


Abstract  

The MYND domain of the ETO2 protein is a novel target for drugs aimed at treating 

sickle cell disease and related blood disorders.1,2 This study explored the application of 

automated quantitative structure-analysis relationship (QSAR) modeling, a machine learning 

application of in-silico drug discovery, to this target protein system using Schrödinger’s 

AutoQSAR software. The protein target in this study currently has no known drug-like binders, 

allowing the assessment of conducting every stage of lead discovery in-silico. A training set was 

generated using a preliminary docking study, from which QSAR models were built and verified 

across varying data splitting ratios. The most favorable of these models was subject to further 

testing to assess overfitting and ligand-inclusion/exclusion dependency, and a test set of QSAR 

predictions was evaluated for accuracy. The use of AutoQSAR modeling for this system was 

found to be unsuccessful, likely associated with the lack of verified drug-like binders in the 

training set.    
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Introduction and Background 

Sickle Cell Anemia and a Novel Therapeutic Target 

Sickle cell anemia (SCA) is an inherited red blood cell disorder characterized by a lack of 

healthy red blood cells needed to carry oxygen throughout the body, due to the deformity of 

typically disc-shaped cells into a sickle-shape.3 The shape of healthy red blood cells is optimal 

for oxygen diffusion and travel through blood vessels, but sickle-shaped blood cells lack these 

characteristics and become easily stuck in vessels. This leads to symptoms such as anemia, 

episodes of pain, swelling of hands and feet, and frequent infections.3 

Over 100,000 Americans are currently affected by SCA, and greater than 300,000 babies 

are born each year with SCA globally, with the majority of global cases occurring in Nigeria, the 

Democratic Republic of the Congo, and India.4,5 The number of people with sickle cell disease is 

expected to increase by 30 percent by the year 2050.6 

Diagnosis and treatment are vitally important to improving outcomes of SCA, and have 

demonstrated significant success. Since 1970, sickle cell patients’ life spans in the United States 

have increased from 20 years old to the majority living past 50, largely attributable to improved 

diagnosis and treatment.7 

One treatment that has been explored over the last several decades is the use of the 

body’s native fetal hemoglobin (HbF) to compensate for SCA deficiencies. In a red blood cell, 

hemoglobin is the protein that carries oxygen.3 Adult hemoglobin becomes dominant in humans 

by 2 months postnatal, but HbF is naturally produced until 6 months.8  

The presence of HbF was noticed to affect SCA symptoms when infants with the 

condition did not show symptoms, and their blood cells did not sickle or deform as extensively.8 
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Studies have further shown that any increase in HbF was met with improvements in symptoms, 

leaving reactivation of the gene controlling HbF to be a promising treatment to explore.8 

HbF activation and deactivation is controlled by proteins that interact directly with the 

gene.9 Research has identified one such protein complex, the NuRD complex, which results in 

the silencing of HbF when recruited to the globin regulation gene.1,2 Several proteins, 

specifically transcription factors, are involved in NuRD recruitment.  

ETO2 is one such protein that recruits the NuRD complex–the MYND domain of the 

ETO2 protein binds to NuRD by recognizing a polyproline-leucine motif (Figure 1).2 Disrupting 

this interaction blocks NuRD-dependent HbF silencing. This known binding site on MYND may 

be a novel drug-target, but the site is not typical of one. The binding pocket is shallow, and binds 

to a peptide rather than a small ligand or drug-like molecule. Still, such interactions involved in 

transcriptional regulation have been the recent focus of ligand-based drug discovery.10  

 

Figure 1. Visualization of interaction between NuRD complex and ETO2 protein, as well as NuRD recruitment to 

globin regulation gene for silencing of HbF.2  

 

Drug Discovery: Traditional Methods  

There has been an increase in focus on epigenetic targets such as the one described to 

influence HbF regulation above in the field of drug discovery and development.10 Drug 
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discovery is a historically lengthy and costly process, typically spanning decades for a single 

drug.11 The process typically begins with basic research to identify and select a specific protein 

or pathway involved in a condition of interest, followed by lead discovery, during which 

systematic or exploratory searches are conducted to identify small drug-like compounds that are 

believed to interact with the protein or pathway of interest with reasonable specificity (figure 2). 

