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Abstract

Background: Polygenic risk scores (PRSs) have been demonstrated to identify women of European, Asian, and Latino ancestry
at elevated risk of developing breast cancer (BC). We evaluated the performance of existing PRSs trained in European ancestry
populations among women of African ancestry. Methods: We assembled genotype data for women of African ancestry,
including 9241 case subjects and 10 193 control subjects. We evaluated associations of 179- and 313-variant PRSs with overall
and subtype-specific BC risk. PRS discriminatory accuracy was assessed using area under the receiver operating characteristic
curve. We also evaluated a recalibrated PRS, replacing the index variant with variants in each region that better captured risk
in women of African ancestry and estimated lifetime absolute risk of BC in African Americans by PRS category. Results: For
overall BC, the odds ratio per SD of the 313-variant PRS (PRS313) was 1.27 (95% confidence interval [CI] ¼ 1.23 to 1.31), with an
area under the receiver operating characteristic curve of 0.571 (95% CI ¼ 0.562 to 0.579). Compared with women with average
risk (40th-60th PRS percentile), women in the top decile of PRS313 had a 1.54-fold increased risk (95% CI ¼ 1.38-fold to 1.72-
fold). By age 85 years, the absolute risk of overall BC was 19.6% for African American women in the top 1% of PRS313 and 6.7%
for those in the lowest 1%. The recalibrated PRS did not improve BC risk prediction. Conclusion: The PRSs stratify BC risk in
women of African ancestry, with attenuated performance compared with that reported in European, Asian, and Latina
populations. Future work is needed to improve BC risk stratification for women of African ancestry.

Inherited genetic variation contributes to breast cancer (BC) risk,
with approximately 30% of the total variability in liability due to
genetic factors (1). Genome-wide association studies (GWAS)
have discovered approximately 180 common risk variants for BC
at genome-wide statistical significance levels (2-4), and polygenic
risk scores (PRSs) comprised of multiple common variants have
been demonstrated to stratify women at different levels of risk of
developing BC (5). In the Breast Cancer Association Consortium
(BCAC), a 313-variant PRS constructed using data from European-
ancestry populations identified 1% of women with 4.4-fold and
2.8-fold increased risks of estrogen receptor (ER)-positive and ER-
negative BC, respectively (6), compared with the population aver-
age (40th-60th PRS percentile). The incorporation of PRS into
existing risk prediction models with nongenetic factors also im-
proved risk stratification, with predicted lifetime risk over 30% for
women in the top 1% of the PRS (7-9).

The discovery of risk variants for BC and subsequent PRS de-
velopment has been based on studies primarily conducted
among women of European ancestry. Broad clinical application
of the PRS will require performance evaluation and enhance-
ment across diverse racial and ethnic populations.

In this study, we assembled the largest genetic data set of BC
in women of African ancestry to date, including 9241 cases (4299
with ER-positive and 2636 with ER-negative disease) and 10 193
controls, to examine the performance of the most current PRS
panels for BC [179 (3,4) and 313 (6) variants] in stratifying risk in
this population. We also recalibrated the PRSs by replacing index
variants with markers that better captured BC risk in women of
African ancestry and evaluated performance in this population.

Methods

Study Participants

This includes women of African ancestry from 4 BC consortia
and 1 additional study, each genotyped with a different GWAS

array. Detailed descriptions of each consortium and study are
provided in Supplementary Table 1 (available online). The
African American Breast Cancer consortium (10,11) includes ge-
netic data from 3007 cases (1518 ER-positive, 987 ER-negative)
and 2720 controls in the analysis; the African American Breast
Cancer Epidemiology and Risk consortium (12) includes data
from 1407 cases (952 ER-positive, 385 ER-negative) and 2408 con-
trols; the BCAC/Genetic Associations and Mechanisms in
Oncology (GAME-ON) OncoArray consortium (13) includes 2271
cases (1130 ER-positive, 613 ER-negative) and 1406 controls; the
GWAS of Breast Cancer in the African Diaspora consortium (14)
includes data for 1657 cases (403 ER-positive, 374 ER-negative)
and 2029 controls, and the Ghana Breast Health Study (GBHS)
includes 899 cases (296 ER-positive, 277 ER-negative) and 1630
controls. The study was approved by institutional review boards
at each of the study sites.

