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Abstract

In this thesis, I employ a number of machine learning (ML) methods on the inflation

forecasting problem space. I utilize macroeconomic indicators alongside textual

data and apply ML methods to an updated time horizon. Ultimately, I find that

ML methods are a viable alternative to traditional benchmarks under certain time

horizon conditions, particularly with the inclusion of textual data. However, in

contrast with the previous literature, I demonstrate that some ML models are

particularly sensitive to the treatment of outliers. When a full time horizon is

employed and outliers are included, certain ML models that performed well in

previous analyses are not able to outperform other forecasting methods.
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1 Introduction

Inflation forecasting is an incredibly difficult task that is simultaneously crucial

for a variety of stakeholders. Firms, households, financial market participants,

governments, and central banks all rely on inflation forecasting to inform their un-

derstanding of future economic conditions, and ultimately, their choices. Forecasts

of inflation are of particular import to central banks, and, because of the elevated

inflation rates currently being realized in a majority of advanced economies, an ac-

curate understanding of potential future inflation is even more relevant at present.

Historically, inflation forecasts have utilized a variety of different model types,

all with varying levels of complexity. Univariate time series models, such as those

proposed by Box and Jenkins (1970), Atkeson and Ohanian (2001), and Stock and

Watson (2007), are some of the most simplistic, utilizing past inflation levels to

understand future inflation. Many theoretical models of macroeconomics, however,

would indicate that other variables should serve as drivers of inflation. Recognizing

this, econometricians like Stock and Watson (1999) proposed multivariate models

based on the Phillips Curve, which relates inflation with unemployment. Other

model-based drivers of inflation were explored as well. For example, Anderson

et al. (2002) formulated a model based on GDP and M1 money balances. These

models often proved to be successful in the short term, particularly in the specific

economic conditions of the eras in which they were popularized, but struggled to

consistently outperform the simpler univariate models in the long term. Today,
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dynamic stochastic general equilibrium (DSGE) models, which are based on mod-

ern micro-founded macroeconomic theory, are often employed by central banks to

predict inflation, but these models have suffered from frequent forecasting errors

during the last five years. The univariate methods, while consistent in their perfor-

mance, are not able to deal with unusual economic conditions and have not been

able to be improved substantially in the past decade (Stock and Watson, 2010).

Recently, there have been some investigations into using machine learning (ML)

techniques for economic forecasting and nowcasting with very promising results.

Machine learning methods have been demonstrated to be successful in both fi-

nancial forecasting (Gu et al., 2018) and in the forecasting/nowcasting of other

macroeconomic indicators, like GDP (Babii et al., 2021). Medeiros et al. (2019)

employed machine learning methods to the inflation forecasting problem space,

becoming the first to demonstrate that ML could outperform univariate and mul-

tivariate benchmarks. However, much remains to be done to demonstrate that

machine learning is an effective alternative to more traditional forecasting meth-

ods. In this thesis, I attempt to fill in some of the gaps present in the existing

literature, and in the remainder of this Introduction, I devote a paragraph to each

of these key contributions.

First, I employ textual data, which has not been previously utilized in inflation

forecasting. Some past work in economic and financial forecasting has used ma-

chine learning methods alongside the introduction of nontraditional data sources

and predictors, such as textual data and search data (Babii et al., 2021; Caperna

et al., 2020; Kalamara et al., 2020), with much success. This type of data may
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account for drivers that are missing or underrepresented in typical macroeconomic

indicators. In the case of my research, the addition of textual data may serve as a

proxy for inflation expectations.

Second, I explore how machine learning methods perform in times of high eco-

nomic volatility, which is especially salient given that it is under unusual economic

conditions that more traditional forecasting methods often flounder. To this end, I

apply ML methods to an updated time horizon that encapsulates both the unusual

low inflationary period that occurred between 2008 and 2021, where Core Personal

Consumption Expenditures (PCE) was consistently below the two percent target

of the Federal Reserve, and the period of unusually high inflation that began in

2021 and has persisted to the present. Previous research was limited to a forecast

horizon that ended in January of 2016, and only performed a real-time test on

data ranging from 2001 to 2015 (Medeiros et al., 2019).

Third, I recognize that much of the value of ML methods is found in their

potential ability to perform during unusual inflationary periods. Thus, I do not

remove extreme data points during my estimation process. Outlying data points

were removed by Medeiros et al., particularly those realized during the Global

Financial Crisis in 2008. This was done by the authors to aid the performance of

the forecast models, but it does not allow us to as accurately draw a conclusion

about the potential for ML methods to succeed in a real-world application. I am

able to more clearly assess how all models tested perform during both the 2008

and 2020 recessions.

Finally, I modify the implementation of lags when fitting my LASSO regres-
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sion model to reduce poor performance caused by over-penalization. Given that

machine learning frequently relies on ‘big data’ datasets, the introduction of lags

can lead to a very large number of predictors. For instance, Medeiros et al. intro-

duced four lags to their data, which left them with 508 potential predictors. They

also observed poor performance of the LASSO and LASSO model variations that

were tested compared to other ML models. Because LASSO shrinks irrelevant pre-

dictor coefficients to zero and penalizes a large number of predictors, adding in a

multitude of predictors via lags may cause ‘crowding out’ of otherwise relevant pre-

dictors. To solve this, I parameterize my lags according to Legendre polynomials

in order to reduce the level of dimensionality present.

I find that with a full time horizon and the inclusion of outliers, the ML models

heralded by Medeiros et al., such as the random forest (RF) model, are not able

to outperform other forecasting methods. The RF model in particular seems to be

sensitive to the treatment of outliers. The LASSO model I fit performs better than

the RF model in the full estimation, standing in contrast with previous literature.

This indicates that the treatment of lags that I employ is potentially effective

in improving the LASSO model’s performance. When using textual data, which

involves a more limited time horizon due to the nature of the data, ML models are

able to outperform standard methods, and the inclusion of textual data appears

to improve these models, particularly the RF model.

I organize this thesis as follows. Section 2 provides a more in-depth review of

the existing literature, with particular focus given to ML applications. Section 3

lays out the theoretical background of inflation forecasting. An overview of the
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data and key variables can be found in Section 4. Section 5 details the model

specifications and methodology used for my estimations. Results are discussed in

Section 6.
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2 Literature Review

There is a vast body of literature proposing, critiquing, and refining methods for

inflation forecasting. While direct forecasts and real-time forecasts based on survey

or market measures remain important in the inflation forecasting field, in the past

thirty years, there has been increasing attention given to developing models for

inflation forecasting.

Some of the earlier and theoretically more simplistic models for inflation fore-

casting are univariate time series models, which take time series inflation data and

incorporate an element of stochasticity. Univariate methods are very well estab-

lished in forecasting and include autoregressive methods like those canonized by

Box and Jenkins (1970), random walk based models as popularized by Atkeson and

Ohanian (2001), and unobserved component stochastic volatility models (Harvey,

1989; Stock and Watson, 2007), alongside many others.

