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Abstract

Binaries play a critical role in the formation, evolution, and fundamental properties of planets, stars, and stellar
associations. Observational studies in these areas often include a mix of observations aimed at detecting or ruling
out the presence of stellar companions. Rarely can nondetections rule out all possible binary configurations. Here
we present MOLUSC, our framework for constraining the range of properties of unseen companions using
astrometric, imaging, and velocity information. We showcase the use of MOLUSC on a number of systems, ruling
out stellar false positives in the signals of HIP 67522b and DS Tuc Ab. We also demonstrate how MOLUSC could
be used to predict the number of missing companions in a stellar sample using the ZEIT sample of young planet
hosts. Although our results are not significant, with a larger sample, MOLUSC could be used to see if close-in
planets are less common in young binary systems, as is seen for their older counterparts.

Unified Astronomy Thesaurus concepts: Binary stars (154); Astronomy software (1855); Radial velocity (1332);
Spectroscopic binary stars (1557); Astrometric binary stars (79)

1. Introduction

Binaries and higher-order stellar systems are a common
outcome of star formation. Roughly half of all Sun-like stars in
the field are in multiple-star systems (Duquennoy & Mayor 1991;
Raghavan et al. 2010), with the multiplicity fraction rising to near
unity for intermediate- and high-mass stars (Zinnecker & Yorke
2007; Moe & Di Stefano 2017) and falling to ;30% for late-type
dwarfs (Winters et al. 2019). The frequency and properties of
multistar systems are also known to vary with metallicity, age, and
environment (Duchêne & Kraus 2013). The ubiquity of multiple-
star systems makes understanding them critical for a wide range of
astrophysics, ranging from star and exoplanet formation to stellar
clusters and high-energy astrophysics.

With thousands of transiting exoplanet candidates from
NASA’s Kepler, K2, and TESS missions, it is not feasible to
confirm each planet through radial velocity (RV) detection.
Instead, most planets are statistically validated by, in large part,
ruling out the presence of stellar companions or background
stars that could reproduce the transit-like signal (e.g., Bryson
et al. 2013; Fressin et al. 2013; Morton et al. 2016). Even if a
binary or higher-order multiple cannot explain the transit
signal, the presence of binaries can dilute the transit depth and
alter the inferred properties of the planet (e.g., Ciardi et al.
2015; Bouma et al. 2018). This is especially a problem when
comparing planet properties between different populations
(Rizzuto et al. 2017), since the binary fraction changes with age
and metallicity (Duchêne & Kraus 2013). Observed differences
in the planet populations may be contaminated by differences
in the undetected companion population. Uncorrected stellar
flux in the same aperture can also impact studies of the planet’s
transmission spectrum by creating a wavelength-dependent
dilution (Désert et al. 2015).

In addition to changing the derived parameters and
classification of planets, stellar companions also directly impact
their formation and evolution. Stellar companions can impede
the formation or survival of close-in planets (e.g., Wang et al.
2014b; Kraus et al. 2016; Moe et al. 2019). There is also some

evidence that they facilitate the formation or migration of close-
in Jovian-mass planets (e.g., Ngo et al. 2016).
Beyond exoplanets, unseen binaries can bias isochronal ages

of stellar associations (e.g., Malo et al. 2014; Bell et al. 2015;
Sullivan & Kraus 2021), change the stellar parameters inferred
from color–magnitude diagrams (CMDs) and stellar spectra
(El-Badry et al. 2018), and skew estimates of the stellar initial
mass function (Kroupa et al. 1991). In each of these cases, the
bias arises because a companion is present but undetected.
While it might be possible to account for this bias by modeling
the presence of unseen companions, the large range of possible
companions and data heterogeneity can make this impractical.
Even with extensive spectroscopic and imaging follow-up, it

is rarely possible to completely rule out the presence of a binary
companion for any given star. While RV and high-resolution
imaging (HRI) are often complementary in terms of their
coverage with semimajor axis, the former is insensitive to stars
with face-on orbits and the latter to low-mass companions and
those directly behind the star at the time of imaging. Even
binaries that are easier to detect based on their period and mass
ratio alone may be missed due to the timing of the follow-up.
These situations are sufficiently rare as to have a small impact
on statistical validation of individual exoplanets (Morton &
Johnson 2011) or when deriving stellar parameters for a
specific target. However, as the sample of stars increases, the
number of possible missed companions grows, and assuming
no such companions are present will systematically bias the
result. Instead, many studies may include a measure of their
completeness as part of a comparison to the population of field
stars (e.g., Wang et al. 2014a, 2015). This approach, however,
requires assumptions about the underlying binary population
and the relation between the observed and true properties (e.g.,
projected separation at a given epoch versus semimajor axis).
Recent approaches, such as those using Monte Carlo methods

and rejection sampling to model possible companions from
multiple data sets, can provide strong constraints on stellar and
planetary companions (e.g., Hinkley et al. 2013; Blunt et al.
2017; Price–Whelanet al.Price-Whelan , 2017 Boehle et al. 2019;
Lagrange et al. 2020; Hurt et al. 2021). Boehle et al. (2019) used
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Monte Carlo modeling of planetary companions and a combina-
tion of HRI and RV measurements of several nearby star systems
to study possible planetary configurations in those systems. We
build upon these efforts but focus primarily on stellar companions.
We also include additional constraints from Gaia imaging and
astrometry, which have been shown to be effective in identifying
and constraining binaries (Kraus et al. 2016; Ziegler et al. 2018;
Brandeker & Cataldi 2019).

Here we present Multi-Observational Limits on Unseen
Stellar Companions (MOLUSC)3, an open-source framework
and program that provides full posteriors on possible
companions for a target, based on a suite of possible input
data. MOLUSC generates a grid of binaries under a physically
motivated and user-adjustable distribution, which it then
compares to Gaia astrometry and imaging and user-provided
contrast curves and RVs. The output is a full posterior on
potential surviving stars (or giant exoplanets). We use this to
investigate the number of unseen binaries in a sample of some
of the known young planets from K2.

In Section 2, we present the basic framework for the code,
including the default assumptions, user-adjustable parameters,
and possible inputs. We apply this to a number of test cases in
Section 3. In Section 3.3, we apply this to the sample of known
young planets and demonstrate that there are ;1.6 undetected
companions around the 12 planet hosts, in addition to one
already identified. This is consistent with the population of
older planet hosts, and the range of possible missed
companions is not enough to significantly alter the planet
radius distribution. We conclude in Section 4 with a summary
and a brief discussion of the applications for MOLUSC beyond
the intended application for exoplanet vetting and binary
statistics.

2. Methodology

Our aim is to generate realistic binary probabilities when no
companion is detected. To this end, we use a Monte Carlo
simulation of possible companions to the primary star. We
compare the generated orbital properties to observational
constraints from HRI, Gaia imaging, RV measurements, and
the fit quality of the Gaia astrometry and use rejection sampling
to determine posteriors and detection limits on the system.

In order to densely sample the parameter space, especially at
low masses and periods, at least 1 million companions should
be generated. For each of the test cases described in Section 3,
we generate between 1 and 10 million companions. Sections of
the code are parallelized for efficiency, so the runtime will vary
significantly with the number of cores used, as well as with the
types of analysis chosen.

