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ABSTRACT 
 

Parth B. Jariwala: Elucidating the interactions between gut bacterial β-glucuronidases and 
approved drugs 

(Under the direction of Matthew R. Redinbo) 
 

The human gut microbiome contains a plethora of enzymes that metabolize a myriad of 

diet-derived, host-derived, and therapeutic agents. Metabolism of therapeutic agents by gut 

microbiota can result in altered drug efficacy and toxicity. An important bacterial enzyme 

involved in the metabolism of drugs in the gastrointestinal tract is the gut bacterial β-

glucuronidase (GUS). One notable example of drug metabolism by GUS enzymes is the 

reactivation of the active metabolite of the chemotherapeutic irinotecan, SN-38, which causes 

severe, dose limiting toxicity in patients. Recent analysis of the Human Microbiome Project 

revealed 279 unique GUS isoforms encoded by gut microbiota. Elucidating the exact GUS 

isoform reactivating drugs like SN-38 can lead to precise dosing of drugs on an individual basis 

and reduce gut microbiota-mediated toxic side effects. In this dissertation, a novel activity-based 

proteomics strategy is used to identify the exact GUS isoform responsible for the reactivation of 

SN-38. In addition to the metabolism of drugs by GUS enzymes, another important interaction is 

the inhibition of GUS enzymes by FDA-approved drugs. Inhibition of GUS activity can result in 

altered homeostasis because GUS enzymes also reactivate host-derived endobiotics and process 

diet-derived glucuronic acid-containing polysaccharides. We present data showing that approved 

drugs with a particular chemical scaffold can inhibit the activity of GUS enzymes. Altering the 

abundance or activity of GUS enzymes can potentially reduce GUS-mediated metabolism of 

therapeutics. We next present data on how dietary fiber influences the abundance of GUS-
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encoding gut bacterial species. These data provide information on how diet can potentially be 

used to modulate GUS activity in the gut. In addition to diet, another approach to reduce the 

metabolism of drugs by GUS and other gut microbial enzymes is using small molecule 

adjuvants. The final chapter outlines a chemoproteomics platform that could be used to discover 

selective small molecule inhibitors that reduce the metabolism of any drug of interest. Together, 

the work presented here expands on our knowledge of GUS-drug interactions, discusses methods 

to alter GUS activity, and outlines a chemoproteomics platform to identify small molecule 

inhibitors of gut enzymes. 
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CHAPTER 1: PHARMACOMICROBIOMICS 

INTRODUCTION 

In the Indian epic The Mahabharata, the guru Dronacharya leads a group of his students 

in archery practice. The objective of the lesson is to locate and precisely hit the eye of a wooden 

bird hidden in a nearby tree. Prior to allowing them to launch their arrows, Dronacharya asks 

each of them a very simple question: “What do you see?” Many of the students said a tree, some 

said leaves, a few said branches, and a few of them were simply confused by the question. The 

last student he asked was the warrior Prince Arjuna who replied, “I only see the eye of the bird.” 

Highly pleased with Arjuna’s answer, Dronacharya explains to his pupils the importance of 

solely focusing on a given target and minimizing any distractions. Arjuna goes on to become one 

of the most skilled archers in the epic, one whose arrows seldom missed their targets. 

The perfect drug is like Arjuna’s arrow: when released into the human body, it 

specifically hits the intended target and is efficiently excreted from the body. However, such a 

therapeutic arrow is still an epic fiction, as evidenced by high failure rates in clinical trials. In a 

survey done by the data analytics company Centres for Medicines Research International, nearly 

90% of therapeutics were found to fail during phase I clinical trials, 80% failed in phase II, and 

40% failed in phase III (1). Clinical trials may be terminated because of low patient recruitment 

or lack of funding, but the two main reasons are low efficacy and unknown toxic side effects (2, 

3). Most drugs fail phase I because of safety concerns, like unexpected side effects; meanwhile, 

in phase II, 50% of candidates fail due to lack of efficacy and another 30% fail because of 

unknown toxicities (2). These unanticipated biological outcomes that lead to reduced efficacy 
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and toxicity are largely due to poor pre-clinical models that do not accurately represent the 

complexities of drug interactions and metabolism in the body (4). 

Current pre-clinical models examine the probability of a therapeutic’s success using a 

combination of in vitro and in vivo models. The goal is to characterize drug efficacy, 

pharmacodynamics (i.e., the physiological impact of the drug on the host), pharmacokinetics 

(i.e., the absorption, distribution, metabolism, and excretion of the drug), toxicity, and dosing 

requirements prior to human testing (5). Recent advances, like the use of three-dimensional cell 

cultures (spheroids), help to better recapitulate human physiology and cellular biology (6). 

Spheroids, both in vitro and those implanted in animal models, enable predictions of drug 

efficacy and toxicity that better reflect those that will be seen in humans (6). Despite these 

innovations, even our most advanced pre-clinical models lack the biochemical complexity of the 

human body and thus do not fully predict how a drug will interact with the human body.  

Although many factors contribute to the inaccuracy of pre-clinical models, an 

underappreciated component of drug-body interactions is the effect of the host gut microbiota on 

drug efficacy and toxicity. Orally and parenterally taken drugs and associated drug metabolite(s) 

can reach the gastrointestinal (GI) tract in appreciable quantities directly after oral administration 

or indirectly via biliary excretion from the liver (7). For example, the Food and Drug 

Administration (FDA) reports that 92% of the tyrosine kinase inhibitor ceritinib and 69% of the 

cyclin-dependent kinase inhibitor ribociclib were recovered in feces as the unmetabolized parent 

compound (8). When in the GI tract, drugs like ceritinib and ribociclib are exposed to the most 

diverse reservoir of biological factors found in the host: those generated by the intestinal 

microbiome (9). An increasing body of evidence shows that an appreciable number of drugs can 

be metabolized by the human gut microbiota (Figure 1.1) (10). These microbiota-derived 
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metabolites have the potential to re-enter systemic circulation via enterohepatic circulation (11). 

Indeed, the biotransformation of small molecule agents catalyzed by the gut can result in altered 

drug bioavailability, treatment efficacy, and drug toxicity (12). 

 

Figure 1.1 Pharmacomicrobiomics. An overview of the various ways drugs and gut flora 
interact with one another. 
 

The human gut microbiota is home to approximately 1,000,000,000,000 bacterial cells, 

which is equivalent to the number of human cells in the body (13). To date, the genomes of more 

than 1,000 different gut bacterial isolates have been sequenced and mapped; cumulatively, the 

gut microbiota is estimated to contain 100 times more genes than the human genome (13). This 

consortium of gut bacteria has the potential to modify a drug through a myriad of enzymatic 

chemistries (e.g., hydrolysis, decarboxylation, and reduction) (12). Biotransformation of drugs in 

the GI tract not only impact drug pharmacology and efficacy but can also cause dysbiosis in gut 

bacterial composition through unwarranted metabolite-bacteria interactions (Figure 1.1). Many 

gut bacterial species are beneficial for the host as they produce chemical agents that are 

important for normal functioning like analgesics, vitamins, antioxidants, anti-inflammatory 

agents, and short-chain fatty acids (SCFAs) (e.g., acetate, propionate, and butyrate) (14). Drug-

Drug

Gut
Microbiota

Drug Metabolite(s)

Host Physiology

Alterted Treatment
Outcome

Drug-Mediated
Taxanomic Shift

Inhibition

Inhibition InhibitionGut-Mediated
Metabolite Production

Altered Gut
Profile



 

 4 

mediated dysbiosis and reduction in species-level diversity via metabolite-bacteria interactions 

can disrupt production and regulation of these beneficial biochemicals, which can lead to 

pathogenesis of GI disorders such as inflammatory bowel disease and irritable bowel syndrome, 

as well as extra-intestinal disorders like obesity and cardiovascular disease (15). 

 In addition to the richness of bacterial species present in the gut, there is great variation in 

gut bacterial composition from individual to individual (16). This immense disparity is due to 

host genomics as well as environmental factors, which include diet, exercise, the host immune 

system, and even geographic location (17, 18). Remarkably, even monozygotic twins can 

develop different gut bacterial profiles, which highlights the integral role of the environment in 

regulating gut bacterial composition (19). For drugs that are metabolized by the gut microbiota 

and have narrow therapeutic indexes, the mechanism and extent to which these compounds are 

metabolized can be crucial for accurately dosing individuals based upon distinct gut bacterial 

composition. The emerging field of pharmacomicrobiomics studies the metabolism of drugs by 

the human gut microbiota (Figure 1.1). By combining data on pharmacology and toxicology 

with pharmacomicrobiomics of a drug, the hunt for new and efficacious drugs is one step closer 

to the precision of Arjuna’s arrows. 

In this chapter, the following key questions in the field of pharmacomicrobiomics for 

assessing drug-gut microbiota interactions will be discussed: 

1. Does the drug and/or its metabolite(s) shift gut bacterial composition? 

2. What metabolite(s) of the drug are produced by gut bacterial pathways? 

3. What are the bacterial gene product(s) conducting the biotransformation of the drug? 

4. Which gut bacterial strains are efficient at metabolizing the drug? 

5. Does the drug inhibit gut bacterial enzyme activity? 
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Current technologies and associated resources to answer these questions will be covered briefly 

in the next section, followed by a discussion on recent studies that address these questions. Next, 

an outlook of the pharmacomicrobiomics field will be addressed. Finally, a brief outline of this 

dissertation will be presented. 

 

CURRENT TECHNOLOGIES AND DATABASES 

The key questions of pharmacomicrobiomics can be answered by combining the 

powerful technologies in next-generation sequencing (NGS), mass spectrometry (MS), and 

computational biology with biochemical, biophysical, and animal studies. An overview of the 

types and level of information that can be obtained by nucleic acid NGS sequencing and MS-

based experiments are presented below. 

 

16S rRNA Sequencing 

NGS technologies offer a culture-independent means to profile the composition of 

bacterial communities present in an individual's gut using relatively low volumes of fecal 

material (14). Of NGS-based technologies, 16S rRNA sequencing has been the primary method 

for cataloguing the taxonomy of the fecal microbiota because it is inexpensive, quick, and can be 

easily outsourced (14). To obtain a taxonomic profile using 16S, universal primers are designed 

to target the conserved base pair regions in the 16S ribosomal gene of gut microbes en masse. 

The hypervariable regions of the resulting amplified 16S genes are analyzed using bioinformatic 

pipelines like QIIME2 (20) and DADA2 (21) to discern the taxonomic profile and relative 

abundances of bacteria present in the analyzed fecal sample. Although conducting 16S rRNA 

sequencing is extremely facile, it lacks quantitative functional characterization of microbial 
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communities present in a sample. 16S rRNA sequencing datasets are often capable of discerning 

the genera of bacteria present, yet it often lacks the phylogenetic power to distinguish bacterial 

species, let alone strains (22). Hence, for pharmacomicrobiomic studies, 16S rRNA sequencing 

is ideal when analyzing perturbations at the genera level or higher in gut microbial composition 

in the presence of a drug of interest. 

 

Metagenome Sequencing 

Significant reduction in the cost to conduct NGS sequencing ($5,000 per megabyte in 

2001 compared to $0.05 per megabyte in 2017) has made shotgun metagenome sequencing a 

commonplace technique for obtaining profiles of gut bacterial communities using fecal samples. 

For shotgun metagenome sequencing of fecal microbiotas, DNA is extracted from the sample, 

sheared using ultrasonication, and sequenced using a massively parallel sequencing strategy. The 

resulting gigabytes worth of sequencing reads are then aligned either to pre-annotated gut 

bacterial genomes for gene cataloguing using streamlined bioinformatic packages like 

MetaPhlAn 3.0 (23) or into contigs using de novo genome assembly tools like SPAdes (24) and 

Velvet (25) to identify and quantify sets of genes that may be sample-specific. Unlike 16S rRNA 

sequencing, shotgun metagenome sequencing can attain strain-level resolution of bacterial 

communities present in the analyzed sample (14). Additionally, advanced bioinformatics tools 

like HUMAnN 3.0 (26) can use shotgun metagenome sequencing data to profile the presence, 

absence, and abundance of gut microbial genes involved in metabolic pathways. 

The low-cost, high-throughput nature of metagenome sequencing and the availability of 

streamlined bioinformatic packages for analysis have led to the collection and deposition of 

terabytes worth of fecal metagenome datasets with associated patient metadata like sex, age, and 
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chronic disorders to online repositories for public use by multi-institutional consortia like the 

Human Microbiome Project (HMP) and the European MetaHit Project (Table 1.1) (27). In 

pharmacomicrobiomic studies, these extant databases can serve as powerful databanks to 

delineate patient sub-populations that may be prone to gut microbiota-mediated drug metabolism 

based on genetic and environmental factors. For example, if the downstream product of a gut 

bacterial gene has been mechanistically associated to the biotransformation of a drug of interest, 

then that gene can be used as a molecular biomarker to scan extant metagenomic databases to 

unveil patient sub-populations that may be capable of metabolizing that drug or how widespread 

the presence of the gene is in global communities (28). Although metagenome sequencing is an 

indispensable tool for profiling the differences in the composition of bacterial communities and 

metabolic pathways in individuals with various phenotypes (e.g., diseased, healthy, etc.), it 

cannot be used to evaluate functional differences since the gene expression levels cannot be 

ascertained. 

Table 1.1 Extant gut microbiome metagenomic sequencing databases. 

Source Descriptor URL Ref. 
HMP Healthy https://portal.hmpdacc.org (27) 
HMP Pregnancy and Pre-term Birth http://vmc.vcu.edu/momspi (27) 
HMP Type II Diabetes https://www.ibdmdb.org (27) 
HMP Inflammatory Bowel Disease http://med.stanford.edu/ipop.html (27) 
IGC Healthy https://db.cngb.org/microbiome/ (29) 
CGR Healthy - (30) 

UHGP Healthy https://www.ebi.ac.uk/metagenomics/ (31) 
Ceylan et al. Diet - (32) 

 

RNA Sequencing 

Advances in RNA sequencing (RNA-seq) have enabled profiling of genes that are 

actively expressed in gut bacterial communities present in a fecal sample (33). Such functional 

profiling can highlight genes that may be driving factors in phenotypes of interest. For RNA-seq 
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experiments using fecal microbiotas, global RNA is extracted and rRNA is removed (33). The 

purified mRNA is transcribed into cDNA using reverse transcriptase, which is subsequently 

sequenced using a massively parallel sequencing strategy as in metagenome sequencing. 

Bioinformatics pipelines like HUMAnN 3.0 (26) and MG-RAST (34) can align the resulting 

sequence reads to reference genomes to obtain gene expression profiles. Although the data 

obtained from fecal RNA-seq analysis can be extremely powerful, a few major challenges 

include the short half-lives of bacterial mRNA and the need for high-quality RNA. Thus, RNA 

degradation and instability make it difficult to effectively capture gene expression for certain 

phenotypes (33). 

 

Proteomics 

Although information on gene expression obtained from RNA-seq gives some indication 

of function, it is not entirely accurate because the presence of mRNA is not always synonymous 

with the presence of protein or protein activity (35). Non-targeted shotgun proteomics can be 

used to evaluate levels of expressed protein in microbial communities present in fecal microbiota 

samples. Proteins are first extracted from the fecal matrix and digested using proteolytic enzymes 

like trypsin. The peptide mixture is analyzed using high-resolution mass spectrometers (HR-

MSs) like FT-Orbitraps that can distinguish masses with an accuracy of 0.001 Da (36), making it 

possible to discern the spectra of tens of thousands of digested peptides within a sample (36). 

The resulting peptide spectra dataset are then compared to extant fecal protein sequence 

databases like the Integrated Gene Catalog (IGC) (29), which contains nearly 10 million, non-

redundant protein sequences, using software like MetaLab (37) and MaxQuant (38) to identify 

and quantify the proteins present in the sample. Yet, a key limitation in non-targeted shotgun 
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proteomics has been the identification and quantification of low-abundance proteins (39). This 

problem has been circumvented by enriching the target protein(s) of interest using either affinity-

based or irreversible small-molecule probes prior to proteolytic cleavage and MS analysis (39–

41). Continued development in the field of single-cell proteomics will lead to further sensitivity 

to identify low-abundance proteins from fecal microbiota samples (42). 

Although proteomic analyses of fecal microbiota are starting to be accomplished, 

comprehensive repositories of metaproteomic datasets with associated metadata like those in 

Table 1.1 do not exist for human fecal proteomes. Academic research groups that have HR-MS, 

computational expertise in metaproteomic analysis, and a strong understanding of the human gut 

microbiota remain few, making it difficult to perform large-scale studies. By creating a robust 

and universal method to acquire fecal proteomic data and using a collaborative approach as was 

used to form the HMP and MetaHit, a central repository of proteomics data can be assembled 

with associated metadata. Protein(s) associated with the metabolism of a drug of interest can be 

used as molecular biomarkers to scan extant proteomic datasets and identify patient sub-

populations that are capable of biotransforming a given drug. Such a proteomics approach is a 

more accurate means of identifying patient sub-populations compared to a metagenomics 

approach as the presence of a gene is not indicative of expressed protein. Additionally, if 

proteomic datasets can be collected from individuals who have undergone treatment with a drug 

of interest, it may be possible to correlate phenotype (i.e., toxicity, reduced efficacy, etc.) to 

protein abundance data to potentially either track down proteins that are associated with the 

metabolism of the drug, or to validate a protein that is involved in the metabolism of the drug. 
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Metabolomics  

 For pharmacomicrobiomics, the advent of HR-MSs has enabled the accurate 

determination of biotransformed metabolite(s) of drugs using either ex vivo fecal mixtures or gut 

bacterial isolates (10, 28). More importantly, current metabolomic strategies can be used to 

identify and quantify levels of gut-derived metabolites present in fecal microbiota samples. For 

example, a recent study examined fecal samples from 786 individuals and identified over 1,000 

metabolites (43). Additionally, biotransformation reactions can be ascertained by calculating 

mass differences between parent compounds and associated metabolites (10, 28). The human gut 

microbiota produces a myriad of chemicals that are undoubtably important for human health as 

the flux from basal levels has been associated with a variety of disorders like obesity and 

diabetes. Additionally, disruptions in metabolite homeostasis in the gut effects blood serum 

concentrations, which can have potential systemic health consequences (44). For 

pharmacomicrobiomic studies, untargeted metabolomics can be adapted to assess how shifts in 

gut bacterial communities because of the presence of a drug of interest can lead to changes in the 

gut metabolome. Ultimately, certain GI side effects of drugs can potentially be explained by 

changes in levels of certain metabolites by the gut microbiota. 

 

RECENT ADVANCES IN PHARMACOMICROBIOMICS 
 

An overview of recent works that use a combination of these technologies to answer the 

key questions in pharmacomicrobiomics is presented below: 
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Does the drug and/or its metabolite(s) shift gut bacterial composition? 

Humans and gut microbes have co-evolved to increase the overall survival fitness of one 

another. Although humans provide a slurry of energy-dense nutrients for microbes, the human 

gut microbiome produces a wide array of bioactive compounds like SCFAs (45), vitamins (46), 

and essential amino acids that are important for normal bodily functions (46). Flux of these gut-

derived beneficial compounds from basal levels can alter host physiology, often leading to either 

the onset of disease or aiding in disease progression (15, 45). For example, in patients with 

inflammatory bowel disease (IBD), disease-induced dysbiosis of gut bacterial communities often 

leads to a decrease in Firmicutes species, which are major producers of the SCFA butyrate (45). 

Butyrate serves as the main energy source for colonocytes, maintains intestinal homeostasis 

through anti-inflammatory actions, and has immunomodulatory roles (45). Reduced butyrate 

production disrupts energy supply to colonocytes and increases mucosal inflammation, which 

exacerbates IBD symptoms (45). 

Basal levels of beneficial gut-derived compounds can also be altered by drug-induced 

shifts in gut bacterial communities (12). For example, broad-spectrum antibiotics can affect the 

abundances of nearly 30% of known gut bacteria and cause a rapid and significant drop in 

species richness and diversity (47). Such a change in community composition promotes the 

overgrowth of pathogenic species like Klebsiella pneumoniae, Staphylococcus aureus, and 

Clostridium difficile, which can result in the pathogenesis of disease states like 

pseudomembranous colitis and decreased abundance of commensal bacterial that produce health-

positive compounds like SCFAs (47). In addition to antibiotics, non-antibiotic agents can also 

influence the composition of the gut microbiota. Indeed, a population level analysis of nearly 

4,000 individuals found that medication use correlated strongly to specific taxonomic profiles 
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(16). Additionally, studies that utilized 16S rRNA and metagenomic sequencing to profile 

bacterial communities in stool samples collected from individuals taking commonly prescribed 

medications, like the type 2 diabetes medication metformin, the anti-psychotic olanzapine, the 

statin rosuvastatin, the opioid morphine, non-steroidal anti-inflammatory drugs, and proton-

pump inhibitors (PPIs), showed significant alteration in taxonomic profiles. A comprehensive 

review that summarizes the modulation in specific gut bacterial taxa by these drugs can be found 

(48). 

Many non-antibiotic drugs modify the composition of gut bacterial communities by 

altering the gut environment (e.g., pH, blood flow, and composition of the bile acid pool) and/or 

the host immune system (e.g., inflammatory markers and immune regulation) (48).  For example, 

drugs like metformin and morphine alter the composition of the bile acid pool by inhibiting the 

actions of bile acid re-uptake transporters in gut epithelial cells, as well as the conversion of 

cholesterol to primary bile acids in the liver (49, 50). Because bile salts are metabolized by select 

bacteria and inhibit growth of others, alteration of the bile salt pool can lead to shifts in gut 

bacterial communities (51). Additionally, PPIs reduce acidity throughout the GI tract; the 

reduction in acidity enables oral microbes to colonize the intestine, which can lead to dramatic 

shifts in gut bacterial communities (48). 