In 1999, Stock and Watson proposed an inflation forecasting model based on

the theoretical Phillips Curve, with promising initial results. Ultimately, however,

their further research demonstrated that while this model was successful when

applied to short term forecasting for the time period between 1970 and 1996, it

could not consistently outperform univariate models for later periods or longer-

term horizons, even though it did outperform some other multivariate forecasting

models. A similar pattern is present with other models that draw on comparable

statistical and theoretical ideas, such as the utilization of vector autoregression by
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Anderson et al. (2002) and Shoesmith (1992). These models ultimately failed to

outperform univariate benchmarks, and simultaneously, research on the univariate

benchmarks was finding them impossible to systematically improve (Stock and

Watson, 2010).

After the popularization of Phillips Curve motivated models came more com-

plex models based on Neoclassical and New Keynesian macroeconomic theory,

where “decision rules of economic agents are derived from assumptions about

preferences, technologies, and the prevailing fiscal and monetary policy regime

by solving intertemporal optimization problems.” The empirical estimation in

these dynamic stochastic general equilibrium (DSGE) models is accomplished with

Bayesian techniques (Elliot et al., 2006). The most popular DSGE models were

developed by the U.S. Federal Reserve and the European Central Bank (ECB).

It was the consistent forecasting errors made by the ECB’s DSGE forecast

model for inflation that ultimately inspired Medeiros et al. (2019). These authors

had the same goal as me: to improve inflation forecasting via machine learn-

ing methods. Specifically, they attempted to forecast headline PCE (though core

measures and CPI are also discussed). They utilized the FRED-MD dataset—a

database of monthly indicators created by the Federal Reserve for the purpose

of machine learning and other ‘big data’ methods. The authors considered the

vintage as of January 2016, with their data sample being from January 1960 to

December 2015. Ultimately, their models analyzed 508 potential predictors, since

they considered four lags of all 122 initial variables, as well as four autoregressive

terms. Other adjustments to the data included removing outliers caused by the
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2008 Financial Crisis.

The researchers considered a number of models for forecasting inflation, al-

lowing them to compare various ML methods to traditional method benchmarks.

Alongside their initial analysis, they also performed a real-time experiment for a

subset of the time horizon and potential models.

Ultimately, Medeiros et al. presented a convincing set of results indicating

that a number of ML methods could outperform traditional benchmarks. Partic-

ularly, they highlighted the random forest (RF) model, which had the smallest

errors and consistent variable selection across time horizons. RF focused in on

variables primarily from “prices, exchange and interest rates, and the housing and

labor markets” and was the best method in periods of both high and low uncer-

tainty. This suggested that the relationship between macroeconomic variables and

inflation is nonlinear, and thus, linear methods for forecasting or approximating

DSGE models may lead to inaccurate results. The work of Medeiros et al. is

distinct from previous literature in that it demonstrated ML methods could beat

univariate benchmarks for inflation forecasting, made an effort to highlight the key

variables responsible for forecast improvements, and displayed the potential of RF

methods in particular.
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3 Theoretical Background

Throughout the history of macroeconomics, different schools of economic thought

have proposed different theoretical explanations for inflation, laying out a single

mechanism or combination of mechanisms that serve as the drivers of inflation.

These theoretical drivers are frequently incorporated into the statistical models

used to forecast inflation, and fundamentally underlie all of the models that I

implement.

Inflation is often linked to the money supply via the Quantity Theory of Money,

which describes a relationship between inflation and money supply that is directly

proportional. (Specifically, MV = PY , where V is velocity of money, M is money

supply, P is the price level, and Y is output.) Ceteris paribus, when the level of

currency in circulation is increased, each individual unit of currency loses value.

This leads to a higher overall price level (Friedman and Schwartz, 1963).

Phillips (1958) proposed an inverse relationship between wage inflation and

unemployment, canonized as the Phillips Curve. Subsequent research building on

this relationship solidified another potential driver of inflation: inflation expecta-

tions (Fisher, 1911; Friedman, 1968). Thus, the expectations augmented Phillips

Curve was developed. It became a popular tool for inflation forecasting and is

traditionally described as π = πe − ϵ(U −UN). This equation states that inflation

is determined by inflation expectations as well as the gap between the unemploy-

ment rate and the ”natural” rate of unemployment. (Here ϵ is assumed to be some
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positive constant that is fixed.)

The Phillips Curve also ties into another proposed driver of inflation, slack.

Theories surrounding slack suggest that when firms utilize resources (both capital

and labor) intensively, production costs rise, which causes firms to raise prices in

order to maintain profit margins (Peach et al., 2011).

Similarly, cost-push inflation is an inflation driver that occurs when production

costs rise. This can happen due to supply side shocks (such as a jump in a com-

modity prices due to an exogenous event) or because laborers demand increased

wages (Samuelson and Solow, 1960). The idea that wage increases may lead to

inflation increases in a cyclical nature is often referred to as the ‘wage-price spiral.’

Structural inflation is related to the same type of shocks that may cause cost-

push inflation. Essentially, theories of structural inflation state that market fric-

tions result in goods shortages in certain economic sectors, which drives up prices

(Olivera, 1964).

There is also demand-pull inflation, which highlights shifts in aggregate demand

as a key inflation driver (Barth and Bennett, 1975). When aggregate demand

increases and aggregate supply does not, this results in an increase in the overall

price level.

Finally, there is the fiscal theory of inflation, which has garnered more attention

recently. This theory asserts that inflation is primarily determined by a govern-

ment’s fiscal policy, rather than their monetary policy (Cochrane, 2023). The

conceit is that if a government’s fiscal policy does not allow it to pay off its debts

out of future tax revenue, then, in order to fulfill its obligations, the government
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will allow a high level of inflation to reduce the value of its debts and close the gap

in its inability to pay.
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4 Data

4.1 Inflationary Trends

Following the 2008 financial crisis, Core PCE inflation, the measure of inflation

used by the U.S. Federal Reserve, was consistently below its two percent target.

This remained the case even as the labor market recovered from the recession and

the unemployment rate began to drop. In response to persistently low inflation, in

2019, the Fed changed its inflation targeting scheme to Average Inflation Target-

ing, allowing inflation to float above the two percent target as long as the target

was achieved on average. This change was largely to combat the risk of inflation

expectations becoming anchored below the Fed’s target (Mart́ınez-Garćıa et al.,

2021).

In 2020, there were significant supply side disruptions as a result of the COVID-

19 pandemic. Simultaneously, to stimulate the economy, the Federal Reserve en-

acted a number of expansionary policies, dropping interest rates and engaging in

Large Scale Asset Purchases. A number of fiscal policy measures were also taken,

including the passing of the the Coronavirus Aid, Relief, and Economic Security

Act (CARES Act) which provided stimulus checks to qualifying individuals in

order to relieve financial distress.

Unsurprisingly, when world economies began to reopen, pent-up demand, in-

creased currency in circulation, persistent supply shocks, and the effects of fiscal
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stimulus led to a steep increase in inflation. Between March of 2021 and February

of 2022, Core PCE inflation climbed from 2.05% to a peak of 5.42%. The inflation

realized by consumers was even more dramatic. The Headline Consumer Price

Index (CPI) reached 9.00% in June of 2022. Since 2022, all measures of inflation

have dropped. This is largely due to the Fed’s hiking of interest rates and the

depletion of the consumer wealth that built up during the pandemic as a result of

fiscal policies. However, inflation remains elevated across the board. As of January

2023, Core PCE inflation was at 4.71%, and Core CPI was at 5.5%.