2.1. Companion Generation

To fully describe a binary system, you need a description of
both the component orbits and the photometric parameters.

An orbit is uniquely described using six parameters. We
elect to use period (P), inclination (i), mass ratio (q),
eccentricity (e), argument of periapsis (ω), and pericenter
phase (j) to describe the orbits of the simulated companions.
Our choice of parameters differs from that used by other
authors, for example, by excluding longitude of ascending
node, as it affects neither the RV calculation nor the projected

separation calculation (see, e.g., the discussion of RV
calculation given by Perryman 2011). Each of these generated
parameters is constant for a given system. The primary mass,
which is constant for all generated systems, is used to calculate
additional system parameters. Parameters that change over
time, such as the RV or projected separation, are calculated
from the generated parameters as needed. Parameters and priors
are summarized in Table 1. The parameter distributions are
summarized in Figure 1 and described in detail below.
MOLUSC randomly generates each orbital parameter following

realistic parameter distributions, described in Sections 2.1.1–2.1.4,
for the number of hypothetical binaries specified by the user. The
user can also choose to fix parameters or limit them by a minimum
or maximum value, depending on the situation. In this work,
we limit the parameter distributions to values for stellar-mass
companions and do not accurately model orbital parameter
distributions for planetary companions, as has been done
previously by other authors (e.g., Boehle et al. 2019). However,
the code framework itself could easily support this, and it is
trivially adjustable to set an appropriate parameter distribution for
planetary-mass companions.
We use the additional parameters system age, primary mass,

and stellar jitter to describe the photometric properties of the
system. Each of these is provided by the user and used to model
properties such as luminosity and activity.

2.1.1. Period

The period distribution depends strongly on primary mass
(Duchêne & Kraus 2013; Moe & Di Stefano 2017). A lognormal
distribution is often found for solar-mass (e.g., Heacox 1996;
Raghavan et al. 2010) and low-mass (Fischer & Marcy 1992;
Janson et al. 2012, 2014) stars, with the mean and standard
deviation increasing with increasing mass (Duchêne &
Kraus 2013). Higher-mass stars have been suggested to follow
a more bimodal distribution, with peaks at log(P(d))= 1, 3.5
(Moe & Di Stefano 2017). However, the period distribution of O
and B stars is poorly defined, because high-mass stars often
occur in cluster environments, where it is difficult to detect wide

Table 1
Explored Stellar Parameters

Notation Meaning Distribution

P Period Lognormal
q Mass ratio, Mc/Mp Uniform
i Inclination Uniform in cos(i)
e Eccentricity See Section 2.1.3
ω Argument of periapsis Uniform
j Pericenter phase Uniform

Mp Primary mass User-provided
Age Stellar age User-provided

a Semimajor axis Calculated
ρ(t) Projected separation Calculated
RV(t) Radial velocity Calculated
ΔM Contrast (arbitrary filter) Calculated

Note. The third column describes either the distribution used, if the parameter
is generated randomly, or the method of obtaining it. The first six are the
generated orbital parameters, discussed in detail in Section 2.1. The next two
are stellar parameters, provided by the user for the target star. The last four are
derived parameters, which we calculate as needed using the orbital or stellar
parameters and stellar evolutionary models, discussed throughout Section 2.2.

3 https://github.com/woodml/MOLUSC
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binaries (Sana et al. 2014). Measuring the period of wide
binaries is also difficult (see Figure 1 of Moe &Di Stefano 2017),
and few surveys have large samples of wide, high-mass binaries
(Sana et al. 2014). Given this, and that the models we used do
not extend to high-mass stars, we decide to use the distribution
for solar-type stars from Raghavan et al. (2010) as the default for
all simulations. This distribution should be accurate for F, G, and
K dwarfs in the solar neighborhood (Raghavan et al. 2010;
Duchêne & Kraus 2013). The user has the choice to use a
different lognormal distribution for other stellar types by
providing the mean and standard deviation.

Regardless of the distribution used, we apply a lower limit to
the period distribution of 0.1 days. This avoids numerical
difficulties in calculating RVs at extremely short periods. The
0.1 day limit was selected because at that period, any
companion is likely to be interacting significantly with the
primary, hence the assumptions made in this code will no
longer be valid.

2.1.2. Mass Ratio

The binary mass ratio distribution is commonly characterized
using a piecewise function with one function for values of q
between 0 and 0.95 and a second for values between 0.95 and 1.
This accounts for the known significant increase in frequency of
nearly equal-mass binaries at q 0.95 (Lucy & Ricco 1979;
Raghavan et al. 2010; El-Badry et al. 2019; Kounkel et al. 2019),
known as the twin excess.

The distribution below the twin excess depends on primary
mass (Duchêne & Kraus 2013; El-Badry et al. 2019; Moe et al.
2019) and can be described using either a power-law
distribution (e.g., Moe et al. 2019) or a uniform distribution
(e.g., Raghavan et al. 2010). Raghavan et al. (2010) and
Kounkel et al. (2019) found that a uniform distribution applies
for a broad range of masses near solar mass. We choose to use
a uniform distribution (a power-law distribution with exponent
zero) as the default, but the user can choose to use a different
power-law distribution. Per the results from Moe & Di Stefano
(2017), El-Badry et al. (2019) and Kounkel et al. (2019), we
believe this default uniform distribution should be accurate for
systems with primary mass 0.1 MeM1 1.5Me and suggest
using a different power-law exponent for masses outside that
range.

We do not include the twin excess in the mass ratio distribution
for two reasons: as shown in Moe & Di Stefano (2017) and

El-Badry et al. (2019), the twin excess is not present at all periods
or primary masses, and when it is present, the amount of excess is
poorly constrained. Therefore, we use a single mass ratio
distribution over the full range of 0< q< 1. Since equal-mass
companions are generally the easiest to detect, excluding the twin
excess has only a small impact on the posteriors.
We do not apply a lower limit to the mass of generated

companions, allowing brown dwarf and planet companions to
be generated along with stellar companions. Since all
companions are generated using the stellar distributions,
planet-like companions will not necessarily follow a physical
distribution of planetary-mass companions. Thus, the default
settings for this code are not suitable to determine the possible
parameter space of missing planet companions. It can still be
used to rule out stellar false positives in data with planet
detections, as demonstrated in Section 3.