Non-antibiotic drugs also impact bacterial growth through direct interactions with 

bacteria. Typas and co-workers systematically assessed the growth inhibitory impact of 1197 off-

patent FDA drugs against 40 gut bacterial isolates (52). The 40 tested gut bacterial isolates 

captured 78% of the median assignable relative abundance of the human gut microbiota at the 

genus level. Of the non-antibiotic drugs tested, 27% were found to inhibit growth for at least one 

gut bacterial isolate that was tested. Although Typas and co-workers provide an impressive map 
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of drug agents that have growth inhibitory activities, a key limitation of this study was that it did 

not assess growth of species in a community setting. Microbe-microbe interactions can heavily 

influence gut bacterial growth (53); hence, future studies incorporating high-throughput 

screening strategies that use 16S rRNA sequencing or metagenomic sequencing to assess growth 

in community settings (be it artificial consortia or fecal samples) should be done. Additionally, 

the growth inhibitory activities of both host-derived and gut-derived metabolite(s) should be 

assessed. 

 

What metabolite(s) of the drug are produced by gut bacterial pathways? 

Drugs and their metabolite(s) can reach the intestine either directly after ingestion or 

following first-pass metabolism via biliary excretion. The human body has evolved to excrete 

small molecule agents using a combination of mechanical and biochemical mechanisms. Orally 

taken drugs must first successfully pass through the gut epithelial barrier to reach the hepatic 

portal system (5). After arriving in the liver, the small molecule agents face their biggest 

challenge:  phase I and II metabolism in hepatocyte cells (i.e., first-pass metabolism). During 

phase I metabolism, several low-specificity enzyme systems (e.g., cytochrome P450 

monooxygenase system and flavin-containing monooxygenase system) introduce chemical 

modifications like the addition of epoxide, hydroxyl, amino, or thiol groups to increase the 

overall polarity of molecules (5). Typically, modifications in phase I metabolism generate either 

electrophilic sites or nucleophilic sites on a compound, which then serve as sites for conjugation 

to hydrophilic endogenous substrates like glucuronic acid (GlcA), sulfate, glycine, acetyl, and 

glutathione during phase II metabolism (5). The increased charge and polarity of the drug 
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reduces cellular uptake, thus making it easier for the body to purge the drug via urinary or 

intestinal excretion. 

In the GI tract, the large consortia of gut bacterial enzymes can introduce further 

modifications to drugs (48). For example, gut bacterial hydrolases like glycoside hydrolases and 

sulfatases can hydrolyze phase II-derived glucuronyl and sulfonyl groups from drug compounds 

(12). Bacterial lyases like C-S β-lyase can cleave C-S bonds in phase II-derived cysteine-S-

conjugates of drugs via a β-elimination reaction, which results in the production of ammonia, 

pyruvate, and a thiol-containing analog of the deconjugated drug (12). Bacterial reductases can 

reduce a wide variety of functional groups on drug scaffolds that include alkene, nitro, N-oxide, 

azo, and sulfoxide groups (12). Lastly, bacterial transferase enzymes can add or remove 

functional groups (e.g., methyl and acyl groups) from the chemical scaffold of a drug or its 

metabolite (12). The products of these various reactions can be further metabolized by gut 

microbial enzymes. Due to the inherent technical challenge of screening drugs against thousands 

of cultured isolates, the full extent to which drugs and their metabolite(s) are produced is largely 

unknown. 

In an effort to catalogue the various metabolites that are produced by gut microbes, 

Goodman and co-workers systematically measured the ability of 76 gut bacterial isolates to 

biotransform 271 orally administered drugs that spanned the chemical drug space (i.e., diverse 

clinical indications, physiochemical properties, and predicted intestinal concentrations) (10). A 

previously established combinatorial pooling strategy was used to reduce the 20,596 bacteria-

drug pairs to 3,840 samples for liquid chromatography-coupled MS (LC-MS) analysis (54). 

Nearly two-thirds of the 271 tested drugs were reported as metabolized by at least one gut 

bacterial isolate, with each strain metabolizing between 11-95 drugs. Using mass differences 
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between parent compounds and observed drug-specific metabolites, the investigators found that 

certain chemical substructures like lactone rings and nitro, azo, and urea groups in a drug 

scaffold were susceptible to modification by gut bacteria, which corroborates previous findings. 

Interestingly, functional groups (e.g., esters and amides) that were previously reported to be 

targets of gut bacterial enzymes were found in drugs that were not metabolized, indicating that 

the overall scaffold of the drug plays a key role in microbial drug metabolism. Of the drug-

microbe positive hits, the corticosteroid dexamethasone was validated in a mouse model to be 

uniquely metabolized (via desmolytic cleavage) by Clostridium scindens to form the androgen 

version of the drug. 

As strain-to-strain variation in the metabolism of drugs has been extensively observed, a 

strategy to directly screen microbes found in patient stool samples is critical (55, 56). Donia and 

co-workers conducted a high-throughput screening campaign using patient-derived stool sample 

to determine the metabolite produced (28). Prior to screening, the team developed an ex vivo 

mixed-culturing system that enabled close capture ex vivo (70%; when compared with the 

original patient-derived sample) based on 16S rRNA sequencing. Using untargeted 

metabolomics, the team tested 575 orally administered drugs in the ex vivo patient-derived stool 

culture and found that 57 compounds were metabolized based on either diminished concentration 

of parent compound or presence of new metabolite. Akin to the study done by Goodman and co-

workers (10), the team observed chemistries like nitro-reduction, hydrolysis, and azo-reduction. 

The findings were validated in vivo using a mouse colonized with the patient-derived sample 

after antibiotic treatment. The chemotherapeutic capecitabine was found to be deglycosylated 

over time to form deglycocapecitabine in the mouse model. As the investigators note, 100% of 

the species were not captured in the ex vivo mixed-culturing system, which highlights the need to 
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develop better culturing systems to recapitulate bacterial colonies present in patient-derived fecal 

samples. 

 

What are the bacterial gene product(s) conducting the biotransformation of the drug? 

 Knowing the exact gene product(s) conducting the biotransformation of a drug is 

necessary for the appropriate development of diagnostic biomarkers. These gene product(s) can 

also serve as potential targets for adjuvants to minimize gut-mediated metabolism of a drug of 

interest. Unfortunately, pinpointing the gene product(s) involved in the biotransformation of 

drugs is like finding a needle in a haystack, given that the human gut microbiome genome 

contains a hundred times more genes than the human genome (28). Although identifying gut 

bacterial enzymes conducting simple deconjugation chemistries on phase II-derived metabolites 

(e.g., sulfatases and β-glucuronidases) is intuitive, tracking down the enzymes catalyzing general 

transformations (i.e., reductions and hydrolysis) can be tough. In recent years, investigators have 

combined various NGS-based and MS-based technologies with biochemical and genetic assays 

to find the gene product(s) involved in the metabolism of drugs of interest. Three main strategies 

of note include  (i) genome mining approaches, (ii) comparative transcriptomics, and (iii) 

functional metagenomics screening (28). 

 A genome mining approach is ideal when a homolog of a protein associated with 

conducting the chemistry of a drug of interest can be found in the literature. Balskus and co-

workers elegantly displayed the utility of this approach to identify a previously unknown gut 

bacterial decarboxylase enzyme involved in the decarboxylation of levodopa to form dopamine 

(57). Levodopa is the primary drug to treat Parkinson’s disease. Ideally, levodopa is 

decarboxylated to form the active agent dopamine after crossing the blood-brain barrier. 
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However, decarboxylation can occur prematurely in the gut, leading to reduced amounts of 

levodopa reaching the brain. The team postulated that the decarboxylation in the gut must be 

orchestrated by a pyridoxal-5’-phosphate (PLP)-containing enzyme; hence, they performed a 

Protein Basic Alignment Search Tool search against the complete set of HMP reference genome 

using the PLP-dependent tyrosine decarboxylase (TyrDC) from the food associated strain 

Lactobacillus brevis CGMCC 1.2028 as the query sequence. Among the match sequences, all 

Enterococcus faecalis-associated species were found to turn over levodopa to dopamine in 

anaerobic culture and thus, Balskus and co-workers did all subsequent structural characterization 

of TyrDC was done using this species. Importantly, 12 out of 19 human fecal samples tested 

were found to variably convert levodopa to dopamine. Using quantitative polymerase chain 

reaction (qPCR), the team observed that TyrDC gene (tyrDC) levels were predictive of levodopa 

metabolism among this tested cohort. Likewise, 16S rRNA sequencing analysis revealed that the 

abundance of E. faecalis also strongly predicted metabolism of levodopa in the cohort. These 

genome mining approaches highlight the importance of continued cultivation of extant databases 

like the HMP, as they can be excellent screening platforms to find gut bacterial enzymes of 

interest. 

 Comparative transcriptomics is a great strategy for finding genes involved in the 

metabolism of a drug if no homolog can be found. The strategy assumes that an enzyme is 

upregulated in the presence of a drug that it metabolizes. Turnbaugh and co-workers used RNA-

seq to find the key genes involved in the reduction of digoxin to dihydrodigoxin (55). Digoxin is 

used to treat heart failures and arrythmias by blocking Na+- and K+-dependent adenosine 

triphosphatase. Reduction of digoxin to the inactive form dihydrodigoxin causes treatment 

efficacy to be unpredictable. Previously, the gut bacterial isolate Eggerthella lenta was found to 
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reduce digoxin in vitro. The team incubated E. lenta with and without digoxin and calculated 

mRNA levels across the genome. Upon comparison of digoxin plus and minus samples, the team 

found that a two-gene operon, cgr1 and cgr2 (termed cardiac glycoside reductase) was 

upregulated. Digoxin was found to be variably reduced in a cohort of 20 healthy individuals. 

Using qPCR, the team found that expression of the cgr operon relative to E. lenta 16S rRNA 

gene was significantly increased in high metabolizers. Subsequent structural characterization 

revealed that the product of cgr2, an [Fe-S]-dependent reductase (cgr2), was the acting enzyme 

that reduces digoxin, whereas the product of cgr1 was likely a membrane protein (cgr1) that 

served to anchor and transfer electrons to cgr2 (56). In the future, comparative proteomics should 

be applied to gut bacterial isolates with the aim of directly identifying the protein products that 

are upregulated in the presence and absence of a drug of interest.  

 Finally, functional metagenomic screens are useful when lead information (i.e., the 

specific enzyme chemistry or a validated gut bacterial species) on the metabolism of a drug of 

interest cannot be ascertained. In general, such screens involve fragmenting DNA from a source 

(i.e., gut isolate or a patient-derived fecal sample) already known to metabolize a drug of 

interest, inserting the resulting fragment library into an expression vector, and then screening to 

identify clones that can metabolize drugs of interest. Metagenomic sequencing of the hit clone 

can then pinpoint the gene product involved in the biotransformation. Using this strategy, 

Goodman and co-workers identified the gene product conducting the biotransformation of the 

oral calcium channel blocker diltiazem to deacetyldiltiazem by the gut isolate Bacteroides 

thetaiotamicron. The team sheared DNA from Bacteroides thetaiotamicron and cloned the 

resulting fragments (mean insert length = 3.1 kb) into Escherichia coli vectors (N = 51,000). 

Using a high-throughput pooling strategy in 384-well plates, the team found that deacetylation of 
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diltiazem was dependent on a specific gene, which they named bt4096. The product of this gene 

was found to turnover diltiazem to deacetyldiltiazem in vitro. The team also applied this strategy 

to map gene-drug-metabolite networks for Bacteroides dorei and Collinsella aerofaciens. 

 In addition to studying gut bacterial isolates, functional metagenomics can also be a 

powerful tool to elucidate gene product(s) involved in the biotransformation of therapeutics 

directly from patient-derived fecal samples. Compared with conducting functional metagenomic 

screens on specific gut bacterial isolates, working directly from fecal samples enables assessment 

of gene product(s) that may be from unculturable gut bacterial isolates. Donia and co-workers 

isolated DNA from a patient-derived fecal sample and cloned the resulting sheered DNA 

fragments (fragment insert size ranging from 2-4 kb) into E. coli expression vectors (80 pools 

with 6 × 104 unique clones, each!). This library was used to find the specific enzyme involved in 

the reduction of the steroid hydrocortisone to 20β-hydrocortisone. Reduction of hydrocortisone 

results in altered bioavailability. The team used an elegant dilution strategy whereby each serial 

dilution was tested for cortisone transformation activity, iteratively, until the specific clone 

processing hydrocortisone was isolated. Subsequent sequencing of the resulting clone revealed a 

gene product, which they named Hyd-red-2, that was likely from a Bifidobacterium species. This 

corroborates previous findings that Bifidobacterium adolescents metabolizes hydrocortisone 

(58). 

 

Which gut bacterial strains are efficient at metabolizing the drug? 

A healthy adult gut microbiome contains, on average, 1,000 bacterial species and 7,000 

unique strains (59). Each of these microbes within us differ remarkably from one another in their 

ability to process small molecules. Considerable inter-species, and remarkably even inter-strain, 
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variability exist in gut-mediated drug metabolism, and thus, taxonomic identity of gut microbial 

species alone is not predictive of metabolic functions (55, 57). Evolutionarily speaking, gut 

bacteria have evolved to resist exposure to foreign agents like drugs using mechanisms including 

cell permeability (or lack thereof), compound efflux, reduced susceptibility due to biofilm 

formation and physical location of the microbe within the GI tract (60). Differences in these 

defense barriers make certain drugs more susceptible to metabolism by a subset of gut microbes. 

For example, Gram-positive bacteria contain no outer membrane and, in general, are more likely 

to uptake drugs through passive diffusion. Gram-negative bacteria contain an outer membrane 

which in combination with the inner layer provides an orthogonal membrane system that 

significantly reduces the uptake of both hydrophobic and hydrophilic small molecules. Drug 

metabolism by Gram-negative bacteria is dependent on the ability of drugs to be taken up via 

porin and active transporters (61). High-throughput cell uptake studies using LC-MS can help 

identify isolates that are more or less efficient at intaking drugs of interest and could provide 

further explanation for interindividual variability in drug processing (60). 

Defining the exact gene or gene product(s) that drive gut-mediated drug metabolism is 

essential for precisely predicting which species or strain can metabolize a drug of interest. For 

example, the type-strain of E. lenta reduces the cardiac drug digoxin to the inactive form 

dihydrodigoxin, whereas other E. lenta strains like FAA 1-3-56 and FAA 1-1-60 do not (55). 

Turnbaugh and co-workers explain the inter-strain variability in digoxin processing by E. lenta 

strains by first identifying the gene operon (cgr) driving the reduction of digoxin. They show that 

the type-strain contains the cgr operon, whereas the non-reducing strains do not. Another 

example includes the decarboxylation of dopamine to m-tyramine by E. lenta species. Balskus 

and co-workers observed that 10 out of 26 E. lenta strains successfully convert dopamine to m-
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tyramine. They find that strain-to-strain variability in dopamine processing can be explained by a 

single-nucleotide polymorphism (SNP) found in the dadh gene that produced the decarboxylase. 

E. lenta species that can convert dopamine to m-tyramine contain an arginine at the 506-residue 

position, whereas species that cannot mediate the conversion have an SNP that results in a serine 

at the 506-residue position. Work by Balskus and co-workers highlight the importance of 

examining drug metabolism at the protein level, which can give insight into strain-level 

specificity of drug metabolism. 

 Interspecies variability in drug processing can also be explained by architectural 

differences in enzymes that process drugs of interest between strains. A great example of this is 

the gut bacterial β-glucuronidases (GUSs), which play an important role in energy capture by 

hydrolyzing GlcA from complex carbohydrates using a double displacement mechanism. During 

phase II metabolism, drugs can be conjugated to GlcA to increase overall polarity of the 

compound. In the gut, GUS enzymes can hydrolyze the GlcA sugar from the parent drug 

compound (62). Redinbo and co-workers mined the HMP (4.8 million translated sequences) 

using active site residues found essential for glucuronide recognition and processing and found 

279 unique, non-redundant sequences. Significant structural work (over 20 published enzymes) 

of GUS enzymes reveals extensive variation in higher order structure. Oligomeric states that 

exist include monomers, dimers, trimers, tetramers and even hexamers. Variation in oligomeric 

states lead to difference in active site architecture, which can heavily impact glucuronide 

recognition and processing. Putative GUS sequences mined from the HMP database were 

categorized into six structural categories based on the size and location of an active site adjacent 

loop. Previous work has shown that this active site adjacent loop influences glucuronide 
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recognition and efficient processing. Loop classes have been found to be generally indicative of 

preferential processing of specific small molecule glucuronides (63, 64). 

 

Although genome mining approaches are an excellent starting point, they can potentially 

yield false negatives. For example, a few GUS enzymes mined through the HMP using key, 

conserved residues were found to not process small molecule glucuronides (64). Additionally, 

mining of metagenomic databases like the HMP does not afford any functional information (i.e., 

gene expression). Thus, approaches that examine the proteins produced and select for proteins 

that are functionally active towards a target small molecule can be more widely applicable. 

Advances in activity-based proteomics can help circumvent this problem. Irreversible or affinity-

based inhibitors that mimic the small molecule of interest can be used to discover and examine 

target proteins. By using a substrate mimic, proteins that are true processers can be identified, 

reducing false negatives. Furthermore, proteomic strategy can help identify proteins that are 

expressed and functionally active. Chapter 2 will discuss the development and application of an 

activity-based profiling strategy to profile GUS enzymes from fecal microbiotas. Models that 

account for the physiological location of the microbe relative to drugs, cellular uptake and efflux 

of the drug, and variability in enzyme kinetics can help attain a precise understanding of 

interindividual variability in drug processing. 

 

Does the drug inhibit gut bacterial enzyme activity? 

 The human gut microbiota is often described as a forgotten “organ” that has been 

inextricably linked to human health. As described above, drugs can alter the composition of gut 

bacterial communities, which can perturb normal functions of the gut microbiota like production 



 

 23 

of SCFAs, essential vitamins, and analgesics. Another potential mechanism by which normal gut 

function can be altered is via the direct inhibition of gut bacterial enzymes by drugs and their 

metabolites. Remarkably, a survey of the primary literature shows that studies interrogating the 

direct inhibition of gut bacterial enzymes is lacking. 

Of the few studies focusing on examining direct gut bacterial inhibition, Redinbo and co-

workers have shown that GUS enzymes are selectively and potently inhibited by synthetic 

inhibitors (65). Using a combination of kinetic assays and x-ray crystallography, the team found 

that the piperazine and/or piperadine ring in these inhibitors act as warhead that covalently 

intercepts the catalytic cycle intermediate during GlcA hydrolysis. Interestingly, piperazine and 

piperadine rings are found widely in currently approved drugs (65). These nitrogen-containing 

rings serve to increase the solubility of drugs and serve as excellent building blocks. Indeed, 

experiments done by Redinbo and co-workers have shown that GUS enzymes are inhibited by 

approved drugs that contain a piperazine and piperadine ring. Chapter 3 will expand on GUS 

inhibition by piperazine and piperadine containing FDA approved drugs. 

 

OUTLOOK 
 

Candidate drugs are being discovered at an unprecedented scale because of the powerful 

innovations in early-stage drug discovery. For example, DNA-encoded libraries enable drug 

hunters to screen upwards to 100 million compounds against a protein target of interest (66). 

Despite the increasing ease of search for candidate drugs, success rates of candidate drugs in 

human clinical trials nonetheless remain low (1). Poor success rates can be attributed to 

unforeseen toxicities and low drug efficacy. These unforeseen biological outcomes are primarily 

due to inaccurate recapitulation of host drug metabolism by current pre-clinical models. An 
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understudied component of drug metabolism is the role of the human gut microbiome in drug 

metabolism and disposition. Work in the past 20 years has clearly shown that the human gut 

microbiota heavily impacts the pharmacology of a drug. The burgeoning field of 

pharmacomicrobiomics is working to understand how the gut influence drug bioavailability and 

toxicity. 

Astonishingly, the current total cost to identify a drug candidate, take it through human 

clinical trials, and launch it in the market is, on average, $1.2 billion (67). A significant portion 

of this cost is spent on studies in human clinical trials (67). To increase success rates in human 

clinical trials of drug candidates and thereby reduce overall drug costs, AstraZeneca has 

implemented a new “5R Framework,” resulting in an increase from a 4% success rate from 2005-

2010 in phase III to 19% in 2012-2016 (68). The 5R Framework places more weight on choosing 

the five Rights: the right target, the right tissue, the right safety, the right patient, and the right 

commercial potential. Moving forward, it is critical for researchers to assess how incorporation 

of pharmacomicrobiomics into strategies like the 5R Framework would further improve success 

rate of candidate drugs in human clinical trials. The vast complexity of the microbiome, and 

overwhelming technical challenge of testing hundreds of drugs against thousands of cultured 

isolates under multiple conditions, makes it difficult to incorporate pharmacomicrobiomic 

studies into existing drug development pipelines. If high-throughput strategies like those 

developed by the Goodman and co-workers and Donia and co-workers can be incorporated into 

drug development pipelines, then lead drug agents can be further optimized to ensure that gut-

mediated alterations are minimized. 

Side effects mediated by the gut microbiota are coming to light for many currently 

administered therapeutics. For example, gut-mediated reduction of digoxin and the 
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decarboxylation of levodopa heavily impact the bioavailability of these drugs, which explains the 

high interindividual variability in treatment outcome observed in patients taking these 

therapeutics. Reducing gut-mediated side effects can facilitate appropriate dosing and improve 

overall treatment efficacy. Strategies to reduce gut-mediated biotransformation of drugs include 

the development of small molecules that inhibit gut enzymes (adjuvants). The gut microbiota can 

also be modulated by diet (prebiotics and probiotics) to control the level of enzymes that may act 

upon drugs. Chapter 4 will highlight how diet may influence the composition of GUS enzymes.  

Poor success rates of candidate drugs lead to sunk costs, which are a dead weight loss to 

society. In economics, dead weight loss is the total welfare loss to society. Investing to improve 

pre-clinical models can enable drug candidates with greater chances of success, thereby 

potentially reducing overall drug costs. If the dead weight loss associated with clinical trials (i.e., 

monetary loss due to resources and personnel associated with running a clinical trial) can be 

reduced, then saved resources can be allocated to other elements in the drug discovery pipeline. 