Figure 4.1: Personal Consumption Expenditures, Percent Change from a Year Ago



14

4.2 Key Variable and Summary Statistics

The Personal Consumption Expenditures Price Index (PCEPI) will serve as the

key response variable, inflation, in my model. PCEPI measures the prices of goods

and services paid by consumers in the U.S. and is typically chained to a base

year, 2012. PCEPI is the preferred inflation measure of the Federal Reserve and

is released by the Bureau of Economic Analysis.

Figure 4.2: PCEPI, Index

There are several potential alternative variables. One of the most obvious

alternatives would be the Consumer Price Index (CPI). Almost all research on

inflation forecasting focuses on one of these four variables: CPI, Core CPI, PCE,

or Core PCE, though there are additional ways of measuring inflation, such as the
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GDP Deflator. Notably, PCE considers a broader range of expenditures than CPI

and is calculated using data from firm surveys, as opposed to consumer surveys. I

transform PCEPI to be stationary by taking the monthly log difference. Explicitly,

this means that in my models, inflation (π) is given by

πt = 100 ln(
Pt

Pt−1

) (4.1)

An overview of the appearance of this variable in each form is given in the table

below.

Table 4.1: PCE Summary Statistics

Index Year/Year Stationary

Min 16.04 -0.01467 -0.0110197
1st Quartile 27.37 0.01576 -0.0010963
Median 64.33 0.02478 -0.0000215
Mean 61.02 0.03229 -0.0000028
3rd Quartile 89.70 0.04206 0.0011613
Max 123.51 0.11594 0.0078035
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Figure 4.3: PCEPI, Stationary

4.3 Data Description

The primary data source for my thesis is FRED-MD, a database of macroeconomic

variables that is updated and curated by the data desk at the Federal Reserve Bank

of St. Louis. It consists of 134 monthly U.S. indicators and is intended to be used

as a ‘big data’ source for macroeconomic analysis and research. The time series

indicators included in FRED-MD extend from January 1959 to August 2022. The

chosen indicators and their grouping are built to mimic the popular Stock-Watson

dataset, while removing the need for researchers to accommodate data revisions,

as well as updating in real time. The unit of observation, type of data, and sample

design all vary within the database. For instance, Real Personal Income observes
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the individual, whereas Industrial Production: Consumer Goods observes relevant

plants. The Civilian Unemployment Rate is based off of a household survey, while

the 10-Year Treasury Rate is financial market data. While the data comes from

a variety of sources—the U.S. Bureau of Labor Statistics, Moody’s Corporation,

and the U.S. Energy Information Administration, to name a few—the data is all

of high quality, with very well-documented gathering procedures. A full list of the

included indicators can be found in the Appendix.

FRED-MD as a data source has the strength of being high quality and of uni-

form frequency. Similar data sources have been used not only for forecasting with

machine learning, but also for other methods of inflation forecasting as well. The

Stock-Watson dataset that inspired FRED-MD was notably developed by the same

researchers who developed the Phillips Curve model for inflation forecasting. One

potential limitation of this data is that, given its purely time series nature, there

is little nuance to provide regarding mean differences by characteristics. For in-

stance, unemployment varies by race, gender, and geographic location, but I—and

my data—will not be considering this nuance. Additionally, its monthly frequency

is unhelpful for very short-term forecasts or nowcasts of inflation. That is why,

if I wished to extend my models to apply to a near-term forecasting horizon, I

would likely have to introduce higher frequency data, such as daily or hourly in-

dicators (e.g., daily crude oil prices). Unfortunately, these higher frequency time

series are relatively short, since historically, this type of data was not possible to

track/gather. This severely limits their forecasting usefulness.

In addition to the macroeconomic indicators pulled from FRED-MD, for one
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of my estimations, I also introduce additional textual data. This data is sourced

from Structure of News, a dataset crafted by financial economists at the Yale

School of Management that summarizes Wall Street Journal articles from 1984

to 2017 into monthly topical themes. The 800,000 articles studied are simplified

to a “bag of words” using Latent Dirichlet Allocation to reduce dimensionality; a

vocabulary of 18,432 unique terms is transformed into 180 topics that are sorted

into a taxonomy using hierarchical agglomerative clustering. To create monthly

topic attention allocations, attention estimates of the 180 topics are summed over

all articles published in the same calendar month (Bybee et al., 2021).

Ideally, this textual data serves as a proxy for inflation expectations and catches

nuances that are not represented in the more traditional data sources. Notably, in

utilizing this textual data, I am limited in time horizon, since the data is only avail-

able between 1984 and 2017. Once again, I also am limited in terms of geographic

nuance, since my textual data is also nationwide.
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5 Empirical Models

5.1 Benchmark Models

I estimate three benchmark models. These models represent the classic univariate

time series models and the theoretical based models of inflation. I primarily use

them to understand the performance of the ML methods employed. The first

is a random walk (RW) model, which is the naive model described by Atkeson

and Ohanian (2001). The simplest form of this model has a forecast equation for

inflation (π) that is specified according to

π̂t+h|t = πt (5.1)

Here h = 1, ..., 12, where h is the forecasting horizon.

Next, I estimate an autoregressive (AR) model. I utilize a direct AR model

rather than an iterative one. In this model, p is the number of autoregressive terms

as determined by BIC, and the parameters ϕ are estimated by OLS (Henry and

Pesaran, 1993).

The formal statement of the model is

πt+h|t = ϕ0,hπt + ϕ1,hπt + ...+ ϕp,hπt−p+1 + ut (5.2)
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Thus, my forecast equation is given as

π̂t+h|t = ϕ̂0,hπt + ϕ̂1,hπt + ...+ ϕ̂p,hπt−p+1 (5.3)

Both of these models are standard univariate methods for inflation forecasting.

In the previous literature, these models have also served as performance bench-

marks and have been shown to be incredibly difficult to beat, especially over very

long term forecast horizons.

I also estimate a theory based model for forecasting inflation, a Phillips Curve

motivated model (PC). This multivariate model is based on the work of Gordon

(1982) and describes future inflation as depending on lagged inflation and the

unemployment rate Ut. (I have not included supply shock variables for simplicity’s

sake.)

πt+h|t = πt + Ut + ut (5.4)

Estimation is accomplished using the contemporaneous value plus four lags of

both the U3 unemployment rate and PCE inflation.

5.2 Comparison Models

I then estimate a number of models that will be compared with the benchmarks.

The first is a factor model. In a factor model, to reduce the dimension of a

model based on all possible predictors, I decompose a given indicator xit to identify
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certain factors ft that are present across all variables, but produce a certain effect.

In the simplest form, the model can be described as:

xit = λ′
ift + uit (5.5)

Where λi represents the factor loadings for factors ft. These latent factors are

extracted and πt is regressed on ft to produce the forecast equation

π̂t+h = f̂ ′
t β̂ (5.6)

This method is particularly salient when dealing with economic data, since

economists often think of there being driving forces or factors behind many realized

changes in economic indicators.

I base my estimation on the methods described by Bai and Ng (2008). In

accordance with this, I utilize a preselection step, wherein I only compute the

principal components for variables that have passed a certain threshold t-statistic.

By only selecting and estimating principle components for variables that have high

predictive power for inflation, I reduce computational complexity significantly.