2.1.3. Eccentricity

At the shortest periods, all binaries have nearly circular
orbits (e.g., Price-Whelan et al. 2020) due to tidal circulariza-
tion (Zahn 1977). At large periods, the distribution is uniform
(e.g., Raghavan et al. 2010). However, in the middle regime,
the statistical upper extent of eccentricity increases with period
(Duchêne & Kraus 2013; Murphy et al. 2018; Price-Whelan
et al. 2020).
To explore distributions of eccentricity at P< 1000 days, we

used a sample of 1347 binary stars compiled from Murphy
et al. (2018) and Price-Whelan et al. (2020). These samples
cover a range of periods between zero and 104 days and contain
a large number of randomly sampled systems with stellar types
including FGK dwarfs and A stars. We show the eccentricity
distribution from this combined sample in blue in Figure 2.
We choose to model the eccentricity in this period range as

a normal distribution, where the mean, μe, and standard
deviation, σe, are functions of P, as shown in the following
equations:

m = +a P blog , 1e 10( ) ( )

s = +c P dlog . 2e 10( ) ( )

Here a, b, c, and d are fit parameters that we determine using a
maximum-likelihood comparison on the data sample described
above. The calculated values of the fit parameters are shown in
Table 2. We then use the calculated values of a, b, c, and d to

Figure 1. Example generated prior distributions for the six generated orbital parameters (described in Table 1 and Section 2.1) for a sample of 5 million companions.
Period is distributed lognormally in days with a default mean and standard deviation of 5.03 and 2.28. Mass ratio is generated using a power-law distribution with a
default exponent of 0.0, creating a uniform distribution. Pericenter phase and argument of periapsis are distributed uniformly within appropriate bounds. Eccentricity
follows a two-part distribution dependent on period, discussed in Section 2.1.3. Inclination is generated uniformly as icos( ). We note that due to the effects of random
number generation, the uniform distributions are not perfectly uniform.
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define Gaussian distributions from which we draw eccentricity
for companions with P< 1000 days.

At periods longer than 1000 days, we draw eccentricities
from a uniform distribution between zero and 1. This aligns
with the assessment in Duchêne & Kraus (2013) that
eccentricity is uniform at long periods. We chose 1000 days
as the transition point to create a smooth transition between the
two regions. We also apply a limit on the maximum value of
eccentricity, since eccentricities of exactly 1.0 produce
unphysical RVs (and are unlikely to remain bound). The
maximum eccentricity is 0.9999.

A typical distribution of the eccentricities and periods of
generated binaries is shown in red in Figure 2. This
qualitatively matches the observed distribution of eccentricities,
as shown in blue in Figure 2.

There are some small differences between our generated
sample and the empirical results. One is that our parameteriza-
tion has a low probability of creating binaries with P< 10 days
and e> 0.2. Price-Whelan et al. (2020) show several such
binaries (see left panel of Figure 2). However, Price-Whelan
et al. (2020) note that their systems with P 5 days and
e 0.4 are likely caused by systematic uncertainties, poor
sampling, and larger random uncertainties on the eccentricities
in this regime. There is also a difference in the number of high-
eccentricity systems compared to Price-Whelan et al. (2020)
and other findings in the literature (e.g., Stepinski &
Black 2001; Murphy et al. 2018), which find fewer high-
eccentricity, long-period systems. We elect not to include a
decrease in likelihood for high-eccentricity systems at long
periods. Because the difference is mostly at wide separations,
these are also the systems that are generally easy to detect, so
this had a small impact on the results. To test this, we generate
four sets of 1 million companions, all with P> 5000 days. In
two of the sets, no companions with e> 0.9 are generated. We
run HRI and RV tests (see Sections 2.2.1 and 2.2.3 for details)
on these sets and find that the presence or absence of high-
eccentricity, long-period binaries did not significantly change
the posterior distributions.

2.1.4. Other Parameters

The argument of periapsis (ω) is drawn from a uniform
distribution between zero and π. The argument of periapsis
measures the angle between the line of sight and the system
pericenter. We define ω so that it is zero along the line of sight.
The pericenter phase (j) is drawn from a uniform distribution

between zero and 2π. We define j as the angle between the
companion and the orbit pericenter at reference time T0.
Inclination i is not uniformly distributed on the sky. For a

random distribution of orientations, a face-on view is less likely
to occur than an edge-on view, as there are more possible
configurations that could result in an edge-on view than a face-
on one. The probability distribution of inclination is thus
proportional to isin (Heintz 1969). However, a simpler way to
achieve the same distribution is to generate along icos
following a uniform distribution from zero to 1, which is the
method we utilize here.

2.2. Input Data

A key feature of MOLUSC is the ability to combine multiple
types of data and obtain the strongest limits on the system.
MOLUSC can use user-provided follow-up data from HRI and
RV measurements and imaging and astrometric fit constraints
from Gaia. These four types of data are complementary,
combining to create strong limits on the systems. The RV
analysis works best on close-in companions viewed from an
edge-on angle. In contrast, HRI works best on intermediate-
period systems viewed face-on. For most systems, the periods
best explored by RV fall just below those explored by HRI.
Gaia imaging constraints overlap with HRI constraints and
continue past them, while renormalized unit weight error
(RUWE) constraints cover a regime overlapping with all three
of the other tests. We demonstrate this in Figure 3, showing the
effective period ranges of each test, for the star HIP 67522 (see
details in Section 3.1). This star is magnitude 9.6 in Gaia G, at a
distance of 128 pc. The effective ranges shown here will be
different for stars at different distances, since the HRI and Gaia
tests depend on projected separation and will shift toward
longer periods at larger distances.

Figure 2. Comparison of the observed eccentricity distribution from Price-Whelan et al. (2020) and Murphy et al. (2018) and the model distribution described in
Section 2.1.3. Blue: observed distribution. Red: a sample-generated distribution. Bins are the same in all histograms. Below 10 days, nearly all systems are circular,
with increasing numbers of high-eccentricity systems at increasing periods. Our generated distribution has fewer low-period/high-eccentricity systems and more high-
eccentricity systems at long periods. However, these differences may be caused by observational biases (see text), and overall, the generated distribution closely
resembles the observed distribution for close binaries.

Table 2
The Values of the Eccentricity Fit Parameters Resulting from a Maximum-
likelihood Fit on a Sample of Close Binaries from Price-Whelan et al. (2020)

and Murphy et al. (2018)

Parameter Value

a 0.148
b 0.001
c 0.042
d 0.128
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2.2.1. High-resolution Imaging

Contrast curves constructed from HRI, such as adaptive
optics imaging, speckle data, or interferometry, can be used to
place limits on magnitude and projected separation and are
routinely taken as part of exoplanet or similar follow-up
programs (e.g., Furlan et al. 2017). The user can provide such
curves, derived from any method or telescope, as lists of
contrast detection limits as a function of projected separation.
We use these contrast curves to place constraints on possible
companions by using evolutionary models to relate companion
magnitude and mass and the orbital parameters to calculate
projected separation.

To determine the magnitudes of the primary and simulated
companions, we use the models from Baraffe et al. (2015) in
the relevant filter. We have implemented testing in the Two
Micron All Sky Survey (2MASS) J, H, and K filters; Gaia G,
Bp, and Rp; and CFHT R and I filters. The Baraffe et al. (2015)
models span ages from 0.0005 to 10 Gyr and masses from 0.01
to 1.4Me. If the primary star is outside of these age or mass
ranges, the user can adjust the code to use a model appropriate
for the target. The mass of the primary, given by the user, and
the generated masses of the companions are plugged into the
model, using linear interpolation between grid values when
necessary, to calculate the magnitude. Companions with
masses below the range available in the model are assigned
contrast values of infinity and hence will always be considered
undetectable by HRI.