By integrating pharmacomicrobiomics into the drug discovery pipeline, the hunt for new and 

efficacious drugs is one step closer to the precision of Arjuna’s arrows, which will diminish the 

dead weight loss in the drug development industry. 
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CHAPTER 2: DISCOVERING THE MICROBIAL ENZYMES DRIVING DRUG 

TOXICITY WITH ACTIVITY-BASED PROTEIN PROFILING1 
 

INTRODUCTION 

 The gut microbiota are capable of metabolizing a myriad of drugs (10), and the 

biotransformation of these compounds by commensal intestinal bacteria can impact therapeutic 

outcomes by altering drug efficacy, and in some instances, inducing disease onset (12). Since 

each person harbors a unique set of gut microbes, drug response varies considerably between 

individuals (69). Although key recent reports have profoundly advanced our understanding of the 

central microbes and genes implicated in the metabolism of drugs (12, 69), only a handful of 

studies have focused on gut bacterial proteins implicated in the biotransformation of drug 

metabolites (56, 70, 71). Pinpointing the exact microbial enzymes that process drugs in the gut 

could lead to the development of precision biomarkers for the determination of therapeutic 

efficacy and may serve as drug targets for the modulation of the gut microbiota to optimize drug 

responses. 

 The gut bacterial β-glucuronidase (GUS) enzyme mediates drug-induced gastrointestinal 

(GI) toxicity by reversing glucuronidation, a Phase II transformation that inactivates and 

detoxifies drugs by conjugating them to glucuronic acid (GlcA) (Figure 2.1a) (62). Inactive drug 

glucuronides created in the liver traverse the biliary duct to reach the intestines where they are 

 
1This chapter previously appeared as an article in the ACS Chemical Biology. The original citation is as follows P. 
B. Jariwala, S. J. Pellock, D. Goldfarb, E. W. Cloer, M. Artola, J. B. Simpson, A. P. Bhatt, W. G. Walton, L. R. 
Roberts, M. B. Major, G. J. Davies, H. S. Overkleeft, M. R. Redinbo, Discovering the Microbial Enzymes Driving 
Drug Toxicity with Activity-Based Protein Profiling. ACS Chem. Biol. (2019). 
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excreted from the body (72). However, once in the gut, drug glucuronides have the potential to 

be reactivated via the hydrolytic removal of the GlcA tag by gut bacterial GUS enzymes. 

Intestinal reactivation of drug metabolites has been reported to cause acute, dose-limiting GI 

toxicities (73, 74). The severity of irinotecan-induced GI toxicity varies considerably between 

patients and may be due to the interindividual variability of the human gut microbiota (75, 76). 

Previous analysis of the Human Microbiome Project (HMP) stool sample database revealed that 

the gut microbiota contains hundreds of putative GUS enzymes with seven unique structural 

classes that display varying catalytic efficiencies against the reporter substrates p-nitrophenyl-β-

D-glucuronide (pNP-GlcA) and 4-methylumbelliferone-β-D-glucuronide (4-MUG) (64, 77). 

Since gut bacterial GUS enzymes process glucuronide conjugates with varying efficiencies, we 

hypothesized that interindividual differences in gut bacterial GUS abundance and composition 

might influence the differential drug response to irinotecan. 
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Figure 2.1 Approach to identify GUS enzymes responsible for drug glucuronide metabolism in the 
human gut microbiome. (a) The anti-cancer pro-drug irinotecan is processed by carboxylesterases (CE) 
during Phase I metabolism to form the active metabolite, SN-38, a topoisomerase I inhibitor. Uridine-
diphosphate glucuronosyltransferases (UGTs) in the liver glucuronidate SN-38, which inactivates and 
promotes its excretion from the body. Bacterial GUS can reactivate SN-38 via hydrolytic removal of the 
glucuronic acid sugar. Reactivation of SN-38 has been reported to cause severe, dose-limiting GI toxicity. 
(b) To decipher the causative GUS enzymes in SN-38-G reactivation, we employed a strategy that 
integrates ABPP-enabled GUS abundance data with ex vivo SN-38-G processing data obtained from fecal 
metaproteomes. Correlation analysis between SN-38-G processing data and GUS abundance data can be 
used to identify specific GUS enzymes involved in SN-38-G processing. 
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Efficient and facile strategies to identify the exact gut bacterial GUS enzymes that 

process drug glucuronides of interest from fecal material are lacking. Significant advancements 

in mass spectrometry (MS) and related bioinformatics software have made the identification and 

quantification of proteins from complex fecal supernatant possible (37, 39, 78). However, recent 

work has shown that shotgun-based metaproteomics cannot accurately identify and quantify low 

abundance proteins from fecal lysates (39). Activity-based probes (ABPs) serve as powerful 

tools to access low abundance targets and enrich for functionally active proteins from fecal lysate 

(39, 41). ABPs target the catalytic machinery of specific enzymes and can be outfitted with a 

chemical handle for target enrichment, enabling identification and quantitation using MS. 

Activity-based protein profiling (ABPP)-enabled GUS abundance data obtained from fecal 

metaproteomes can then be correlated with ex vivo drug glucuronide processing data to identify 

the exact GUS enzymes that process drug glucuronides of interest (Figure 2.1b). 

Using a unique pipeline that integrates ABPP-enabled GUS abundance data with ex vivo 

SN-38-G processing data, we pinpoint, from human feces, the exact bacterial GUS enzymes that 

reactivate SN-38, the active metabolite of the anti-cancer drug irinotecan. For the first time, we 

show that cyclophellitol-based ABPs can be used to identify and quantify gut bacterial GUS 

enzymes from human fecal lysate. We identify Loop 1 (L1) GUS enzymes as key modulators of 

SN-38 reactivation and verify this finding with in vitro kinetic data and structural modeling. 

Finally, we use the ABPP-enabled pipeline outlined in this study to provide a rationale for 

differential GUS inhibition between human fecal samples by previously designed piperazine-

containing GUS inhibitors. 
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RESULTS 

Cyclophellitol-based inhibitors and ABPs target structurally diverse gut bacterial GUS 

enzymes 

Cyclophellitol-based epoxide and aziridine inhibitors 1 and 2 and activity-based probes (ABPs) 3 

and 4 were previously developed to profile GUS in human cells (Figure 2.2a) (79). Since human 

and bacterial GUS utilize the same retaining mechanism to catalyze glucuronide hydrolysis, we 

hypothesized that 1–4 could also be used to target gut bacterial GUS enzymes from the human 

gut (80). To confirm that 1–4 covalently label the catalytic glutamate in bacterial GUS enzymes, 

we determined the 2.4 Å resolution crystal structure of a bacterial GUS from the human gut 

commensal strain B. uniformis (BuGUS-2) in complex with the unsubstituted cyclophellitol-

based aziridine inhibitor (2) (Table 2.1). Examination of the active site revealed inhibitor 2 

covalently linked to the catalytic nucleophile (E526) of BuGUS-2 indicating that it is also an 

inhibitor of bacterial GUS (Figure 2.2b). Key contacts were also observed between the 

carboxylic acid of inhibitor 2 and N591 and K593, the conserved NxK motif that is essential for 

recognition of glucuronides by bacterial GUS (Figure 2.2b) (73). In-gel labelling of wild type 

and mutant enzymes using Cy5-ABP (4) further indicated that a functionally active GUS is 

necessary for labelling and that the NxK motif is essential for recognition of ABP 4 by bacterial 

GUS enzymes (Figure 2.2c). 
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Figure 2.2 Cyclophellitol-based inhibitors and ABPs label structurally diverse gut bacterial GUS 
enzymes. (a) Cyclophellitol-based epoxide and aziridine inhibitors 1 and 2 and ABPs 3 and 4. (b) A 2.4 
Å resolution crystal structure (PDB: 6NZG) of inhibitor 2 bound to BuGUS-2. Inset shows 2Fo – Fc map 
(after refinement) at 1 σ and distances are shown in Å. (c) In-gel fluorescence labelling of wild type and 
inactive GUS controls by ABP 4. E. coli GUS (EcGUS), heat-denatured E. coli GUS (EcGUSH.D.), B. 
uniformis GUS-1 (BuGUS-1), B. uniformis GUS-2 (BuGUS-2), and BuGUS-1 and BuGUS-2 mutants 
(BuGUS-1NxK and BuGUS-2NxK) where the asparagine and lysine residues of the NxK motif have been 
mutated to alanines. (d) In-gel fluorescence labelling of structurally diverse gut bacterial GUS by ABP 4. 
B. fragilis GUS (BfGUS), B. uniformis GUS-3 (BuGUS-3), B. ovatus GUS (BoGUS), and B. dorei GUS 
(BdGUS). All wild type and mutant proteins were exogenously purified. 
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Table 2.1 Crystallographic statistics for B. uniformis GUS-2 bound to the unsubstituted 
cyclophellitol-based aziridine ABP (2). 
 

Resolution range 29.30-2.43 (2.52-2.43) 
Space group P212121 

Unit cell [a, b, c (Å); α, β, γ (°)] 74.5, 142.4, 180.7; 90.0, 90.0, 90.0 
Total reflections 952737 (93990) 

Unique reflections 73051 (7171) 
Multiplicity 13.0 (13.1) 

Completeness (%) 99.7 (99.5) 
Mean I/sigma(I) 15.9 (2.8) 
Wilson B-factor 40.5 

R-merge 0.146 (0.859) 
R-pim 0.042 (0.247) 
CC1/2 0.997 (0.782) 

R-work 0.170 (0.221) 
R-free 0.221 (0.306) 

Number of Non-Hydrogen Atoms 14097 
Macromolecules 13548 

Ligands 72 
Solvent 477 

Protein residues 1678 
RMS (bonds) (Å) 0.008 
RMS (angles) (°) 0.98 

Ramachandran outliers (%) 0 
Rotamer outliers (%) 1.99 

Clash score 4.23 
Average B-factor (Å2) 42.8 

Macromolecules 42.9 
Ligands 45.8 
Solvent 39.9 

PDB code 6NZG 
 

 The gut microbiota contains a structurally diverse assortment of bacterial GUS enzymes 

(77). Using in-gel labelling studies, we found that ABP 4 labels most exogenously purified GUS 

enzymes from this structurally and functionally diverse group of enzymes (Figure 2.2d). 

Labelling was not observed for a GUS from B. uniformis (BuGUS-3), which corroborates a 

recent study reporting that BuGUS-3 does not process small molecule glucuronides and poorly 
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processes GlcA-containing polysaccharides (64). In vitro apparent IC50 values showed that 1–4 

inhibit E. coli GUS (EcGUS), B. uniformis GUS-1 (BuGUS-1), and BuGUS-2 with values 

ranging from 20 nM to 4 µM (Figure 2.3). Further kinetic analysis of GUS inactivation by 1–4 

displayed ki/KI values that mirrored the IC50 values (Table 2.2 and Figure 2.4). Taken together, 

these data establish that cyclophellitol-based inhibitors and ABPs target structurally diverse and 

functionally active gut bacterial GUS enzymes. 

 

 

 
Figure 2.3 Dose-response plots for inhibition of select gut bacterial GUS enzymes by 
cyclophellitol-based inhibitors and ABPs. Apparent IC50 values shown are the mean ± standard 
deviation using N = 3 biological replicates. Lower values indicate more potent inhibition. 
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Figure 2.4 Derivation of kinetic parameters for GUS inhibition by inhibitors and ABPs 1-4. 
Plots shown are kobs vs. concentration of inhibitors and ABPs 1-4. 
 

 

 

 

 

 

0.0000

0.0010

0.0020

0.0030

0.0040

0 4000 8000 12000

k o
bs

(s
-1

)

[ABP 1], nM

ki/KI = 2.8 ± 0.3 M-1 s-1

BuGUS-1

0.0000

0.0020

0.0040

0.0060

0.0080

0 400 800 1200

k o
bs

(s
-1

)

[ABP 2], nM

ki/KI = 460 ± 60 M-1 s-1

BuGUS-2

0.0000

0.0010

0.0020

0.0030

0.0040

0 4000 8000 12000

k o
bs

(s
-1

)

[ABP 2], nM

BuGUS-1

ki/KI = 2.8 ± 0.4 M-1 s-1

0.0000

0.0015

0.0030

0.0045

0.0060

0 4000 8000 12000

k o
bs

(s
-1

)

[ABP 2], nM

EcGUS

ki/KI = 12 ± 3 M-1 s-1

0.0000

0.0015

0.0030

0.0045

0.0060

0 50 100 150

k o
bs

(s
-1

)

[ABP 3], nM

ki/KI = 910 ± 80 M-1 s-1

BuGUS-2

0.0000

0.0010

0.0020

0.0030

0.0040

0 1000 2000 3000

k o
bs

(s
-1

)

[ABP 3], nM

ki/KI = 7 ± 1 M-1 s-1

0.0000

0.0025

0.0050

0.0075

0.0100

0 50 100 150

k o
bs

(s
-1

)

[ABP 3], nM

BuGUS-1

EcGUS

ki/KI = 2000 ± 100 M-1 s-1

0.0000

0.0015

0.0030

0.0045

0.0060

0 800 1600 2400

k o
bs

(s
-1

)

[ABP 4], nM

BuGUS-2

ki/KI = 66 ± 2 M-1 s-1

0.0000

0.0010

0.0020

0.0030

0.0040

0 100 200 300 400

k o
bs

(s
-1

)

[ABP 4], nM

ki/KI = 280 ± 10 M-1 s-1

EcGUS



 

 35 

Table 2.2 Kinetic parameters for inhibition of select gut bacterial GUS enzymes by 
cyclophellitol-based inhibitors and ABPs. Values shown are the mean ± standard using N = 3 
biological replicates. N.M. = not measurable due to slow inhibition. Higher values indicate more 
potent inhibition. 
 

 ki/KI (M-1 s-1) 
GUS Compound 1 Compound 2 Compound 3 Compound 4 

EcGUS N.M. 12 ± 3 2000 ± 100 280 ± 10 
BuGUS-1 2.8 ± 0.3 2.8 ± 0.4 7 ± 1 N.M. 
BuGUS-2 N.M. 460 ± 60 910 ± 80 66 ± 2 

 
 
 
Cyclophellitol-based ABPs label GUS enzymes in mouse fecal mixtures  

As a controlled proof-of-concept for labelling of GUS enzymes by the cyclophellitol-based 

ABPs, we collected fecal samples from wild-type germ-free mice and mice mono-associated 

with gus+ E. coli (EcGUSM.A.; M.A., mono-associated). Labelling of EcGUSM.A. fecal extracts 

with ABP 4 revealed a single, prominent band with a molecular weight indicative of recombinant 

EcGUS (Figure 2.5). Heat denaturation of the fecal extracts from the mono-associated mice 

(EcGUSM.A. + H.K.; H.K., heat-killed) resulted in complete loss of labelling, which further 

establishes that these ABPs only label functionally active GUS enzymes. No significant labelling 

was observed in the fecal mixtures collected from germ-free mice which indicates that labelling 

of non-microbial protein is minimal. Finally, we show that labelling of EcGUS by ABP 4 can be 

blocked in a complex fecal setting in a dose-dependent manner using the pan-GUS inhibitor, D-

glucaro-1,4-lactone. These results demonstrate successful labelling of bacterial GUS enzymes in 

a controlled fecal matrix. 

 



 

 36 

 

 
Figure 2.5 Cyclophellitol-based ABP labels GUS enzymes in mouse fecal lysate. Fecal 
extracts from germ-free and E. coli mono-associated mice were labelled with Cy5-ABP. 
Labelling was blocked in a dose-dependent manner using the pan-GUS inhibitor, D-glucaro-1,4-
lactone. Recombinant EcGUS sample (EcGUSRecomb), mono-associated EcGUS fecal sample 
(EcGUSM.A.), heat-killed, mono-associated EcGUS fecal sample (EcGUSM.A. + H.K.). 
 

Gut bacterial GUS enzymes can be identified and quantified using cyclophellitol-based 

aziridine ABPs 

After confirming that the cyclophellitol-based inhibitors and ABPs 1–4 label bacterial GUS 

enzymes in vitro and in a controlled mouse model, we performed ABPP to identify and quantify 

bacterial GUS enzymes present in human fecal samples collected from two females (F1 and F2) 

and two males (M1 and M2). We extracted total protein from human fecal lysates and enriched 

for GUS using the biotin-ABP (3) (Figure 2.6a). Resultant samples were analyzed by liquid 

chromatography coupled with tandem mass spectrometry (LC-MS/MS) and a bioinformatics 

pipeline that queried the integrated gene catalog (IGC) using MetaLab to assemble and quantify 

enriched protein groups (Table 2.3, Table 2.4, and Table 2.5) (29, 37). Protein groups were 

defined as GUS enzymes if sequences shared similarity to either EcGUS, C. perfringens GUS 

(CpGUS), S. agalactiae GUS (SaGUS), or B. fragilis GUS (BfGUS) and contained the catalytic 

glutamates as well as the NxK motif (Figure 2.6a and Figure 2.7). GUS abundance is 
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represented by LFQ intensities, which are normalized, and combined peptide signal intensities as 

determined by the MaxLFQ algorithm in MaxQuant. Further taxonomic classifications are 

shown below the abundance heatmap (Figure 2.6a). Unknown refers to protein groups where the 

phylum assignment was ambiguous due to mapping of GUS peptides to multiple phyla. Analysis 

of the identified GUS protein groups revealed significant variations in taxa, structure, and 

abundance of the GUS enzymes present in the four fecal samples (Figure 2.6b and Figure 2.8). 

Individuals contained between 15–29 bacterial GUS protein groups, similar to a recent 

metagenomic study which showed that individuals harbor between 4–38 bacterial gus genes 

(Figure 2.8a) (77). Phylum-level analysis revealed that all four individuals predominantly 

contained GUS enzymes from Firmicutes but displayed substantial variation in GUS 

composition at lower taxa levels (Figure 2.6b and Figure 2.8b). Further examination using a 

previously defined GUS structure rubric allowed us to analyze the identified GUS protein groups 

based on three-dimensional structure, which revealed significant structural diversity  (Figure 

2.8c) (77). We have developed an ABPP-enabled proteomics pipeline to identify and quantify 

functionally active GUS enzymes present in human fecal material. 
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Figure 2.6 Probe-enabled proteomics and structure-guided bioinformatics enable 
identification and relative quantitation of bacterial GUS enzymes from human fecal 
samples. (a) General schematic of the probe-enabled proteomics pipeline used to identify and 
quantify GUS from fecal material. In brief, (i) proteins are extracted from feces using 
ultrasonication, (ii) GUS enzymes are enriched using the pre-clicked biotin-ABP (3) and 
streptavidin beads, and (iii) MetaLab is used to query the integrated gene catalog using raw MS 
data to assemble and quantify protein groups. Only proteins with the GUS fold and active site 
features, including the catalytic glutamates (E) and NxK motif, are defined as GUS enzymes. (b) 
Heatmap of identified GUS protein groups organized by sequence similarity and color coded by 
abundance. Further taxonomic classifications are shown below the abundance heatmap. 
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Table 2.3 Calculated LFQ intensity for GUS identified protein groups. Protein groups are 
organized by sequence similarity. 
 

Protein 
Group # 

Female 1 
(LFQ intensity) 

Female 2 
(LFQ intensity) 

Male 1 
(LFQ intensity) 

Male 2 
(LFQ intensity) 

1 0.00E+00 0.00E+00 0.00E+00 9.10E+07 
2 2.35E+09 1.64E+06 0.00E+00 2.49E+06 
3 4.65E+08 1.70E+08 6.21E+08 3.16E+08 
4 0.00E+00 7.90E+05 0.00E+00 0.00E+00 
5 0.00E+00 3.16E+09 8.25E+06 3.78E+08 
6 0.00E+00 0.00E+00 1.22E+09 0.00E+00 
7 3.33E+06 2.99E+09 1.82E+10 4.60E+08 
8 0.00E+00 0.00E+00 2.17E+06 0.00E+00 
9 0.00E+00 0.00E+00 0.00E+00 1.93E+06 
10 0.00E+00 1.67E+07 0.00E+00 0.00E+00 
11 0.00E+00 0.00E+00 0.00E+00 2.17E+07 
12 0.00E+00 1.25E+08 0.00E+00 7.11E+07 
13 0.00E+00 0.00E+00 0.00E+00 1.43E+07 
14 0.00E+00 0.00E+00 7.57E+07 0.00E+00 
15 2.79E+07 1.16E+09 3.06E+08 0.00E+00 
16 0.00E+00 4.18E+07 0.00E+00 0.00E+00 
17 0.00E+00 1.41E+07 0.00E+00 1.05E+08 
18 0.00E+00 0.00E+00 0.00E+00 1.15E+07 
19 0.00E+00 3.04E+07 0.00E+00 0.00E+00 
20 0.00E+00 0.00E+00 0.00E+00 7.15E+06 
21 0.00E+00 0.00E+00 0.00E+00 2.08E+08 
22 0.00E+00 4.23E+07 0.00E+00 0.00E+00 
23 1.55E+09 2.17E+09 2.51E+08 1.28E+09 
24 0.00E+00 0.00E+00 0.00E+00 3.72E+07 
25 1.32E+08 9.06E+07 0.00E+00 6.74E+07 
26 3.94E+07 6.79E+06 1.35E+08 2.80E+07 
27 5.27E+06 0.00E+00 5.11E+09 7.30E+05 
28 0.00E+00 7.48E+07 0.00E+00 2.96E+07 
29 0.00E+00 4.63E+07 0.00E+00 0.00E+00 
30 0.00E+00 1.67E+07 0.00E+00 3.58E+07 
31 1.10E+07 1.58E+08 0.00E+00 0.00E+00 
32 0.00E+00 1.47E+07 0.00E+00 0.00E+00 
33 0.00E+00 5.37E+07 8.19E+07 1.51E+08 
34 0.00E+00 1.17E+07 2.01E+07 3.99E+08 
35 0.00E+00 5.25E+07 0.00E+00 0.00E+00 
36 7.85E+06 0.00E+00 6.76E+07 2.19E+08 
37 6.37E+07 0.00E+00 0.00E+00 0.00E+00 
38 0.00E+00 0.00E+00 0.00E+00 7.03E+06 
39 3.12E+09 1.03E+08 4.77E+09 3.38E+08 
40 0.00E+00 0.00E+00 0.00E+00 1.28E+06 
41 1.63E+09 3.05E+07 0.00E+00 7.18E+08 
42 6.37E+07 0.00E+00 0.00E+00 0.00E+00 
43 0.00E+00 0.00E+00 6.69E+06 0.00E+00 
44 1.31E+09 9.77E+08 3.55E+08 2.61E+08 
45 0.00E+00 2.54E+07 6.90E+07 3.52E+08 
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Table 2.4 Taxa breakdown for GUS identified protein groups. Protein groups are organized 
by sequence similarity. Blanks refers to protein groups where the phylum assignment was 
ambiguous due to mapping of GUS peptides to multiple phyla. 
 