Risk Variant Characteristics

We evaluated 2 PRSs. The first, PRS313, is a 313-variant PRS de-
veloped by BCAC in European-ancestry populations (6). Briefly,
the 313 variants were determined by P values and linkage dis-
equilibrium threshold-based filtering followed by a stepwise
forward selection. The second, PRS179, included 179 known com-
mon risk variants that reached genome-wide statistical signifi-
cance in GWAS analyses (3,4). Comparing these 2 sets of
variants, 54 variants overlapped and another 52 were highly
correlated (r2 � 0.8 in the 1000 Genomes Project (1KGP)
European-ancestry populations). In total, 163 of the 179 (91.1%)
variants and 224 of the 313 (71.6%) variants had imputation
scores (r2) � 0.8 across all consortia and GBHS (Supplementary
Table 2, available online). For missing variants (not genotyped
or imputed) in 1 study, we assigned each individual in that
study the expected dosage derived from the remainder of stud-
ies; details are provided in the Supplementary Methods (avail-
able online).
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Statistical Analysis

Association Testing of Individual Risk Alleles. Risk Allele
Frequencies (RAFs) were derived by averaging the RAF in con-
trols of each consortium and GBHS, weighted by the corre-
sponding control numbers. We excluded variants with minor
allele frequency (MAF) less than 0.1% or imputation quality
score less than 0.3 in each consortium or study. Power calcula-
tions were conducted using odds ratios (ORs) in previous
European GWAS (4) and RAFs in women of African ancestry.
The odds ratio and P value of each variant were estimated using
unconditional logistic regression adjusting for relevant covari-
ates (Supplementary Table 1, available online) in each consor-
tium and in GBHS, and the results were combined using a fixed-
effect meta-analysis with inverse variance weights. Consistent
directionality of effect was determined as alleles with odds ra-
tios in the same direction as those previously reported (ie,
OR> 1). A nominal P value of .05 was used to determine statisti-
cal significance.

PRS Analyses. For each individual i, a PRS was constructed as
PRSi ¼

PC
m¼1 bmgm, where gm is the risk allele dosage at variant

m, bm is the weight for variant m, and C defines a set of risk loci.
The weights for PRS313 were those derived by Mavaddat et al. (6)
in the development of PRS313, while the weights for the 179 vari-
ant PRS (PRS179) were the log odds ratios from GWAS of BC in
women of European ancestry (4). For PRSs of BC subtypes, we
used the corresponding subtype-specific weights from women
of European ancestry (4,6). An ER-negative specific PRS was con-
structed using 15 risk alleles, which were identified to have
stronger associations with triple-negative or nonluminal BC
subtypes than ER-positive BC through a cluster analysis (PRS15)
(15). We categorized PRSs by percentile (<1%, 1%-5%, 5%-10%,
10%-20%, 20%-40%, 40%-60%, 60%-80%, 80%-90%, 90%-95%, 95%-
99%, �99%) in controls, and the risk for each category was
estimated relative to the 40%-60% reference group using logistic
regression adjusting for the first 10 principal components (PCs),
age, and study. We estimated odds ratios per unit SD and the
area under the receiver operating characteristic curves (AUC) to
compare with results from previous studies. We also computed
theoretical AUC and the precision-recall curve (AUPRC) (16);
details are provided in the Supplementary Methods (available
online). In sensitivity analyses, excluding variants based on
their imputation quality did not affect the performance of PRSs
(Supplementary Table 3, available online).