While these preliminary stages of drug discovery themselves can last years, the process 

following a successful lead discovery is still a lengthy one, involving further structural 

modifications, preclinical development, clinical development, and FDA approval.11  

 

 

Figure 2. Figure from Hughes et. al. 2011.11 Traditional pathway of drug discovery, spanning years beginning from 

basic science research for target identification, all the way to clinical development and FDA filing. This study 

focuses on the lead discovery and candidate identification part of the pathway.  

 

This study focuses on the lead discovery stage of the process, attempting to use newer 

technology to improve upon some of the constraints and limitations often faced during this stage 

of drug discovery. Traditionally, lead discovery involves iterations of high throughput screening 

of existing chemical libraries, structure-based filtering, systematic compound design and 

synthesis, and in vitro and ex vivo mechanistic assays.11 The high throughput screening approach 

does not typically require as much knowledge about the type of lead that may interact with a 
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protein target. However, when conducted physically in a lab using a complex assay system, there 

are substantial cost and resource limitations on the number of libraries that can reasonably be 

screened.11,12  

Several lead discovery techniques exist to supplement and guide high throughput 

screening to reduce this cost and resource strain. These methods may include but are not limited 

to: focused screens, in which previously identified successful compounds or compound classes 

influence library selection; structural aided design, in which crystal structures of the protein 

target with docked compounds are used to strategically introduce modifications; nuclear 

magnetic resonance (NMR) screens in which smaller fragments to be used as building blocks are 

prepared with protein targets with known NMR structures to search for binding activity.11,12 The 

drawback with each of these techniques is that either a considerable amount of information must 

be known about the protein target and its potential binders, or a large number of physical 

resources may be utilized on a dead-end lead search.11,12  

Drug Discovery: A Shift to In-silico Methods 

With costs of traditional drug discovery and rapid technological advances, in-silico or 

computer-aided drug discovery methods have become an attractive alternative for lead discovery 

to many of the methods described above.13,14 Structure-based in-silico drug discovery is made 

possible in part by improvements in 2D and 3D molecular digital representations. To begin, 

structural information regarding a target protein is collected, typically using nuclear magnetic 

resonance (NMR) or X-ray crystallography.15 This information is then coded into 3D 

representations of the protein, built around data collected by NMR or x-ray crystallography 

regarding individual molecular interactions. In some rare cases, predictions regarding the 

protein’s structure can be made entirely in-silico as well, but it is currently seen as ideal to begin 
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with physical confirmation of this first stage.15 One such in-silico 3D representation of this 

study’s protein target created using NMR data can be seen in figure 3. 

 

Figure 3. From Liu et. al. 2007;16 3D structure of the MYND domain (represented in orange), with its native 

peptide binder represented in green. Experimental data to determine the structure was collected using NMR. 

 

Once a digital representation of the protein target has been created, virtual ligands must 

be selected for docking studies, to predict interactions between these ligands and the target 

protein. Virtual representations of ligands for docking studies are largely available for public use, 

with molecular information typically stored in Spatial Data Files (SDF) format or Simplified 

Molecular Input Line Entry System (SMILES) format. The chemical space of virtual 

representations of ligands and molecules to be tested in these docking studies has grown at an 

unprecedented rate, making in-silico drug discovery that much more appealing.17 Libraries of 

upwards of 3 million compounds have existed since the 1990s, with libraries today pushing 

beyond billions of compounds–the most recent expansion is the new “eXplore” trillion-sized 

chemical space.17,18  
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The ZINC compound library is one such example of publicly accessible chemical space, 

frequently used in docking studies.19 This database provides an enumeration of over 14 billion 

commercially available chemical compounds, many of which belong to make-on-demand 

libraries. Of these 14 billion compounds, over 230 million have calculated 3D structures, ready 

for docking. These compounds can be further filtered and explored based on chemical 

characteristics and purchasability.19 

Once structural information on the protein target has been digitized and a chemical 

library has been selected, in-silico docking studies can be conducted to investigate the predicted 

relationship and binding affinity between these compounds and the protein target. Docking relies 

on information on the protein target’s binding sites, or pockets of the protein for ligands to bind 

and produce a desired output.15 The binding site may be known from physical experiments–such 

as X-ray crystallography of the protein target with a co-crystalized ligand–but may also be 

predicted by many docking softwares.15 In-silico docking uses algorithms to predict the ideal 

orientation of each ligand within the hypothesized or known binding sites. This predicted 

orientation is then coupled with calculations of electrostatic and van der Waals interactions to 

either produce a predicted binding affinity or some type of ranked docking score.15 Different 

docking software use different algorithms and therefore have different recommended thresholds 

for what score represents successful binding for the desired effects, or a “hit.” 