To complete the comparison of the companions to the
contrast curve, we calculate the projected separation of each
simulated system at the time of observation(s). By generating a
full orbital solution for each companion and then using that to
calculate the true projected separation, rather than the
semimajor axis, the posterior probabilities produced by
MOLUSC are more accurate than those produced by assuming
that the separation is the semimajor axis. As we show in
Figure 4, detection limits that treat the projected separation as

the semimajor axis will be overly optimistic or introduce
systematic biases toward eccentric systems. For an equal-mass
binary with P= 5000 days and a= 7.95 au, 18% of the
generated companions had ρ> 1.3a, and 30% had ρ< 0.7a.
We calculate the projected separation using Equation (3),

where f (t) is the true anomaly, as defined by Perryman (2011):

r

w w

=
-

+

´ + + +

a
e

e f t

f t f t i

1

1 cos

sin cos cos . 3

2

2 2 2

( ( ))

( ( ) ) ( ( ) ) ( ) ( )

Our formulation of projected separation differs from that
used by some other authors (e.g., Kane et al. 2018). This
difference is likely due to differences in the definition of ω. We
define ω so that it is zero along the line of sight. The time, t, at
which projected separation is calculated can be included in the
user-provided contrast file. Doing so increases the power of
simultaneous constraints for systems with either overlapping
RV measurements, or additional HRI data.
The next step is to convert the given contrast curve from

angular projected separation (e.g., in milliarcseconds) to
physical projected separation (e.g., in astronomical units). We
obtain the distance to the target star using Gaia by searching an
area of 10ʺ around the provided primary star coordinates and
adopting the closest object as the primary. We use the Gaia
parallax of the object to calculate distance and convert the
angular separations given in the contrast curve to projected
separations in AU. The contrast, ΔM, between the primary and
each companion can then be calculated and directly compared
to the provided contrast curve.
We calculate the experimental limit on ΔM for the projected

separation of each system by linearly interpolating between the
points of the given contrast curve. If the modeled ΔM is less
than the experimental limit on ΔM, the companion star would
have been visible and is rejected. If the modeled contrast is
greater than the experimental limit, it fails to be rejected.

Figure 3. Effective period ranges of each of the tests for the star HIP 67522
(see Section 3.1). The HRI test is shown on top in red, RV second from top in
green, Gaia imaging second from bottom in purple, and Gaia astrometry
(RUWE) on the bottom in yellow. The lines show the surviving fraction of
generated binaries in the period bins, where the bins are the same for each line.
The boxes show the effective range of each test. The top and bottom of each
box show a survivor fraction of 100% and 0%, respectively. The effective
ranges vary with distance and will shift toward longer periods in stars with
larger distances.

Figure 4. Contour plot showing projected separation versus period for a sample
of 5 million simulated stars. All orbital parameters are generated as described in
Section 2.1. The dashed line indicates the semimajor axis for a given period,
assuming an equal-mass binary with a 1 Me primary. Contours are at the
39.8th, 86th, and 98th percentiles of density. The projected separation is often
significantly lower than the true semimajor axis, meaning that companions that
would be seen at the distance of their semimajor axis can be obscured in the
higher detection limits closer to the primary. Due to nonzero eccentricity,
binaries can also be at separations larger than their semimajor axis, making
them easier to identify at specific epochs.
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In many cases, contrast curves are created with recovery
probabilities as a function of contrast and separation. This is
common for contrast curves derived using injection/recovery
tests (e.g., Marois et al. 2010; Bowler et al. 2019). In such
cases, we reject companions with a probability matching the
recovery rate at the companions’ projected separation and
contrast. We use linear interpolation to fill in between the given
points of the contrast curve.

2.2.2. Gaia Imaging

Gaia DR2 is estimated to be complete to 18th magnitude
across the whole sky and 20th magnitude across most of the
sky (Arenou et al. 2018). The completeness remains near 100%
for binaries with separations greater than 4″ down to the
limiting magnitude (Arenou et al. 2018). Therefore, compa-
nions with magnitudes brighter than G= 18 and projected
separations greater than 4″ are rejected. This hard limit may be
overestimating the completeness, since it is possible that a
companion is hidden behind a neighboring star, but this effect
will be small outside of crowded fields. We assume that the star
does not have a companion visible in Gaia DR2. If such a
companion does exist, the inclusion of Gaia imaging input in
the analysis will produce incorrect results in the parameter
space of the companion. It is left to the user to ensure that there
are no comoving companions visible there, as we do not
explicitly check nearby star proper motions. Treatment of a star
with a resolved companion in Gaia is demonstrated in
Section 3.2.

Companions that are closer or fainter than the Gaia
completeness limit can still be detected by Gaia some of the
time and are rejected with rates proportional to their detection
probability. To quantify the completeness at separations of less
than 4″, we use the recovery rates found by Ziegler et al.
(2018). They used Robo-AO to determine the binary recovery
rates of Gaia DR2 and found that binaries with magnitude
contrasts up to 6 mags are recovered down to 1″. These limits
reach to separations of slightly over 3″, complementing the
Gaia completeness limit at 4″. Recovery rates for companions
with separations larger than 4″ and contrasts below the Gaia
completeness limit are obtained from Brandeker & Cataldi
(2019). They found recovery rates for Gaia out to 12,000 mas
and down to ΔG; 14. We use the recovery rates from these
papers to determine the likelihood that a companion with a
given separation and magnitude would have been detected by
Gaia and can be rejected.

The Gaia completeness limits and the recovery rates from
Ziegler et al. (2018) and Brandeker & Cataldi (2019) are
combined to create a single contrast curve (shown schemati-
cally in Figure 5), which we treat as an HRI contrast curve as
described in Section 2.2.1. For these data, we assigned an
epoch of 2016.0, i.e., the typical value for Gaia eDR3
astrometry.

2.2.3. Radial Velocity

RV measurements can place strong constraints on nearby
companions that complement the data provided by imaging and
astrometry. For each simulated binary, we compute the
corresponding RV curve and compare this to the observed
RV curve to determine which companions could be present in
the system.

To simulate the RV curve, we first determine if a system
would be an SB1 or an SB2 by examining the magnitude
contrast in G between the components. For pairs with ΔG> 5,
the flux contribution of the companion is considered negligible,
and the system is treated as an SB1. Pairs with ΔG< 5 are
considered SB2s, and their treatment determined by whether
they would be resolved or not based on the provided RV
measurements.
We calculate the RVs following the procedure by Perryman

(2011). For SB1 systems, we calculate the RV curve of only the
primary component, whereas for SB2 systems, we calculate RV
curves for both the primary and companion.
First, we calculate the RV semiamplitude, K, in terms of the

generated parameters:
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Once the semiamplitude is calculated, we compute the time-
dependent portion of the RV. This depends on the true
anomaly, f (t), as described by Perryman (2011). We combine
the amplitude and time-dependent components to calculate the
RV:

w w= + +RV t K f t ecos cos . 5( ) · ( ( )) · ( ) ( )

We divide the SB2s into resolved and unresolved groups
based on the velocity difference between the two components
at each epoch of observation and the user-provided spectral
resolution of the RV measurements. Systems with larger
velocity differences than the spectral resolution would have
been resolved SB2s and are rejected. Composite RV curves for
unresolved SB2 systems are calculated by taking a flux-
weighted average of the primary and companion RVs. We then
compare the unresolved SB2s and SB1s to the measured RVs
as described below.
We assume that the barycentric velocity of the system is

unknown and account for it by applying a zero-point shift to
the predicted RVs. We perform a least-squares test on the

Figure 5. Schematic showing Gaia contrast limits for a 10th magnitude star.
For projected separations less than 4000 mas, recovery rates from Ziegler et al.
(2018) are used. At separations greater than 4000 mas, we use the Gaia
completeness limit of 18th magnitude and the recovery rates from Brandeker &
Cataldi (2019). If the limits from Ziegler et al. (2018) and Arenou et al. (2018)
are in conflict, as might occur if the primary is dimmer than 12th magnitude,
the Gaia detection limits are used.
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predicted and measured RV curves and choose the zero-point
shift that produces the best fit between them.