We examined whether age modified the association be-
tween PRS and BC risk in stratified models by age category (<40
years, 40-49 years, 50-59 years, 60-69 years, �70 years) and
the interaction with age. We compared distributions of PRSs in
controls and the performance of PRSs between African coun-
tries (Ghana, Nigeria in Breast Cancer in the African Diaspora
consortium, and the Women of African Ancestry Breast Cancer
Study (WAABCS) study in the OncoArray consortium) and those
of admixed US and Barbadian origin. We also assessed the
interaction between PRS with ancestry (PC1) and family history
on BC risk in African Americans and Barbadians; family history
information was not available for samples from African
countries.

The lifetime absolute risk of BC by PRS category among
women with African and European ancestry were estimated
taking into account the competing risk of dying from causes
other than BC, which was described elsewhere (5). Inputs in-
cluded the odds ratios of PRS313 estimated in women of African

ancestry and European ancestry (6); age-specific BC incidence
rates from the Surveillance, Epidemiology and End Results pro-
gram (2000-2016); and mortality rates from the National Center
for Health Statistics, Centers for Disease Control and Prevention
(CDC) (2000-2016). The absolute risk for BC subtypes did not ac-
count for the competing risk of other subtypes. We also com-
puted the lifetime risk with the odds ratios of continuous PRS313

(per SD) within the age range of 35 to 85 years using the R pack-
age iCARE 1.18.0 (17).

Recalibrated PRS. For the 179-variant PRS, we examined whether
the performance could be improved by constructing recali-
brated PRSs. To avoid overestimating performance, we imple-
mented 150 repeated fourfold cross-validations in which
samples in each consortium or study were randomly split into
4 nonoverlapping parts; in each round, 1 part was left out as the
testing set and the other 3 parts were used as training sets. We
estimated log odds ratios (weights) and selected markers in
training sets and then applied the results to testing sets. First,
we examined weights based on the marginal log odds ratios de-
rived from women of African ancestry (PRS179.AFR) and from
multi-ethnic populations of African and European ancestry
(PRS179.ME). Second, for each risk variant, we considered alterna-
tive markers within each region that might be more informa-
tive than the index variant (“better markers”) in women of
African ancestry (PRS179.AFR-better) or in the multi-ethnic popula-
tions (PRS179.ME-better). We assessed the variability of log odds ra-
tios of the 179 risk loci in training sets by calculating the root-
mean-squared deviation from effect sizes estimated using all
samples. Details are provided in the Supplementary Methods
(available online).

All statistical analyses were conducted using R v.4.0.0. All
tests for statistical significance used a 2-sided alpha of .05.

Results

Participant Characteristics

The analysis included 9241 BC cases (4299 ER-positive and 2636
ER-negative) and 10 193 controls. The characteristics of the par-
ticipants by study are described in Supplementary Table 1
(available online). The mean age of cases ranged from 45 years
to 71 years across studies.

Association Testing of Individual Risk Alleles

The comparison of RAF and effect size of individual variants be-
tween women of European and African ancestry are summa-
rized in Supplementary Figure 1 and Supplementary Tables 4
and 5 (available online). We had 80% power to detect the
reported European effect sizes of overall BC for 42 of the 179 var-
iants and for 48 of the 313 variants. Of the 179 previously
reported BC risk loci, 177 were polymorphic with MAF of at least
0.1% and imputation quality score of at least 0.3 in at least 2 of
the 4 consortia or studies. Of the 177, 133 (75.1%) had consistent
direction of effect on overall BC risk, and 29 (16.4%) were nomi-
nally statistically significant (P< .05). Of the 313 variants in
PRS313, 311 had a MAF greater than 0.1% and imputation score
greater than 0.3 in at least 2 of the 4 consortia or studies, among
which 215 (69.1%) showed directional consistency and 47
(15.1%) were nominally statistically significantly associated
with overall BC risk.