While molecular docking outputs are not typically seen as a final outcome of the binding 

relationship between a ligand and protein target, the in-silico docking method allows for a 

preliminary exploration of an unprecedented volume of chemical space at a minimal cost.15,17 

Outputs of a docking study can be used to inform further decisions in a drug discovery process 

and drastically narrow down compounds for physical screening.  
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Over the last several decades, in-silico docking has been integrated heavily into the drug 

discovery process, and has led to the successful discovery of drugs now used to treat conditions 

including diabetes, cancer, and viral and bacterial infections.15 Some specific examples which 

are still used today are Lopinavir/Kaletra and Ritonavir/Norvir, both HIV protease inhibitors 

used to treat HIV/AIDS, and Sorafenib (Nexavar), a vascular endothelial growth factor (VEG-F) 

receptor kinase inhibitor used to treat several types of cancers.15 

Drug Discovery: Introduction of Machine Learning and Quantitative Structure-Activity 

Relationship Modeling  

In-silico drug discovery begins to address many of the cost and efficiency concerns that 

emerge from traditional drug discovery methods, but the size explosion of chemical space 

introduces a new limitation onto to the field––the computational inability or infeasibility to 

screen the entirety (or even a fraction) of the growing chemical space. As a method of addressing 

this problem, a specific form of regression and machine learning has gained popularity in the 

drug discovery field.14,15,20  

This method, Quantitative Structure−Activity Relationship (QSAR), is essentially a form 

of regression or classification to model the relationship between the structure and activity of 

compounds.20 Given information about predicted or existing binders of a target protein, QSAR 

uses mathematical models and information extracted about various molecular descriptors to 

predict biological activities, toxicity profiling, binding energies, and kinetic rates.20 In using 

mathematical modeling to predict these various biological characteristics, QSAR is able to 

mimic many predictions made by direct molecular docking studies, at a fraction of the 

computational power.14,15,20  
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As QSAR models become increasingly integral to the field of drug discovery, the 

elegance and sophistication of QSAR modeling improve as well.20 Initial QSAR models–the first 

developed in the 1960s–were relatively crude, and had low predictive power and 

generalizability.20 The increase in data on chemical space and related biological activities has 

served to improve QSAR drastically. Still, sophisticated QSAR methods required substantial 

machine learning and chemical knowledge–even beyond the scope of many researchers 

exploring drug discovery.20,21 

This was seen in the research community as a need for automated QSAR modeling. 

Several automated QSAR models have now been developed, including QSAR Workbench, 

AstraZeneca’s AutoQSAR, and Schrödinger’s AutoQSAR.21 AutoQSAR methods take in a 

learning or training set of compounds associated with particular values for a dependent variable 

(some property of interest, relating to activity). Then via an automated process, hundreds of 

descriptors and fingerprints relating to a compound's structure are computed to be used as 

independent variables in model building.21 Models are automatically built, validated, and refined 

using these calculated descriptors, until a final model is produced.21 This final QSAR model is 

then applied in a predictive manner to a much wider array of compounds––structural information 

about the compounds are used to calculate descriptors like those used as independent variables in 

the model building stage. This information is finally used to generate predictions on the activity 

or dependent variable of choice.21 

Summary of the Drug Discovery Pathway and Relevance 

The drug discovery pathway has continued to become increasingly complex and 

sophisticated as the scope for what is chemically and technologically possible increases. 

Improved sophistication and automation of in-silico drug discovery could significantly reduce 



 Agrawal 10 

the time and resource investment required by drug discovery, and make drug discovery more 

accessible to academic settings as opposed to being exclusive to large pharmaceutical 

companies.  

Purpose and Research Question 

This project aimed to investigate and assess the applicability of Schrödinger’s 

AutoQSAR software to the exploration and discovery of novel therapeutics for blood disorders 

such as sickle cell anemia. This is a unique target and application of the software because: (1) the 

target protein’s structure was calculated using NMR data rather than X-ray crystallography with 

a co-crystallized ligand; (2) The learning or training set consisted of theoretical binders identified 

using a preliminary in-silico docking study as opposed to known drug-like binders for the 

binding site; (3) The identified binding pocket is a non-traditional pocket, characteristically 

having a more shallow binding groove than typical, and natively binding to peptides rather than 

drug-like compounds. The successful use of automated QSAR methods this early in the drug 

discovery process would move even more of the drug discovery process to in-silico methods and 

remove additional cost, resource, and time burdens of physically validating preliminary leads or 

binders, making the drug discovery process even more efficient and accessible.  

