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Simple Summary: This study aims to provide computer-aided diagnosis and valuable biomarkers
for autism spectrum disorders by leveraging functional connectivity networks (FCNs) from resting-
state functional magnetic resonance imaging data. We propose a novel framework for multi-FCN
fusion to adaptively learn the fusion weights of component FCNs during the classifer’s learning
process, guided by label information. It is simple and has better discriminability for autism spectrum
disorder identification.

Abstract: Functional connectivity network (FCN) has become a popular tool to identify potential
biomarkers for brain dysfunction, such as autism spectrum disorder (ASD). Due to its importance,
researchers have proposed many methods to estimate FCNs from resting-state functional MRI (rs-
fMRI) data. However, the existing FCN estimation methods usually only capture a single relationship
between brain regions of interest (ROIs), e.g., linear correlation, nonlinear correlation, or higher-order
correlation, thus failing to model the complex interaction among ROIs in the brain. Additionally, such
traditional methods estimate FCNs in an unsupervised way, and the estimation process is independent
of the downstream tasks, which makes it difficult to guarantee the optimal performance for ASD
identification. To address these issues, in this paper, we propose a multi-FCN fusion framework
for rs-fMRI-based ASD classification. Specifically, for each subject, we first estimate multiple FCNs
using different methods to encode rich interactions among ROIs from different perspectives. Then,
we use the label information (ASD vs. healthy control (HC)) to learn a set of fusion weights for
measuring the importance/discrimination of those estimated FCNs. Finally, we apply the adaptively
weighted fused FCN on the ABIDE dataset to identify subjects with ASD from HCs. The proposed
FCN fusion framework is straightforward to implement and can significantly improve diagnostic
accuracy compared to traditional and state-of-the-art methods.

Keywords: functional connectivity network; multi-FCN fusion; adaptive weighting; autism spectrum
disorder

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disease in children, mainly
manifested as language communication impairment, narrow interests, and stereotyped
behavior [1]. The prevalence of ASD was reported to be 0.72% in the two decades between
2000 and 2020 [2]. Although there is a growing concern about ASD, the current diagnosis
of ASD is mainly based on patient behavior and simple observation of symptoms, which
easily leads to a high misdiagnosis rate and, thus, delayed treatment [3]. Therefore, it is
important to explore a reliable and automatic strategy to assist in the diagnosis of ASD at
an early stage [4].
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Resting-state functional magnetic resonance imaging (rs-fMRI), a technique that can
measure the blood oxygen level-dependent (BOLD) signal of a subject at rest or in a
task-free state, has been widely used in the early diagnosis of ASD [5,6]. Studies have
found that ASD tends to disrupt neural connections in different brain regions of interest
(ROIs) [7], and the functional connectivity network (FCN) estimated from rs-fMRI is a
powerful tool to characterize subtle abnormal changes in ROIs of ASD subjects. Hence,
estimating high-quality FCNs becomes a key problem in ASD identification and related
biomarker discovery.

Over the past decades, many methods have been developed to estimate FCNs. Among
them, the most popular is Pearson’s correlation (PC) [8]. Despite its simplicity and em-
pirical effectiveness, PC cannot exclude the possibility of confounding influences from
other brain regions, thus easily leading to misconnections among ROIs. In contrast, partial
correlation can solve this problem by regressing out the effect from other ROIs. In practice,
sparse representation (SR) [9] is one of an often-used scheme to calculate partial correlation,
and can generally result in a more stable FCN estimation. Unlike PC and SR that only
model linear correlation, Wang et al. used mutual information (MI) to measure the non-
linear relationship between ROIs [10]. A further study [11] reported that MI can confirm
known functional connections and discover new ones with a clear physical explanation.
Recently, Zhang et al. proposed higher-order functional connectivity (HOFC) networks that
use topographical similarity information between lower-order subnetworks to quantify
interactions in the brain [12]. Although the above methods have been successfully applied
in many scenarios, including ASD identification, each of them only captures a single type of
relationship between ROIs, making it difficult to model complex interactions in the brain.

Motivated by the concept of multiview learning, researchers try to combine infor-
mation from different aspects to enhance the representation of FCN. The most direct and
natural fusion method is to average differently estimated FCNs [13]. Despite its simplicity,
such a traditional scheme may reduce the discriminative ability of the fused FCN, due to
the fact that edge weights with positive and negative signs tend to cancel each other out.
Furthermore, the average fusion strategy supposes that each FCN contributes the same
weights, which makes it difficult to be consistent with the real scenarios. Unfortunately,
however, there is currently no principled strategy to determine the fusion weight value of
different FCNs.

In addition to the traditional average weighting method mentioned above, researchers
have proposed some advanced methods to explore the potential association information
between multiple FCNs. For example, Wang et al. proposed a multi-FCN fusion strategy
(MVJB) that superimposes multiple FCNs into a tensor and uses the tensor decomposition
to learn the joint embedding of each ROI in different views [14]. Although this method
can effectively learn the commonality between multiple FCNs, it ignores the specificity
among different FCNs. More seriously, this method performs fusion without utilizing
supervised information and, thus, cannot adaptively adjust the fusion strategy according
to the downstream task. In contrast, Gan et al. proposed a new multi-FCN fusion method
(FC-kNN) based on the idea of intraclass compactness and interclass separability [15].
However, this method is limited to the fusion of two FCNs, and the fused FCNs can only
contain positive edge weights, which is not suitable for most FCNs that generally have
negative edge weights for modeling the inhibitory relationship between ROIs.