Polygenic Risk Score

Both PRS179 and PRS313 were associated with risk, with slightly
greater effect sizes and AUCs observed for PRS313 (Table 1). The
actual threshold of percentiles of PRSs was shown in
Supplementary Table 6 (available online). Women in the top
10% and 1% of the PRS313 had a 1.54-fold (95% CI ¼ 1.38-fold to
1.72-fold) and a 2.01-fold (95% CI ¼ 1.53-fold to 2.63-fold) ele-
vated risk compared with women at average risk (PRS in 40th-
60th percentiles), respectively (Table 1; Figure 1). The odds ratio
per 1 SD of PRS313 was 1.27 (95% CI ¼ 1.23 to 1.31), the AUC was
0.571 (95% CI ¼ 0.562 to 0.579), and the AUPRC was 0.539 (base-
line ¼ 0.476).

For ER-positive BC, compared with the population average,
women in the top 10% and 1% of PRS313 had a 1.85-fold (95% CI
¼ 1.61-fold to 2.13-fold) and a 2.16-fold (95% CI ¼ 1.56-fold to
3.00-fold) increased risk, respectively (Table 2). The odds ratio
per 1 SD of PRS313 was 1.37 (95% CI ¼ 1.32 to 1.43), the AUC was
0.588 (95% CI ¼ 0.577 to 0.599), and the AUPRC was 0.368 (base-
line ¼ 0.297). The theoretical AUC of PRS313 was 0.588 for
African-ancestry women and 0.643 for women of European an-
cestry. For ER-negative BC, compared with women at average
risk, those in the top 10% and 1% of PRS313 had a 1.47-fold (95%
CI ¼ 1.25-fold to 1.74-fold) and a 2.18-fold (95% CI ¼ 1.50-fold to
3.16-fold) increased risk, respectively (Table 3). The PRS179 per-
formed slightly better than PRS313, with an AUC of 0.578 vs
0.562, an AUPRC of 0.256 vs 0.246 (baseline ¼ 0.205), and an odds
ratio per 1 SD of 1.31 vs 1.21, respectively. The PRS15 performed
similarly to PRS179 (Table 3). The theoretical AUC of PRS313 was
0.554 for African-ancestry women and 0.604 for European-an-
cestry women.

We did not observe a statistically significant interaction be-
tween either PRS and age at diagnosis for overall or subtype-
specific BC risk (Supplementary Table 7; Supplementary Figure
2, available online). The average PRS was greater in controls
from studies in Africa compared with those from studies of
US and Barbadian origins (P< 2.2� 10�16 for both PRS313

and PRS179; Supplementary Figure 3, available online). The per-
formance of the PRSs by country of origin, ancestry proportion

defined by PC1, or family history are shown in Supplementary
Tables 7-9.

The distribution and root-mean-square deviation (RMSD) of
log odds ratios of the “better markers” and the 179 known risk
variants in the 600 training sets are shown in Supplementary
Figure 4 and Supplementary Table 10 (available online). When
estimating the 4 recalibrated PRSs for overall BC, we found the
PRS179.ME-better, which used “better markers” and variant weights
derived from the multi-ethnic training sets, had the largest AUC
but did not differ from that of PRS179 (average AUC¼ 0.569 vs
AUC¼ 0.566; Supplementary Figure 5, available online).

The estimated lifetime absolute risks for African American
and European-ancestry women by PRS313 categories for overall
and subtype-specific BC are shown in Figure 2. By age 85 years,

Table 1. Association between PRS and overall breast cancer risk in women of African ancestry

PRS and AUCa Controls, No.

PRS179 PRS313

Cases, No. OR (95% CI)b Pc Cases, No. OR (95% CI)b Pc

PRS category, %
<1 106 58 0.62 (0.44 to 0.89) .009 60 0.63 (0.44 to 0.89) .009
1-5 406 248 0.70 (0.58 to 0.84) 1.43� 10�4 235 0.70 (0.58 to 0.85) 2.29� 10�4