I then estimate a bagging model. Bagging, or bootstrap aggregating, involves

aggregating a number of bootstrap samples. (A bootstrap sample is a replicate

dataset that is drawn at random with replacement from the existing dataset’s

observations.) To create my bagging model, I estimate an OLS model for each

bootstrap sample in order to select potential variables, using t-statistic as a gauge

for predictive power. Then, I estimate a new regression with the variables that
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are selected. These coefficients are applied to compute the forecast on the actual

sample. This is repeated for all bootstrap samples, with the final forecast being

an average of all of the bootstrap forecasts. This approach is directly based on the

work of Breiman (1996).

Next is a model based on complete subset regression (CSR). With complete

subset regression, the goal is to average the forecasts created by all possible models,

but this becomes difficult with high dimensions of data when there are many

possible predictive variables (Elliott et al., 2013). To solve this issue, I estimate

an OLS regression for each potential variable, and, similar to the bagging model,

I select variables based on their t-statistic. This preselection step is necessary to

reduce computational complexity. I then can calculate the CSR forecast to be the

average of all the selected forecasts.

For my model utilizing shrinkage, I estimate a Least Absolute Shrinkage and

Selection Operator (LASSO) model. With LASSO, I perform regularization on an

OLS model to penalize the abundance of predictors. Depending on the specifica-

tion, this process results in predictors being eliminated from the model, as their

coefficients shrink to zero. This allows me to produce a sparse model. For LASSO,

the objective is to solve

min

[
T−h∑
t=1

(πt+h − βhxt)
2 + λ

n∑
i=1

|βh,i|

]
(5.7)

β is the vector of coefficients that maps to all covariates x. The penalty func-

tion, in accordance with the work of Tibshirani (1996), is λ
∑n

i=1 |βh,i|.
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Next, I produce a random forest (RF) forecast. Similar to bagging, a ran-

dom forest model involves averaging over bootstrap samples. However, now I also

employ decision trees. These trees are constructed from bootstrap samples, and

the final forecast is an average of the forecasts produced by each tree, hence the

moniker ‘forest’. This is the crux of the method originally proposed by Breiman

(2001).

Since random forest models are based on decision trees, not OLS, they are

much better at handling nonlinear relationships. OLS assumes that there is a

single relationship between regressors and that this relationship holds over all ob-

servations. On the contrary, decision trees are formed via recursive partitioning,

which involves subsetting the dataspace into smaller and smaller regions. Each of

these partitions represents a ‘leaf’ on the decision tree. For each leaf on the tree,

a very simple model is fit. Specifically, it is assumed that the dependent variable

is predicted by the elements of the leaf according to some constant.
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Figure 5.1: A Sample Decision Tree for Predicting PCEPI

Figure 5.1 illustrates a simplified decision tree for predicting PCEPI, based on

my data. While this is considerably less complex than the decision trees utilized

by my random forest model, it provides an idea of the basic structure of these

trees.

In my case, then, the forecast equation for my RF model is given by

π̂t+h =
1

B

B∑
b=1

[
Kb∑
k=1

ĉk,bIk,b(xt; θ̂k,b)

]
(5.8)

B is the number of bootstrap samples. Kb are the terminal nodes or ‘leaves.’
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c is a constant that describes the relationship between all x and π. It is estimated

by taking the sample average of realizations of the response variable within a given

region, so, specifically, ĉk,b is the average inflation in region k for a tree b. I is the

product of the indicator function defining region splits. Specifically, it indicates if

an x falls within a given region that is defined by a set of parameters θ.

Ik(xt; θk) =


1, if xt ∈ Rk(θk)

0, otherwise

(5.9)

The final forecast, then, estimates a relationship for each leaf of a tree and

sums each of these leaves before finally averaging all trees together.

Finally, I use a number of methods to combine forecasts. Forecast combinations

allow for ‘hedging’ of the risks present in any single model, potentially reducing

forecast errors. For instance, if one model is susceptible to poor accuracy under

certain economic conditions that another model performs well under, but under

other conditions the opposite is true, theoretically, a forecast combination can

result in improved accuracy (Weiss et al., 2019).

5.3 Methodology

5.3.1 Rolling Window

When creating my forecasts, I employ a rolling window. This means that I select a

certain window size and estimate an h-step ahead forecast using the data present
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in that window. Next, I ‘step forward’ by one time increment, add that new ob-

servation to my dataset, and remove the oldest observation to then create another

h-step ahead forecast. This approach makes my forecasts more robust to structural

changes. All of the models are run through this rolling window mechanism.

5.3.2 Lags

To improve upon the issues that introducing lags may create with certain ML

models, particularly LASSO, I parameterize the lags I introduce to my data to

reduce the dimension of slope coefficients. The theory behind this process is as

follows:

Suppose there is a time series (yt, xt) ∈ R2, 1 ≤ t ≤ T that has the following

forecasting model with horizon h.

yt+h =
m−1∑
j=0

βjxt−j + ut+h (5.10)

We can parameterize this model according to

βj = w(
j

m
; θh),∀j = 0, ...,m− 1 (5.11)

where w(s, θ) =
∑L

l=1 θlfl(s),∀s ∈ [0, 1], θ = (θ1, ..., θL)
T , (fl)

L
l=1 is a set of

simple functions, and L is small.

This allows us to achieve the following equivalencies:
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yt+h =
m−1∑
j=0

w(
j

m
; θh)xt−j + ut+h (5.12)

yt+h =
m−1∑
j=0

[
L∑
l=1

θlfl(
j

m
)

]
xt−j + ut+h (5.13)

yt+h =
m−1∑
j=0

θl

m−1∑
j=0

fl(
j

m
)xt−j + ut+h (5.14)

Thus, yt+h =
∑L

l=1 θlzl,t + ut+h, where zl,t =
∑m−1

j=0 fl(
j
m
)xt−j.

If we align our data in vectors and matrices, we can express this as y =

XWθ + u, where y is a response vector, u is an error vector, and X is a matrix

of observations. This gives us a vector θ, as described previously, and a matrix of

W, which is composed of weights that are formed from the function zl,t.

In practice, I parameterize the lags in my model according to Legendre poly-

nomials, which serve as weights on all predictor and lagged predictor coefficients

to help shrink dimensionality.

5.3.3 Textual Data Preselection

In order to reduce the number of predictors in my models, when working with the

textual data, I perform a preselection step. I create a correlation matrix between

all textual topics and inflation and only select topics that demonstrate predictive

power. The threshold for correlation when selecting this data is 0.2. That is, if the

absolute value of the correlation between a given predictor and inflation is greater
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than 0.2, it is selected. A table of the selected textual variables can be found in

the Appendix.
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6 Results

I compare all of my models via a number of methods, primarily root mean squared

error (RMSE) and mean absolute error (MAE).

I also utilize the Diebold-Mariano test to compare predictive accuracy between

models and determine if differences in accuracy are statistically significant.

6.1 Full Estimation

First, I compute results for the full dataset time horizon. The forecasts are com-

puted for the length of the set of rolling windows, which consists of the 2007 to

2022 period. This estimation does not incorporate the utilization of textual data.