Protein 
Group # Loop class Phylum Family Genus Species 

1 Loop 2 Bacteroidetes Bacteroidaceae Bacteroides B. uniformis 
2 No loop Firmicutes Lachnospiraceae Fusicatenibacter F. saccharivorans 
3 No loop Chordata Hominidae Homo Homo sapiens 
4 Loop 1 Firmicutes Streptococcaceae Streptococcus  
5 Loop 1 Firmicutes Eubacteriaceae Eubacterium  
6 Loop 1 Firmicutes    
7 Loop 1 Firmicutes    
8 Loop 1 Firmicutes Lachnospiraceae Lachnoclostridium L. clostridioforme 
9 Loop 1     
10 Mini-Loop 1 Firmicutes Ruminococcaceae Subdoligranulum  
11 Mini-Loop 1 Firmicutes Ruminococcaceae Faecalibacterium F. prausnitzii 
12 Mini-Loop 1 Firmicutes Ruminococcaceae Faecalibacterium F. prausnitzii 
13 Mini-Loop 1     
14 Mini-Loop 1 Firmicutes Lachnospiraceae Roseburia R. intestinalis 
15 Mini-Loop 1 Firmicutes Lachnospiraceae Roseburia R. intestinalis 
16 Mini-Loop 1 Firmicutes Lachnospiraceae Roseburia R. intestinalis 
17 Mini-Loop 1     
18 Mini-Loop 1     
19 No loop Firmicutes    
20 Mini-Loop 1     
21 Mini-Loop 1 Bacteroidetes Bacteroidaceae Bacteroides  
22 Mini-Loop 1 Bacteroidetes Bacteroidaceae Bacteroides  
23 Mini-Loop 1 Bacteroidetes Bacteroidaceae Bacteroides B. vulgatus 
24 Mini-Loop 1 Bacteroidetes Bacteroidaceae Bacteroides B. fragilis 
25 Mini-Loop 1 Bacteroidetes Bacteroidaceae Bacteroides B. thetaiotaomicron 
26 Mini-Loop 1 Bacteroidetes Bacteroidaceae Bacteroides  
27 No loop Firmicutes    
28 No loop Firmicutes Ruminococcaceae Gemmiger G. formicilis 
29 No loop     
30 No loop Firmicutes Lachnospiraceae   
31 No loop Firmicutes Lachnospiraceae Roseburia R. hominis 
32 No loop     
33 No loop     
34 No loop Firmicutes Lachnospiraceae Coprococcus  
35 No loop Firmicutes Ruminococcaceae Faecalibacterium F. prausnitzii 
36 No loop Firmicutes Lachnospiraceae   
37 No loop     
38 No loop     
39 No loop Firmicutes    
40 No loop     
41 No loop Firmicutes Lachnospiraceae Blautia R. gnavus 
42 No loop Firmicutes Lachnospiraceae Blautia R. gnavus 
43 No loop Firmicutes Lachnospiraceae Blautia R. gnavus 
44 No loop Firmicutes Ruminococcaceae Ruthenibacterium R. lactatiformans 
45 No loop Firmicutes Lachnospiraceae Coprococcus  
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Table 2.5 Compiled GUS abundance based on GUS loop class. Bacterial GUS abundance 
broken down by GUS loop categories. 
 

Bacterial GUS Abundance (LFQ Intensity) Female 1 Female 2 Male 1 Male 2 

Loop 1 3.33E+06 
(0%) 

6.15E+09 
(54%) 

1.95E+10 
(63%) 

8.40E+08 
(16%) 

mini-Loop 1 1.75E+09 
(17%) 

3.67E+09 
(32%) 

7.67E+08 
(2%) 

1.86E+09 
(35%) 

No Loop 8.56E+09 
(83%) 

1.60E+09 
(14%) 

1.05E+10 
(34%) 

2.52E+09 
(47%) 

Loop 2 0.00E+00 
(0%) 

0.00E+00 
(0%) 

0.00E+00 
(0%) 

9.10E+07 
(2%) 

Total 1.03E+10 1.14E+10 3.07E+10 5.30E+09 

 

Human GUS Abundance (LFQ Intensity) 4.65E+08 1.70E+08 6.21E+08 3.16E+08 

 

Total GUS Abundance (LFQ Intensity) 1.08E+10 1.16E+10 3.13E+10 5.62E+09 

 

 

 

Figure 2.7 Determining sequence identity thresholds for GUS, Type I β-glucosidases, Type 
II β-glucosidases. Dashed vertical lines indicate chosen sequence identity thresholds: 0.28 
(28%) for GUS, 0.25 (25%) for Type 1 β-glucosidases, and 0.26 (26%) for Type II β-
glucosidases. 
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Figure 2.8 Interindividual variability in bacterial GUS composition. (a) Venn diagram of 
identified GUS protein groups from four individuals analyzed by this study. (b) Phylum-level 
and (c) structure-level analysis of GUS abundance from human fecal samples. Phyla-level 
composition information was calculated using peptide abundance information. Structure-level 
composition information was calculated using protein group abundance information. Human 
GUS abundance information was not included in structure-level composition analysis. 
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Cyclophellitol-based aziridine ABPs also target GH3 β-glucosidases  

Because the human gut microbiota contains a diverse assortment of glycoside hydrolases (GHs), 

performing ABPP from fecal material is a veritable test of the selectivity of the GUS ABPs (9). 

Sequence analysis of the protein groups identified from human fecal extracts revealed a major 

off-target hit, GH3 β-glucosidases (Figure 2.9a). The GH3 β-glucosidases enriched are 

structurally similar but occupy two topologically distinct categories that we have termed “Type 

I” and “Type II”. Manual docking analysis of the untagged ABP in structurally characterized 

GH3 β-glucosidases revealed favorable positioning of the catalytic nucleophile for attack of the 

aziridine ring (Figure 2.9b). Additionally, an arginine residue was also present (R538 and R50 

in Type I and Type II, respectively) that may contact the carboxylic acid moiety of the probe, 

enabling recognition and subsequent processing of ABPs by GH3 β-glucosidases. We expressed 

and purified both a Type I and Type II β-glucosidase identified in the fecal samples and 

confirmed in vitro that they are labelled by high concentrations of ABP 3 (Figure 2.9c). Despite 

labelling of the GH3 β-glucosidase by GlcA-like aziridine probes, neither type of β-glucosidase 

processed pNP-GlcA, suggesting that off-target labelling of β-glucosidases is probably due to the 

reactive aziridine moiety of the GUS ABPs (Figure 2.9d, e). 
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Figure 2.9 β-glucosidase is a specific off-target of GUS ABPs. (a) Protein abundance of GUS, Type I 
β-glucosidase, and Type II β-glucosidase identified from human fecal samples. (b) Conserved active sites 
of topologically distinct Type I (PDB: 5K6M) and Type II (PDB: 5WAB) β-glucosidases with the 
untagged ABP manually docked in PyMol. Distances are shown in Å. (c) Type I and Type II β-
glucosidase inhibition by the biotin-ABP (3). (d) Chemical structures of 2-nitrophenyl β-D-
glucopyranoside (2-NP-Glc) and p-nitrophenyl-β-D-glucuronide (pNP-GlcA). (e) In-vitro processing of 2-
NP-Glc and pNP-GlcA by Type I and Type II β-glucosidases. All percent activity and rate values shown 
are mean values ± standard deviation using N=3 biological replicates. 
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Gut bacterial Loop 1 GUS enzymes are key mediators of SN-38 reactivation 

After successfully identifying and quantifying bacterial GUS enzymes from human feces, we 

investigated whether we could identify the exact bacterial GUS enzymes responsible for SN-38 

reactivation in the gut by integrating ABPP-enabled GUS abundance information with ex vivo 

SN-38-G processing data. We measured ex vivo SN-38-G hydrolysis by human fecal extracts, 

which revealed faster processing for F2 and M1 than F1 and M2 (Figure 2.10a and 2.10b, 

Figure 2.11). We found a strong correlation between Loop 1 (L1) GUS abundance and rate of 

SN-38-G hydrolysis when compared to total bacterial GUS abundance (Figure 2.10c). No 

correlation was found between either human GUS or other GUS structural classes and the rate of 

SN-38-G hydrolysis (Figure 2.12). We validated the correlation by assessing the catalytic 

efficiency of SN-38-G processing by a panel of purified GUS enzymes from various GUS 

structural classes and found that bacterial L1 GUS enzymes process SN-38-G most efficiently 

(Figure 2.10d). We also found that F2, M1, and M2 were abundant in L1 GUS enzymes that had 

sequence identities ≥ 90% to E. eligens GUS (EeGUS, PDB: 6BJQ). We expressed and purified 

EeGUS and found that it processed SN-38-G faster than all other examined GUS enzymes in 

vitro. A close examination of the crystal structure of EeGUS reveals a hydrophobic active site 

pocket formed at the interface of two monomers in the L1 tetramer (Figure 2.10e) (65). The 

hydrophobic pocket formed by the oligomeric interface appears to optimally recognize 

hydrophobic small molecule glucuronides like SN-38-G. Taken together, correlation analysis 

between ex vivo processing data and ABPP-enabled GUS abundance data, further informed by in 

vitro enzyme kinetics and structural modeling, provides a molecular rationale for interindividual 

variation in SN-38 reactivation in human fecal samples, and identifies L1 GUS enzymes, 

particularly EeGUS, as key molecular regulators of efficient SN-38-G reactivation. 
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Figure 2.10 ABPP coupled with ex vivo processing data provides a molecular rationale for 
GUS-mediated SN-38 reactivation. (a) SN-38 glucuronide (SN-38-G) is the inactive metabolite 
of the topoisomerase I inhibitor irinotecan and is reactivated to SN-38 in the gut by bacterial 
GUS enzymes, resulting in acute, dose-limiting GI toxicity. (b) Ex vivo processing of SN-38-G 
by human fecal protein extracts. (c) Correlation analysis between total bacterial GUS abundance 
and Loop 1 (L1) GUS abundance against SN-38-G processing. (d) In vitro catalytic efficiencies 
of SN-38-G processing for a representative panel of GUS enzymes of different loop types. mini-
Loop 1 (mL1); Loop 2 (L2); mini-Loop 2 (mL2); mini-Loop 1, mini-Loop 2 (mL1, mL2); No 
Loop (NL); N-Terminal Loop (NTL) (e) Quaternary structure of E. eligens GUS (EeGUS, PDB: 
6BJQ) with SN-38-G manually docked in PyMol. 
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Figure 2.11 Progress curves showing SN-38-G processing and inhibition in fecal samples. 
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Figure 2.12 Correlation analysis of abundance data from various GUS structural classes 
against SN-38-G processing data. Correlation analysis between mini-Loop 1 GUS, No Loop 
GUS, Loop 2 GUS abundance, human GUS abundance and SN-38-G processing.  
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Piperazine containing small molecules inhibitors target gut bacterial Loop 1 GUS enzymes  

Finally, we sought to extend these investigations to explain differential gut bacterial GUS 

inhibition. We have developed selective, potent, and non-lethal gut bacterial GUS inhibitors that 

block the reactivation of drug metabolites like SN-38-G (Figure 2.13a) (63, 64). The piperazine 

moiety in both UNC4917 and UNC10201652 acts as a warhead that targets the catalytic 

machinery of bacterial GUS enzymes by intercepting the catalytic cycle (65). We find that SN-

38-G processing was differentially inhibited in all four human fecal extracts using these GUS 

inhibitors (Figure 2.13b). Subsequent analyses reveal a strong correlation between inhibition 

and L1 GUS abundance while no correlation was observed for the other GUS structural classes, 

confirming previous work that UNC4917 and UNC10201652 act as L1-specific GUS inhibitors 

(Figure 2.13c and Figure 2.14) (63, 73). Furthermore, we verified that UNC4510, a negative 

control analog of UNC10201652 that contains a methylated piperazine moiety, poorly inhibited 

SN-38-G processing for all GUS enzymes (65). These data show that L1-specific GUS inhibitors 

can block SN-38-G processing only in individuals whose fecal gut microbiota is highly abundant 

in L1 GUS enzymes. 

 

 

 

 

 

 

 



 

 50 

 

 
Figure 2.13 ABPP coupled with ex vivo processing data explains differential propensities 
for GUS inhibition. (a) Structures of L1 GUS inhibitors, UNC4917, UNC10201652, and the 
poor inhibitor, UNC4510 (negative control). (b) Inhibition of SN-38 reactivation in human fecal 
samples by selective bacterial GUS inhibitors. All percent activity values shown are mean values 
± standard deviation using N=3 biological replicates. (c) Correlation analysis between L1 GUS 
abundance and inhibition data for each GUS inhibitor. 
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Figure 2.14 Correlation analysis of abundance data from various GUS structural classes 
against SN-38-G inhibition data. Correlation analysis between mini-Loop 1 GUS, No Loop 
GUS, Loop 2 GUS abundance, and inhibition data for Loop 1-specific GUS inhibitors, 
UNC4917, UNC10201652, and UNC4510. 
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DISCUSSION 

Here we show that cyclophellitol-based epoxide and aziridine inhibitors and ABPs can 

target gut bacterial GUS enzymes. Using a combination of in vitro and in-gel assays, we find that 

1–4 target structurally diverse GUS enzymes with varying potencies. The variation in GUS 

inhibition is likely due to differences both in oligomeric states and active site features of the 

bacterial GUS enzymes examined (Figure 2.15). For example, we observe more potent 

inhibition of E. coli GUS by the biotin-ABP (3) when compared to the unsubstituted aziridine 

inhibitor (2). Like E. eligens GUS, previous structural work has shown that E. coli GUS is a 

tetramer with a hydrophobic active site formed at the interface of its monomers (70, 73). Thus, 

the increase in inhibition by ABP 3 compared to inhibitor 2 is likely due to hydrophobic 

interactions between the E. coli GUS active site and the nonpolar alkyl chain present in 3. 

Furthermore, ABP 3 and 4 displayed notable differences in inhibition for all GUS enzymes. The 

Cy5-ABP (4) is weaker at inhibiting GUS enzymes than the biotin-ABP (3), and this is likely 

due to steric clashes between the bulky fluorophore group and the GUS enzymes examined. 
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Figure 2.15 GUS ABPs target structurally diverse active sites. (a) EcGUS tetramer, (b) 
BuGUS-1 tetramer, and (c) BuGUS-2 dimer with zoom-in of untagged ABP manually docked in 
active site in PyMol. 
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Most importantly, we show that gut microbial GUS enzymes can be identified and 

quantified from human feces using ABPP. We were interested in examining GUS sequence 

information obtained through our ABPP-enabled pipeline to better understand the structural 

diversity of GUS enzymes present in the gut microbiome and to correlate GUS structure to SN-

38-G processing. By using powerful metaproteomic software tools like MetaLab (37) and 

Unipept (81), we also show that peptide MS data can be employed to obtain taxon information 

for GUS-producing bacterial species found in human feces. However, many protein groups could 

not be assigned to lower taxonomic ranks due to a lack of taxon-specific distinctive peptides. 

Thus, in the future, strategies that both increase peptide count and yield longer peptides for MS 

analysis should be explored to improve taxonomy assignment using ABPP. Metagenomic 

sequencing could be pursued to develop a sample-specific sequence database to query peptides, 

but this approach may be economically prohibitive (27). While other methods have coupled 

deep-sequencing with ABPs to uncover GUS-producing species (40), we provide evidence here 

that ABPP alone can be used to obtain a strong level of taxa information for GUS-producing 

bacterial species from human fecal samples.  

An unexpected yet exciting finding from our investigation was the identification of GH3 

β-glucosidases as an off-target hits. We identified two topologically distinct GH3 β-glucosidases 

as off-target hits of the GUS ABPs. Since ABPs sample enzyme function, we initially 

hypothesized that the identified GH3 β-glucosidases may process GlcA-containing substrates, 

but in vitro assays using pNP-GlcA revealed that these enzymes do not process glucuronides, 

and are in fact, off-target hits (Figure 2.9d, e). Further assessment of previously published GH3 

β-glucosidase structures reveal a solvent exposed active site and an arginine residue that interacts 

with the carboxylic acid moiety of GlcA. These features combined with the highly reactive 
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nature of the aziridine moiety in the cyclophellitol-based ABP likely cause labelling of the GH3 

β-glucosidases. The identification of only one class of off-target hits is remarkable given that the 

human gut microbiome is one of the most glycoside hydrolase rich environments found in nature 

(9), and further demonstrates that cyclophellitol-based GUS ABPs are incredibly precise and 

effective probes. 

Integration of ABPP-enabled GUS abundance with ex vivo SN-38-G processing data 

enabled the identification of L1 GUS enzymes as the key molecular regulators of SN-38-G 

turnover. Importantly, this predictive correlation was validated by both in vitro enzyme kinetics 

and structural modeling. Although we have strongly correlated L1 GUS enzymes to SN-38-G 

processing, they are lead biomarkers that will need to be further characterized for clinical use. 

For example, the ABPP methodology outlined here does not examine the bacterial cell uptake of 

these glucuronide substrates. Further studies analyzing relevant gut bacterial isolates will be 

needed to assess cellular uptake of SN-38-G. Additionally, the gut microbiota contains hundreds 

of unique GUS enzymes, all of which are not encompassed by the four fecal samples used in this 

study. The strategy outlined here provides a foundation on which future proteomics and drug 

processing can be added to extant datasets to re-run correlation analyses and identify new 

biomarkers. 

We also show that SN-38-G processing can be inhibited in complex metaproteomes using 

previously designed L1-specific GUS inhibitors and that GUS inhibition can be accurately 

predicted with probe-derived proteomics data. Interestingly, our data indicates that 

UNC10201652 is more potent than UNC4917 at inhibiting L1 GUS enzymes in fecal samples, a 

similar result found in a previous study (65). Structure-activity relationships can be conducted 

against a large assortment of GUS enzymes found in fecal samples using this strategy to identify 
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the inhibitor chemotypes that block GUS enzymes from reactivating drug glucuronides like SN-

38-G. Coupling ABPP-enabled GUS abundance with ex vivo inhibition data can serve as a 

powerful strategy to conduct structure-activity relationships in a high-throughput manner. Since 

we have a limited understanding of enzyme-substrate pairs in the microbiome, we believe it is 

imperative that high precision gut bacterial inhibitors be developed in lieu of broad-spectrum 

drugs like antibiotics or inhibitors that target enzymes classes. 

Recent work was published on a distinct GUS ABP composed of a GlcA warhead linked 

to a quinone methide leaving group at the anomeric position (40). The main difference between 

the quinone methide ABP and the cyclophellitol-based aziridine ABP employed here is target 

specificity. As noted by Wright and co-workers, the quinone methide ABP, once activated, has 

the potential to leave the enzyme active site and label off-target macromolecules (40). In 

contrast, the cyclophellitol-based aziridine ABP employed here reacts directly with the GUS 

active site in a mechanism-based fashion to form a covalent bond with the glutamate 

nucleophile, likely reducing the number of off-targets. Although labeling live bacteria with a 

quinone-methide ABP coupled with FACS sorting and 16S rRNA sequencing can give general 

taxa information on bacterial populations found in feces (40), it seems less suitable for sequence-

level identification and quantification of active GUS enzymes from fecal supernatant due to the 

promiscuity of the activated quinone-methide leaving group. 

In summary, we determined the composition and relative abundance of bacterial GUS 

enzymes from human fecal samples using ABPP. We utilized these data to identify the key 

modulators of SN-38 reactivation and to rationalize differential GUS inhibition across fecal 

samples. While we focused on SN-38-G metabolism in the present study, the combination of 

proteomics data and functional assays can be employed to pinpoint specific GUS enzymes 
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implicated in the reactivation of other drug glucuronides. Furthermore, proteomics-activity 

correlations provide a universal tool to identify a specific molecular target for any enzyme 

activity in the microbiome, an approach that is only limited and facilitated by the current set and 

continued development of ABPs that target gut bacterial enzymes (39–41, 79, 82–84). Together, 

the data gained from this ABPP approach enables the identification of potential gut bacterial 

drug targets for the molecular modulation of the gut microbiota and can be employed to reveal 

highly precise biomarkers for possible diagnostic development in the era of personalized 

medicine. 

 

MATERIALS AND METHODS 

Protein expression, purification, and site-directed mutagenesis 

All GUS enzymes were expressed and purified as previously described (64, 70, 73, 77). BuGUS-

1NxK and BuGUS-2NxK mutants were generated, expressed, and purified as previously described 

(64). Type I and Type II β-glucosidases subcloned into pLIC-His vectors were purchased from 

BioBasic and expressed and purified as previously described (64). Sequence information for 

purified β-glucosidases can be found in online (85). Briefly, all proteins were expressed with a 

N-terminal 6x histidine tag and subsequently purified using a Ni-NTA HP column (GE 

Healthcare). Additional purification was performed using a HiLoad 16/60 Superdex 200 gel 

filtration column. Proteins were eluted and aliquots were flash frozen in liquid nitrogen and 

stored at –80°C until further use. 
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Protein crystallography 

Crystals of BuGUS-2 bound to the unsubstituted cyclophellitol-based aziridine inhibitor (2) were 

produced via the hanging-drop vapor diffusion method. BuGUS-2 at 10 mg mL-1 was 

preincubated with an equivalent amount of inhibitor 2 prior to addition into the crystalline 

solution. Crystals were formed by incubating ligand bound BuGUS-2 in 0.2 M KCl and 18% 

PEG 3350. The crystals were cryoprotected using 0.2 M KCl and 18% PEG 3350 in 20% 

glycerol. Diffraction data for all crystals were collected on the 23-ID-B beamline at GM/Ca-CAT 

(Advanced Photon Source, Argonne National Laboratory). Refinements and ligand generation 

were carried out in Phenix, and ligand fitting was performed in Coot (86). Final coordinates and 

structure factors have been submitted to the RCSB and the assigned accession code 6NZG for 

ligand bound structure. 