5-10 508 306 0.67 (0.56 to 0.79) 2.25� 10�6 309 0.72 (0.61 to 0.85) 9.51� 10�5

10-20 1020 687 0.74 (0.65 to 0.84) 2.84� 10�6 681 0.74 (0.65 to 0.84) 3.52� 10�6

20-40 2038 1598 0.89 (0.81 to 0.99) .03 1560 0.84 (0.76 to 0.93) 6.92� 10�4

40-60 2038 1808 1.00 (Referent) — 1802 1.00 (Referent) —
60-80 2038 2033 1.10 (1.00 to 1.22) .045 1952 1.03 (0.94 to 1.14) .50
80-90 1019 1093 1.17 (1.04 to 1.32) .008 1197 1.29 (1.15 to 1.45) 1.22� 10�5

90-95 508 645 1.42 (1.23 to 1.65) 1.80� 10�6 643 1.38 (1.20 to 1.60) 1.28� 10�5

95-99 406 593 1.60 (1.37 to 1.87) 2.15� 10�9 602 1.61 (1.38 to 1.87) 1.32� 10�9

>99 106 172 1.83 (1.39 to 2.40) 1.56� 10�5 200 2.01 (1.53 to 2.63) 3.69� 10�7

Continuous PRS per 1 SD 10 193 9241 1.26 (1.22 to 1.30) 2.59� 10�45 9241 1.27 (1.23 to 1.31) 4.23� 10�49

AUC 0.568 (0.56 to 0.576) — 0.571(0.562 to 0.579) —

aAUCs were adjusted for study and the first 10 principal components. AUC ¼ area under the receiver operating characteristic curve; CI ¼ confidence interval; GBHS ¼
Ghana Breast Health Study; OR ¼ odds ratio; PRS ¼ polygenic risk score.
bOdds ratios were estimated using unconditional logistic regression model, adjusting for age, study, and the first 10 principal components in each consortium and in

the GBHS and then combined using a fixed-effect meta-analysis with inverse variance weights.
cTwo-sided P values were Wald P value from fixed-effect meta-analysis.

Figure 1. Association between the categorical 313-variant polygenic risk score

(PRS313) and overall breast cancer risk by population. The x-axis indicates the

PRS313 percentiles. The y-axis represents odds ratio (OR) values for the indicated

PRS313 percentiles compared with the 40%-60% category of PRS313 as the refer-

ence (population average risk). Dots represent odds ratios and error bar lines

represent standard error estimated in each population. The grey line represents

results for women of African ancestry, which were estimated in this study. The

yellow line represents results for Latinas obtained from a previous Latino PRS

study (10). The blue line represents results for Asian women obtained from an

Asian PRS study (18). The green line represents results for women of European

ancestry obtained from a previous European ancestry PRS study (6). African an-

cestry results are also provided in Table 1.



the absolute risk of overall BC was 19.6% for women in the top
1% of PRS313 and 6.7% for women in the lowest 1%. The density
plots of lifetime absolute risk of ER-positive and ER-negative BC
in European and African American women are shown in
Supplementary Figure 6 (available online). The average lifetime
risk of ER-positive BC from 35 years to 85 years is 9.1% (SD ¼
4.6%) for European-ancestry women and 6.6% (SD ¼ 2.0%) for
African American women, and for ER-negative BC the risks are
1.9% (SD ¼ 0.7%) for European-ancestry women and 2.9% (SD ¼
0.6%) for African American women.

Discussion

We evaluated the performance of 2 PRSs developed in women
of European ancestry in women of African ancestry and found
both PRSs to be statistically significantly associated with overall
and subtype-specific BC risk, with odds ratios per SD of 1.21 to
approximately 1.37 and AUCs ranging between 0.57 and 0.59.
Women in the top 10% of either PRS had a 1.54-fold elevated
risk of BC. Women in the top 1% of the PRSs had a 1.83-fold to
2.01-fold increase in risk and were estimated to have an 18% to
20% lifetime risk of developing BC. However, these estimates
are markedly lower than what have been reported for other ra-
cial or ethnic populations.