Table 6.1 reports the RMSE for a selection of models relative to the random walk

(RW) for the 1-, 3-, 6-, 9-, and 12-month forecasting horizons. Table 6.2 reports

the MAE for the same models and forecast horizons. An unabbreviated version

of these tables, including all horizons and models, can be found in the Appendix.

The lowest error in each horizon is bolded.

For both RMSE and MAE, the best performing model for the short term hori-

zons is the factor model. Specifically, the factor model outperforms the AR model

in the 1-, 2-, and 3-month step ahead forecasts. For the mid-term forecasts, the AR

model outperforms all of the other models. In the year ahead forecast, however,

the factor model is once again the most accurate. Following the AR and factor
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Table 6.1: Full Estimation Root Mean Squared Error

t+1 t+3 t+6 t+9 t+12 Mean

AR 0.10496 0.17114 0.15622 0.15042 0.17611 0.15542
CSR 0.11165 0.18857 0.17475 0.17213 0.19521 0.17120
Factor 0.09626 0.16762 0.18144 0.19139 0.15387 0.16592
Bagging 0.24622 0.34992 0.31635 1.01308 0.35077 0.47153
Lasso 0.10587 0.17964 0.16897 0.17164 0.18567 0.16696
RF 0.13379 0.20604 0.18369 0.18587 0.21960 0.19093
The table shows the root mean squared error (RMSE) for a selection of models relative to the random walk (RW). The
error measures were calculated from 180 rolling windows covering the 2007 to 2022 period. Columns 1-5 show a selection
of the forecasting horizons for readability. The lowest error for each horizon is bolded. Column 6 displays the mean
RMSE for each model over all forecasting horizons.

Table 6.2: Full Estimation Mean Absolute Error

t+1 t+3 t+6 t+9 t+12 Mean

AR 0.07430 0.12018 0.11199 0.10689 0.12639 0.11041
CSR 0.08007 0.12875 0.12331 0.12154 0.14139 0.12011
Factor 0.05507 0.11799 0.12721 0.13023 0.11343 0.11500
Bagging 0.13428 0.19943 0.18820 0.28876 0.23740 0.21981
Lasso 0.07718 0.12716 0.11857 0.11852 0.13440 0.11825
RF 0.09271 0.14042 0.12550 0.12703 0.15076 0.12993
The table shows the mean absolute error (MAE) for a selection of models relative to the random walk (RW). The error
measures were calculated from 180 rolling windows covering the 2007 to 2022 period. Columns 1-5 show a selection of
the forecasting horizons for readability. The lowest error for each horizon is bolded. Column 6 displays the mean MAE
for each model over all forecasting horizons.

models, the next best performing model is the LASSO model. This can be further

seen in the last columns of Table 6.1 and Table 6.3, which report the mean RMSE

and MAE values for select models over all forecasting horizons. (An expanded

version of these tables can be found in the Appendix.) For both MAE and RMSE,

the order of model performance is AR, Factor, LASSO, CSR, RF, then Bagging.

To further understand the performance of the models, I graph the squared

error of each model over the 180 window horizon. This allows me to see what time
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periods different models struggled to forecast, as well as to more directly compare

errors in a way that is not as reductive as an average or median. Figure 6.1 and 6.2

display these errors for the AR, Factor, LASSO, and RF models on the t+1 and

t+12 forecasting horizons respectively. The large spikes in errors seen both early

and late in these figures correspond to the 2008 and 2020 recessions respectively.

For the one month ahead forecast, as shown in Figure 6.1, we see that during

the 2008 financial crisis, both the factor and LASSO models are better than the

AR model at handling the shock, realizing a smaller spike in errors during this pe-

riod. The factor model performs incredibly well for this horizon and time period,

avoiding the spike in errors from which all of the other models suffer. However,

during the Covid-19 pandemic, the one month ahead factor forecast sees a mon-

umental spike in forecasting error, while the other models handle the shock with

relative ease. During the 2020 to 2022 period, the RF model realizes less errors

than the LASSO model and is more on par with the AR model.

Some similar patterns are present in the one year ahead forecast. The factor

model vastly outperforms all others during the 2008 crisis period, but underper-

forms during the 2020 recession. The LASSO model sees smaller spikes in error

than the AR model during both periods of uncertainty, but only outperforms AR

during the 2020 period.
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Figure 6.1: Error for selected models over time, t+1 forecasting horizon

Figure 6.2: Error for selected models over time, t+12 forecasting horizon
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For all models, I run the Diebold-Mariano test. With Diebold-Mariano, I com-

pare the errors (RMSE or MAE) of two forecast models to see if the predictive

accuracies of the models are statistically significantly different. The null hypoth-

esis is that the predictive accuracies of the two forecasts are the same; if a small

enough p-value (usually <0.05) is seen, then we can reject the null hypothesis and

conclude that the accuracies of the two models are actually different. I find that

the AR model is significantly different in predictive accuracy than all models ex-

cept for the factor model. For the AR/factor model comparison, I am unable to

reject the null hypothesis.

In this estimation, only the factor model can beat out AR in RMSE, but in

looking at the squared errors over time, we do see that there are times when the ML

models perform well. There is a very disparate effect between how models handle

the 2008 and 2020 recessions. This stark difference in performance indicates that

there may be potential for combination forecasts to improve accuracy, with Factor

+ LASSO or Factor + RF seeming particularly promising.

Using a variety of methods, I produce a combination forecast for both Factor +

LASSO and Factor + RF. (A table of these various methods and their performance

can be found in the Appendix.) After comparing combination methods for the one

step ahead forecast and selecting the best performing method, I see that the Factor

+ LASSO model shows the most promise. I then produce a Factor + LASSO

combination model for all forecasting horizons. The performance of this model is

reported in Table 6.3.

Ultimately, for both RMSE and MAE this combination forecast is not able to
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Table 6.3: Factor/LASSO
Combination RMSE and
MAE

RMSE MAE

t+1 0.16898 0.12370
t+2 0.20099 0.14677
t+3 0.20129 0.14560
t+4 0.20279 0.14586
t+5 0.20379 0.14898
t+6 0.21584 0.15729
t+7 0.21486 0.15370
t+8 0.22364 0.15939
t+9 0.21251 0.15336
t+10 0.21604 0.15324
t+11 0.21292 0.15162
t+12 0.21891 0.15700
Mean 0.20771 0.14971

The table shows the mean absolute error
(MAE) and root mean squared error (RMSE)
for the factor + LASSO combination model.
The error measures were calculated from 180
rolling windows covering the 2007 to 2022 pe-
riod. The combination method used is Least
Absolute Deviation regression with rolling
weights. The forecast horizon with the low-
est error is bolded.

reduce errors significantly enough to outperform the other models.

6.2 Textual Data Estimation

I then perform the same estimations and analysis but with the inclusion of textual

data. Because of the nature of my textual dataset, I am limited to the time period

between 1984 and 2017. For the sake of comparison, I run all models on this time

horizon without the textual data as well. Excitingly, in this setting, the RF model

is able to outperform the AR model, especially in longer forecast horizons. (The
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factor model is the best performing for the one month ahead forecast.)