With the development of deep learning, researchers have used graph neural net-
works [16] to fuse multiple FCNs. In a recent study, Wen et al. proposed a multiview
convolutional neural network (MVS-GCN) with prior brain structure to capture the po-
tential relationships between different views (i.e., FCNs here) [17]. However, the FCNs
involved in this method only contain edges estimated via linear correlation, and the mul-
tiple views are generated by simply setting different thresholds. Therefore, it is hard for
such FCNs to encode the complex interaction between ROIs. Moreover, MVS-GCN is
fundamentally different from traditional fusion, because it only generates a latent feature
representation of different views rather than a fused FCN. In other words, we cannot
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achieve a specific FCN for the subject, which may result in a low model interpretability. In
addition, although the GCN-based methods have shown effectiveness in brain disease clas-
sification, their models are generally complicated and contain many (hyper-) parameters.
This can easily lead to the overfitting problem due to the limited training samples in the
medical imaging field.

In response to the above issues, in this paper we propose an adaptive multi-FCN
fusion framework for ASD classification. Specifically, for each subject, we first estimate
multiple FCNs that can model different types of interactions among ROIs, including linear,
nonlinear, low-order, high-order, etc. Such estimated FCNs are expected to sufficiently
describe the uniqueness of the individual brain. Then, rather than choosing the traditional
average fusion, we adaptively learn the fusion weights, i.e., the importance of different
FCNs, under the guidance of the label information (ASD vs. healthy control (HC)) from
the training samples/subjects. Moreover, we integrate the weight learning process and the
downstream classification task (i.e., disease diagnosis) into a unified framework. And more
notably, the obtained fusion weights are shared across all the subjects. This makes them
easily generalizable to the testing samples/subjects, and can effectively reduce the risk of
overfitting. The main contributions are as follows:

• An adaptive multi-FCNs fusion strategy is proposed for ASD diagnosis based on
rs-fMRI by utilizing label information and diverse component FCNs, resulting in a
more flexible and highly discriminative fused FCN.

• The fusion weights of component FCNs and the classifier are simultaneously op-
timized in a unified framework, making the model straightforward to implement
and enhancing its generalization ability. This differs from the traditional FCN fusion
methods which generally involve numerous hyperparameters and can easily lead to
the overfitting problem on the limited medical data.

• Extensive experiments on the ABIDE datasets demonstrate the comparative perfor-
mance of our method against several state-of-the-art FCNs fusion approaches.

The remainder of this paper is presented below. In Section 2, we first report the data
acquisition and preprocessing procedure. Then, we propose our multi-FCN fusion method,
including the mathematical model and joint optimization algorithm for ASD classification.
In Section 3, we describe the experimental setup and show the experimental results. In
Section 4, we discuss the effect of different parameters on classification performance and
visualize discriminative features (i.e., functional connectivity). Finally, we conclude the
paper in Section 5.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

In this paper, we use the raw imaging data from the Autism Brain Imaging Data
Exchange (ABIDE) [18], a publicly available dataset, as the materials to test the proposed
method. These data are collected from 17 international sites, and can be freely downloaded
from the website http://fcon_1000.projects.nitrc.org/indi/abide/ (accessed on 1 June 2023).
For training a more reliable model, we select the two largest sites in the ABIDE dataset, i.e.,
New York University (NYU) and University of Michigan (UM)) in this study, and report
the subject demographic information in Table 1.

The NYU site includes 79 subjects with ASD and 105 HCs. Their rs-fMRI images were
acquired on a clinically conventional 3.0 Tesla Allegra scanner. The imaging sequence
parameters were as follows: scanning time = 6 min, TR/TE = 2000/15 ms, 33 slices, time
point T = 180, flip angle = 90°, and voxel size = 3.0 × 3.0 × 4.0 mm3.

The UM site includes 68 subjects with ASD and 77 HCs. Their rs-fMRI images were
acquired on a clinically conventional 3.0 Tesla GE Signa scanner. The imaging sequence
parameters were as follows: scanning time = 10 min, TR/TE = 2000/30 ms, 40 slices, time
point T = 300, flip angle = 90°, and voxel size = 3.438 × 3.438 × 3.0 mm3.

We preprocessed the acquired data using the Data Processing Assistant for Resting-
state fMRI (DPARSF http://www.rfmri.org/DPARSF) (accessed on 1 June 2023) [19] based

http://fcon_1000.projects.nitrc.org/indi/abide/
http://www.rfmri.org/DPARSF
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on a recognized pipeline: (1) Removal of the first 5 rs-fMRI volumes for each subject;
(2) slice-timing correction and head motion correction; (3) registration in Montreal Neu-
rological Institute (MNI) space [20] with a resolution of 3× 3× 3 mm3; (4) regression of
interfering signals (ventricle, white matter, global signals, and head motion described
by Friston 24-parameters model); (5) a temporal high-pass filter of 0.01–0.1 Hz is used
to reduce the effects of heartbeat and breathing. Finally, the brain is divided into 116
ROIs based on the Automatic Anatomical Labeling (AAL) atlas [21], and a representative
BOLD signal is extracted from each ROI by an averaging strategy [22] for the subsequent
FCN construction.