 

Animal study design 

All animal studies were approved by the University of North Carolina Institutional Animal Care 

and Use Committee (IACUC), according to Care and Use of Laboratory Animals guidelines set 

by the National Institutes of Health.  

Germ-free wild-type C57/BL6J mice were bred and maintained in-house at the National 

Gnotobiotic Rodent Resource Center (NGRRC; University of North Carolina, Chapel Hill, NC). 

Mice were housed in Green Line cages (Techniplast). At 8–10 weeks of age, mice were 

colonized by oral gavage and rectal swabbing with viable WT E. coli MG1655 or isogenic 

ΔGUS mutant that were cultured overnight in lysogeny broth in anaerobic conditions as 

described previously (REF: PMID 29269393). Colonization was monitored by quantitative 

plating onto brain heart infusion agar plates of serial dilutions of freshly collected feces. Plates 
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were incubated for 24 hours under aerobic conditions at 37°C, and colonies were enumerated. 

Freshly voided stools were collected aseptically into sterile tubes, snap frozen, and stored at –

80°C until further analysis. 

 

Mouse fecal extract 

Mouse fecal pellets were collected and stored at –80°C until further use. Fecal extracts were 

created as previously described (63). In brief, 1–2 pellets were rehydrated with 350 µL cold 

extraction buffer (pH 6.5, 25 mM HEPES, 25 mM NaCl with Roche cOmpleteTM protease 

inhibitor cocktail) containing autoclaved 0.7 mm garnet beads (Omni International). The mixture 

was vortexed to break up dense, fibrous material. Bacterial cells were lysed using a Tissuelyzer 

II (Qiagen) for 2 min. at 30 Hertz. The resulting homogenate was sonicated for 2 min. The 

sonication was repeated after mixing the homogenate by inversion. After centrifugation (13,000 

x g, 10 min., 4°C), the supernatant was decanted. The total protein concentration was calculated 

using a standard Bradford Assay protocol. The mouse fecal extract was aliquoted and snap 

frozen using liquid nitrogen. The aliquots were stored at –80°C until further use. 

 

Human fecal extract 

Human fecal samples were purchased from a commercial vendor, BioIVT, and stored at –80°C 

until further use. Approximately 5 g of thawed fecal material in a solution containing 25 mL of 

cold extraction buffer (pH 6.5, 25 mM HEPES, 25 mM NaCl with Roche cOmpleteTM protease 

inhibitor cocktail) and 500 mg of autoclaved garnet beads was vortexed vigorously to break up 

dense, fibrous material. The suspended sample was centrifuged at low speed (300 x g, 5 min., 

4°C) to separate out any insoluble fecal material. After decanting the microbial supernatant, an 
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additional 25 mL of cold extraction buffer was added to the remaining fibrous material and the 

extraction process was repeated. The combined microbial supernatant (~40–45 mL) was 

centrifuged at low speed to remove any remaining insoluble debris. This process was repeated 

with the decanted microbial supernatant. The microbial supernatant was ultrasonicated for 1.5 

min. while on ice. The lysate was mixed by inversion and the sonication repeated. The lysed 

cells were centrifuged at high speed (17,000 x g, 20 min., 4°C) to remove cellular debris. The 

decanted lysate was concentrated, and metabolites were removed by buffer exchanging with 

fresh extraction buffer. The concentration of total protein in the fecal extract was calculated 

using a standard Bradford Assay protocol. The human fecal extract was aliquoted and snap 

frozen using liquid nitrogen. The aliquots were stored at –80°C until further use. 

 

GUS inhibitors and activity-based probes (ABPs)  

Cyclophellitol-based inhibitors 1 and 2, and ABPs 3 and 4 were synthesized and purified as 

previously described (79). 

 

Fluorescence labelling 

Select recombinant GUS enzymes were diluted to the appropriate concentration in buffer and 

pre-incubated for 5 min. at 37°C prior to the addition of Cy5-ABP (4). The final reaction volume 

was 50 μL containing 30 μL water, 10 μL buffer (pH 6.5, 25 mM HEPES, 25 mM NaCl, and 1% 

DMSO, final), 5 μL GUS (1 µM, final), and 5 μL ABP 4 (100 nM, final). For the heat denatured 

EcGUS control, EcGUS was incubated at 95°C for 5 min. prior to the addition of ABP 4. After 

the addition of ABP 4, reaction mixtures were incubated at 37°C for 1 hr. and denatured with 50 

μL gel loading buffer (pH 6.8, 50 mM Tris-HCl, 100 mM DTT, 2% SDS, and 10% glycerol, 
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final) at 95°C for 5 min. Samples were cooled on ice, run on a 10% acrylamide gel, and imaged 

using a fluorescence scanner (Amersham Typhoon) with an excitation wavelength of 649 nm and 

emission wavelength of 670 nm. Gels were subsequently stained with coomassie blue and 

imaged. 

 Mouse fecal extracts from E. coli mono-associated and germ-free mice were incubated 

with Cy5-ABP (4) at 37°C for 1 hr. The final reaction volume was 20 µL containing 12 µL 

water, 4 µL buffer (pH 6.5, 25 mM HEPES, 25 mM NaCl, final), 2 µL mouse fecal extract (0.1 

mg mL-1, final), and 2 µL ABP 4 (100 nM, final). For the heat denatured control, E. coli mono-

associated fecal extract was incubated at 95°C for 5 min. prior to the addition of ABP 4. For 

label blocking studies, E. coli mono-associated fecal extract was pre-incubated with various 

concentrations of D-glucaro-1,4-lactone prior to the addition of ABP 4. Samples were denatured 

with 20 µL gel loading buffer, ran on gel, and processed as stated above.  

Full gel images can be found in Figure 2.16. 
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Figure 2.16 Full gel images done in study. 

 

 

 

 

Figure 1c – Fluorescence Scan 

Figure 1c – Coommassie Stain

Figure 1d – Fluorescence Scan 

Figure 1d – Coommassie Stain 

Suppl. Figure 5 – Fluorescence Scan
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In vitro GUS activity and inhibition 

Apparent IC50 values for GUS inhibition by compounds 1–4 were calculated using an endpoint 

format (65). Select GUS enzymes were pre-incubated with a range of compound concentrations 

at 37°C for 30 min. prior to initiating the reaction with the fluorogenic substrate, 4-

methylumbelliferone glucuronide (4-MUG). The final reaction volume was 50 μL containing 25 

μL water, 10 μL buffer (pH 6.5, 25 mM HEPES, 25 mM NaCl, and 2% DMSO, final), 5 μL 

enzyme (15 nM, final), 5 μL compound (varying concentrations), and 5 μL 4-MUG (900 µM, 

final). After the addition of substrate, reaction mixtures were incubated at 37°C for 1 hr. and then 

quenched with 50 µL 0.2 M sodium carbonate. Fluorescence intensities were measured at an 

excitation wavelength of 350 nm and an emission wavelength of 450 nm (PHERAStar BMG 

Labtech). End point fluorescence intensities were converted to percent inhibition as previously 

described (65). Percent inhibition values were subsequently plotted against the log of compound 

concentration and fit with a four-parameter logistic function in GraphPad Prism to determine the 

concentration at which 50% inhibition (IC50) is observed. 

 Kinetic parameters were determined for GUS inhibition by compounds 1–4 as previously 

described with some modification (65, 79). Briefly, select GUS enzymes were pre-incubated in 

buffer at 37°C for 5 min. prior to initiating the reaction with the addition of both compound and 

4-MUG. The final reaction volume was 50 μL containing 25 μL water, 10 μL buffer (pH 6.5, 25 

mM HEPES, 25 mM NaCl, and 2% DMSO, final), 5 μL enzyme (5 nM, final), 5 μL compound 

(varying concentrations), and 5 μL 4-MUG (900 µM, final). After addition of substrate and 

compound, reactions were monitored continuously at 37°C at an excitation wavelength of 350 

nm and an emission wavelength of 450 nm (PHERAStar BMG Labtech). The first-order rate 

constant, kobs, was calculated as previously described (65). We applied a one-step kinetic scheme 
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to fit in Excel the resulting kobs vs. [compound] using a linear function, which gives the apparent 

inhibition parameter ki/KI’ as the slope. ki/KI’ parameter was converted to ki/KI using the 

following equation, KI’ = KI(1 + [S]/ KM), where [S] = 900 µM and KM = 64 µM, 25 µM, and 80 

µM for EcGUS, BuGUS-1, and BuGUS-2, respectively. 

Catalytic efficiencies for SN-38-G processing by GUS enzymes were calculated using a 

continuous read format. Select GUS enzymes were pre-incubated in buffer at 37°C for 5 min. 

prior to initiating the reaction with the fluorogenic substrate, SN-38-G. The final reaction volume 

was 25 μL containing 5 μL water, 12.5 μL buffer (pH 6.5, 25 mM HEPES, and 25 mM NaCl, 

final), 2.5 μL enzyme (15 nM, final), and 5 μL SN-38-G (varying concentrations). After addition 

of substrate, reactions were monitored continuously at 37°C at an excitation wavelength of 230 

nm and an emission wavelength of 420 nm (Tecan Infinite M1000 Pro). Initial velocities from 

the resultant progress curves were fitted using a linear regression with a custom MATLAB 

program, and kcat/KM was determined in Excel. 

 

In vitro β-glucosidase activity and inhibition 

Inhibition of purified Type I and Type II β-glucosidases by biotin-ABP (3) was determined using 

an end-point assay format. The β-glucosidases were pre-incubated with ABP 3 at 37°C for 30 

min. prior to initiating the reaction with the colorimetric substrate, 2-nitrophenyl β-D-

glucopyranoside (2-NP-Glc). The final reaction volume was 50 μL containing 25 μL water, 10 

μL buffer (pH 6.5, 25 mM HEPES, and 25 mM NaCl, final), 5 μL ABP 3 (varying 

concentrations), 5 μL enzyme (200 nM and 100 nM, final, for Type I and Type II, respectively), 

and 5 μL 2-NP-Glc (900 µM, final). After addition of substrate, reaction mixtures were 
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incubated at 37°C for 30 min. and then quenched with 0.2 M sodium carbonate. Absorbance was 

measured at 410 nm (PHERAStar BMG Labtech). 

Activity against p-nitrophenyl β-D-glucuronide (pNP-GlcA) and 2-NP-Glc hydrolysis by 

Type I and Type II β-glucosidases was determined using a continuous read format. Both Type I 

and Type II β-glucosidases were pre-incubated in buffer at 37°C for 5 min. prior to initiating the 

reaction with either pNP-GlcA or 2-NP-Glc. The final reaction volume was 50 μL containing 30 

μL water, 10 μL buffer (pH 6.5, 25 mM HEPES, and 25 mM NaCl, final), 5 μL enzyme (200 nM 

and 100 nM, final, for Type I and Type II, respectively), and 5 μL pNP-GlcA or 2-NP-Glc (900 

µM, final). After addition of substrate, reactions were stopped at various time points by 

quenching with 0.2 M sodium carbonate. Absorbance was measured at 410 nm (PHERAStar 

BMG Labtech).  

 

Ex vivo GUS activity and inhibition 

Inhibition of SN-38-G hydrolysis in human fecal extracts was determined using a continuous 

read format. Inhibitors were diluted to the appropriate concentrations and pre-mixed with human 

fecal extract prior to initiating the reaction with the fluorogenic substrate, SN-38-G. The final 

reaction volume was 25 μL containing 12.5 μL water, 5 μL buffer (pH 6.5, 25 mM HEPES, 25 

mM NaCl, and 1.3% DMSO, final), 2.5 μL human fecal extract (0.1 mg mL-1, final), 2.5 μL 

inhibitor (various concentrations), and 2.5 μL substrate (15 µM, final). Reaction mixtures were 

pre-incubated with inhibitor at 37°C for 5 min. prior to the addition of substrate. After addition 

of substrate, reactions were monitored continuously at 37°C with an excitation wavelength of 

230 nm and an emission wavelength of 420 nm (Tecan Infinite M1000 Pro). The first order rate 
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constant, k (s-1), was obtained by fitting resulting progress curves using an exponential decay 

function in MATLAB (Figure 2.11). 

 

Proteomics 

Human fecal extracts (3.5 mg) were incubated at 37°C for 60 min. with either 10 µM pre-

clicked, biotin-ABP (3) or 10 µM biotin only in 500 uL (pH 6.5, 25 mM HEPES, 25 mM NaCl, 

and 1% DMSO, final, containing Roche cOmpleteTM protease inhibitor cocktail). Reactions were 

quenched by adding 125 µL 10% SDS and heating at 95°C for 5 min. After cooling on ice, the 

samples were washed 3 times with 0.05% SDS buffer (pH 6.5, 25 mM HEPES, and 25 mM 

NaCl) using 1.5 mL Amicon 10K cutoff spin concentrators to remove unreacted probe. The 

samples were centrifuged at 14,000xg for 5 min. at 4°C between wash steps. The volume in each 

sample was adjusted to 1 mL using 0.05% SDS buffer (pH 6.5, 25 mM HEPES, and 25 mM 

NaCl). To each sample, 15 µL streptavidin sepharose beads (GE) were added and incubated at 

room temperature for 60 min. The beads were subsequently washed with 300 µL 0.1% SDS 

buffer (pH 6.5, 25 mM HEPES, 25 mM NaCl), 3 times with 300 µL buffer (pH 6.5, 25 mM 

HEPES, 25 mM NaCl), and 3 times with 300 µL 50 mM NH4HCO3. The samples were 

centrifuged (400xg, 2 min., 4°C) between wash steps. The beads in each sample were re-

suspended in 100 µL 50 mM NH4HCO3 and stored at –20°C until further analysis. 

Proteins were eluted using 0.5% RapiGest (Waters; 18600861) in 50 mM NH4HCO3 and 

reduced with dithiothreitol (DTT) at 65°C for 30 min. Proteins were alkylated using 2-

chloroacetamide (Acros Organics; 148415000) for 20 min. at room temperature in the dark. 

Beads were pelleted by centrifugation (200xg, 2 min., room temperature). The supernatant was 

transferred to a new tube and trypsinized overnight for 18 hr. at 37°C with 2.5 μg of trypsin 



 

 67 

(Promega; V511C). RapiGest surfactant was quenched using 250 mM HCl for 45 min. at 37°C. 

Samples were then concentrated to 100 μL using a speedvac followed by C18 desalting columns 

in accordance with the manufacturer’s protocols (ThermoScientific; 89870). Samples were then 

concentrated using a speedvac and resolubilized in 100 μL of LC-Optima MS grade water 

(Thermo; W7SK). Ethyl acetate (Thermo; E196SK) extraction followed by speedvac was 

performed to remove residual detergents. Peptides were quantified and normalized using the 

Pierce QFP assay (Thermo; 23290) in accordance with the manufacturer’s protocol. 

Reverse-phase nano-high-performance liquid chromatography (nano-HPLC) coupled 

with a nanoACQUITY ultraperformance liquid chromatography (UPLC) system (Waters 

Corporation; Milford, MA) was used to separate trypsinized peptides. Trapping and separation of 

peptides were performed in a 2 cm column (Pepmap 100; 3-m particle size and 100-Å pore size), 

and a 25-cm EASYspray analytical column (75-m inside diameter [i.d.], 2.0-m C18 particle size, 

and 100-Å pore size) at 300 nL/min and 35°C, respectively. Analysis of a 60-min. gradient of 

2% to 25% buffer B (0.1% formic acid in acetonitrile) was performed on an Orbitrap Fusion 

Lumos mass spectrometer (Thermo Scientific). The ion source was operated at 2.4 kV and the 

ion transfer tube was set to 300°C. Full MS scans (350-2000 m/z) were analyzed in the Orbitrap 

at a resolution of 120,000 and 1e6 AGC target.  The MS2 spectra were collected using a 1.6 m/z 

isolation width and were analyzed either by the Orbitrap or the linear ion trap depending on peak 

charge and intensity using a 3 s TopSpeed CHOPIN method (87). Orbitrap MS2 scans were 

acquired at 7500 resolution, with a 5e4 AGC, and 22 ms maximum injection time after HCD 

fragmentation with a normalized energy of 30%. Rapid linear ion trap MS2 scans were acquired 

using an 4e3 AGC, 250 ms maximum injection time after CID 30 fragmentation. Precursor ions 

were chosen based on intensity thresholds (>1e3) from the full scan as well as on charge states 
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(2–7) with a 30-s dynamic exclusion window. Polysiloxane 371.10124 was used as the lock 

mass. All proteomics data have been deposited to the ProteomeXchange Consortium via the 

PRIDE partner repository with the data set identifier PXD014864 (88). 

 

Raw LC/MS data processing 

Peptides and protein groups were identified by an iterative database strategy within MetaLab 

(version 1.1.1) (37), which used MaxQuant (version 1.6.2.3) (38). The database search was 

performed using the integrated reference catalog of the human gut microbiome (IGC) database 

(29) combined with the UniProtKB/Swiss-Prot human sequence database (downloaded 1 Feb. 

2017) (89) with a total of 9,920,788 sequences. Search parameters were: static carbamidomethyl 

cysteine modification, specific trypsin digestion with up to two missed cleavages, variable 

protein N-terminal acetylation and methionine oxidation, match between runs, and label-free 

quantification (LFQ) with a minimum ratio count of 2. Protein identifications were filtered for a 

false discovery rate (FDR) of 1%, and potential contaminants and decoys were removed. 

 

Identification of GUS enzymes and β-glucosidases from IGC and UniProt databases 

GUS enzymes and β-glucosidases in the IGC and UniProt (SwissProt and TrEMBL) databases 

were identified by pairwise alignment to representative proteins. Candidate sequences were 

accepted if they passed a sequence identity threshold and contained conserved residues. For GUS 

enzymes, ³ 28% identity was required with at least one of four representative proteins: 

Escherichia coli (EcGUS, UniProt: P05804), Clostridium perfringens (CpGUS, UniProt: 

Q8VNV4), Streptococcus agalactiae (SaGUS, UniProt: Q8E0N2), and Bacteroides fragilis 

(BfGUS, PDB: 3CMG). Additionally, all conserved residues had to be present and correctly 
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aligned to the representative protein that passed the identity threshold. The conserved residues 

were: EcGUS E413, E504, N566, K568; CpGUS E412, E505, N567, K569; SaGUS E408, E501, 

N563, K565; and BfGUS E395, E476, N547, K549. For Type I β-glucosidases, ³ 25% identity 

was required with GH3 β-glucosidase from the cow rumen metagenome (PDB: 5K6M) with 

conserved residues E143, R597, K630, H631, D709. For Type II β-glucosidases, ³ 26% identity 

was required with GH3 β-glucosidase from Bifidobacterium adolescentis (PDB: 5WAB) with 

conserved residues R120, K153, H154, D232, E417. For E417, an exact alignment was not 

required, rather an E had to be within ± 4 residues, including gaps. Pairwise alignment was 

performed by EMBOSS Stretcher with parameters gapopen=1 and gapextend=1 (90). Sequence 

identity thresholds (i.e., 28%, 25% and 26%) were chosen by selecting the smallest value for 

which no human proteins (except GUSB) were accepted (Figure 2.7). 

 

Annotation of GUS loops 

GUS loop classes were determined by multiple sequence alignment (MSA) of all GUS enzymes 

identified in the IGC database along with representative proteins. An initial MSA for IGC GUS 

enzymes was created using Clustal Omega with parameters --full, --full-iter, --iter=10. To 

determine Loop 1 and Loop 2 categories, EcGUS (Uniprot: P05804) was aligned to the initial 

MSA using the same Clustal Omega parameters. Criteria for each class are defined by Pollet et 

al (77). To determine the N-Terminal Loop (NTL) class, BuGUS-1 (PDB: 6D1N) was aligned to 

the initial MSA as before. NTL criteria are defined by Pellock et al (64). 

 



 

 70 

GUS-specific taxonomy quantification 

The relative GUS abundance of a taxon was defined as the summed intensities of GUS peptides 

distinct to the taxon. GUS peptides were all identified peptides that are present in a GUS protein 

in the UniProt database. To determine a peptide’s distinct taxon, UniProt protein entries 

containing the peptide were found using UniPept’s pept2prot program (81). Since most of the 

proteins identified by ABPP were GUS enzymes and β-glucosidases, we rationalized that the 

entries could be restricted to only those that belonged to these classes by pairwise alignment. 

Proteins were further filtered out if their taxon was “uncultured bacterium”, “uncultured 

organism”, “human gut metagenome” or a metazoan other than homo sapiens. The taxa for these 

proteins were then input into UniPept’s taxa2lca program to determine the least common 

ancestor of the taxa, which is the most specific taxon for which the peptide is distinct. 

 

Taxonomy identification for protein groups 

A protein group’s taxon was defined as the least common taxon that contained all the unique and 

razor peptides of the protein group. For each protein group, its razor and unique peptides were 

mapped to UniProt protein entries and full taxonomies using pept2prot and filtered as described 

in the taxonomy quantification section. To be considered the least common taxon, it must be the 

only taxon at its rank to contain all the peptides. 

 

GUS correlation analyses 

All correlation analyses were performed in GraphPad Prism by fitting with a one phase decay 

function. 
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CHAPTER 3: INHIBITION OF GUT BACTERIAL β-GLUCURONIDASES BY FDA-

APPROVED DRUGS 
 
INTRODUCTION 

The human gut microbiome contains on the order of 1,000,000,000,000 bacterial cells, 

which is roughly equal to the number of human cells that comprise our body (12). The large 

reservoir of microbes living in our distal gut contains a plethora of enzymes that are important 

for both digestion and gut homeostasis (12). Gut bacterial enzymes are also capable of 

transforming a wide array of small molecule metabolites derived from the host (91), diet (92, 

93), and ingested drugs (92). The products of these biotransformation reactions can drastically 

impact human health as well as therapeutic outcomes. For example, gut microbiota-mediated 

metabolism of host-derived metabolites like bile acids and other endobiotics plays a role in the 

normal homeostasis of these compounds (94, 95). Additionally, gut microbiota-driven 

transformation of small molecule drugs has been linked to drug toxicity and altered drug efficacy 

(55, 57, 70) (see Chapter 1). 