Table 6.4: Textual Estimation Root
Mean Squared Error

t+1 t+2 t+3

AR 0.15373 0.22775 0.22952
CSR 0.14424 0.22961 0.24061
Factor 0.11393 0.20349 0.21851
Lasso 0.17002 0.21178 0.26694
RF 0.16145 0.19924 0.19900
The table shows the root mean squared error (RMSE) for a
selection of models relative to the random walk (RW), in an esti-
mation including textual data. The lowest error for each forecast
horizon is bolded.

In Figure 6.3, we see that the factor, LASSO, and RF models outperform the

AR model, and they particularly perform well during the 2008 financial crisis,

which is the large spike present in the center of these figures.
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Figure 6.3: Error with textual data for selected models over time, t+2 forecasting
horizon

However, when I use the Diebold-Mariano test to check for statistically sig-

nificant difference in accuracy between the models that use textual data and the

models fitted to the same horizon without textual data, I am unable to reject the

null hypothesis.

Adding in textual data improves the performance of the ML models, especially

the RF model, though it is not enough to prove a statistically significant difference

in accuracy. Additionally, since I do not have textual data past 2017, I am unable

to see how the textual data might have affected the performance of the ML models

during the Covid-19 pandemic. This is one of the major limitations of my analysis.
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6.3 Variable Selection

In order to better understand the performance of my ML models, I explore the

variable selection of the LASSO and RF specifications.

Figures 6.4 and 6.5 report the variable importance for the LASSO and RF

models respectively for four different forecasting horizons. In order to improve

legibility, for the LASSO model, variables that were not selected (i.e. variables

that were shrunk to zero for the entire forecasting period) are not included in the

figure. Similarly, lags of variables are not displayed.

These heat maps immediately make apparent the sparsity of the LASSO model

in comparison to the RF model. Additionally, we can easily see that not only

does the variable selection vary between the two models, but it also varies over

forecasting horizons. In general, for both models, the level of model complexity

tends to be less for very short term forecasts. This complexity increases as the

forecasting horizon increases, before eventually becoming more simplistic again

for the longer term horizons. This matches with what we would expect given

the previously discussed prior forecasting literature and theories of inflation. In a

one month ahead forecast, inflation in the current month is likely a very reliable

predictor, and we see that both the RF and LASSO models favor PCEPI (the

current inflation level) very heavily in their one step ahead forecast. Conversely,

in the long run, inflation tends to return to a given norm (recall that not only

do central banks target inflation levels to maintain steady inflation over time, but

also very simple models, such as AR or RW, tend to perform well in the very
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long term because they often hover around and assume a return to these historical

norm levels). In general, we can think of long term inflationary trends as being

less driven by exogenous shocks/noise and more driven by the ‘underlying forces’

of inflation. We see that for the LASSO model, the year ahead forecast focuses

on durable and nondurable goods expenditures, unfilled orders for durable goods,

housing starts in the Midwest, and wholesale trade.

The t+3 forecast is the most complex of those compared in the figures for both

of the models, but we see that while the LASSO model is primarily focused on

price variables, the RF model incorporates more complexity, such as Moody’s Aaa

Corporate Bond Yields Minus FEDFUNDS and business inventories. Interestingly,

the variables selected lean heavily towards prices and output categories, but focus

much less on employment than we might expect based off of the theories of inflation

discussed in Chapter 3.
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(a) t+1 (b) t+3

(c) t+6 (d) t+12

Figure 6.4: LASSO full estimation variable importance
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(a) t+1 (b) t+3

(c) t+6 (d) t+12

Figure 6.5: Random Forest full estimation variable importance
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7 Conclusions

I demonstrate that the specificities of ML models are incredibly important to

their ultimate efficacy as forecasting tools. When including the outlying data that

previous literature did not, ML models are not able to outperform other forecasting

methods, with the RF model appearing to be the most sensitive to these outlying

data points. Similarly, the treatment of lags can significantly affect ML model

performance. In the case of the LASSO model, by changing the treatment of

lags from that which was utilized in previous literature, I am able to improve the

model’s performance. Via the inclusion of textual data, I am able to improve the

performance of ML models, particularly the RF model, such that they outperform

standard benchmarks in most forecasting horizons. However, this estimation is

limited by the time horizon of my available dataset.

While I am not able to replicate the results of Medeiros et al., ML models

in my research do show promise in their usefulness as forecasting tools. They

accommodate well for nonlinearities and do not rely as heavily on underlying as-

sumptions about theoretical inflation drivers, making them more flexible during

times of unusual economic activity. (For instance, the factor model struggled to

forecast during the COVID-19 pandemic, while the LASSO model was much more

flexible.) The LASSO model particularly realized less errors during economic crises

than any other model (though this did not balance out its higher realized errors

during periods of higher certainty). This ability to cope with economic crisis could
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be useful for the policy making of central banks during periods when other fore-

casting models flounder. Both the LASSO and RF models also showed stability in

their variable selection mechanisms.

Notably, there appears to be promise in the incorporation of textual data. This

is an area of inflation forecasting that is novel to my research and definitely should

receive further attention and testing going forward, especially as this type of data

becomes more readily accessible. While textual data, because of its inherently

large datasets, is unwieldy for more traditional statistical models, it is utilized to

great effect by ML models.

Given that ML models performed better during unusual economic conditions,

namely the LASSO model (or the RF model, when textual data is available),

these models may be particularly useful for countries that experience more unusual

inflationary conditions, or where the typical inflation drivers do not as strongly

hold.

Ultimately, further research on inflation forecasting should consider ML models,

but more attention needs to be given to the tuning of these ML tools in order to

better understand how they could best be employed.
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8 Appendix

8.1 FRED-MD Data

Table 8.1 displays the indicators included in the FRED-MD dataset. Column 1
is the indicator number, Column 2 is the transformation code, Column 3 is the
indicator name in FRED, Column 4 is a descriptive name, and Column 5 is the
group code number. The FRED-MD data groups (in numerical order) are Output
and Income; Labor Market; Housing; Consumption, orders, and inventories; Money
and Credit; Interest and Exchange Rates; Prices; and Stock Market.

Table 8.1: FRED-MD Indicators

ID TC FRED ID Name GC
1 5 RPI Real Personal Income 1
2 5 W875RX1 Real personal income ex transfer receipts 1
3 5 DPCERA3M086SBEA Real personal consumption expenditures 4
4 5 CMRMTSPLx Real Manu. and Trade Industries Sales 4
5 5 RETAILx Retail and Food Services Sales 4
6 5 INDPRO IP Index 1
7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies 1
8 5 IPFINAL IP: Final Products (Market Group) 1
9 5 IPCONGD IP: Consumer Goods 1
10 5 IPDCONGD IP: Durable Consumer Goods 1
11 5 IPNCONGD IP: Nondurable Consumer Goods 1
12 5 IPBUSEQ IP: Business Equipment 1
13 5 IPMAT IP: Materials 1
14 5 IPDMAT IP: Durable Materials 1
15 5 IPNMAT IP: Nondurable Materials 1
16 5 IPMANSICS IP: Manufacturing (SIC) 1
17 5 IPB51222s IP: Residential Utilities 1
18 5 IPFUELS IP: Fuels 1
19 1 NAPMPI ISM Manufacturing: Production Index 1
20 2 CUMFNS Capacity Utilization: Manufacturing 1
21 2 HWI Help-Wanted Index for United States 2
22 2 HWIURATIO Ratio of Help Wanted/No. Unemployed 2
23 5 CLF16OV Civilian Labor Force 2
24 5 CE16OV Civilian Employment 2
25 2 UNRATE Civilian Unemployment Rate 2
26 2 UEMPMEAN Average Duration of Unemployment (Weeks) 2
27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 2
28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks 2
29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over 2
30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks 2
31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over 2
32 5 CLAIMSx Initial Claims 2
33 5 PAYEMS All Employees: Total nonfarm 2
34 5 USGOOD All Employees: Goods-Producing Industries 2
35 5 CES1021000001 All Employees: Mining and Logging: Mining 2
36 5 USCONS All Employees: Construction 2
37 5 MANEMP All Employees: Manufacturing 2
38 5 DMANEMP All Employees: Durable goods 2
39 5 NDMANEMP All Employees: Nondurable goods 2