The authors of the largest PRS study of BC in women of
European ancestry examined multiple PRSs using between 77
and 3820 risk variants, reported odds ratios per SD between 1.49
and 1.71, and AUCs between 0.61 and 0.64 for overall BC (6). The
authors of the largest PRS study in Latinas examined the perfor-
mance of a 71- and 180-variant PRS for overall BC and reported
odds ratios per SD from 1.51 to 1.58 and AUCs of 0.61 to 0.63 (19)
(Figure 1). Researchers examined in East Asians a 67-variant PRS
for overall BC and reported an odds ratio per SD of 1.44 and an
AUC of 0.61 (20,21). The authors of the largest PRS study in

Asians examined a 287-variant PRS (derived from the 313 var-
iants in the European ancestry study) and reported an odds ra-
tio per SD of 1.51 and AUC of 0.62 for overall BC (18). The weaker
performance of PRS in women of African ancestry is consistent
with observations for other cancers and other chronic diseases
(22,23). Factors likely to be underlying the difference include
variation in linkage disequilibrium patterns, allele frequencies,
and potential effect heterogeneity between populations. The re-
duction in performance is also in agreement with previous
studies that have demonstrated the decline in PRS performance
with increasing genetic divergence from the training population
(24-26).

To note, even though the AUC was worse in African-ancestry
women than that in European-ancestry women, the risk stratifi-
cation in the population, which depends also on the underlying
rates of disease, may not be worse. This was demonstrated in
comparison of ER-negative BC in our study: the AUC was greater
in European-ancestry women (theoretical AUC¼ 0.604) than in
African-ancestry women (theoretical AUC¼ 0.554); however, be-
cause of the greater baseline risk of ER-negative disease in
African-ancestry women than in European-ancestry women
(2.9% vs 1.9% average lifetime risk, respectively), for any given
risk threshold, a larger percentage of African-ancestry women
than European-ancestry women would be identified as being at
elevated risk of this disease.

For BC subtypes, PRS313 performed better in the prediction of
ER-positive BC than ER-negative BC, which is consistent with the
previous study in women of European ancestry (6). Both PRS179

and PRS15 performed better than PRS313, which suggests PRS313 is
not optimal for ER-negative disease in women of African ances-
try. The previous investigations of the PRS in women of European
ancestry reported a weak nonlinear decline in effect with increas-
ing age for ER-positive BC. However, we did not observe an inter-
action with age for overall or BC subtypes in this study. The
previous BCAC study reported an attenuated odds ratio of PRS313

Table 2. Association between PRS and ER-positive breast cancer risk in women of African ancestry

PRS and AUCa

Controls,
No.

PRS179 PRS313

PRS313 in
European
womend

Cases,
No. OR (95% CI)b Pc

Cases,
No. OR (95% CI)b Pc OR (95% CI)

PRS category, %
<1 106 25 0.54 (0.33 to 0.87) .01 28 0.60 (0.37 to 0.95) .03 0.16 (0.09 to 0.30)
1-5 406 93 0.51 (0.39 to 0.66) 4.75� 10�7 89 0.56 (0.43 to 0.73) 1.92� 10�5 0.32 (0.25 to 0.40)
5-10 508 152 0.62 (0.50 to 0.77) 2.10� 10�5 128 0.63 (0.50 to 0.79) 7.12� 10�5 0.50 (0.42 to 0.60)
10-20 1020 323 0.71 (0.60 to 0.83) 4.11� 10�5 288 0.69 (0.59 to 0.82) 3.17� 10�5 0.61 (0.53 to 0.69)
20-40 2038 736 0.83 (0.73 to 0.95) .007 723 0.86 (0.75 to 0.98) .02 0.77 (0.70 to 0.85)
40-60 2038 856 1.00 (Referent) — 807 1.00 (Referent) — 1.00 (Referent)
60-80 2038 918 1.07 (0.94 to 1.21) .32 934 1.13 (1.00 to 1.29) .05 1.40 (1.28 to1.52)
80-90 1019 496 1.13 (0.97 to 1.31) .11 541 1.30 (1.12 to 1.51) 6.18� 10�4 1.59 (1.44 to 1.76)
90-95 508 302 1.43 (1.19 to 1.72) 1.71� 10�4 350 1.75 (1.46 to 2.10) 1.52� 10�9 2.17 (1.93 to 2.44)
95-99 406 306 1.80 (1.48 to 2.19) 2.56� 10�9 315 1.89 (1.56 to 2.29) 7.97� 10�11 2.68 (2.37 to 3.03)
>99 106 92 2.21 (1.58 to 3.09) 3.31� 10�6 96 2.16 (1.56 to 3.00) 4.12� 10�6 4.37 (3.59 to 5.33)