Table 1. Subject demographics from New York University (NYU) and University of Michigan (UM)
sites in the Autism Brain Imaging Data Exchange (ABIDE) dataset. FIQ, full-scale intelligence quotient.

Datasets Class Gender (M/F) Age (Years) FIQ

NYU ASD (N = 79) 68/11 14.52± 6.97 107.92± 3.15
HC (N = 105) 79/26 15.81± 6.25 113.15± 2.45

UM ASD (N = 68) 58/10 13.13± 2.41 105.46± 17.28
HC (N = 77) 59/18 14.79± 3.57 108.12± 9.80

2.2. Proposed Method

As mentioned earlier, the traditional FCN estimation methods only can capture a
single type of relationship between ROIs, which makes it difficult to model intricate con-
nections in the brain. To obtain more reliable brain connections, it has become increasingly
popular to fuse multiple FCNs estimated from different views or based different methods.
The simplest and most straightforward fusion method is to average these FCNs directly.
However, such an averaging strategy easily suffers from the following issues. First, it
assigns the same weight/importance for each FCN, which is not flexible enough to encode
the complicated brain correlations in the real scenarios. Second, the traditional averaging
fusion method is unsupervised and cannot adaptively adjust the fusion strategy according
to the downstream tasks. Thus, the fused FCN is not necessarily beneficial to the ASD
classification performance. To solve these problems, we develop a novel multi-FCN fu-
sion method, in which the fusion weights are learned automatically from the data with
the guidance of the label information. By combining the learning of fusion weights with
the classification task, the resultant FCNs may have stronger discriminative ability. The
pipeline of the proposed muti-FCN fusion framework is shown in Figure 1.

2.2.1. Joint Multi-FCN Fusion and Disease Classification

In our multi-FCN fusion framework, in order to model the complex interactions
between ROIs, we first estimate a set of FCNs for each subject based on different methods,
denoted as W j(j = 1, · · · , G), where G is the number of involved methods that will be
introduced shortly in Section 3.1. Then, we fuse these FCNs through a set of weights
αj(j = 1, · · · , G), each of which corresponds to an FCN. In other words, the fused FCN
W = ∑G

i=1 αjW j. Finally, we integrate the fused FCN with fusion weights and label
information into a unified framework based on the L1-norm support vector machine
(L1-norm SVM) [23], with the aim to obtain the fusion weights that are conducive to
minimizing classification errors. As a result, we have the joint multi-FCN fusion and
disease classification model as follows:

min
C,α
‖C‖1 + λ1

M

∑
i=1

(max(0, 1− yiCT
G

∑
j=1

αjW j
i ))

2 + λ2‖α‖2

s.t. αj ≥ 0,
G

∑
j=1

αj = 1

(1)
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where W j
i (i = 1, · · · , M, j = 1, · · · , G) represents the adjacency matrix (without loss of

generality, the W j
i has been concatenated into a vector) of FCN corresponding to the i-th

subject, estimated by the j-th methods, and yi ∈ {−1, 1} is the label of the i-th subject. In
other words, y takes the value -1 or 1, where -1 indicates HC and 1 indicates a patient
with ASD. C is the parameter vector in the L1-norm SVM [23]. The L1-norm ‖ · ‖1 aims to
make the parameter vector C sparse, which in fact embeds a feature selection operation
in the SVM classifier. As a result, we do not need an extra feature selection step for the
fused FCNs. Additionally, to prevent the model from degenerating to the trivial fusion
weight value, i.e., only one 1 and G− 1 zeros in α = (α1, · · · , αG), we include an L2-norm
regularization term ‖α‖2 in the classification model. The λ1 and λ2 are two regularization
parameters to control the balance of three terms in the objective function. At the same
time, our method constrains αj ≥ 0, ∑G

j=1 αj = 1, which not only avoids the trivial solution
(i.e., αj = 0, ∀j), but also gives the weight values αj a clear probabilistic interpretation.

Subject 1 BOLD Signal

Label

Subject M BOLD Signal

Label

1

3

1

BOLD Signal

Classifier

Output

Weight 𝛼

Weighted Fusion

Apply 

Classifier1 ASD HC

Or

Diagnosis

Training Data

Testing Data

Apply

𝛼

ASD

L1-norm SVM

HC

Weighted Fusion

2
𝛼1

𝛼𝐺

Weighted Fusion

2
𝛼1

𝛼𝐺
…

…
…

Figure 1. The proposed multi-functional connectivity networ (FCN) fusion framework. (1) Multiple
initial brain function networks are estimated by traditional methods for each subject; (2) fuse these
FCNs with the weight combination; (3) incorporate the weight learning into the L1-norm support vec-
tor machine (SVM) classifier, with the result that simultaneously optimizes the weights αj(j=1, · · · , G)

and the classifier. Finally, the model parameters in (3) are applied for autism spectrum disorder
(ASD) diagnosis.