Once the best-fit zero-point is applied, we perform a χ2 test,
with degrees of freedom equal to the number of RV
measurements minus one, to determine the goodness of fit
between the measured and predicted velocities.

In addition to the modeled RV variation due to a companion,
a given star may have “stellar jitter,” the extra variation in its
RV curve not accounted for by orbit parameters (see, e.g.,
Oshagh et al. 2017; Meunier & Lagrange 2019). Without
accounting for this variation, companions may be rejected due
to the stellar noise. In the case of a particularly noisy star, it is
possible that no simulated RV curve would fit the noiseless
data, and all companions would be erroneously rejected. To
correct for this, the user can choose to provide a value of stellar
jitter, which is added to the RV error in quadrature during the
χ2 test. The χ2 cumulative distribution function probability is
then taken as the rejection probability of the system.

The rejection probability alone is not sufficient to determine
whether a companion could have been present but unobser-
vable. Small RV variations could be below the sensitivity of the
detector, rendering them unobservable. To account for this,
the user can provide an RV sensitivity floor, specifying the
smallest RV amplitude that could have been detected in the
data. We reject or keep the simulated SB1 and unresolved SB2
systems depending on both the RV amplitude and their χ2

rejection probability. Companions with Amp<RV Floor are
not rejected regardless of rejection probabilities. Those with
Amp>RV Floor are rejected according to their χ2 rejection
probabilities.

2.2.4. Gaia Astrometry (RUWE)

The precise astrometric measurements of Gaia eDR3 can be
used as an additional test for binarity. A large excess of
astrometric noise in Gaia has been shown to be a signature of
an unresolved stellar companion (e.g., Ziegler et al. 2019;
Belokurov et al. 2020; Pearce et al. 2020). This is likely
because Gaia DR2 and eDR3 reduction treats all stars as single;
a companion may both introduce astrometric variation and
cause a mismatch between the true point-spread function (PSF)
and the one used in extracting the astrometry. Accordingly, a
lack of large astrometric noise can be used to constrain the
range of possible binary companions. Using a set of stars that
are unresolved in Gaia but with known companions (e.g., from
high-resolution adaptive optics), it is possible to calibrate this
effect and include it in our model.

The Gaia RUWE is a measure of the astrometric noise
renormalized to correct for differences in color and magnitude
(Lindegren et al. 2018, https://www.cosmos.esa.int/web/
gaia/public-dpac-documents). It is a reduced χ2-like metric
but normalized so that a well-behaved measurement of a single
star will have RUWE; 1, regardless of primary color or
magnitude. A number of studies have used a high RUWE as an
indicator of binarity (e.g., Ziegler et al. 2019; Pearce et al.
2020), and Ziegler et al. (2019) found that 86% of stars with
RUWE> 1.4 had companions undetected by Gaia but seen in
high-resolution follow-up. The impact of an unseen companion
on the astrometric fit (and hence RUWE) will depend on the
separation and contrast of the companion. A sufficiently close
companion will have a negligible impact on the observed PSF
and will not generate a detectable astrometric wobble in the

primary. A faint companion may impact the astrometric wobble
but not the PSF.
To account for the relation between the contrast (ΔG) and

separation (ρ) of an unseen companion and the Gaia-
determined RUWE, we use the empirical calibration from
A. L. Kraus et al. (2021, in preparation). By using an empirical
calibration, we can describe the behavior of Gaia RUWE in the
presence of a companion without a full description of the
underlying cause (e.g., PSF mismatch or astrometric motion) or
building a full model of the complex Gaia reduction. The
calibration is based on a set of observations drawn primarily
from Keck adaptive optics and nonredundant aperture masking,
as described in Kraus et al. (2016). A. L. Kraus et al. (2021, in
preparation) included additional data (with identical observa-
tional and reduction strategies), a description of how ΔG
values are assigned depending on if the companion is bound or
background, and the model fit to the RUWE data. To briefly
summarize, ΔG is adopted from the Gaia catalog when the two
are resolved, extrapolated from the ΔK detections in Kraus
et al. (2016), or extrapolated from optical contrasts in the
literature using the subset of companions resolved in Gaia. This
output is fit using a Gaussian process kernel. The resulting
model gives a prediction for log RUWE and σlog RUWE based
on ρ and ΔG. The sample of known binaries and the resulting
RUWE prediction model are shown in Figure 6. This shows
that the RUWE of a binary star system is highest at separations
between 100 and 1000 mas and with contrast <3, decreasing at
larger contrasts, and both larger and smaller separations.
For every companion generated by MOLUSC, we calculate

ρ and ΔG at the average Gaia eDR3 epoch (2016.0). We use
the model above to convert this to a predicted RUWE.
MOLUSC then compares the observed eDR3 RUWE to the
model-generated value using a one-sided Gaussian (half-
normal) distribution to derive a rejection probability. We use
a one-sided Gaussian distribution so that stars where the fit is
unusually good (an unusually low RUWE) are not rejected, as
there is no evidence that this is indicative of binarity. This test
is only applied within the range of stars over which the
calibration is valid (approximately 20–2100 mas and ΔG< 7).
Figure 7 shows the results of applying just the RUWE

comparison on a system with a low RUWE of 0.87 (HIP
67522; see Section 3.1 for details). In such a system,
companions between 10 and 50 au with ΔG< ∼4 can be
rejected nearly 100% of the time, but this rapidly drops off with
increasing contrast and changing separation.

2.2.5. Additional Input

There are less common situations or observational data that
can provide separate constraints on the range of possible
binaries around a given star. Some of these, like astrometric
observations, could be added by expanding the existing
framework (e.g., the RV and RUWE code can be expanded
to include a model of the astrometric position for a given
binary). Less common examples, like color limits on diluting
companions from the chromaticity of transit or eclipse depths,
can be applied to the output of MOLUSC after generation (as
was done in Mann et al. 2020).
A somewhat common example that can be used in the

existing code includes limits from CMD position. An
unresolved binary should sit higher than a single star (all other
parameters being equal), so a low position on a CMD can often
be used to rule out nearly equal-mass companions. Such
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information can be included as a contrast curve as described in
Section 2.2.1, with no inner working limit and a flat contrast
curve out to the size of the extraction aperture. The utility of
such cases depends on knowledge of the metallicity and/or age
of the star, which makes it hard to build in a general
framework. Instead, we assume the user can provide the
relevant contrast curve.

3. Test Cases

In this section, we demonstrate MOLUSC on data from a
number of different stars to showcase its effectiveness in
combining multiple data sets and ruling out possible stellar

companions. Some of the uses of MOLUSC that we highlight
in this section include ruling out false positives from stellar
companions in planet detections, using MOLUSC on a star
with a known stellar companion, using HRI spanning a period
of years to rule out companions, and estimating the number of
missing stellar companions in a sample of stars.