A class of gut bacterial enzymes that is inextricably linked to digestion and drug efficacy 

are gut bacterial β-glucuronidases (GUS) (70, 73). As discussed in Chapter 2, drugs and drug 

metabolites (e.g., SN-38 and non-steroidal anti-inflammatory drugs) have the potential to be 

glucuronidated during Phase II drug metabolism by UDP glucuronosyl transferases (UGT) in 

hepatocyte cells (62). Appendage with GlcA increases the overall polarity and molecular weight 

of the drug which makes it easier for the body to dispose via either urinary or fecal excretion 

(72). If the GlcA-conjugated drug is excreted into the gastrointestinal (GI) tract, then gut 
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bacterial GUS enzymes have the potential to cleave the GlcA tag which results in the 

reactivation of the drug or drug metabolite. Individual GlcA units are further metabolized in the 

Entner-Doudoroff pathway to generate pyruvate, which enters the citric acid cycle and ultimately 

results in energy production for the microbe (65). Reactivation of drugs and associated 

metabolites by GUS enzymes in the gut has been linked to drug toxicity and altered drug 

efficacy; hence, considerable effort has been placed into creating GUS inhibitors to reduce GUS-

mediated drug reactivation (70, 73, 95).  

An extensive catalogue of GUS inhibitors has been reported (96). A commonly used gut 

bacterial GUS enzyme to screen for new GUS inhibitors is Escherichia coli GUS (EcGUS). 

Among the growing list of GUS inhibitors, the synthetic compound UNC10201652 is the most 

potent against EcGUS (96). A detailed study of UNC10201652 by Pellock and co-workers 

showed that it is a slow-binding, substrate-dependent inhibitor of GUS enzymes (65). 

Importantly, a combination of x-ray crystallography, mass spectrometry, and in vitro kinetic 

assays show that the secondary piperazine amine in the UNC10201652 scaffold intercepts the 

glycosyl-enzyme catalytic intermediate during the hydrolysis of small molecule glucuronides 

(65). The inhibitor forms a covalent bond with a GlcA in the active site which results in near 

irreversible binding. Furthermore, structure-activity relationship (SAR) studies indicate that the 

secondary piperazine amine is necessary for potent inhibition of GUS enzymes by 

UNC10201652. 

Since the secondary piperazine amine was found to drive the interception of the glycosyl-

enzyme catalytic intermediate, Pellock and co-workers hypothesized that approved drugs 

containing either a secondary piperazine or piperadine amine will also inhibit GUS enzymes 

(65). Indeed, the team found using a combination of in vitro and cell-based assays that the tested 
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drugs in the study containing a secondary piperazine or piperadine amine inhibits EcGUS with 

IC50 values ranging from 0.5 – 10 µM (65). While the potency of inhibition against EcGUS for 

the examined drugs is 5 – 100 fold lower when compared to UNC10201652 (IC50 = 0.117 ± 

0.005 µM), the small intestine and colon concentrations of many approved drugs are on average 

in the mid to high micromolar range, which is high enough for these drugs to block the activity 

of GUS enzymes (65). 

Recent reports indicate that GUS enzymes mediate the reactivation of endobiotics such as 

estrogen and serotonin in the GI tract (91, 95). Like drugs, endobiotics are glucuronidated in 

hepatocytes and excreted into the GI tract via the biliary ducts. In the GI tract, gut bacterial GUS 

enzymes can cleave the GlcA tag which results in the reactivation of endobiotics. More 

importantly, the untagged endobiotic can be reabsorbed via enterohepatic recirculation. 

Inhibition of GUS-mediated metabolism of complex carbohydrates and endobiotics by approved 

piperazine and piperadine containing drugs can potentially interfere with gut homeostasis and 

hormone levels in the body which further highlights the importance of examining these approved 

drugs for GUS inhibition. 

As discussed in Chapter 2, gut bacterial GUS enzymes from different gut bacterial 

species vary widely in structure. In addition, individuals differ in the type (i.e., bacterial species 

source) and abundance of GUS enzyme that they harbor (85). Pellock and co-workers only tested 

one GUS structural category against a small set of piperazine and piperadine containing 

approved drugs (65). Here, we survey all known drugs containing piperazine and piperadine 

moieties for GUS inhibition. Importantly, we also examine inhibition against a structurally 

diverse library of GUS enzymes. Using a combination of in vitro kinetic assays, mass 

spectrometry, and x-ray crystallography, we also interrogate and validate the mechanism of 



 

 74 

action of the approved drugs tested here. Finally, we use an ex vivo kinetic assay in combination 

with proteomics-derived GUS abundance data to predict what GUS isoforms are susceptible to 

inhibition by the tested drugs. 

 

RESULTS AND DISCUSSION 

GUS inhibition broad screen 

Previously, 5 FDA approved drugs containing either a terminal piperazine or piperadine ring 

(palbociclib, crizotinib, vortioxetine, amoxapine, and ciprofloxacin) were found to inhibit 

Escherichia coli GUS (EcGUS) in vitro with IC50 values ranging from 0.5 – 10 µM (65). We 

conducted a substructure search against an online database called e-Drug 3D (last update: July 

2020) to expand this list and test all non-antibiotic drugs containing either a terminal piperazine 

or piperadine ring. e-Drug 3D is a comprehensive database that contains 1993 molecular 

structures approved between 1939 and 2020 as well as all known metabolites for each drug (97). 

In total, we found 22 non-antibiotic drugs (or associated metabolites) containing either a terminal 

piperazine or piperadine moiety but only 20 were examined based on commercial availability 

(Figure 3.1). We also included the anti-psychotic loxapine, a methylated analog of amoxapine, 

in our drug library for the purpose of structure activity relationship (SAR) analysis. Using a 

previously described formula, the calculated small intestine and colonic concentrations of the 

drugs in our library range from 5 – 340 µM and 10 – 1000 µM, respectively (Table 3.1) (52). 
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Figure 3.1 Tested drugs and drug metabolites that contain either a terminal piperazine or 
piperadine moiety. Methylphenidate, dexmethylphenidate, and pimavanserin were not available 
for purchase and thus not examined. 
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Table 3.1 Estimated intestinal and colonic concentration of drugs examined in this study. 
Concentrations were calculated using a previously established formula (52). N.A. = not 
calculated due to insufficient dosing data. 
 

Drug Drug Type Intestinal [ ], µM Colonic [ ], µM 
trimetazidine anti-ischemic 44 N.A. 
vortioxetine anti-psychotic 22 29 
amoxapine anti-psychotic 106 96 

norquetiapine anti-psychotic 339 339 
tirofiban anti-clotting 10 12 
ceritinib anti-cancer 90 414 
crizotinib anti-cancer 185 582 

N-desmethyl sildenafil anti-hypertensive 72 290 
ribociclib anti-cancer 153 529 

palbociclib anti-cancer 75 275 
paroxetine anti-psychotic 40 73 
niraparib anti-cancer 104 151 

perhexiline anti-hypertensive 240 N.A. 
cobimetinib anti-cancer 13 48 
mefloquine anti-malarial 220 991 
flecainide anti-arrhythmic 121 30 

desloratadine anti-histamine 5 11 
varenicline anti-addiction 2 N.A. 
loxapine anti-psychotic 10 N.A. 

piperazine anti-helminthic N.A. N.A. 
 

The variation in GUS enzyme structure between gut bacterial species prompted Pollet 

and co-workers to categorize GUS enzymes into unique structural categories (77). GUS enzymes 

were initially binned into unique structural categories based on the size and location of an 

adjacent active site loop which plays a key role in recognition and binding of small molecule 

substrates and inhibitors (77). Interestingly, Biernet and co-workers observed that 

UNC10201652 and other small molecule inhibitors selectively and most potently inhibit GUS 

enzymes of the Loop 1 (L1) class (63). Thus, we hypothesized that the tested drugs here will 

uniquely inhibit L1 GUS enzymes. We tested each drug in our library against representative 

GUS enzymes from each of the previously established GUS structural categories including a 

category of GUS enzymes that bind the co-factor FMN (Table 3.2). Each drug was tested for 

GUS inhibition using the reporter substrate 4-methylumbelliferone-β-D-glucuronide (4-MU-G) 



 

 78 

at the physiologically relevant pH of 7.4. All drugs were tested at 10 µM since standard drug 

screening campaigns use this concentration and more importantly, all of the tested drugs were 

found to be soluble at this concentration (98). 

Table 3.2 Examined GUS enzymes in broad screen. GUS categories: Loop 1 (L1); mini-Loop 
1 (mL1); Loop 2 (L2); mini-Loop 2 (mL2); mini-Loop 1, mini-Loop 2 (mL1, mL2); No Loop 
(NL); FMN-binding (FMN); N-Terminal Loop (NTL). 
 

GUS Loop Category Oligomeric State PDB Code 
C. perfringens L1 Tetramer 4JKM 

E. coli L1 Tetramer 3K46 
E. eligens L1 Tetramer 6BJW 

S. agalactiae L1 Tetramer 4JKL 
B. fragilis mL1 Tetramer 3CMG 

B. uniformis-2 L2 Dimer 5UJ6 
P. meridae mL2 Tetramer 6DXU 
B. ovatus mL1, mL2 Tetramer 6D8K 

F. saccharivorans NL Hexamer 6NCZ 
B. dorei NL Dimer 6ED1 

R. gnavus-3 FMN Dimer-Tetramer Mix 6MVG 
R. hominis-2 FMN Dimer-Tetramer Mix 6MVH 

Faecalibacterium prausnitzii L2-6 FMN Trimer 6MVF 
B. uniformis-1 NTL Tetramer 6D1N 

 
As expected, we observed inhibition of the tested L1 GUS enzymes:  EcGUS, 

Clostridium perfringens GUS (CpGUS), Streptococcus agalactia GUS (SaGUS), and 

Eubacterium eligens GUS (EeGUS) (Figure 3.2). These L1 GUS enzymes are tetramers that 

contain a long loop that overlaps adjacent protomers (70). The loop overlay results in the 

formation of a hydrophobic pocket that is ideal for binding of small molecule substrates and 

inhibitors but limits access to large carbohydrate chains (70). Interestingly, we also observed 

inhibition of FMN-binding GUS enzymes despite prior structural analysis indicating that 

Faecalibacterium prausnitzii L2-6 GUS (FpL2-6GUS) and Roseburia hominis GUS (Rh2GUS) 

contain solvent exposed active sites which is suggestive for preferential binding of glucuronate 

containing polysaccharides (99). Further structural characterization will need to be accomplished 

to rationalize inhibition of FMN-binding GUS enzymes by the tested drugs. We did not observe 
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potent inhibition of GUS enzymes from other GUS structural classes. Many of these GUS 

enzymes contain large solvent exposed active sites that are not conducive to binding by small 

molecule inhibitors, but rather large polysaccharide chains. Indeed, GUS enzymes from the mini-

Loop 1 (mL1), Loop 2 (L2), mini-Loop 2 (mL2), and No Loop (NL) classes have been observed 

to process the carbohydrate heparin in vitro while having lower catalytic efficiencies against the 

small molecule reporter substrate p-nitrophenyl-β-D-glucuronide (77). 

 
Figure 3.2 GUS inhibition data for tested drugs. Drugs were tested at 10 µM and percent 
activity remaining is reported. 
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We next tabulated IC50 values for inhibition of L1 and FMN-binding GUS enzymes by 

the tested drugs. Full dose-response plots are only presented for inhibitors with IC50 values ≤ 10 

µM based on the initial broad screen (Table 3.3 and Figure 3.3). An analysis of the IC50 values 

revealed variability in inhibition between the different tested L1 GUS enzymes which is likely 

due to differences in the Loop 1 sequence (63). Overall, we see less potent inhibition for the 

FMN-binding GUS enzymes when compared to L1 GUS enzymes except for ceritinib and 

crizotinib where near equal inhibition across the FMN and L1 GUS enzymes is observed (Table 

3.3). Taken together, we have found more drugs that inhibit GUS enzymes and in addition to L1 

GUS enzymes, FMN-binding GUS enzymes are also inhibited by piperazine and piperadine 

containing drugs. 

Table 3.3 IC50 values for tested drugs against L1 and FMN-binding GUS enzymes. 
 

IC50 (µM) EcGUS EeGUS SaGUS CpGUS Rg3GUS Rh2GUS 
trimetazidine > 10 > 10 > 10 > 10 > 10 > 10 
vortioxetine 5.3 ± 0.2 1.1 ± 0.1 1.2 ± 0.1 2.2 ± 0.3 3.2 ± 0.6 > 10 
amoxapine 0.52 ± 0.07  1.46 ± 0.09  1.5 ± 0.2 0.44 ± 0.03 > 10 > 10 

norquetiapine 1.1 ± 0.2 1.8 ± 0.2 2.1 ± 0.3 0.59 ± 0.05 > 10 > 10 
tirofiban > 10 > 10 > 10 > 10 > 10 > 10 
ceritinib > 10 5.2 ± 0.3 7.9 ± 0.2 2.2 ± 0.4 6.4 ± 0.4 2.4 ± 0.2 
crizotinib 8.5 ± 0.7 12 ± 3 10 ± 1 3.27 ± 0.07 6.1 ± 0.6 9.2 ± 0.5 

N-desmethyl sildenafil > 10 > 10 > 10 > 10 > 10 > 10 
ribociclib > 10 > 10 > 10 1.51 ± 0.09 > 10 > 10 

palbociclib 11 ± 1 > 10 4.6 ± 0.3 2.46 ± 0.05 > 10 > 10 
paroxetine > 10 7.4 ± 0.4 > 10 11 ± 1 3.1 ± 0.7 1.6 ± 0.3 
niraparib > 10 > 10 6.7 ± 0.6 > 10 > 10 > 10 

perhexiline > 10 4.5 ± 0.4 > 10 > 10 > 10 > 10 
cobimetinib > 10 > 10 > 10 > 10 > 10 > 10 
mefloquine 2.98 ± 0.07 4.0 ± 0.2 > 10 > 10 > 10 5 ± 2 
flecainide > 10 > 10 > 10 > 10 > 10 > 10 

desloratadine > 10 9.0 ± 0.6 > 10 6 ± 1 > 10 > 10 
varenicline > 10 > 10 > 10 > 10 > 10 > 10 
loxapine > 10 > 10 > 10 > 10 > 10 > 10 

piperazine > 10 > 10 > 10 > 10 > 10 > 10 
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Figure 3.3 Dose response plots for tested drugs against L1 and FMN-binding GUS 
enzymes. Full curves are reported for drug-GUS pairs that have IC50 values ≤ 10 µM. 
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Investigating the mechanism of action 

UNC10201652 was previously found to be a slow binding, substrate dependent inhibitor of GUS 

enzymes (65). Substrate turnover is necessary for potent inhibition by this inhibitor. In the 

absence of UNC10201652, the catalytic glutamate in the GUS enzyme attacks the anomeric 

carbon of the small molecule glucuronide which results in the release of the aglycone moiety and 

the formation of a covalent bond between the GlcA and the GUS enzyme. The putative catalytic 

acid/base glutamate residue deprotonates a water molecule which then attacks the anomeric 

carbon thereby releasing the GlcA from the enzyme active site. In the presence of 

UNC10201652, the catalytic acid/base glutamate residue deprotonates the secondary piperazine 

amine. The nucleophilic amine then attacks the GlcA-enzyme intermediate which results in the 

formation of a covalent bond between the piperazine ring and GlcA. 

To determine whether the drugs tested here follow this mechanism and are also slow-

binding, we first collected progress curves for all drug-GUS pairs (Figure 3.4). All drugs that 

inhibited GUS activity have non-linear progress curves which is indicative of slow binding. 

Additionally, steady state velocities (vs) of the tested drugs were either zero or nearly zero which 

indicates that these drugs work as enzyme inactivators (Figure 3.4).  To assess whether the 

newly tested drugs here are substrate dependent, we pre-incubated EeGUS with drugs at various 

time points and found that the kinetic profile was the same for all which indicates that steady 

state kinetics of these drugs is not driven by inhibitor-enzymes interactions (Figure 3.5). Jump 

dilution assays show that pre-incubation with substrate results in the onset of steady state 

inhibition which indicates that these drugs are substrate dependent inhibitors of GUS enzymes 

(Figure 3.6). 
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Figure 3.4 Progress curves for all drug-GUS pairs. 
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[vortioxetine] = 1 µM [amoxapine] = 1 µM 

[norquetiapine] = 1 µM [ceritinib] = 2 µM
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[crizotinib] = 5 µM [ribociclib] = 10 µM 

[pablociclib] = 10 µM [paroxetine] = 5 µM 
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Figure 3.5 Pre-incubation of EeGUS with various drugs and various time points. Only drugs 
that showed potent inhibition against EeGUS were examined. 
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[vortioxetine] = 1 µM [amoxapine] = 1 µM 

[norquetiapine] = 1 µM [ceritinib] = 2 µM
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[crizotinib] = 5 µM [ribociclib] = 10 µM 

[pablociclib] = 10 µM [paroxetine] = 5 µM 
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Figure 3.6 Jump dilution assay of EeGUS with various drugs. Only drugs that showed potent 
inhibition against EeGUS were examined. 
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We performed a crystallography screening campaign of drugs that were found to inhibit 

EeGUS to assess whether the drug-GlcA conjugate is forming. Drugs were incubated with 

EeGUS in the presence of 4-MU-G to capture the drug-GlcA product in the active site. We 

successfully obtained structures of EeGUS bound to norquetiapine and mefloquine 2.4 Å and 2.0 

Å, respectively (Table 3.4). Unbiased difference electron density within the active site of 

EeGUS bound to norquetiapine revealed that norquetiapine was covalently β-linked to the 

anomeric carbon in GlcA (Figure 3.7a). Formation of the norquetiapine-GlcA scaffold was 

further validated by LC-MS (Figure 3.7b). We did not observe a covalent linkage between 

mefloquine and GlcA in the EeGUS crystal structure (Figure 3.7c). Interestingly, LC-MS 

analysis of EeGUS incubated with mefloquine and 4-MU-G revealed formation of the 

mefloquine-GlcA conjugate (Figure 3.7d). Possible hydrolysis of the mefloquine-GlcA 

conjugate may have occurred during the crystallization process which may be why the 

conjugation is not observed in the mefloquine bound EeGUS structure. While EeGUS was 

examined here, future work should be done to assess whether drug-GlcA conjugates form in 

FMN-binding GUSs. 
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Table 3.4 Crystallographic statistics for E. eligens GUS bound to norquetiapine and 
mefloquine. 
 

 Mefloquine Norquetiapine 
Resolution range 29.43-2.04 (2.12-2.04) 33.64-2.40 (2.49-2.40) 

Space group P 64 2 2 C 64 2 2 
Unit cell [a, b, c (Å); α, β, γ (°)] 179.80, 179.80, 134.92; 90, 90, 120 179.42, 179.42, 134.54; 90, 90, 120 

Total reflections 153949 (11291) 470863 (34768) 
Unique reflections 77542 (4872) 50048 (4779) 

Multiplicity 2.0 (1.9) 9.4 (7.3) 
Completeness (%) 93.8 (60.9) 99.6 (96.8) 
Mean I/sigma(I) 14.85 (0.39) 13.67 (1.11) 
Wilson B-factor 51.65 57.09 

R-merge 0.02621 (1.689) 0.1112 (1.113) 
R-pim 0.02621 (1.689) 0.03841 (0.4304) 
CC1/2 0.999 (0.143) 0.982 (0.613) 

R-work 0.2076 (0.3955) 0.2012 (0.3139) 
R-free 0.2410 (0.4069) 0.2283 (0.3460) 

# of Non-Hydrogen Atoms 4798 4867 
Macromolecules 4612 4723 

Ligands 57 33 
Solvent 129 111 

Protein residues 586 598 
RMS (bonds) (Å) 0.015 0.009 
RMS (angles) (°) 1.34 1.26 

Ramachandran outliers (%) 0.17 0.00 
Rotamer outliers (%) 0.00 0.40 

Clash score 4.75 7.71 
Average B-factor (Å2) 61.94 88.13 

Macromolecules 62.06 88.86 
Ligands 73.85 73.33 
Solvent 52.74 61.50 
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Figure 3.7 Structural analysis of norquetiapine and mefloquine bound to EeGUS. (a) Active 
site of EeGUS bound to norquetiapine-GlcA conjugate with Fo-Fc density. (b) Mass spectrum of 
norquetiapine-GlcA conjugate that is generated when incubating EeGUS with norquetiapine and 
4-MUG. (c) Active site of EeGUS bound to mefloquine and GlcA with Fo-Fc density. (d) Mass 
spectrum of mefloquine-GlcA conjugate that is generated when incubating EeGUS with 
mefloquine and 4-MUG. 
 

In addition to the capture of the GlcA within the active site, previous structural work has 

shown that interaction with the long loop in L1 GUS enzymes is also important for potent 

binding by UNC10201652 (63, 65). The long loop overlaps adjacent protomers which creates a 
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hydrophobic pocket that is ideal for binding of small molecule inhibitors like UNC10201652 

(63, 65). The amino acid residues in the Loop 1 sequence interacts with the non-piperazine and -

piperadine portion (herein termed “R-Group”) in UNC10201652 which stabilizes it within the 

active site. Indeed, we found that the compound piperazine did not inhibit GUS activity which 

indicates that R-Group is necessary for binding and inhibition (Table 3.3). Furthermore, we did 

not observe GUS inhibition for tirofiban, trimetazidine, N-desmethyl sildenafil, cobimetinib, and 

flecainide which may be due to suboptimal interactions with the Loop 1 sequence within the 

active site (Table 3.3). 

 

Ex vivo kinetics and activity-based proteomics 

In Chapter 2, gut bacterial GUS enzymes were identified and quantified using a unique activity-

based proteomics approach. Furthermore, percent inhibition of SN-38 glucuronide turnover by 

UNC10201652 was shown to correlate strongly with L1 GUS abundance which corroborates 

previous reports that UNC10201652 most potently inhibits L1 GUS enzymes (63). To assess 

whether the tested drugs are selective for L1 and FMN-binding GUS enzymes in an ex vivo 

setting, we first determined the GUS profiles of 6 individuals using the proteomics approach 

outlined in Chapter 2. As expected, the diversity and abundance of GUS structural categories 

varies widely among the profiled individuals (Figure 3.8a). 

Next, we assessed percent inhibition of 4-MU-G turnover for each drug-fecal lysate set. 