In contrast to the traditional averaging strategy in which α = (1/G, · · · , 1/G), our
model can adaptively learn a set of weights for the involved FCNs. Therefore, the model
proposed in this paper is more flexible than the traditional schemes. In addition, the fusion
weights and downstream classifications are integrated into a unified framework, which
may improve the discriminative power of the final fused FCN under the guidance of
label information.

2.2.2. Optimization Algorithm

Note that two variables, C and α, are involved in Equation (1). Here, we use the
alternating optimization (AO) algorithm to solve the problem.
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Step 1: When α is fixed, we update C, and the model can be simplified to the following
L1-norm SVM [23]:

min
C
‖C‖1 + λ1

M

∑
i=1

(max(0, 1− yiCT
G

∑
j=1

αjW j
i ))

2 (2)

Without loss of generality, we express ∑G
j=1 αjW j

i = Wi, that is, Equation (2) can be
rewritten as

min
C
‖C‖1 + λ1

M

∑
i=1

(max(0, 1− yiCTWi))
2 (3)

Equation (3) is a classical L1-SVM model. At present, researchers have developed
many algorithms to solve it [23–25]. In this paper, we use the toolbox LIBLINEAR to
achieve the optimal solution of C [23].

Step 2: With fixed C, we then update α, and the model can be simplified as

min
α

λ1

M

∑
i=1

(max(0, 1− yiCT
G

∑
j=1

αjW j
i ))

2 + λ2‖α‖2

s.t. αj ≥ 0,
G

∑
j=1

αj = 1

(4)

Since max(0, 1− yiCT ∑G
j=1 αjW j

i ) in Equation (4) is nonconvex with respect to α, we
introduce a slack variable ξi ≥ 0, and Equation (4) can be rewritten as

min
α

λ1

M

∑
i=1

ξ2
i + λ2‖α‖2

s.t. ξi ≥ 1− yiCT
G

∑
j=1

αjW j
i , ξi ≥ 0, αj ≥ 0,

G

∑
j=1

αj = 1

(5)

Note that Equation (5) is a quadratic programming problem; thus, we use the ready-
made quadprog function [26] in MATLAB toolbox to solve it. Finally, we summarize the
optimization algorithm for solving Equation (1) in Algorithm 1. The description above
represents the training process in Figure 1. For a new subject, we used the testing process
in Figure 1, taking multiple FCNs of the new subject, applying the weights α learned
from the training set for weighted fusion, and then using the learned classifier to make
class judgments.

Algorithm 1 Algorithm of the proposed model.

Input: Input data W = W j
i (i = 1, · · · , M; j = 1, · · · , G), y; parameter λ1, λ2; maximum

iteration number: MaxIter; and the iteration stopping threshold ε.
Output: Weight vector C, fusion weight vector α.
Initialize: C ∈ RM, choose α = (1/G, · · · , 1/G).
For i = 1, 2, · · · , MaxIter

Step 1: Fixed α, updated C
By solving Equation (3)

Step 2: Fixed C, updated α
By solving Equation (5)

Calculate Equation (1) as Fi.
If |Fi+1 − Fi| < ε

Break and Return C, α.
End
End
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3. Experiments

In the experimental part, we first introduce the construction of multiple FCNs from
different perspectives, then describe the comparison methods, and finally give the experi-
mental settings and results.

3.1. Estimated Multi-FCN

As mentioned earlier, our proposed fusion scheme is not limited by the number of
FCNs. To encode the diverse and complex interactions between ROIs in the brain, we
use four popular methods, including PC [8], SR [9], MI [10], and HOFC [12], to construct
multiple FCNs prior to the fusion representation. These methods are able to model the
relationship between ROIs from different perspectives. In particular, PC measures full
correlation, SR captures partial correlation, MI models nonlinear relationships, and HOFC
encodes higher-order relationships. In Table 2, we list the models/formulas used to estimate
FCNs in different methods.

Table 2. Several popular FCN estimation methods.

Method Definition

Pearson’s correlation (PC) Pij =
(xi−x̄i)

T(xj−x̄j)√
(xi−x̄i)T(xi−x̄i)

√
(xj−x̄j)T(xj−x̄j)

(6)

Sparse representation (SR) Sij = arg minSij ∑M
i=1(‖xi −∑j 6=i Sijxj‖2 + λ ∑j 6=i | Sij|) (7)

Mutual Information (MI) Mij = ∑i ∑j p(xi, xj) log p(xi ,xj)
p(xi)p(xj)

(8)

Higher Order Functional Connections (HOFC) Hij =
(Pi−P̄i)

T(Pj−P̄j)√
(Pi−P̄i)T(Pi−P̄i)

√
(Pj−P̄j)T(Pj−P̄j)

(9)

PC measures the full correlations between two ROIs based on Equation (6) in Table 2,
where xi, xj ∈ RT(i, j = 1, · · · , 116) are the BOLD signals of the i-th and j-th ROI, respec-
tively. x̄i (or x̄j) is the mean of xi (or xj).