Continued on next page
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Table 8.1 – continued from previous page
ID TC FRED ID Name GC
40 5 SRVPRD All Employees: Service-Providing Industries 2
41 5 USTPU All Employees: Trade, Transportation & Utilities 2
42 5 USWTRADE All Employees: Wholesale Trade 2
43 5 USTRADE All Employees: Retail Trade 2
44 5 USFIRE All Employees: Financial Activities 2
45 5 USGOVT All Employees: Government 2
46 1 CES0600000007 Avg Weekly Hours : Goods-Producing 2
47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing 2
48 1 AWHMAN Avg Weekly Hours : Manufacturing 2
49 1 NAPMEI ISM Manufacturing: Employment Index 2
50 4 HOUST Housing Starts: Total New Privately Owned 3
51 4 HOUSTNE Housing Starts, Northeast 3
52 4 HOUSTMW Housing Starts, Midwest 3
53 4 HOUSTS Housing Starts, South 3
54 4 HOUSTW Housing Starts, West 3
55 4 PERMIT New Private Housing Permits (SAAR) 3
56 4 PERMITNE New Private Housing Permits, Northeast (SAAR) 3
57 4 PERMITMW New Private Housing Permits, Midwest (SAAR) 3
58 4 PERMITS New Private Housing Permits, South (SAAR) 3
59 4 PERMITW New Private Housing Permits, West (SAAR) 3
60 4 NAPM ISM Manufacturing: PMI Composite Index 4
61 4 NAPMNOI ISM Manufacturing: New Orders Index 4
62 4 NAPMSDI ISM Manufacturing: Supplier Deliveries Index 4
63 4 NAPMII ISM Manufacturing: Inventories Index 4
64 5 ACOGNO New Orders for Consumer Goods 4
65 5 AMDMNOx New Orders for Durable Goods 4
66 5 ANDENOx New Orders for Nondefense Capital Goods 4
67 5 AMDMUOx Unfilled Orders for Durable Goods 4
68 5 BUSINVx Total Business Inventories 4
69 2 ISRATIOx Total Business: Inventories to Sales Ratio 4
70 6 M1SL M1 Money Stock 5
71 6 M2SL M2 Money Stock 5
72 5 M2REAL Real M2 Money Stock 5
73 6 BOGMBASE Monetary Base 5
74 6 TOTRESNS Total Reserves of Depository Institutions 5
75 7 NONBORRES Reserves Of Depository Institutions 5
76 6 BUSLOANS Commercial and Industrial Loans 5
77 6 REALLN Real Estate Loans at All Commercial Banks 5
78 6 NONREVSL Total Nonrevolving Credit 5
79 2 CONSPI Nonrevolving consumer credit to Personal Income 5
80 5 S&P 500 S&P’s Common Stock Price Index: Composite 8
81 5 S&P: indust S&P’s Common Stock Price Index: Industrials 8
82 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield 8
83 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 8
84 2 FEDFUNDS Effective Federal Funds Rate 6
85 2 CP3Mx 3-Month AA Financial Commercial Paper Rate 6
86 2 TB3MS 3-Month Treasury Bill: 6
87 2 TB6MS 6-Month Treasury Bill: 6
88 2 GS1 1-Year Treasury Rate 6
89 2 GS5 5-Year Treasury Rate 6
90 2 GS10 10-Year Treasury Rate 6
91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield 6
92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield 6
93 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 6
94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 6
95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6
96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS 6
97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 6
98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS 6
99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 6
100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 6
101 5 TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index 6
102 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate 6
103 5 EXJPUSx Japan / U.S. Foreign Exchange Rate 6
104 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate 6
105 5 EXCAUSx Canada / U.S. Foreign Exchange Rate 6
106 6 WPSFD49207 PPI: Finished Goods 7
107 6 WPSFD49502 PPI: Finished Consumer Goods 7
108 6 WPSID61 PPI: Intermediate Materials 7
109 6 WPSID62 PPI: Crude Materials 7
110 6 OILPRICEx Crude Oil, spliced WTI and Cushing 7
111 6 PPICMM PPI: Metals and metal products: 7
112 1 NAPMPRI ISM Manufacturing: Prices Index 7
113 6 CPIAUCSL CPI : All Items 7
114 6 CPIAPPSL CPI : Apparel 7

Continued on next page
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Table 8.1 – continued from previous page
ID TC FRED ID Name GC
115 6 CPITRNSL CPI : Transportation 7
116 6 CPIMEDSL CPI : Medical Care 7
117 6 CUSR0000SAC CPI : Commodities 7
118 6 CUSR0000SAD CPI : Durables 7
119 6 CUSR0000SAS CPI : Services 7
120 6 CPIULFSL CPI : All Items Less Food 7
121 6 CUSR0000SA0L2 CPI : All items less shelter 7
122 6 CUSR0000SA0L5 CPI : All items less medical care 7
123 6 PCEPI Personal Cons. Expend.: Chain Index 7
124 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods 7
125 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods 7
126 6 DSERRG3M086SBEA Personal Cons. Exp: Services 7
127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing 2
128 6 CES2000000008 Avg Hourly Earnings : Construction 2
129 6 CES3000000008 Avg Hourly Earnings : Manufacturing 2
130 2 UMCSENTx Consumer Sentiment Index 4
131 6 MZMSL MZM Money Stock 5
132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 5
133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding 5
134 6 INVEST Securities in Bank Credit at All Commercial Banks 5
135 1 VIXCLSx VIX 8

8.2 Textual Data

Table 8.2: Selected Textual Variables

Term Correlation (PCEPI)
Changes -0.2498790
Economic.ideology -0.2426341
Savings...loans 0.2457363
Connecticut 0.2272212
Steel 0.2288302
Bond.yields -0.2123466
Activists 0.2346383
Nonperforming.loans 0.2003337
Revised.estimate 0.2759805
Economic.growth -0.2624416
Chemicals.paper 0.2292829
European.sovereign.debt -0.2915158
Programs.initiatives -0.2383538
Drexel 0.2840041
Treasury.bonds 0.2589611
Challenges -0.2332520
People.familiar -0.2455434
Publishing 0.2091472

Continued on next page
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Table 8.2 – continued from previous page
Term Correlation (PCEPI)