Methods 

Target Protein Preparation 

The NMR structure of the target protein, the MYND domain, was prepared for docking 

using Schrödinger’s Protein Preparation Wizard software.22,23 The Protein Preparation Wizard 

prepares PDB files of target proteins for successful docking by ensuring structural correctness, 

incorporating missing hydrogen atoms, fixing ionization states, determining optimal histidine 

protonation states, and making any other relevant adjustments to the initial file.22  
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The MYND domain with a truncated structure of its known binder bound in the binding 

pocket of interest in the form of a PDB file was used as the initial structure for the protein 

preparation. The protein and ligand then went through the automated process of pre-processing, 

refinement, hydrogen optimization, and production of a final minimized structure.  

Following this, a grid was generated to be used as the site for virtual docking. The 

minimized structure of the MYND domain and ligand were used to identify the intended grid, 

selected based on the binding pocket identified by the known binder. The intended size of the 

grid for docking was set to 15Å, to create a window wide enough for testing a variety of ligand 

types and conformations, but narrow enough to still be computationally efficient.  

Training Set Generation: Preliminary Docking Study 

A preliminary docking study was conducted on the prepared protein domain using 

Schrödinger’s Virtual Screen Workflow. The Virtual Screening Workflow involves ligand 

library preparation using the LigPrep Software, followed by a series of docking calculations.24;25–

27 The docking calculations occur in stages from most general to most specific, with only the top 

percentage of scorers from each stage advancing on to the next. These stages involve the Glide 

HTVS, Glide SP, and Glide XP software, in order from most general (and least computationally 

expensive) to most specific (and most computationally expensive) calculations.  

The National Cancer Institute’s Developmental Therapeutics Program (NCI DTP) 

provides a library of 265,242 structures in SDF format, which was one source used to construct 

the ligand library for the preliminary screen.28 The NCI DTP library was selected as it is a free, 

publicly accessible library of compounds curated for the intended purpose of cancer therapeutic 

development, and was predicted to be largely made up of drug-like compounds that could 

interact with targets similar to the protein target in this study.  
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The other set of compounds selected to complete the ligand library for preliminary 

screening was the Enamine Hit Locator Library of 460,160 compounds.29 Enamine constructed 

this library to be representative of its screening library of over 3.9M compounds. The inclusion 

of this library in preliminary screening offered the opportunity to evaluate ligand types different 

from those in the NCI library. Additionally, the ZINC chemical space was the ultimate intended 

target of exploration for this drug discovery study, and the largest contributor to this library is 

Enamine.30 This makes the Enamine Hit Locator Library advantageous to include in the 

preliminary docking analysis–inclusion would make the preliminary docking data (and thus the 

QSAR models) more representative of libraries to be screened in the future.  

Once these libraries were compiled, they were prepared using the Schrödinger LigPrep 

software.24 The LigPrep software generates energy minimized 3D structures from 2D inputs of 

compounds, such as the SDF inputs used from NCI and Enamine. LigPrep was selected as the 

method of ligand preparation as opposed to other 2D to 3D ligand converters since LigPrep has 

built in checks to ensure chemical correctness and energy minimization beyond a typical one-to-

one conversion, and also generates outputs specifically compatible with downstream Schrödinger 

software, such as the Glide docking software to be used later in the study.  

Prepared ligands were then docked on the prepared protein target using Schrödinger 

Glide.25–27 Docking scores were calculated for the compounds as followed: docking scores were 

calculated for all compounds using Glide HTVS; Glide SP scores were then calculated for the 

top 25% of Glide HTVS scorers; Glide XP scores were calculated for the top 10% of Glide 

HTVS scorers; finally, docking scores were outputted for the top 10% of Glide XP scorers.  

Glide docking scores at each level are calculated using scoring functions that take into 

account shape and other properties of the receptor (target protein) and ligand. An exhaustive list 
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of ligand torsions are generated to examine various docking conformations and poses at different 

areas of the established grid, or binding site, on the target protein.27 The OPLS34 and OPLS2005 

force fields are used to refine and minimize ligand conformations within the grid. Finally, 

docking scores are calculated by factoring in electrostatic and van der Waals interactions 

between the posed and minimized ligands and the target protein’s binding site.  