SR captures the partial correlations between different ROIs. The first term of Equation (7)
in Table 2 is the data fitting term used to model the part of correlations between different
ROIs, and the second term is the L1-regularizer used to encode the sparse prior of FCN. λ
is a regularization parameter to control the balance of two terms in the objective function. It
is worth noting that the regularization parameter of SR is fixed to be λ = 2−5 for matching
the brain network density in other methods, which also corresponds to the settings in
the previous research [27]. In addition, the FCN estimated by SR is asymmetric; thus, we
simply symmetrize it by S = (S + ST)/2 in our experiment [27].

MI measures the nonlinear relationship between two ROIs based on Equation (8), as
shown in Table 2, where p(xi,xj), p(xi) and p(xj) are the joint probability distribution and
marginal probability distribution of xi and xj, respectively.

HOFC measures the high-order interaction information between two ROIs, imple-
mented on top of the PC-estimated FCN. Specifically, we first construct a fully connected
low-order FCN based on PC. Then, the edge weights of such low-order FCN are considered
as new feature representations to estimate a higher-order FCN by conducting PC operation
again [12]. As shown in Equation (9), Pi represents the i-th column of the low-order FCN
adjacency matrix estimated by the first PC operation.

3.2. Methods for Comparison

In our experiments, we compare eight methods, including four single methods (i.e.,
PC [8], SR [9], MI [10], and HOFC [12]) shown in Table 2, and four fusion methods (i.e., the
simple averaging weighted method, MVJB [14], FC-kNN [15], and MVS-GCN [17]). In the
following, we give a high-level description of the four FCN fusion methods.

• Average: It fuses multiple FCNs by distributing the same weight for each FCN.
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• MVJB: This method superimposes multiple FCNs into a tensor and uses tensor decom-
position to learn a joint embedding representation of each ROI. Then PC is used to
calculate the correlation between the embedding representations of ROIs to obtain the
fused FCN [14].

• FC-kNN: It uses the criterion of intraclass compactness and interclass separability to
fuse the commonality and specificity of two FCNs [15].

• MVS-GCN: MVS-GCN first generates dense FCNs and then binarizes them into
multiple FCNs by different thresholds. Rather than fusing these FCNs directly, it uses
multitask embedding learning to extract potential correlation features from different
FCNs [17].

3.3. Experimental Setting

As mentioned previously, we choose four representative methods (i.e., PC, SR, MI, and
HOFC) to construct multiple FCNs for each subject and normalize their adjacency matrices
to have entries in the interval of [−1, 1]. Since the FCNs constructed by all methods are
symmetric, we only consider the upper triangular elements as their representation; thus,
each FCN has 6670 features. Then, the features corresponding to multiple FCNs are placed
into the proposed fusion framework, which is guided by label information for adaptive
weight learning and used in the classification task of ASD.

Due to the limited number of subjects, we test the proposed method using leave-
one-out (LOO) cross-validation. That is, one subject is kept for testing and the remaining
subjects are used for training the model. This process is repeated until each subject is tested
once. For the regularization parameter λ2, we search its optimal value in the range of
[0, 1, · · · , 5, 6] by an inner LOO process based on an independent validation set, as shown
in Figure 2. For the parameter λ1, we use the default value of 1 as in the L1-norm SVM [23].

DatasetDataset

Testing SetTesting Set Training SetTraining Set

Validation SetValidation Set Training SetTraining Set

Classification AccuracyClassification Accuracy

Parameter Selection

L1-SVM

L1-SVM

LOO

Inner LOO

Optimal Parameter

Figure 2. Selection of the optimal parameter pipeline via leave-one-out cross-validation.

In our experiments, we use several popular indicators [28–30], including accuracy
(ACC = TP+TN

TP+FP+TN+FN ), sensitivity (SEN = TP
TP+FN ), specificity (SPE = TN

TN+FP ), balance
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accuracy (BAC = SEN+SPE
2 ), positive predictive value (PPV = TP

TP+FP ), negative predictive
value (NPV = TN

TN+FN ), F1 score (F1 = 2×TP
2×TP+FP+FN ), and area under the ROC curve

(AUC) to assess the classification performance of the involved methods, where TP, TN, FP,
and FN are true positive, true negative, false positive, and false negative, respectively.

3.4. Classification Performance

The classification results for NYU and UM sites are shown in Tables 3 and 4, respec-
tively. According to the classification results, we can observe that the proposed fusion
framework achieves better results than the comparison methods. In particular:

• Most of the muti-FCN fusion methods generally achieve better recognition perfor-
mance than single FCN method. This further illustrates that it is not easy to acquire
a good representation of brain only using a single type of FCN since the interaction
between different ROIs in the real brain is extremely complex.

• The simple average-weighted approach cannot work well on the used two datasets. In
contrast, our proposed method improves the ASD classification performance by 6.52%
and 11.03% at NYU and UM sites, respectively. This may benefit from the adaptively
optimized fusion weights combined with the label information for each type of FCN,
as shown in Equation (1).

• Compared to MVJB [14] and FC-kNN [15], our method also contributes significantly
to the improvement in accuracy. On the one hand, this is due to the fact that we
incorporate the fused weight learning into the classification task, which may help
to improve the discriminative ability of the final fused FCN. On the other hand, our
method is not limited by the number of fused FCNs, and thus can obtain information
from more FCNs.