3.1. HIP 67522

HIP67522 is a 10–20Myr old star in the Scorpius-
Centaurus OB association. Rizzuto et al. (2020) detected a
planet around it using data from TESS and followed up with a
suite of ground-based facilities to rule out false positives,
including RV monitoring and HRI. An early version of
MOLUSC was used as part of the false-positive analysis in
that paper. Here we describe an updated analysis, where
MOLUSC was used to combine the RV, HRI, and Gaia data to
place stronger limits on the mass of any unseen companion.
We simulate several sets of companions for HIP 67522 and

analyze them with different combinations of the available data
set (e.g., just HRI, just RV, HRI and RV, etc.) to demonstrate
the utility of combining all possible data. Figure 8(a) shows the
results of these tests. We apply an added jitter of 100 m s−1 and
an RV sensitivity floor of 20 m s−1 for all tests based on the
stellar variability of the star and limits of the RV instru-
ments used.
To place constraints on the system, we use the results from

our simulation using the full combination of the data set, i.e.,
HRI, RV, Gaia imaging, and RUWE. The RV measurements of
HIP 67522 are taken from Rizzuto et al. (2020). An additional
four RV measurements were taken on LCO/SALT between the
publication of this paper and Rizzuto et al. (2020) and are
presented in Table 3. We simulate 5 million transiting
companions and use them to examine the possibility of a false
positive due to an eclipsing stellar companion by forcing the
inclination of all companions to be consistent with an eclipsing
system. We also simulate a second set of 5 million companions
at all inclinations, which we use to explore the possibility of a
stellar companion in the system at any inclination, which could
alter the derived parameters.

Figure 6. Sample of stars and fitted distribution for RUWE as a function of ΔG and projected separation. The first panel shows the input sample color-coded by
RUWE, the second panel shows the predicted log10(RUWE) at each point of separation and contrast, resulting from the Gaussian process fit, and the third panel shows
the predicted σlog(RUWE).

Figure 7. Results of the RUWE test on a generated sample of 1000
companions to HIP 67522. Points represent the generated companions, with
their projected separation and ΔG calculated as described in the text at an
epoch of 2016.0. The points are colored according to their rejection probability,
with dark red indicating a higher rejection probability and dark blue
representing a low rejection probability. The box and shaded region denote
the separations and contrast at which the test applies, shaded according to the
model-predicted log10(RUWE). Outside of this box, the test is not applied, and
no companions are rejected.
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The results of the tests to compare different combinations of
data are shown in Figure 8(a). The combination of these four
complementary tests provides powerful limits on the compa-
nions. The RV data, typically taken for exoplanet vetting,
usually only cover close-in companions, relatively orthogonal
to the other data sets. Gaia imaging is useful for wide binaries,
and HRI and RUWE bridge the gap between the other two. The
Gaia imaging and RUWE tests, operating at long- and
midrange periods, are able to rule out ∼50% of the binaries
without the need for any additional follow-up data.

The effective range of HRI coincides with the effective ranges
of RUWE and Gaia imaging in period (see Figure 3). Gaia and
HRI imaging both work in projected separation and overlap in that
regime as well. Since HRI works best in projected separation,
rather than period, the addition of HRI follow-up is unable to add
significantly to the mass detection limits, shown in Figure 8(a).
However, the inclusion of HRI imaging can help to rule out a
large number of companions overall, rejecting 17.1% more
companions than when not included.

Figure 8 shows the mass detection limits produced by the
search for transiting stellar-mass companions, such as could

have caused a false planet detection. At the period of the
detected planet, we find a 3σ mass limit of ∼3MJup. This rules
out the possibility of a false positive from a stellar-mass
companion orbiting at that period. Our limits are consistent
with but ∼2MJup deeper than the findings presented in Rizzuto
et al. (2020).
Figure 9 shows the results from the search for a companion

at any inclination. We are able to rule out 88.4% of the
simulated companions. Surviving companions occur largely at
low-mass ratios. Short-period (P< 100 days) companions are

Figure 8. Detection limits on the system HIP 67522. Left: 3σ detection limits for transiting companions around HIP 67522 using different combinations of data. The
colors show which data sets go into each resulting curve: HRI only (blue); RV only (red); HRI and RV (purple); HRI, RV, and Gaia imaging (green); and HRI, RV,
Gaia imaging, and RUWE (yellow). The imaging data look less effective because of the log–log scaling (i.e., the shallow imaging used here is not effective for
planetary-mass objects at this age), but they effectively remove stellar-mass objects at moderate separation. The RV limits are especially strong here because the
inclination was restricted to only eclipsing/transiting objects. Like HRI, RUWE works best in projected separation, but the addition of the RUWE test eliminates a
larger number of companions at moderate periods, increasing the sensitivity between 103 and 107 days. Right: 1σ, 2σ, and 3σ detection limits for transiting
companions around HIP 67522 using constraints from HRI, RV, Gaia imaging, and RUWE. The detected planet at P ∼ 6 days has a 3σ mass detection limit of
∼3 MJup. Below 102 days, the RV measurements apply stringent limits on the mass of a companion, partially due to locking to only transiting companions. When
simulating nontransiting companions, the mass limit at P ∼ 6 days is slightly higher at ∼8 MJup. Between ∼102 and ∼105 days, neither the contrast nor the RV
measurements can successfully rule out massive companions.

Table 3
HIP 67522 RV Measurements

BJD RV RVerr Telescope
(days) (km s−1) (km s−1)

2,458,705.2675 7.95 0.33 SALT
2,458,709.2372 7.79 0.13 SALT
2,458,707.5159 8.52 0.85 LCO
2,458,708.4822 8.41 0.42 LCO

Note. RV measurements are taken from Table 4 of Rizzuto et al. (2020). An
additional four RV measurements were taken on LCO/SALT between the
publication of the paper and Rizzuto et al. (2020). These data are presented in
this table.

Figure 9. Corner plot of major orbital parameters for surviving companions of
a test combining HRI, RV, Gaia imaging, and RUWE limits for HIP 67522,
with companions generated at all inclinations. Contours mark the 39.8th, 86th,
and 98th percentiles of density. The top plots of each column show a histogram
of that column’s parameters. The dashed lines on the histograms mark the
median and ±1σ.
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almost entirely ruled out, as are companions with high
masses (q> 0.5).

We are unable to definitively rule out a solar-mass
companion at moderate periods (103 days< P< 107 days).
The HRI, RUWE, and Gaia imaging tests are all effective in
this period range, eliminating 81.9% of the generated
companions. However, among the small number of survivors
are a nontrivial number of high-mass stars. Specifically, some
stars happened to have projected separations close to the
primary at the epoch of the observations. Such missed stars are
rare; at short periods (P< 103 days), high-mass companions
are rejected by the RV data regardless of projected separation,
while at long periods (P> 107 days), companions spend a
small fraction of their orbit behind the primary. Figure 8 makes
such situations appear common, because it was based on the
mass distribution of surviving companions. Effectively, this
only indicates what kind of parameters are allowed for a
companion that survives, and does not indicate the likelihood
of survival for those companions. Depending on the science
goal, this result can instead be interpreted alongside the overall
survivor fraction or divided by the input distribution.