Continuous
PRS per 1 SD

10 193 4299 1.33 (1.27 to 1.38) 4.35� 10�41 4299 1.37 (1.32 to 1.43) 8.63� 10�51 1.74 (1.66 to 1.82)

AUC 0.576 (0.566 to 0.585) — 0.588 (0.577 to 0.599) — 0.651

aAUCs were adjusted for study and the first 10 principal components. AUC ¼ area under the receiver operating characteristic curve; CI ¼ confidence interval; GBHS ¼
Ghana Breast Health Study; OR ¼ odds ratio; PRS ¼ polygenic risk score.
bOdds ratios were estimated using unconditional logistic regression model, adjusting for age, study, the first 10 principal components in each consortium and in the

GBHS, and then combined using a fixed-effect meta-analysis with inverse variance weights.
cTwo-sided P values were Wald P value from fixed-effect meta-analysis.
dResults were obtained from a previous PRS study in women of European ancestry (6).
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Figure 2. Lifetime absolute risk of breast cancer by polygenic risk score (PRS) category in African American women. Lifetime absolute risk of developing breast cancer

for the 313-variant PRS (PRS313) in African American women for overall breast cancer (A), estrogen receptor (ER)-positive breast cancer (B) and ER-negative breast cancer

(C) and in European-ancestry women for overall breast cancer (D), ER-positive breast cancer (E), and ER-negative breast cancer (F). The x-axis represents age and the y-

axis is the absolute risk of breast cancer by a given age. The different colored lines represent the corresponding PRS strata. See Methods for details about the calculation

of absolute risks.



for ER-positive BC in women with family history (6). We detected
a suggestive interaction of the PRS with family history, although
larger studies will be needed to improve the power to detect
interactions in women of African ancestry.

Based on the current sample size of African-ancestry women
in this study, we found European weights provided optimal PRS
performance—the performance could not be improved using
weights estimated in women of African ancestry or by replacing
an index variant with a “better African marker” in each risk re-
gion. This could be due to the training set not being large
enough to provide accurate estimates of effect or to distinguish
causal variants from correlated markers in each risk region. We
observed a minor improvement in PRS using multi-ethnic
weights, which is corroborated by a simulation study showing
that multi-ethnic training populations substantially outper-
formed PRS using a single training population (27). The current
multi-ethnic samples predominantly consisted of women of
European ancestry. We expect that PRS performance may be
further improved when including more samples of African
ancestry.

The current guideline for BC screening classifies those at
high risk based on BRCA1 or BRCA2 mutations and family his-
tory–based lifetime risk assessment (28-30). Several studies
have reported that incorporating PRS into these existing risk
models could increase discrimination accuracy and improve
calibration (8,9,31-34). These studies and models were predomi-
nantly conducted in European ancestry populations, and similar
assessments are needed in larger African-ancestry studies to
assess the value of incorporating common germline variation
into the decision-making process of screening recommenda-
tions. Of note, incidence rates of BC in West African countries
are substantially lower than that in the United States (35). And
given the differences in access to health care, the harm-to-
benefit ratio and cost-effectiveness of introducing risk-stratified
BC screening programs at the population level should be care-
fully assessed.

In conclusion, although PRSs developed in women of
European ancestry can identify women at elevated risk of devel-
oping BC, they currently substantially underperform in African-
ancestry women compared with women of European, Asian,
and Latino ancestry.
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