• Despite its simplicity, our method can outperform MVS-GCN [17], a deep-learning-
based multiview learning scheme. The possible reason is that the MVS-GCN frame-
work needs to determine a lot of hyperparameters, which easily incurs the difficulty
in parameter selection and may cause the overfitting problem, since the amount of
training data is limited in our experiments.

Table 3. Performance comparison of NYU site. Best results are denoted by bold values.

Datasets Method ACC SEN SPE BAC PPV NPV F1 AUC

NYU

PC 66.30% 58.23% 72.38% 65.30% 61.33% 69.72% 59.74% 70.56%

SR 62.50% 43.03% 77.14% 60.09% 58.62% 64.29% 49.64% 66.74%

MI 46.20% 40.51% 50.48% 45.49% 38.10% 53.00% 39.26% 41.29%

HOFC 71.74% 62.03% 79.05% 70.54% 69.01% 73.45% 65.33% 77.20%

Average 69.02% 59.49% 76.19% 67.84% 65.28% 71.43% 62.25% 73.66%

MVJB 74.46% 64.56% 81.90% 73.23% 72.86% 75.44% 68.46% 78.72%

FC-kNN 70.65% 64.56% 75.24% 69.90% 66.23% 73.83% 65.38% 75.86%

MVS-GCN 72.28% 63.29% 79.05% 71.17% 69.44% 74.11% 66.23% 77.53%

Proposed 75.54% 65.82% 82.86% 74.34% 74.29% 76.32% 69.80% 79.07%

We further performed a statistical analysis to assess the significance of differences
between the probability scores obtained from the proposed method and the eight compar-
ative methods. As shown in Table 5, the p-values obtained from the t-tests are below the
significance level (p < 0.05), which indicates that the proposed method is significantly
different from each of the comparison methods.
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Table 4. Performance comparison of UM site. Best results are denoted by bold values.

Datasets Method ACC SEN SPE BAC PPV NPV F1 AUC

UM

PC 56.55% 55.88% 57.14% 56.51% 53.52% 59.46% 54.68% 62.18%

SR 51.72% 50.00% 53.25% 51.62% 48.57% 54.67% 49.28% 52.06%

MI 49.66% 22.06% 74.03% 48.04% 42.86% 51.82% 29.13% 41.75%

HOFC 62.07% 55.88% 67.53% 61.71% 60.32% 63.41% 58.02% 66.12%

Average 60.69% 51.47% 68.83% 60.15% 59.32% 61.13% 55.12% 65.09%

MVJB 63.45% 63.24% 63.64% 63.44% 60.56% 66.22 % 61.87% 65.16%

FC-kNN 65.52% 63.24% 67.53% 65.38% 63.24% 67.53% 63.25% 66.14%

MVS-GCN 68.27% 70.59% 66.23% 68.41% 64.86% 71.83% 67.60% 71.56%

Proposed 71.72% 70.59% 72.73% 71.66% 69.57% 73.68% 70.07% 77.35%

Table 5. Results of the statistical significance analysis between the proposed method and the eight
comparison methods.

Pairwise Comparison p-Value p < 0.05

Proposed vs. PC 3.65× 10−2 Yes
Proposed vs. SR 2.64× 10−2 Yes
Proposed vs. MI 2.55× 10−2 Yes
Proposed vs. HOFC 1.28× 10−2 Yes
Proposed vs. Average 2.94× 10−2 Yes
Proposed vs. MVJB 1.46× 10−2 Yes
Proposed vs. FC-kNN 1.96× 10−2 Yes
Proposed vs. MVS-GCN 1.65× 10−3 Yes

4. Discussion
4.1. Hyperparameter Analysis

In general, the values of the free parameters involved in the model may influence
the final classification performance. In this section, we only focus on the regularization
parameter λ2 in the proposed model, since the parameter λ1 is fixed to the default value as
in L1-norm SVM [23]. In Figure 3, we show its impact on the classification performance for
the NYU and UM sites, respectively.

60.00%

64.00%

68.00%

72.00%

76.00%

80.00%

0 1 2 3 4 5 6

NYU UM

Figure 3. The effect of the regularization parameter λ2 on the classification performance.



Biology 2023, 12, 971 11 of 16

It can be found that the performance of the proposed model is sensitive to the value
of the parameter λ2, showing an overall trend of first increasing and then decreasing. In
particular, when λ2 = 0, the classification accuracy is low, due to that in this case the
proposed model degenerates into the L1-norm SVM, leading to a trivial fusion weight
value, that is, one 1 and three 0 in αj(j = 1, · · · , 4). As a result, only one single FCN, but
not the multi-FCN fusion, is used as the feature to classify ASD. The performance gradually
increases till the value of λ2 reaches the best at λ2 = 2. Then, when λ2 is too big, the final
fusion weights tend to average out, that is, the α closes to (1/4, 1/4, 1/4, 1/4). This limits
the flexibility of fusion and thus leads to a decrease in classification performance.

