everyone in either of our candidate 
study samples will have had a viral load measurement on 
December 31, 2019, exactly. Typically, researchers accept 
viral loads measured within a time window around some 
key date as indicative of the viral load on that key date. We 
must decide how wide a window we are willing to use to 
answer our question. The width we are willing to tolerate 
might depend on how frequently we anticipate viral load 
changes in the population. A wider window risks assigning 
a viral load value to December 31 that is inaccurate because 
viral load has changed since measurement, while a narrower 
window will result in a larger proportion of the cohort with 
a missing viral-load value.

SPECIFYING A MEASURE OF OCCURRENCE

We have multiple options for measures of occurrence, 
and like the proverbial blind men feeling the elephant, our 
choice of measure of occurrence might give us only part of



Risks can be calculated in the presence of late entries
(left-truncation) and loss to follow-up (right-censoring)
under strong assumptions about independence between
entering/leaving the study and risk of the outcome (38, 39).
Left-truncation and right-censoring impute outcomes for
people who did not survive to enroll in the study sample
and for people who are censored (38). We can adjust for
possible associations between censoring and the outcome
(and resultant selection bias) using inverse probability of
censoring weights (40). However, the resultant risks are
interpretable as the risk that would have been observed if no
one were lost to follow-up (a hypothetical intervention), and
will be different from the natural course if loss to follow-up
was associated with the outcome in ways not captured by
covariates in the weight model or if loss to follow-up itself
directly altered the risk of the outcome (18, 40).

Finally, rates may occasionally be a useful measure of
incidence as an alternative to risks, especially for descriptive
studies. Risks are only defined relevant to a population free
of, and biologically at risk for, the outcome at a particular
time origin. When we would like to describe incidence
across a time metric along which not all people were bio-
logically at risk at the time origin, rates can appropriately
exclude person-time not at risk and allow for reporting of
smoothed incidence estimates. For example, when describ-
ing temporal trends for the incidence of HIV diagnoses since
the beginning of the epidemic in the 1980s, there will be
people who were not born (not at risk for the outcome) in the
1980s who should be counted in the target population in the
2010s. Perhaps in an idealized descriptive study, we would
report the daily risk of HIV diagnosis restricted to people
who were alive and at risk for HIV diagnosis at the start
of each day. However, across 3 decades this may be com-
putationally intensive and impractical given the granularity
of data collection and reporting. We might instead report
weekly, monthly, or yearly HIV diagnosis risk, but the wider
the time interval across which we measure risk becomes, the
greater the number of people in our target population who
are not at risk at the start of the interval. How should we
treat people born in December 1990 when calculating the
risk of HIV diagnosis in 1990? In contrast, if we are willing
to assume that the rate of HIV diagnosis across a calendar
year is approximately constant, or if we assume that the
average rate is a reasonable representation of the incidence
in that year, rates could appropriately exclude person-time
in which people are not biologically at risk. The assumption
of a constant rate or the acceptability of an average rate for
answering the study question should be plausible across the
time intervals chosen, or time should be further discretized.
Another benefit of rates is that they are straightforward to
estimate when we do not have individual-level data, which
is more common in descriptive analyses than in causal
or predictive epidemiologic analyses. For example, rates
are the standard measure of incidence used for notifiable
diseases, where health departments count case reports to
get the numerator and use midyear census estimates for the
denominator.

Example: We have clearly specified in our research ques-
tion that we are interested in the prevalence of viral sup-
pression on December 31, 2019. People in our study sample

with no viral load measurement in 2019 are lost to follow-up.
Viral suppression is influenced by access to health care and
is only possible if people are receiving antiretroviral therapy
(except, in rare cases, for elite controllers) (41). In this set-
ting, people who are lost to follow-up may have transferred
to another clinic and may still be receiving treatment (if we
are using NA-ACCORD data) or may have moved out of
the jurisdiction (if we are using surveillance data), and we
might assume that they have the same probability of viral
suppression as people with a viral load measurement (cen-
soring is appropriate; equivalently, we can restrict analyses
to people with a measured viral load) (24). Alternatively,
people who do not have a viral load measurement may have
dropped out of clinical care and may not have access to
antiretroviral therapy. The probability of viral suppression
among these individuals is near 0 (we might think of loss
to follow-up as a competing event and assign a value of
“not suppressed” to persons who are lost to follow-up) (42).
Understanding the assumptions and implications of different
analytical decisions for these people is critical for making
the right inference about the prevalence of the outcome.

THE ROLE OF COVARIATES

When describing the prevalence or incidence of an out-
come, we sometimes want to characterize the people who got
the outcome according to covariates. Alternatively, we may
want to account for nuisance variables, such as factors that
differ between the study sample and the target population
or between groups we plan to stratify by. When charac-
terizing groups with the highest incidence of the outcome,
bivariate results can make it challenging to understand how
covariates interact to determine the distribution of disease.
For example, if the prevalence of viral suppression is lower
for cisgender women than for cisgender men and lower for
Black patients than for White patients (43), what would we
expect to see regarding the prevalence of viral suppression
for cisgender White women relative to cisgender Black men?
Stratifying on multiple variables simultaneously might be
helpful in this setting, or we may want to employ theoret-
ical models (e.g., conceptual frameworks for how variables
influence risk of the outcome) or statistical strategies (e.g.,
supervised machine learning) to identify the most important
variables if there are not enough data to stratify on all
variables of interest. Conversely, when trying to understand
whether one covariate is associated with the distribution of
disease independently or merely because of its correlation
with another covariate, a common approach is to put all
covariates into a single model. However, this approach can
lead to incorrect interpretations of the results and inappropri-
ate recommendations for actions (44). Adjustment implies
an intervention on the data and a distortion of reality—for
example, “Would Black people still have lower prevalence
of viral suppression if they had the same distribution of HIV
acquisition risk factors as White people?”. Inappropriate
adjustment may understate the magnitude of disparities (45)
and adjusted statistics are prone to be interpreted causally,
which could lead to inappropriate recommendations (9). We
endorse reporting and primary interpretation of unadjusted



results for descriptive studies and clear justification and
proper interpretation in cases where adjustments are made.

CONCLUSIONS

Descriptive epidemiologic studies seek to characterize
what is happening in the world to inform public health
priorities, target interventions, and occasionally contrast
with counterfactual scenarios to estimate intervention effects
(46, 47). Descriptive studies have value in their own right
and not merely as stepping stools toward causal inference.
Characterizing what is happening in the world requires that
we be very clear about the particular slice of the world and
the specific outcome we hope to study. Generalizability and
selection biases can bias descriptive studies when study
participation is associated with the outcome. Measurement
error can bias descriptive studies when we do not use,
or there is no gold-standard measure of, the outcome.
Different measures of occurrence will provide different
pictures of what is happening in the world. Censoring people
who have a competing event or adjusting for covariates
implies interventions on the data such that the results are a
distorted version of reality. These are all basic epidemiologic
principles that also affect the success of our attempts at
causal effect estimation. Performing rigorous descriptive
studies that accurately estimate a parameter of interest
and are interpretable to clinicians and policy-makers will
improve public health.
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