Financial.crisis -0.2987179
Aerospace.defense 0.3093890
Recession -0.3674969
Computers 0.2069321
Small.changes 0.2783810
Small.possibility -0.2633905
Agreement.reached 0.2325187
Canada.South.Africa 0.2150613
Investment.banking -0.2350150
Spring.summer -0.2337073
Mid.level.executives 0.2452292
Agriculture 0.2062711
Takeovers 0.2518234
Southeast.Asia -0.2101884
Corrections.amplifications -0.2599948
Currencies.metals 0.2730645
Germany 0.2223704
Rental.properties -0.2268973
Committees 0.2255680
Subsidiaries 0.2250796
Terrorism -0.2488386
Commodities 0.2880102
Convertible.preferred 0.2611357
Currencies.metals 0.2730645
Germany 0.2223704
Rental.properties -0.2268973
Committees 0.2255680
Subsidiaries 0.2250796
Terrorism -0.2488386
Commodities 0.2880102
Convertible.preferred 0.2611357
Macroeconomic.data 0.2637487
Reagan 0.2261628
Trading.activity 0.2390607
National.security -0.2010512

Continued on next page
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Table 8.2 – continued from previous page
Term Correlation (PCEPI)

Private.equity.hedge.funds -0.2159399
Size -0.2433178
Retail -0.2150240
Long.short.term -0.2536075
Lawsuits 0.2210968
Revenue.growth -0.2166038

8.3 Estimation Results

Table 8.3: Full Estimation RMSE

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12

AR 0.10496 0.15276 0.17114 0.16763 0.16176 0.15622 0.16813 0.17674 0.15042 0.13978 0.13942 0.17611
CSR 0.11165 0.16668 0.18857 0.17201 0.17073 0.17475 0.18574 0.19366 0.17213 0.16080 0.16244 0.19521
Factor 0.09626 0.13270 0.16762 0.19683 0.17409 0.18144 0.18416 0.20107 0.19139 0.16643 0.14519 0.15387
Bagging 0.24622 0.39889 0.34992 0.42035 0.34872 0.31635 0.40580 0.74155 1.01308 0.72055 0.34619 0.35077
Lasso 0.10587 0.15599 0.17964 0.17456 0.16861 0.16897 0.17325 0.19743 0.17164 0.16165 0.16026 0.18567
RF 0.13379 0.18859 0.20604 0.21063 0.19711 0.18369 0.19224 0.19588 0.18587 0.18407 0.19370 0.21960

Table 8.4: Full Estimation MAE

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12

AR 0.07430 0.10769 0.12018 0.11595 0.11430 0.11199 0.11854 0.12558 0.10689 0.10179 0.10137 0.12639
CSR 0.08007 0.11393 0.12875 0.11660 0.11799 0.12331 0.13102 0.13532 0.12154 0.11468 0.11675 0.14139
Factor 0.05507 0.08493 0.11799 0.12969 0.12446 0.12721 0.13120 0.14306 0.13023 0.12045 0.10223 0.11343
Bagging 0.13428 0.20296 0.19943 0.21433 0.20770 0.18820 0.21150 0.27068 0.28876 0.26285 0.21958 0.23740
Lasso 0.07718 0.11350 0.12716 0.11949 0.11719 0.11857 0.12477 0.13871 0.11852 0.11429 0.11521 0.13440
RF 0.09271 0.13208 0.14042 0.14027 0.13147 0.12550 0.13577 0.13374 0.12703 0.12096 0.12849 0.15076
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Table 8.5: Factor + LASSO Combination Methods Performance, t+1 Horizon

ME RMSE MAE MPE MAPE

WA -0.00644 0.20904 0.14133 -0.97653 297.85570
TA -0.00644 0.20904 0.14133 -0.97653 297.85570
SA -0.00644 0.20904 0.14133 -0.97653 297.85570
rollOLS 0.01080 0.17418 0.12547 -57.44807 206.63250
rollLAD -0.00979 0.16898 0.12370 -80.24449 236.20190
OLS -0.00000 0.18860 0.13212 48.70956 278.21330
NG -0.00729 0.18887 0.13145 47.50011 289.94860
MED -0.00644 0.20904 0.14133 -0.97653 297.85570
LAD -0.01404 0.18914 0.13114 32.86808 293.74060
InvW -0.00660 0.20257 0.13860 7.86769 293.84820
Eig4 0.00000 0.19305 0.13473 33.19326 277.73810
Eig3 -0.00691 0.19318 0.13420 25.55612 287.87190
Eig2 0.00000 0.21121 0.14220 3.29767 289.74400
Eig1 -0.00639 0.21130 0.14230 -3.76748 299.32080
CLS -0.00691 0.19318 0.13420 25.55612 287.87190
BG -0.00653 0.20521 0.13969 4.07917 295.26220
Auto -0.00000 0.18860 0.13212 48.70956 278.21330
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Table 8.6: Factor + RF Combination Methods Performance, t+1 Horizon

ME RMSE MAE MPE MAPE

WA -0.00577 0.21082 0.14134 -46.47720 319.94010
TA -0.00577 0.21082 0.14134 -46.47720 319.94010
SA -0.00577 0.21082 0.14134 -46.47720 319.94010
rollOLS 0.01295 0.20805 0.14131 -76.44009 247.10400
rollLAD -0.00787 0.18703 0.13234 -120.66310 287.38940
OLS -0.00000 0.20348 0.13958 -54.57574 309.90930
NG -0.00564 0.20670 0.13850 -57.92172 328.23940
MED -0.00577 0.21082 0.14134 -46.47720 319.94010
LAD -0.01453 0.20719 0.13824 -71.09694 344.11280
InvW -0.00570 0.20753 0.13928 -52.79987 323.73650
Eig4 0.00000 0.20842 0.13996 -59.30095 329.10360
Eig3 -0.00556 0.20849 0.13947 -65.44522 336.84300
Eig2 0.00000 0.21177 0.14196 -38.72638 310.72380
Eig1 -0.00578 0.21185 0.14187 -45.12100 319.18480
CLS -0.00564 0.20670 0.13850 -57.92172 328.23940
BG -0.00574 0.20940 0.14061 -48.67902 321.21460
Auto -0.00000 0.20348 0.13958 -54.57574 309.90930

Table 8.7: Factor + LASSO Combination Model Errors

ME RMSE MAE MPE MAPE

t+1 -0.009785549 0.16898 0.12370 -80.24449 236.2019
t+2 -0.001792205 0.20099 0.14677 -168.8634 365.0719
t+3 -0.002907416 0.20129 0.14560 -165.4643 366.1160
t+4 -0.009641443 0.20279 0.14586 -146.224163 354.6082
t+5 -0.004511879 0.20379 0.14898 -172.64072 382.8772
t+6 -0.009711331 0.21584 0.15729 -181.0373 400.0626
t+7 0.001169535 0.21486 0.15370 -141.2866 354.1472
t+8 0.006465232 0.22364 0.15939 -157.5009 370.2831
t+9 0.01009231 0.21251 0.15336 -122.1995 327.1258
t+10 0.02186981 0.21604 0.15324 -144.52005 339.3081
t+11 0.02638063 0.21292 0.15162 -97.47263 286.3800
t+12 0.02235237 0.21891 0.15700 -108.37928 309.3059
Mean 0.00417 0.20771 0.14971 -140.48611 340.95733
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