4.2. Classification Performance with Different Numbers of Fused FCNs

Further, under the proposed multi-FCN fusion framework, we discuss the effect of
different numbers of FCNs on the ASD classification performance, as shown in Figure 4.
In this experiment, the regularized parameters are set to be the same in order to make a
fair comparison. It can be seen, from the average accuracy of Figure 4, that either fusing
two FCNs, three FCNs, or four FCNs results in a better ASD classification performance
compared to the four single FCN methods, and the overall trend is increasing. This verifies
that multi-FCN fusion is helpful for the improvement of classification performance. At the
same time, the experiment demonstrates the flexibility of our proposed fusion framework,
that is, any existing FCN estimation method can be merged into our model and is not
limited by the number of FCNs. This is crucial for capturing complex correlations between
ROIs in unknown real brain networks [31,32].

30.00%

40.00%

50.00%

60.00%

70.00%

80.00% Average ACC：59.19% Average ACC：69.81%Average ACC：64.68%
ACC:

75.54%

Figure 4. Classification performance at NYU site with different numbers of fused FCNs. Single, two,
three, and four FCNs are represented in green, blue, yellow, and orange, respectively.

4.3. Discriminative Features

As mentioned earlier, we learn fusion weights and classifiers by alternating opti-
mization in a unified framework. It is worth noting that in such a process of optimiza-
tion, the feature selection is also finished since the classification vector C in Equation (1)
uses the L1-norm. To explore the disease-related brain region and connectivity, we
visualize the top ten most discriminating features using the BrainNet Viewer toolbox
https://www.nitrc.org/projects/bnv/ (accessed on 1 June 2023) [33], as shown in Figure 5.
From it, we find that the most discriminating functional connections exist between the
middle frontal gyrus, amygdala, and lingual gyrus. Researches report that this connection
generally has a significant impact on the cognitive, behavioral, and emotional impairment in
patients with ASD [34]. In addition, the ROIs associated with the top discriminant features
also include orbital inferior frontal gyrus, parahippocampal gyrus, and paracentral lobules,
most of which are consistent with previous works on ASD classification task [35–37].

https://www.nitrc.org/projects/bnv/
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The identified discriminative ROIs hold potential as biomarkers for ASD, playing
a crucial role in assisting diagnosis. By analyzing the activity patterns of these specific
ROIs in patients with ASD compared to healthy individuals, healthcare professionals can
obtain a reliable basis for the diagnosis of ASD. This advancement opens up possibilities
for early screening and intervention in ASD, leading to improved patient outcomes. The
incorporation of these biomarkers into current ASD diagnosis procedures could enhance
the accuracy and efficiency of diagnosis.

PCL.R

SPG.R

MOG.L

LING.R

Vermis7

CRBL6.R

Vermis12

PCL.R

MFG.R

MFG.L

ORBinf.R

TOPsup.L

AMYG.R

PHG.R

TOPmid.L

AMYG.L

Figure 5. The top ten most discriminating features selected for ASD classification at the NYU site.
The thickness of the solid line connecting two brain regions of interests (ROIs) indicates the strength
of the connection.

4.4. Fusion Weight Analysis

Our proposed method is to adaptively learn the fusion weights of different FCNs
combined with the downstream classification task, aiming to make the final fused FCN have
a higher discriminability. Here, we analyze the weights learned from the NYU site based on
the experiments in Section 3. Specifically, we average the α’s learned in all LOO loops and
obtain the final fusion weight vector α = (0.168, 0.317, 0.000, 0.515) corresponding to PC,
SR, MI, and HOFC, respectively. We note that HOFC, the FCN with the best performance
among the four single methods, as shown in Table 3, has the greatest contribution (i.e., the
biggest weight) to the final classification performance, and accordingly, the FCN with poor
performance, such as MI, has a smaller contribution. Especially for MI, the corresponding
weight tends to be zero. This indicates that the learned fusion of FCNs has the potential
discriminative ability, possibly benefiting from the combination with the classification task.
In addition, the number of approximate zero in the fusion weight vector α heavily relies
on the values of regularization parameter λ2 which, in essence, balances the sparsity and
evenness of α, as mentioned in the proposed model. This further shows that our proposed
fusion framework can not only improve the discrimination of the resulting FCN, but also
has a strong flexibility and interpretability.

4.5. Time Complexity Analysis

In our model, the component FCNs are pregenerated, so we ignore this part of the
time complexity calculation. In our proposed Equation (1), the fusion of component FCNs
requires AO to solve C and α. Their time complexity is O(M) and O(4M), respectively,
where M denotes the number of subjects and 4M denotes the number of weights to optimize
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for each subject. The time complexity of MVJB, FC-kNN, and MVS-GCN are O(MKl),
O(lMn2), and O(lM2n), respectively, where l, K, and n are the number of iterations, views,
and ROIs.

In Table 6, we give the training times for the proposed model and the compared state-
of-the-art methods on the NYU site. As observed in the table, our method demonstrates the
least amount of training time, which can be attributed to the simultaneous feature selection
and classification tasks enabled by the L1-norm SVM used in our model.

Table 6. The training time (in seconds) of the proposed model and the compared methods on the
NYU site.