4-MU-G is a universal substrate; hence, we can assess correlations for all GUS enzymes. We did 

not observe inhibition of 4-MU-G turnover by drugs found not to inhibit GUS enzymes in vitro 

like piperazine, trimetazidine, and tirofiban (Figure 3.8b). We observed a strong correlation 

between the sum of L1 and FMN-binding GUS abundance and percent inhibition of 4-MUG 
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turnover by fecal extracts obtained from the 6 individuals (Figure 3.8c and Figure 3.9). Taken 

together, ex vivo analysis shows that percent inhibition correlates well with the sum of L1 and 

FMN-binding GUS abundance. In the future, a higher fecal sample size should be used to further 

validate correlation. 
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Figure 3.8 ABPP coupled with ex vivo inhibition of GUS activity by tested drugs. (a) GUS 
abundance data (b) Percent inhibition of 4-MU-G turnover by each tested drug. Donors are 
organized by the sum of L1 and FMN-binding GUS abundances. (c) Correlation between the 
sum of L1 and FMN-binding GUS abundance and percent inhibition of 4-MU-G turnover. 
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Figure 3.9 Correlation analysis between the sum of L1 and FMN-binding GUS abundance 
and percent inhibition by tested drugs. 
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CONCLUSION 

Characterization of a selective and potent GUS inhibitor, UNC10201652, revealed that 

the secondary piperazine amine intercepts the glycosyl-enzyme intermediate which results in the 

formation of a covalent bond with GlcA (65). Here, we show that drugs containing a terminal 

piperazine or piperadine moiety also inhibit GUS enzymes. Importantly, we find that the tested 

drugs specifically inhibit GUS enzymes from the L1 and FMN-binding GUS structural classes. 

We validated this finding by correlating ex vivo kinetics data with GUS abundance data derived 

from activity-based proteomics. Finally, using EeGUS as a case study, we show that the drugs 

tested here are also slow binding and substrate dependent. 

The work presented here has shown that the tested drugs can inhibit GUS enzymes in 

vitro. For the few drugs tested, Pellock and co-workers used in-cell assays to show that the drugs 

can inhibit GUS activity with EC50 values ranging from 0.16 – 3.5 µM (65). In the future, work 

needs to be done to study the potency of the drugs tested here using in-cell assays. Importantly, a 

diverse range of gut microbes that differ in cell wall type (i.e., gram-positive vs. gram negative) 

need to be tested to better understand what types of microbes are prone to drug uptake and GUS 

inhibition. 

Pellock and co-workers show that the secondary piperazine amine in UNC10201652 

forms a covalent bond with the GlcA intermediate (65). The bond forms a salt bridge with a 

nearby catalytic glutamate which likely aids in binding and stabilization. Examination of 

synthetic analogs of UNC10201652 that contain a methylated analog of the piperazine ring 

revealed inhibition of GUS activity albeit with reduced potency (80-fold weaker). While the 

tertiary amine in this analog could not serve as a nucleophile, the positive charge likely forms a 

salt bridge and is stabilized enough to inhibit GUS enzymes (IC50 ~10 µM). Drugs containing a 
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methylated piperazine or piperadine ring should be assessed in the future as their concentrations 

in the gut may be strong enough to block GUS activity. Additionally, gut bacterial N-

demethylases may remove the methyl group resulting in the formation of a secondary piperazine 

amine that will potently inhibit GUS enzymes. 

 

MATERIALS AND METHODS 

Protein expression and purification  

All recombinant GUS enzymes examined in vitro were expressed and purified as previously 

described (64, 77, 99). Briefly, all proteins were expressed with a N-terminal 6x histidine tag and 

subsequently purified using a Ni-NTA HP column (GE Healthcare). Additional purification was 

performed using a HiLoad 16/60 Superdex 200 gel filtration column. Proteins were eluted and 

aliquots were flash frozen in liquid nitrogen and stored at –80°C until further use. 

 

Protein crystallography 

Crystals of EeGUS bound to mefloquine were produced via the hanging-drop vapor diffusion 

method. EeGUS at 11.5 mg mL-1 was preincubated with 10-fold molar excess mefloquine and p-

nitrophenyl-β-D-glucuronide (pNP-G) prior to addition into the crystalline solution. Crystals 

were formed by incubating ligand bound EeGUS in 0.1 M HEPES: NaOH, pH 7.5 and 20 % 

(w/v) PEG 8000. The crystals were cryoprotected using 25% propylene glycol.  

 Crystals of EeGUS bound to norquetiapine were produced via the hanging-drop vapor 

diffusion method. EeGUS at 11.5 mg mL-1 was preincubated with mefloquine (6-fold molar 

excess) and 4-MU-G (4-fold molar excess) for 1 hour at 37°C prior to addition into the 

crystalline solution. Crystals were formed by incubating ligand bound EeGUS in 10% PEG400 
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and 0.1 M sodium acetate pH = 5.0. The crystals were cryoprotected using 35% (w/v) PEG400 

and 0.1 M sodium acetate pH = 5.0. Protein crystals were transferred directly from the 

crystallization drop to the cryoprotectant solution and then quickly flash cooled (< 1 minute) in 

liquid nitrogen. 

All Diffraction data for all crystals were collected on the 23-ID-B beamline at GM/Ca-

CAT (Advanced Photon Source, Argonne National Laboratory). Refinements and ligand 

generation were carried out in Phenix, and ligand fitting was performed in Coot (86). 

 

Human fecal extract 

Human fecal extracts were made as previously described (see Chapter 2). 

 

GUS activity-based probe (ABPs) 

Cyclophellitol-based ABP was synthesized and purified as previously described (79). 

 

GUS broad screen 

Inhibition of GUS by drugs were calculated using a continuous read format (65). Select GUS 

enzymes were pre-incubated with a 10 µM drug 37°C for 5 min. prior to initiating the reaction 

with the fluorogenic substrate, 4-methylumbelliferone-β-D-glucuronide (4-MUG). The final 

reaction volume was 50 μL containing 25 μL water, 10 μL buffer (25 mM HEPES, 25 mM NaCl, 

2% DMSO, pH 7.4 final), 5 μL enzyme (varying concentrations), 5 μL drug (10 µM final), and 5 

μL 4-MUG (1000 µM final). After addition of 4-MUG, reactions were monitored continuously at 

37°C for 30 min. at an excitation wavelength of 350 nm and an emission wavelength of 450 nm 

(PHERAStar BMG Labtech). Percent activity remaining was calculated using the 30-minute time 
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point. 

 

Substrate-dependent jump dilution assays 

The jump dilution assays to determine the substrate-dependence of slow-binding inhibition were 

performed by combining 5 μL of 5 μM GUS (500 nM final), 5 μL of various concentrations of 

inhibitor, 5 μL of 10 mM 4-MUG (1 mM final), and 35 μL of assay buffer (25 mM NaCl, 25 mM 

HEPES, pH 7.4 final). Reactions were incubated at 37°C for 1 h. After preincubation, 1 μL of the 

reaction was diluted into 99 μL of 4-MUG-containing buffer (1 mM 4-MUG, 25 mM HEPES, 25 

mM NaCl, pH 7.4 final), and the resulting activity was monitored continuously at an excitation 

wavelength of 350 nm and an emission wavelength of 450 nm (PHERAStar BMG Labtech). 

Progress curves were plotted in Microsoft Excel. 

 

In vitro IC50 assay 

IC50 values for bacterial GUS inhibition by drugs was assessed by combining 5 μL of 50 nM 

GUS (5 nM final), 5 μL of various concentrations of inhibitor, 5 μL of 10 mM 4-MUG (1 mM 

final), and 35 μL of assay buffer (25 mM NaCl, 25 mM HEPES, pH 7.4 final) in a black 96-well 

Greiner F-bottom plate. Reactions were incubated for approximately 30 min. after the addition of 

4-MUG. Completed reactions were quenched with 50 uL 0.2 M sodium carbonate and end point 

fluorescence was determined at an excitation wavelength of 350 nm and an emission wavelength 

of 450 nm (PHERAStar BMG Labtech). The IC50 was determined as the inhibitor concentration 

that yielded a 50% reduction in the max absorbance of the uninhibited reaction, where percent 

inhibition was calculated as 

%	𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = *1 − -
𝐴!"# − 𝐴$%
𝐴&'" − 𝐴$%

/0 
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where Aexp is the end point absorbance at a particular inhibitor concentration, Amax is the 

absorbance of the uninhibited reaction, and Abg is the background absorbance. Percent inhibition 

values were subsequently plotted against the log of inhibitor concentration and fit with a four-

parameter logistic function in GraphPad Prism to determine the IC50 as described above. 

 

Liquid Chromatography−Mass Spectrometry 

For LC-MS analysis, 50 μL reactions were performed with 5 μL of 100 μM GUS (10 μM final), 

5 μL of 10 mM inhibitor (1 mM final), 5 μL of 5 mM 4-MUG (500 μM final), and 35 μL of 

buffer (10 mM NaCl, 10 mM HEPES, pH 7.4 final). Reactions were quenched by heating the 

sample at 99°C for 10 min. Samples were centrifuged at 13,000 rpm for 5 min and 10 µL of 

supernatant was analyzed by LC-MS. Samples were injected into a Kinetex C18 column 

(Phenomenex, 150 mm length, 2.6 µm particle size and 100 Å pore size) and separated using the 

following method at a flow rate of 0.4 mL/min. Solvent A consisted of 0.1% formic acid in 

water, and solvent B consisted of 0.1% formic acid in acetonitrile. Mobile phase was held at 2% 

B for 2 min, increased to 98% B over 16 min, held at 98% B for 2 min before returning to 2% B 

over 1 min. Analysis was conducted using Agilent Technologies 6520 Accurate-Mass 

Quadruple-Time of Flight (Q-TOF) coupled with 1210 high performance liquid chromatography 

(HPLC). The mass spectrometry (MS) method includes electrospray ionization (ESI) under 

positive ion mode with the following parameters: gas temperature 300 °C, drying gas 10 L/min, 

nebulizer 45 lb/in2, fragmentor 175 V, and skimmer 65V. 
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Ex vivo GUS activity and inhibition 

Inhibition of 4-MU-G hydrolysis in human fecal extracts was determined using an endpoint 

assay format. Drugs were diluted to the appropriate concentrations and pre-mixed with human 

fecal extract prior to initiating the reaction with the fluorogenic substrate, 4-MU-G. The final 

reaction volume was 25 μL containing 12.5 μL water, 5 μL buffer (pH 6.5, 25 mM HEPES, 25 

mM NaCl, and 1% DMSO, final), 2.5 μL human fecal extract (0.1 mg mL-1, final), 2.5 μL 

inhibitor (10 µM, final), and 2.5 μL substrate (900 µM, final). Reaction mixtures were pre-

incubated with inhibitor at 37°C for 5 min. prior to the addition of substrate. After addition of 

substrate, reactions were incubated at 37°C and quenched with 0.2 M sodium carbonate after 1 

hour. Fluorescence was measured with an excitation wavelength of 350 nm and an emission 

wavelength of 450 nm (PHERAStar BMG Labtech). 

 

Proteomics and GUS identification 

All proteomics data and GUS identification was done using previous methods (see Chapter 2) 

(85). 

 

GUS correlation analyses 

All correlation analyses were performed in GraphPad Prism by fitting with percent inhibition. 

 

Safety Statement 

No unexpected or unusually high safety hazards were encountered. 
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CHAPTER 4: DIETERY FIBER AND GUT BACTERIAL β-GLUCURONIDASES 

 
INTRODUCTION 

Environmental factors heavily shape the composition of gut bacterial communities in the 

distal gut (17). In terms of frequency and volume, the human gut microbiome is most exposed to 

diet-derived substances compared to other ingested foreign chemicals like drugs and 

environmental toxins. Diet-derived substances like proteins, fats, carbohydrates, and polyphenols 

modulate the abundance of gut bacterial species (100). For example, ingestion of whey and pea 

protein increases the abundance of Bifidobacterium and Lactobacillus species. These particular 

species are heavy producers of short chain fatty acids (SCFAs), which have anti-inflammatory 

properties and strengthen the gut mucosal barrier (100). Thus, diet-derived substances play a 

critical role in maintaining proper gut health. Remarkably, varying the intake of diet-derived 

substances can cause rapid and reproducible changes in gut bacterial profiles (18). Delineating 

the mechanism by which diet-derived substances modulate gut bacterial communities can better 

inform the development of tailored diets that can lead to predictable human responses (32). 

 Non-digestible carbohydrate fibers play a pivotal role in maintaining proper gut health by 

influencing the profiles of gut bacterial communities (100). Dietary fibers from soybeans, wheat, 

and barley as well as oligosaccharides like fructooligosaccharides, galactooligosaccharides, 

xylooligosaccharides, and arabinooligosaccharides are not digestible by host enzymes (100). 

Fermentation of otherwise non-digestible carbohydrate fibers by gut bacteria produces SCFAs 

like butyrate, which is a major energy source for human colonocytes (100). While the human 

genome only encodes for ~17 glycoside hydrolase (GH) enzymes, the gut microbiota of a typical 
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adult encodes more than 9,000 (101). The rich arsenal of structurally diverse bacterial GH 

enzymes breaks down these non-digestible carbohydrate fibers. Fermentation of these microbiota 

accessible carbohydrates (MACs) also provides energy for gut bacteria, allowing for the 

blooming of bacteria that efficiently metabolize MACs. Therefore, the dietary intake of MACs 

increases both total gut bacterial load and species diversity; both of which have been linked to 

positive health benefits like the suppression of pathogenic species (100). 

 Most studies exploring the role of MACs in gut health have been performed using murine 

models (32). To determine the role of MAC intake on the gut microbiota in humans, Wu and co-

workers recruited 30 adult participants as a part of the Food and Resulting Microbial Metabolites 

(FARMM) study (32). The purpose of the FARMM study was to assess how divergent diets 

including a vegan (high in MACs), omnivore (intermediate levels of MACs), and formula-based 

(EEN that is devoid of MACs) diets influence the composition of gut bacterial taxa in the distal 

gut (Figure 4.1). Incoming omnivores were randomly assigned to either EEN or omnivore diets 

in a regulated in-patient setting. Incoming vegans remained as out-patient and reported their 

dietary intake using provided diet intake surveys. During Days 0 – 5, all participants consumed 

their respective diets (termed dietary phase). During Days 6 – 8, all participants were given 

antibiotics and polyethylene glycol (termed Abx/PEG) to transiently reduce the concentration of 

bacteria in their gut, thereby allowing for a better assessment of the effect of dietary fiber on the 

recovery of the gut microbiota. Finally, during Day 9 – 15, the three study arms continued their 

respective diets (termed reconstitution phase). Each day, fecal samples were collected for 

shotgun metagenome sequencing. 
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Figure 4.1 FARMM study outline. Participants in the vegan arm were vegans for at least one 
year prior to recruitment. Twenty omnivores (omni) were randomly assigned into two groups:  
omni or EEN. 
 
 To provide evidence that lack of MACs is a major contributor for diet-associated 

compositional alterations in the gut microbiota, Wu and co-workers quantified reads that aligned 

to glycoside hydrolase genes using the KEGG protein database (category 3.2.1, glycoside 

hydrolases) (32). Interestingly, plant structure degrading GH enzymes such as arabinoxylans 

(xylan 1,4 beta-xylanase, alpha- N-arabinofuranosidase) and pectic polysaccharides (galacturan 

1,4-alpha-galacturonidase, arabinan endo-1,5-alpha-L-arabinosidase) were found to be 

statistically reduced during the initial dietary phase in the EEN study arm, while they observed 

an increase in the GH enzymes involved in the digestion of sucrose and short 

fructooligosaccharides (trehalose-6-phosphate hydrolase). These results were expected given the 

carbohydrate makeup of the formulation used in the EEN study arm, Modulen. Modulen contains 

simple sugars like sucrose but does not contain complex plant carbohydrates. The findings by 

Wu and co-workers also corroborate studies in mice where carbohydrate diets influence the 

expression levels of GH enzymes (102). 
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Here, we examine the FARMM dataset to understand the impact of dietary fiber levels on 

β-glucuronidase (GUS) gene abundance, and the gene abundance of a related GH enzyme β-

galactosidase, using structure-guided approaches. Considerable structural interrogation (over 20 

published structures) has shown that GUS enzymes vary widely in the architectural makeup of its 

active sites between gut bacterial species (77). This architectural variation explains interspecies 

variability in small molecule glucuronide and glucuronic acid (GlcA)-containing 

polysaccharides. To understand how the diets with varying fiber content used in the FARMM 

study dictate levels of gut bacterial species harboring GUS genes from a structural perspective, 

we mine for putative GUS sequences using metagenomic sequencing reads obtained from the 

original study, then align reads to obtain gene abundance data for GUS sequences, and finally, 

analyze the gene abundance data to assess which GUS structural classes are impacted by dietary 

fiber levels. 

 

RESULTS AND DISCUSSION 

Redundant GUS identification and structural categorization 

Metagenomic fastq files for all samples in the FARMM cohort were obtained directly from the 

University of Pennsylvania School of Medicine. To interrogate the impact of MACs on GUS 

gene abundance, we first assembled the raw reads into scaffolds using the de Bruijn-based 

assembly software SPAdes v3.14.1. SPAdes was chosen because it is ideal for Illumina short 

sequencing reads, is well-documented, can handle metagenomic datasets, and outperforms other 

assembly tools (e.g., IDBA-UD and Megahit) in terms of assembly size statistics and species 

diversity capture (103, 104). Assemblies were successfully created for 328 out of the 380 
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samples. Assemblies could not be created for 52 samples because of low quality reads or missing 

data. 

 Prodigal v.2.6.3 was used to generate a list of predicted genes from the assembled 

scaffolds (105). Predicted genes were subsequently annotated as putative GUS sequences if they 

shared a sequence identity ≥ 25% identical to either Escherichia coli GUS (EcGUS), Bacteroides 

fragilis GUS (BfGUS), Streptococcus agalactiae (SaGUS), or Clostridium perfringens GUS 

(CpGUS) based on BLASTp alignment (77). Additionally, the query sequence must contain 

active site residues necessary for glucuronide recognition and processing to be annotated as a 

GUS sequence (Figure 4.2a). The average number of GUS genes identified per sample during 

the dietary phase is comparable to the number of GUS genes found per individual when the same 

analysis pipeline was applied to metagenomic sequencing data from healthy individuals from the 

Human Microbiome Project (HMP) (Figure 4.2b) (77). Predicted GUS sequences were binned 

into seven unique structural categories using previously established rubrics (64, 77). 

 

 

 



 

 113 

 
 
Figure 4.2 GUS rubric and statistics. (a) Key active site residues used to mine for putative 
GUS sequences in the FARMM study. (b) Comparison of the average number of GUS genes 
identified per individual in a previous study that examined HMP datasets to that found in the 
FARMM cohort. 
 

Recent examination of HMP derived putative GUS sequences by Pellock and co-workers 

revealed that a putative GUS sequence from Eisenbergiella tayi, when expressed, did not process 

the reporter substrate p-nitrophenyl-β-D-GlcA in vitro (106). Instead, the expressed E. tayi 

enzyme was found to turn over the reporter substrate p-nitrophenyl-β-D-galacturonide (106). 

Galacturonic acid (GalA) is an epimer of GlcA and has an axial hydroxyl group at the C4 

position. Structural interrogation revealed that a single arginine residue at 337 in the E. tayi 

sequence (henceforth, termed EtGalAse) hydrogen bonds with the axial hydroxyl group at the C4 

position, which confers galacturonidase activity over GUS activity. To account for potential 

GalAses in the list of putative GUS sequences mined from the FARMM data, putative GUS 

sequences were aligned to EtGalAse and removed if an arginine was present at the equivalent 

position in EtGalAse in the alignment. Very few GalAses were found in the list of identified 
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GUS sequences. Taken together, GUS sequences were successfully identified and annotated in 

all samples with high quality reads. 

 

GUS gene abundance analysis in the dietary phase 

Filtered reads were mapped to predicted GUS genes to obtain gene abundance during the dietary 

and reconstitution phases using bowtie2 v2.4.1 and subread v2.0.0 (Figure 4.3, Figure 4.4, 

Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8). The liquid formulation, Modulen, given to 

individuals in the EEN group does not contain any GlcA-containing carbohydrates. Conversely, 

the administered omnivore diet contains meats (e.g., roasted chicken breast and spaghetti with 

meatballs) that are rich in GlcA-containing carbohydrates like heparin, hyaluronic acid, and 

chondroitin. Thus, we hypothesized that the total GUS gene abundance would diminish during 

the dietary phase in the EEN group when compared to the omnivore group. A statistically 

significant reduction in total GUS gene abundance was not observed in the EEN group when 

compared to the omnivore group based on linear mixed effects model. As noted by Wu and co-

workers, the study timeframe (5 days) may be too narrow to fully capture changes in gut 

bacterial profiles during the dietary phase. 
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Figure 4.3 GUSome analysis of the EEN group during the dietary phase. 
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Figure 4.4 GUSome analysis of the omnivore group during the dietary phase. 
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Figure 4.5 GUSome analysis of the vegan group during the dietary phase. 
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Figure 4.6 GUSome analysis of the EEN group during the reconstitution phase. 
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Figure 4.7 GUSome analysis of the omnivore group during the reconstitution phase. 
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Figure 4.8 GUSome analysis of the vegan group during the reconstitution phase. 
 

While we did not observe a statistically significant reduction in total GUS abundance 

during the dietary phase, we did observe a statistically significant reduction in the proportion of 

Loop 2 (L2) GUS in the EEN group when compared to omnivores (by 320 ± 120 reads per day; 

p-value = 0.0064 and FDR = 0.042 based on linear mixed effects model). Interestingly, a well-
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characterized GUS from this GUS structural class, Bacteroides uniformis GUS-2 (BuGUS-2), 

has been observed to process the complex GlcA-containing carbohydrate heparin in vitro (64, 

77). Compared to other GUS structural classes, the dimer BuGUS-2 contains a relatively open, 

solvent accessible active site that can accommodate large polysaccharide units (64). Other 

structural classes like mini-Loop 1 (mL1), mini-Loop 2 (mL2), and No Loop (NL) have been 

shown to process heparin in vitro, but statistically significant reduction in these structural classes 

was not observed during the dietary phase in the EEN group. Again, extension of the dietary 

phase may enable further capture in the reduction of these other loop classes. 