3.2. DS Tuc A

DS Tuc A is a young star in a known binary system. Newton
et al. (2019) detected a transiting planet using observations
from the TESS survey followed up with spectral observations
from several ground-based telescopes as part of the THYME
young planets project. The primary star, DS Tuc A, is a Sun-
like star of spectral type G6V. The secondary star is at an
angular separation of 5″, or ∼6× 105 days, with a spectral type
of K3V and an estimated mass of 0.84± 0.06Me (Newton
et al. 2019). The planet has a measured radius of
5.70± 0.17 R⊕ and orbits with a period of 8.1 days (Newton
et al. 2019).

With a separation of 5″ and a contrast of ∼1 mag, DS Tuc
AB is resolved in Gaia. Using the Gaia contrast curves
constructed from Arenou et al. (2018), Ziegler et al. (2018), and
Brandeker & Cataldi (2019; see Section 2.2.2 for details), we
see that ∼100% of the companions in that parameter space are
rejected. This means that, if applied, Gaia imaging will falsely
rule out the known companion. This occurs because a core
assumption of MOLUSC is that there are no detected
companions. Since MOLUSC is designed to place constraints
on undetected companions, any companions that could have
been detected, like DS Tuc B, are rejected. For this reason, it is
important to not use data sets in which the effects of a known
companion are present. In this example, we resolve the problem
by leaving out the Gaia imaging data and using only the RV
measurements and Gaia astrometry. Since the known compa-
nion’s period is much longer than the observational baseline of
the RV data used, the known companion cannot be detected in
it. Therefore, MOLUSC can use the RV data to probe for
companions at shorter periods. Similarly, since the two
companions are resolved in Gaia, the RUWE of the primary
will not be elevated due to the known secondary but could be
elevated from a closer, unknown companion. We leave out the
Gaia imaging altogether, but an alternative method would be to
use a modified contrast curve for Gaia, excluding the region
around the known companion, or a contrast curve that extends
only as far as the nearest neighbor.

We simulate two sets of 5 million hypothetical companions,
one with inclinations locked to only eclipsing companions and
one with all inclinations. The simulated companions are
compared to RV follow-up measurements taken from Newton
et al. (2019) and RUWE. For the RV test, we used an added
jitter of 100 m s−1 and an RV sensitivity floor of 20 m s−1

(again based on the expected stellar variability and instrument
limits).
To determine the likelihood of a false-positive detection

from a stellar companion, we use the results from the
simulation of only transiting companions. The mass detection
limits for this simulation are shown in Figure 10. We find a 3σ
maximum mass of the detected companion at 8 days of
∼3MJup, which rules out a stellar false positive. At the period
of the known stellar companion, the maximum surviving mass
was ≈1Me.
Similar to the results in Section 3.1, we are unable to rule out

a stellar-mass companion at moderate periods, here between 105

and 109 days. This is because there are a few generated
companions at these periods with high q but low ρ. At low ρ,
they cannot be rejected by the RUWE test, which operates at
longer projected separations, or the RV data, which operate at
shorter periods. Since many of the companions at these periods
are rejected by the RUWE test, the rare close-in, high-mass
companions are numerous enough to increase the detection limits.
Figure 11 shows the posterior distributions of the major

parameters from the search for a companion at any inclination.
We are able to rule out 56.7% of the simulated companions.
Surviving companions occur largely at low-mass ratios and
edge-on inclinations. Short- (P< 100 days) and long-period
(P> 109 days) systems are almost entirely ruled out, with the
exception of very low-mass companions (M< 0.1Me). Very
few high-mass companions survive, and those that do are at
high eccentricities and edge-on inclinations. Since it is possible
that high-eccentricity systems are rarer than reflected in our
parameter generation (see Section 2.1.3 for details), the true
limits may eliminate more stars than the limits found by
MOLUSC.

Figure 10. Detection limits for transiting companions around DS Tuc A using
RV and RUWE constraints. The period of the detected planet is marked with a
dotted line, and the period of the known stellar companion is marked with a
dashed line. The 3σ limit at the period of the planet is ∼3 MJup. At the
estimated period of the known stellar companions, the 3σ mass limit is ∼1 Me.
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3.3. The ZEIT Sample

In principle, MOLUSC can be run on large samples of stars,
and the resulting likelihoods can be combined to set broad
constraints on the overall binarity rate in the sample. This is
important for work on the role of binarity in exoplanet
occurrence rates but can be similarly used to explore the role of
binarity in any astrophysical situation (e.g., clusters and high-
mass stars; Gullikson et al. 2013; Douglas et al. 2019). In
practice, implementation depends on the sample, as the
underlying prior of being a binary changes (e.g., exoplanet

hosts are known to host fewer binaries than nonhosts; Wang
et al. 2014a; Kraus et al. 2016). While some studies of this
topic forward-model their data, e.g., take a sample of binaries
and attempt to reproduce the observed population by removing
companions that would have been detected (e.g., Kraus et al.
2016), others assume that any stellar companions present in
their sample are detected in the data (e.g., Wang et al.
2014a, 2015; Moe & Kratter 2019). Many companions will be
missed in such an analysis, especially over a large sample of
targets. Instead, we can use MOLUSC to determine what kinds
of possible companions could have survived on a star-by-star
basis. As an example, we apply MOLUSC to the Zodiacal
Exoplanets in Time (ZEIT) survey of young planets (Mann
et al. 2016a) and determine a completeness correction for
binarity within the sample. We then compare the resulting
corrected binary rate to that of a similar field population to see
if differences in the companion population can help explain
differences in the planet populations (as opposed to evolu-
tionary changes).
The ZEIT survey found over a dozen planets in young

clusters, most of which are given in Rizzuto et al. (2017). We
used a subset of 12 planet hosts from this survey to calculate a
likely number of missing binaries in the group. One star from
the sample, K2-136, is a known binary system, but all others
are presumed to be single in the discovery papers due to the
lack of detections.
Many of the stars from the sample had either RV or HRI

data, or both, summarized in Table 4. We use MOLUSC on
each of the stars with any available RV or HRI data and add
constraints from Gaia imaging and RUWE. For all stars, we use
a conservative jitter of 20 m s−1 and an RV sensitivity floor of
20 m s−1. We generated companions at all inclinations. For
each of the stars in the sample, we determine the fraction of
simulated companions that could not be rejected by the given

Figure 11. Distributions of major orbital parameters for surviving companions
around DS Tuc A, with all inclinations simulated. Contours mark the 39.8th,
86th, and 98th percentiles of density. The top plots of each column show a
histogram of that column’s parameters. The dashed lines on the histograms
mark the median and ±1σ.