Methods Proposed MVJB FC-kNN MVS-GCN

Time 1480 s 1832 s 2125 s 2658 s

4.6. Comparison with State-of-the-Art Methods

To provide a comprehensive evaluation of our proposed method, we compared its
performance with three state-of-the-art FCNs fusion methods on ASD classification tasks.
Specifically, Kang et al. proposed a deep-learning-based multiview ensemble learning
(MEL) network that used stacked denoising self-encoders to obtain multi-FCNs [38].
Kam et al. proposed a discriminative restricted Boltzmann machine (DRBM) which uti-
lized hierarchical clustering to construct multi-FCNs to identify discriminative ROIs [39].
Niu et al. proposed a multichannel deep attention neural network (multichannel DANN)
that utilized complementary information from different brain atlases for ASD diagnosis [40].

In Table 7, we present the results obtained from these comparison methods. It is worth
noting that we directly compare our classification performance with the reported results in
the original articles of three comparative methods. As can be seen, our method achieves
better performance on metrics ACC and AUC, which further confirms the effectiveness of
the proposed method in accurately identifying ASD. One possible reason is that the fused
FCNs constructed by our method combines different types of correlations among brain
regions, including full correlations, partial correlations, nonlinear relationship, and high-
order correlations, which makes it more possible to model the complex brain. In contrast,
the fused FCNs by three comparative methods are all based on single full correlations
estimated by PC, although they use different fusion strategies. This may be insufficient
to capture the complex interaction between brain regions. The second reason is that the
three comparative fusion methods all employ deep neural network architectures, which are
more prone to overfitting when dealing with limited amounts of medical images datasets.

Table 7. Comparison of the classification performance of the proposed method with state-of-the-art
methods on the NYU site, and the best results are shown in bold.

Method ACC SEN SPE BAC PPV NPV F1 AUC

MEL 74.60% - - - - - 72.20% 74.30%

DRBM 75.24% 61.33% 85.71% - 82.10% - - 73.73%

Multichannel DANN 70.91% 72.02% 69.92% - 75.82% - 73.83% -

Proposed 75.54% 65.82% 82.86% 74.34% 74.29% 76.32% 69.80% 79.07%

4.7. Strengths and Limitations

In this subsection, we discuss the strengths and limitations of the proposed method to
provide a comprehensive evaluation.

We identify several strengths. Firstly, our method addresses the challenge of learning
fusion weights for FCNs, which is crucial to model the complex brain. By learning the
fusion weights adaptively from the data combined with the downstream classification
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task, our approach enhances the discriminability of the final fused FCN for ASD diagnosis.
Secondly, our fusion method is simple, straightforward, and easy to interpret compared to
other recent multi-FCN fusion works, such as Gan [15] and Wen et al. [17]. These existing
methods are complex and require many (hyper-) parameters to learn, which is generally an
uneasy task based on limited training data. Lastly, our proposed fusion framework is very
flexible. It is not limited by the number of FCNs, and does not require the FCNs to have
positive edge weights. This means that any FCNs, including those achieved through the
FCN fusion methods mentioned above, can be seamlessly integrated into our model.

However, our model also has some limitations. One is that it is based on a strong
assumption that all subjects share the same fusion weights of FCNs, which ignores the
heterogeneity across the subjects to some extent. In addition, the current fusion strategy
only is based on a single modular data, i.e., rs-fMRI, and does not incorporate information
from other modular data. These limitations will be addressed in our future work.

5. Conclusions

In this paper, we proposed a simple multi-FCN fusion strategy in which the fusion
weights are optimized under the guidance of label information for ASD identification. In
particular, we incorporated the fusion of different types of FCNs into the classifier based on
L1-norm SVM, with the aim to simultaneously learn the fusion weight (i.e., the importance
of different FCNs) and the classifier, while feature (i.e., brain connectivity) selection is also
incorporated into such a unified framework. This makes the model simple but obtains the
final fused FCN with good discriminability. We validated the effectiveness of the proposed
method to identify ASD patients on the ABIDE dataset, achieving 75.54% and 71.72%
accuracy on the NYU and UM sites, respectively. In the future work, we plan to further
integrate the variability between subjects by learning different weights for each subject
separately. Specifically, we plan to optimize different fusion weights for each subject by
introducing a set of hidden variables with the aim to further improve its performance [41].
Additionally, we currently focus on the fusion of FCNs based on a single modular data, i.e.,
rs-fMRI. To make full use of the complementary information of different modular data, we
plan to explore the fusion of FCNs from different modular data, including structural MRI
and positron emission tomography (PET) data. This multimodal fusion has the potential to
provide a more comprehensive and robust representation of human brain.
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Abbreviations

The following abbreviations are used in this manuscript:

FCN Functional connectivity network
ASD Autism spectrum disorder
ROI Regions of interest
HC Healthy control
ABIDE Autism Brain Imaging Data Exchange
BOLD Blood oxygen level-dependent
rs-fMRI Resting-state functional magnetic resonance imaging
PC Pearson’s correlation
SR Sparse representation
MI Mutual information
HOFC Higher-order functional connectivity
NYU New York University
UM University of Michigan
AO Alternating optimization
SVM Support vector machine
LOO Leave-one-out
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