 

GUS gene abundance analysis in the reconstitution phase 

Wu and co-workers in previous studies noted that Abx/PEG reduces the total bacterial load in the 

murine gut and that this is necessary for engraftment of specific bacterial colonies (107). This 

strategy was applied to the FARMM cohort. Each participant was given Abx/PEG during Days 6 

– 8 to determine how dietary fiber plays a role in reconstitution of the gut microbiota. Total 

bacterial load was reduced 5-log units by the end of Abx/PEG treatment (32). During the 

recovery phase, gut bacterial communities that harbor GUS genes were the slowest to come back 

in the EEN group when compared to vegan and omnivores (Figure 4.6, Figure 4.7, and Figure 

4.8). Total GUS in omnivores increases by 2071 ± 316 reads per day whereas in the EEN group, 

total GUS increases by 412 reads per day, which is about 25% of the omnivore rate (p-value = 

0.0007 and FDR = 0.007 based on linear mixed effects model). This corroborates findings by Wu 

and co-workers, where a statistically significant increase in gut bacterial species harboring GUS 

genes was not observed in the EEN group during the dietary phase. A slower reconstitution of 

gut bacterial species harboring GUS genes when compared to an omnivore diet further highlights 
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the critical role of dietary fiber and its role in controlling the production of GH enzymes and 

hence, total bacterial load and species diversity. 

 

β-galactosidase analysis in the reconstitution phase of EEN group 

To assess whether the slow reconstitution of gut bacterial species harboring GUS genes was not 

spurious and simply due to slow recovery of total bacterial load, we analyzed the abundance of 

bacterial species harboring β-galactosidase (GAL) genes. Modulen contains milk, which is 

composed of simple carbohydrates including lactose, a disaccharide composed of glucose and 

galactose (32). We hypothesized that gut bacterial species harboring GAL genes would 

reconstitute relatively faster than those containing GUS genes. To test this hypothesis, we 

designed a rubric to mine for putative GAL genes using previously resolved GAL structures: E. 

coli GAL (EcGAL, PDB ID 4V40) and B. thetaiotamicron (BtGAL, PDB ID 3BGA). Predicted 

genes were annotated as putative GAL sequences if they shared a sequence identity ≥ 25% 

identical to either EcGAL or BtGAL based on BLASTp alignment (77). Additionally, the 

putative GAL sequence must contain previously elucidated conserved active site residues (108). 

Compared to GUS gene abundance, GAL gene abundance was much higher for all participants 

receiving the EEN diet (except 9038) (Figure 4.9), which supports the initial hypothesis that gut 

bacterial species with GAL genes will reconstitute faster than those with GUS genes. Other 

enzymes that process sugars present in Modulen may show the same behavior during the 

reconstitution phase. Since glucose is also a component of Modulen, glucosidase gene abundance 

should also be analyzed in the future. 
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Figure 4.9 β-Galactosidase analysis of the EEN group during the reconstitution phase. 
 
CONCLUSION 

Dietary fiber, or microbiota accessible carbohydrates (MACs), plays an integral role in 

controlling total gut bacterial load, species diversity, and strengthening the gut mucosal lining 
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(100). Most studies to date have been performed using murine models (32). Wu and co-workers 

assessed the role of MACs in gut health using a human cohort in the FARMM study. For a diet 

lacking MACs (EEN), the team observed a reduction in gut bacterial communities that harbor 

GH genes that degrade complex plant carbohydrates. We also observed that MACs influence the 

levels of GUS genes using a structure-guided approach. While a reduction in total GUS gene 

abundance was not observed during the dietary phase, a statistically significant reduction in gut 

bacterial species harboring L2 GUS genes was observed in the EEN group. Previous work has 

shown that a L2 GUS enzyme, BuGUS-2, turns over the complex GlcA-polysaccharide, heparin 

(64). In the future, the dietary phase should be extended to capture further deviations in GUS 

gene abundance from baseline. 

 Recent work has shown that select putative GUS sequences identified from the HMP do 

not process GlcA-containing substrates in vitro. For example, a substitution with a single 

arginine residue confers a previously annotated GUS sequence from E. tayi with galacturonidase 

activity, even though the sequence contains the same (⍺/β)8 TIM barrel-fold and key conserved 

active site residues found in GUS (106). This observation indicates that genome mining 

approaches that solely use sequence identity and residue conservation as filters often time leads 

to identification of sequences that are false positives. Thus, the GUS rubric will need to be 

continuously refined. As an alternative to genome mining approaches, activity-based proteomics 

is well-positioned to elucidate GUS sequences based on enzyme function and not solely on 

sequence information, which reduces the possibility of false positives (see Chapter 2). 

Additionally, the presence of a gene is not synonymous with the production of the functional unit 

of the gene, the protein; hence, proteomics can help unravel GUS enzymes that are expressed. In 
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the future, studies akin to FARMM should collect proteomics datasets to gain more granularity 

on how dietary fiber influences the expression of functionally active GUS enzymes. 

As discussed in Chapter 2, GUS has been linked to the reactivation of the active 

metabolite of the chemotherapeutic irinotecan, SN-38. Modulation of the production of GUS 

enzymes by tailored diets could serve as a more economical alternative to small-molecule 

adjuvants that block GUS enzyme. Although the current dataset does not show a major reduction 

in gut bacterial communities harboring GUS genes during the dietary phase, future studies 

should expand the dietary phase to better assess how a diet lacking GlcA-containing 

carbohydrates impacts levels of GUS production using a proteomics approach. Pre-treatment 

with a EEN diet can potentially help reduce GUS expression, thereby reducing the chances of 

GUS-mediated GI toxicity during irinotecan treatment. The population size and duration of the 

study during the dietary phase needs to be increased to assess if EEN diets do indeed reduce total 

GUS load. 

 

MATERIALS AND METHODS 

Shotgun metagenomic data and code availability 

DNA extraction, library preparation, and shotgun metagenomic sequencing for the FARMM 

cohort was conducted at the University of Pennsylvania School of Medicine on a Illumina HiSeq 

2500 using 2 x 125 base pair chemistry (32). The shotgun metagenomic sequence data has been 

previously submitted to the Sequence Read Archive (SRA) and is available under the SRA 

accession number: PRJNA675301 (32). All custom scripts used in this study are available on 

GitHub at https://github.com/redinbolab.  
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Filtering and trimming of metagenomic reads 

Shotgun metagenomic paired end reads in fastq format were pre-processed to remove adapters, 

low-quality reads, and human reads at the University of Pennsylvania School of Medicine prior 

to use in this study (32). Trimmomatic was used to remove adapters and low-quality reads using 

default parameters (32, 109). Sequencing reads from all samples were aligned to the human 

genome version 38.v4 and the phiX genome and host reads and phiX reads were removed using 

Burrows-Wheeler Aligner 2 (BWA2) package (32, 110). 

 

De novo genome assembly of metagenomic reads 

For each sample, trimmed and filtered metagenomic paired end reads in fastq format were 

assembled using SPAdes v3.14.1 (24). The following parameter settings were used for each 

SPAdes assembly run: --meta -t 12 -m 150. All other parameters were set to default. 

 

Gene prediction and GUS identification 

Prodigal v2.6.3 was used to predict genes from the scaffolds fasta file (SPAdes output) for each 

sample (105). The following parameter settings were used for each Prodigal run: -f gff -p meta. 

All other parameters were set to default. 

 The resulting amino acid fasta file was then used to identify sequences as putative GUS 

enzymes using a previously established method and custom scripts (77). Each predicted 

sequence was aligned to representative GUS sequences that include Bacteroides fragilis GUS 

(BfGUS, PDB ID 3CMG), Escherichia coli GUS (EcGUS, UniProt ID P05804), Streptococcus 

agalactiae (SaGUS, UniProt ID Q8E0N2), or Clostridium perfringens GUS (CpGUS, UniProt 

ID Q8VNV4) using the Protein Basic Alignment Search Tool (BLASTP). The query sequence 
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must have an e-value ≤ 0.05 and sequence identity ≥ 25% identical to the representative GUS 

sequence. Additionally, all conserved residues had to be present and correctly aligned to the 

representative protein that passed the identity threshold. The conserved residues were: (EcGUS) 

N412, E413, Y468, E504, N566, K568, G569; (CpGUS) N411, E412, Y468, E505, N567, K569, 

G570; (SaGUS) N407, E408, Y464, E501, N563, K565, G566; and (BfGUS) N394, E395, Y445, 

E476, N547, K549, G550. 

 

GUS structural annotation 

GUS enzymes were binned into various structural categories based on previously established 

parameters (77). To bin predicted GUS sequences into unique structural categories, predicted 

GUS sequences were concatenated from all samples. The concatenated sequences were aligned 

to EcGUS, Bacteroides uniformis GUS (2) (BuGUS-2, PDB ID 5UJ6), Bacteroides uniformis 

GUS (1) (BuGUS-1, PDB ID 6D1N), and Eisenbergiella tayi (EtGalase, UniProt ID 

A0A1E3AEY6) using Clustal Omega v1.2.2 (online webtool) to produce a multiple sequence 

alignment (MSA) (111). A custom script was used to determine the loop classification of each 

putative GUS sequence based on the number of residues present in the following MSA alignment 

regions: EcGUS residue region 356-380 and the BuGUS-2 residue region 429-446. See table 

below: 

 

Loop Category 
Residues in 

EcGUS region 356-380 
Residues in 

BuGUS-2 region 429-446 
Loop 1 > 15 < 9 

mini-Loop 1 ≤ 15 and ≥ 10 < 9 
Loop 2 < 10 ≥ 12 

mini-Loop 2 < 10 ≥ 9 and < 12 
mini-Loop 1, mini-Loop 2 ≤ 15 and ≥ 10 ≥ 9 and < 12 

No Loop < 10 < 9 
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Putative GUS sequences were annotated as N-Terminal Loop (NTL) if residues in the MSA 

alignment region contained an equal or greater number of residues in BuGUS-1 residue region 

54-67 (64). Sequences were denoted as galacturonidases if in the MSA alignment, the query 

sequence contained an arginine at the 337-arginine position in EtGalase (106). 

 

β-galactosidase structural annotation  

Amino acid fasta file (Prodigal output) was used to identify sequences as putative β-

galactosidases using previously identified key residues and custom scripts (77). Each predicted 

sequence was aligned to representative β-galactosidase sequences that include E. coli β-

galactosidase (Ec-β-Gal, PDB ID 4V40) and Bacteroides thetaiotamicron (Bt-β-Gal, PDB ID 

3BGA) using the Protein Basic Alignment Search Tool (BLASTP). The query sequence must 

have an e-value ≤ 0.05 and a sequence identity ≥ 25% identical to the representative β-Gal 

sequences. Additionally, all conserved residues had to be present and correctly aligned to the 

representative protein that passed the identity threshold. The conserved residues were: (Ec-β-

Gal) E461, M502, Y503, E537, and (Bt-β-Gal) E484, M524, Y525, E548. Any GUS sequences 

that may have passed this filter were removed. 

 

Determination of metagenomic depths of coverage for predicted genes 

For each sample, trimmed and filtered metagenomic paired end reads in fastq format were 

mapped against the sample scaffolds fasta file (SPAdes output) using bowtie2 v2.4.1 with default 

parameters (112). The gff file (Prodigal output) was reformatted using a custom script. For each 

sample, read counts for each predicted gene were calculated using featureCounts, which is a 

component of subread v2.0.0 (113). The bam file (bowtie2 output) and reformatted gff file were 
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used as inputs and following parameter settings were used for each featureCounts run: -t CDS -g 

ID. Counts for putative GUS sequences and β-galactosidases were tabulated using custom scripts 

and read counts were normalized using the following equation: 

𝑅𝐶
𝑛 	×	

∑ 𝑥
𝑁  

 
where RC is the read count for a gene in a particular sample, n is the total number of reads in that 

sample, x is the sum of the total number of reads in all samples, and N is the total number of 

samples (77). 

 

GUS Statistical analysis 

All statistical analysis was performed at the University of Pennsylvania School of Medicine. 

Normalized GUS gene abundance levels were analyzed using a linear mixed effects model. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 130 

 
CHAPTER 5: FUTURE DIRECTIONS 

INHIBITION OF GUT BACTERIAL ENZYMES USING SMALL MOLECULE 

ADJUVANTS 

Studies in the past decade have clearly shown that drugs can be metabolized by gut bacterial 

enzymes (Table 5.1). The metabolism of drugs by microbiota in the gastrointestinal (GI) tract 

can lead to altered drug efficacy and toxicity (55, 57, 70). Reduced drug efficacy due to gut 

microbial metabolism could be circumvented by measuring the activity of gut bacterial enzymes 

present and calculating personalized dosages; however, measuring enzymatic activity in an 

individual on a regular basis to account for shifts over time is labor and cost intensive. 

Importantly, gut microbiota-mediated metabolism can also lead to the production of toxic 

metabolites. Thus, strategies to either block the activity or modulate the production of gut 

bacterial enzymes metabolizing drugs must be developed to address toxicities and possibly to 

improve personalized dosing. Ongoing development of such strategies include probiotics and 

prebiotics, phage therapy, fecal material transfer (FMT), and small molecule adjuvants. 

Compared to other strategies, small molecule adjuvants that inhibit gut bacterial enzymes are 

ideal because they can be designed to be non-immunogenic (unlike phage therapy), dosing can 

be controlled (unlike prebiotics), and easy to produce reliably (unlike FMT). While other 

strategies to either block or modulate the activity of gut bacterial enzymes are still theoretical, 

small molecule adjuvants have already been successfully shown to reduce gut microbiota-

mediated side effects of drugs in animal models. 
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Table 5.1 Drugs with validated gut bacterial processing using in vivo models. 
 

Parent Drug Primary Indication Acting Gut Bacterial Enzyme Chemical Modification Ref. 
Capecitabine Colorectal Cancer - Deglycosylation (28) 

Dexamethasone Anti-inflammatory Steroid Desmolases Desmolation (10) (114) 
Diclofenac Anti-inflammatory β-Glucuronidases Deglycosylation (115) 

Digoxin Anti-arrhythmic Cgr2 Reduction (55) (56) 
Diltiazem Hypertension BT_4096 Deacetylation (10) 

Indomethacin Anti-inflammatory β-Glucuronidases Deglycosylation (74) 
Irinotecan Pancreatic & Colon Cancer β-Glucuronidases Deglycosylation (70) (116) 
Ketoprofen Anti-inflammatory β-Glucuronidases Deglycosylation (74) 
Levodopa Parkinson’s Disease Tyrosine Decarboxylases Decarboxylation (57) 

Mycophenolate Immunosuppressant β-Glucuronidases Deglycosylation (117) 
Sulfasalazine Rheumatoid Arthritis Azoreductases Reduction (118) 

 
 
LESSONS LEARNED FROM INHIBITING GUT BACTERIAL β-GLUCURONIDASES  

As discussed in previous chapters, gut bacterial β-glucuronidases (GUS) cleave glucuronic acid 

(GlcA) from GlcA-conjugated drugs or GlcA-conjugated drug metabolites. For example, GUS 

enzymes can reactivate the active metabolite of irinotecan, SN-38, by hydrolyzing off the GlcA 

tag from the inactive form, SN-38 glucuronide. Reactivation of SN-38 has been linked to severe, 

dose limiting GI toxicity (see Chapter 2). In 2010, Redinbo and co-workers identified a series of 

selective, potent, and non-lethal inhibitors which target gut bacterial GUS enzymes (e.g., Ki 

ranging from 2 µM – 164 nM against EcGUS) but not human GUS (70, 73). Characterization 

against a broad set of GUS enzymes from various structural classes revealed that these inhibitors 

specifically target bacterial GUS enzymes from the Loop 1 (L1) class and not others (63). 

Detailed interrogation of L1 GUS enzymes bound with various inhibitors (EcGUS and Inhibitor 

2, PDB: 3LPF; EcGUS and Inhibitor 3, PDB: 3LPG; and EeGUS and UNC4917, PDB: 6BO6) 

also revealed that the high potency of the inhibitors is due to overlapping loops at the tetrameric 

interface in L1 GUS enzymes which stabilizes the inhibitors in the active site (63, 70). GUS 

enzymes from other structural classes do not contain stabilizing units like the loop found in L1 
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GUS enzymes; hence, these current series of inhibitors do not efficiently inhibit non-L1 GUS 

enzymes. Selective inhibition of L1 GUS enzymes works well when the drug glucuronide of 

interest is selectively or most potently processed by L1 GUS enzymes. For example, L1 GUS 

enzymes most efficiently turn over SN-38 glucuronide to SN-38 when compared to GUS 

enzymes from other structural classes (see Chapter 2). Thus, L1 GUS inhibitors are ideal for 

reducing the reactivation of SN-38 in the GI lumen. Indeed, L1 GUS inhibitors have been shown 

to significantly reduce diarrhea and gut epithelial damage caused by treatment with irinotecan, 

the pro-drug of SN-38 (70, 116). In scenarios where a drug glucuronide of interest is not 

processed solely or preferentially by L1 GUS enzymes, new inhibitors for other GUS structural 

classes must be designed.  

A small molecule compound that can inhibit all GUS isoforms can ideally be used to 

universally block the reactivation of any drug glucuronide of interest. Designing such a molecule 

can be difficult as gut bacterial enzymes from different gut bacterial species vary in structure. 

For example, considerable structural analysis of GUS enzymes (> 20 published structures) shows 

that the active site architecture of GUS enzymes differs remarkably between gut bacterial species 

(63, 64, 77). Strain-to-strain variability in drug metabolism has been observed for other gut 

bacterial enzyme families which is likely due to structural variation (55, 57). While GUS 

enzymes have been heavily discussed thus far, methods for developing such pan inhibitors for 

any gut bacterial enzyme families that are known to metabolize drugs is warranted (Table 5.1). 

To successfully find pan inhibitors for a gut bacterial enzyme of interest, appropriate 

representatives for all known isoforms of the enzyme must be screened against a library of small 

molecules, which can be tedious, time consuming, and not economical. A screening platform 

wherein small molecules can capture overlapping chemical spaces of key isoforms of a gut 
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bacterial enzyme of interest is essential (Challenge 1). Additionally, a platform that can counter 

screen against other gut bacterial products is ideal to create highly selective inhibitors 

(Challenge 2). Finally, the platform must be high-throughput and be able to generate a consistent 

supply of gut bacterial products for screening (Challenge 3). Proposed solutions to these 

challenges are presented below. 

 

ADDRESSING CHALLENGE 1  

In classic high-throughput screening (HTS) campaigns, small molecule libraries with up to 

millions of compounds with typical molecular weights ~500 Da are screened to find hits with 

promising, hopefully even nanomolar, levels of potency (119). Conversely, fragment-based drug 

discovery (FBDD) campaigns use small molecule libraries with around ~1,000 compounds with 

molecular weights ranging from 150-250 Da. The aim in FBDD is to “build up” weak fragment 

binders into strong binders by merging or elaborating fragment hits (119). Compared to HTS 

screens, FBDD yields ligands with high ligand efficiency, which is the free energy of binding 

divided by the number of atoms (119). Since fragments are small, they can form high-quality 

interactions within crevices and pockets in proteins. Importantly, FBDD is ideal for designing 

small molecules that have multi-target capabilities. In principle, fragment-based strategies can 

sample a larger theoretical “diversity space” than is practical through standard HTS methods. In 

the case of gut bacterial enzymes where structure can differ remarkably between gut bacterial 

species, a screening approach that maximizes coverage of chemical space is key. The small 

nature of fragments enables coverage of more chemical space in a target set of enzymes which is 

essential to develop an inhibitor that can target multiple isoforms of a gut bacterial enzyme of 

interest. 
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ADDRESSING CHALLENGE 2 

An approach that investigators are incorporating into drug discovery pipelines to assess ligand 

specificity is screening ligands against entire proteomes using mass spectrometry (MS). In this 

approach, ligands typically consist of a variable ‘R’ group which provides specificity, a chemical 

handle for enrichment (e.g., alkyne tag for subsequent streptavidin enrichment), and a chemical 

unit for covalent capture of bound proteins. Chemical units include either a photoactivatable 

group, which when irradiated forms a highly reactive carbene that will react with proximal 

atoms, or a chemical moiety that can irreversibly form bonds with amino acid side chains 

(Figure 5.1). A succinct review of such covalent and photoactivatable ligands has been 

published (120). Cellular proteomes are incubated with each ligand (or probe, which will be used 

interchangeably). After cell lysis and enrichment using streptavidin beads, proteins bound to the 

ligand are identified using LC-MS/MS. The selectively of a ligand can be assessed by screening 

against an entire proteome. Importantly, many investigators have successfully screened for 

binders using fragment-based libraries outfitted with either photoactivatable groups or side-chain 

reactive groups (121). In terms of screening for inhibitors for gut bacterial enzymes, using a 

fragment-based library in tandem with MS is ideal for developing potent and selective inhibitors. 
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Figure 5.1 List of chemistries for covalent probes targeting specific residues. 
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ADDRESSING CHALLENGE 3 

Unlike screening against proteomes of cell lines, where a consistent supply of biomaterial can be 

achieved by simply producing more cells, screening against the gut metaproteome is challenging 

due to the inability to culture many species. To circumvent this problem, an approach like that 

used by Donia and co-workers can be employed (see Chapter 1). DNA can be isolated from 

fecal material (Figure 5.2a). After sheering, resulting fragments are ligated into vectors which 

are all transformed into E. coli. The resulting pool of vectors can serve as an artificial proteome 

to screen against. More importantly, ligated gene products can be produced in high quantities for 

screening. After identifying a drug that is metabolized by this milieu (Figure 5.2b), a phenotypic 

screen using a library of fragment-based covalent ligands (with enrichment handles) can be 

performed to identify a ligand that halts the metabolism of the target drug (Figure 5.2c). LC-

MS/MS can then be used to assess the specificity of the resulting ligand. Finally, fragments can 

be elaborated, and the screening process is reiterated to build a more highly specific probe 

against the gut bacterial enzyme of interest (Figure 5.2d). 
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Figure 5.2 Proposed high-throughput screening strategy. 
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