Table 4
The ZEIT Sample

K2 Name Other Name RV Ref. Contrast Ref. Survivor Fraction

K2-25 EPIC 210490365 1 1 0.265

K2-33 EPIC 205117205 3 3a 0.426

K2-77 EPIC 210363145 2 0.513

K2-95 EPIC 211916756 10 0.535

K2-100 EPIC 211990866 12 4 0.127

K2-101 EPIC 211913977 4 0.441

K2-102 EPIC 211970147 4 0.429

K2-103 EPIC 211822797 4 0.485

K2-136 EPIC 247589423 6 9 L

K2-264 EPIC 211964830 11 0.605

L EPIC 211901114 4b 0.627

L HD 283869 0.493

Notes.
a The K2-33 contrasts included one additional contrast curve, taken in 2011, that was not included in the analysis of (3).
b The EPIC 211901114 contrast was acquired after publication but using the same observational setup as described in (4).
References. (1) Mann et al. (2016b), (2) Gaidos et al. (2017), (3) Mann et al. (2016a), (4) Mann et al. (2017b), (5) Rizzuto et al. (2017), (6) Mann et al. (2017a), (7)
Vanderburg et al. (2018), (8) Rizzuto et al. (2018), (9) Ciardi et al. (2018), (10) Obermeier et al. (2016), (11) Livingston et al. (2019), (12) Barragán et al. (2019).
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data, listed in Table 4. Below, we highlight one of the stars that
had a unique data set that emphasizes the usefulness of
MOLUSC.

K2-33. Object K2-33 is an example of how multiple contrast
curves can be combined for deeper limits than are possible with
either individually. This is possible because MOLUSC
calculates the projected separation of each companion before
comparing them to the contrast curve, and the projected
separations of the simulated companions may be different at
two different observational epochs. For K2-33, we combine
two HRI contrast curves, generated as described in Mann et al.
(2016a). The first was taken the night of 2011 May 15, and the
second was taken on the night of 2016 March 19, giving an
observational baseline of nearly 5 yr.

As a test case on the effectiveness of combining contrast
curves, we ran MOLUSC using each contrast curve of K2-33
alone and then using both contrast curves together. To
showcase the maximum potential of this scenario, we set the
distance to the star to 10 pc, so that the HRI was more
powerful. This distance is also more consistent with those of
TESS stars, which could benefit from similar analysis. The
survivor fraction listed in Table 4 was calculated using both
curves together and the correct distance to K2-33.

Individually, each contrast curve could reject ∼25% of the
simulated companions. Together, they rejected 27.6% of the
simulated companions, an improvement of 2.6%. This is a
modest improvement but may be significant in other cases.
Similarly, one could combine multiple data sets using images
taken at similar times but in different filters.

Binarity rate of planet hosts. We estimate the number of
binary systems expected in a sample of field stars using an M
dwarf multiplicity rate of 26.8%± 1.4% from Winters et al.
(2019) and a G star multiplicity rate of 46%± 2% from
Raghavan et al. (2010). The ZEIT sample contains one G-type,
five M-type, and six K-type stars. We applied the G star
multiplicity rate to the G star and the three early K-type stars
and the M star multiplicity rate to the M dwarfs and the three
late K-type stars. From this, we estimate that a similar sample
of field stars would contain 4.0± 0.23 binary systems. The
binomial probability of detecting one or fewer companions is
small (1.3%). Although not statistically significant, it highlights
the need to apply a correction for the unseen systems.

To estimate the completeness correction for binarity in the
ZEIT sample, we sum the surviving fractions of each star and
multiply by the appropriate multiplicity rate, giving a
correction of 1.61. By adding one to account for the known
binary K2-136AB, we calculate a predicted number of binaries
of ;2.61, marginally lower than the number expected
assuming a field-like population. The binomial probability of
detecting three or fewer binaries in a sample of 12, given an
expected value of 4.0, is 39%. The results are similarly
consistent with the lower rate of binaries seen in older planetary
systems, indicating that the sample used here is too small for
robust results.

While the sample size that we use here is too small to draw
conclusions, we highlight that the number of “unseen” compa-
nions added in from our MOLUSC tests is larger than the number
of detected systems, highlighting the need for such a correction.
Further, MOLUSC could be used to calculate binarity complete-
ness corrections in any stellar population, facilitating studies
comparing binarity rates between different populations. Here we
simply added the resulting binary probabilities together to predict

a combined binarity correction, but a more robust way to combine
the results would be to combine likelihoods computed from
MOLUSC using hierarchical Bayes (e.g., Hogg et al. 2010),
allowing additional understanding of both the number and
distribution (e.g., in separation and mass ratio) of companions
in the sample of interest.

4. Summary and Conclusions

We present here a framework and code, MOLUSC, which
uses complementary types of stellar observations to place the
tightest constraints on possible unseen stellar companions. In
addition to the extra constraints of simultaneously fitting
multiple data sets, the code properly accounts for differences
between projected separation (what HRI measures) and true
semimajor axis (which, if not done properly, overestimates the
advantages of such data) and takes advantage of Gaia imaging
and RUWE to rule out a large set of companions even without
additional follow-up data.
The default parameters are for solar-type stars, given our

choice of models with a maximum mass of 1.4Me, and that the
default prior distributions used for orbital parameters apply
only for stellar companions, not for planetary ones. The user
can adjust this as desired by changing to a different model or
changing the prior distributions.
We test this code on two young stellar systems with detected

planetary companions to place limits on the masses of the
companions and on a sample of young planets without known
companions to calculate a likely number of undetected stellar
companions.
We use the code on the star HIP 67522 and place a mass

limit on a transiting companion at the detected period of
∼3MJup, ruling out a stellar- or brown dwarf–mass object as
the source of the signal. Examining all possible companions,
we eliminate 88.5% of the simulated binaries. For the known
binary DS Tuc AB, we place a 3σ mass limit at the period of
the newly detected companion of ∼3 MJup, ruling out a stellar
false positive. In addition, 56.7% of the companions generated
at all inclinations are ruled out.
By running MOLUSC on stars from the ZEIT survey, we

calculate a likely number of 1.6 undetected companions for that
sample and determine that in this small sample, the binarity rate
is lower but consistent with field rates. This small sample is not
large enough to draw any conclusions, and a better analysis
would require a sample of hundreds of stars, rather than the
dozen that we analyzed for demonstration purposes.
Even with full follow-up data (RV and HRI measurements),

we are often unable to completely rule out a stellar-mass
companion, as discussed in Section 3.1. This is because at
moderate periods, a nontrivial number of massive stars are on
the inner parts of their orbits, where they cannot be ruled out by
HRI and where RV is ineffective. Even though this is a rare
event, it is common enough to have a notable effect on the
surviving companion statistics, since most of the simulated
companions are eliminated.
MOLUSC could also be used for prioritizing observational

follow-up. If only constraints from Gaia are sufficient for false-
positive analysis, they may make additional HRI observations
unnecessary or help optimize which HRI setup/instrument to
use. As another example, the code could be used on different
simulated sets of RV measurements to determine the frequency
and precision of the RV results required.
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Future versions of this code could incorporate additional
information from future data releases from Gaia, such as
individual measurements of astrometry or multiepoch RV
measurements. In addition to being more accurate than our use
of RUWE, direct fitting of astrometry should significantly
improve the sensitivity to binaries with separations or inclinations
that are difficult to detect with RV data but too tight to detect with
most HRI. Multiepoch RV from Gaia could replace the need for
additional ground-based follow-up. With these, we would be able
to effectively search for binary companions in an even larger
parameter space without any follow-up observations.
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