 

 

Figure 4. Example of a ligand (seen in a colored ball-and-stick representation), docked into the binding pocket of a 

protein target using Schrödinger Glide Docking.25–27  

 

The specificities of the docking algorithm vary by level. While Glide HTVS and SP 

docking both use the same scoring function, HTVS scoring samples fewer intermediate 

conformations and has a less thorough refinement process, reducing computational power 

required.27 Glide XP docking involves much more extensive sampling compared to Glide SP 

docking. The XP algorithm begins with SP sampling, but then follows an anchor-and-grow 

algorithm, in which part of the ligand is anchored and the remaining ligand is assembled into 

varying conformations from this point.26 The XP scoring function is also more demanding in 



 Agrawal 14 

terms of ligand-receptor shape complementarity, and is the most thorough of the 3 in terms of 

minimization, intended to weed out false positives allowed by SP docking.26 

At this time, a threshold docking score was also decided as the cutoff for what would be 

considered a “hit” from in-silico docking. The Glide software does not have any inherent value 

for what should be considered a good binder or a hit as this varies from system to system, but 

Schrödinger rather encourages the selection of a threshold depending on project goals, 

preliminary docking information, and any information available about known binders. 26,27  

QSAR Model Building and Validation 

The preliminary data generated from in-silico docking was used as a training set to 

generate QSAR models using the Schrödinger AutoQSAR software.21,31 AutoQSAR consolidates 

into one workflow the processes of descriptor generator and feature selection from given ligands, 

creation of QSAR models based on these characteristics, and the validation and selection of top 

QSAR models.21,31 Figure 5 demonstrates an overview of the AutoQSAR workflow. 

AutoQSAR uses Schrödinger’s Canvas cheminformatics package to generate topology-

based descriptors–physicochemical properties, graph-theoretical indices and functional group 

counts–of the provided training set of ligands.21,32 Descriptors are then filtered by variance and 

redundancy relative to the entire training set of ligands, clustered, and reduced using absolute 

Pearson correlation matrices.21,32 Canvas is also used to generate fingerprints encoded into an 

addressable bit space of 232 for each ligand in the training set, to be used as independent 

variables.  

AutoQSAR then constructs multiple linear regression (MLR) and kernel-based partial 

least squares (KPLS) models using the determined descriptors and fingerprints as independent 

variables, and a given characteristic of the ligands as dependent variables.21,31 In this study, 
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docking score was this dependent variable–docking scores from the preliminary docking study 

were used to create the QSAR models, and the QSAR models were used to predict docking 

scores of other compounds. Docking scores are a continuous outcome variable, but can be later 

dichotomized into the binary classifiers of “hits” versus “misses” based on the predetermined 

threshold. While some results are presented in terms of binary outcomes, all statistical analysis 

was conducted on the original continuous variables to avoid bias.  

AutoQSAR MLR models are arithmetic averages of the top five linear least squares 

models, identified via 1000 steps of Monte Carlo simulated annealing. The number of variables 

is limited to 10 + 10·log(N) of the training set.21,31 AutoQSAR KPLS models are constructed 

from latent variables–mutually orthogonal vectors combining independent variables with 

different weights.21 To prevent overfitting, factors are no longer added before the coefficient of 

determination (R2) exceeds 0.9.21 

As these described processes are all automated in the AutoQSAR workflow, the only 

manual determinations made were the selection of the training set (previously described) and 

how this training set would be split into subsets for model training, model testing or internal 

validation, and holdout or external validation. The optimal ratio for splitting data for machine 

learning is 64:16:20, with 64% of the data used for training, 16% for testing, and 20% for 

external validation.33 

As a way to further evaluate the performance of AutoQSAR models and select the best 

suited models, 3 different sets of models were constructed using 3 different ratios for splitting 

data. The first, Model A, was created using the optimal 64:16:20 ratio. A second model, Model 

B, was created using a 70:15:15 ratio; and a final model, Model C, was created using a 60:20:20 

ratio. Given a training set and a predetermined data splitting ratio, AutoQSAR determines which 
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compounds from the training set will be included in which subset (training, testing, or holdout) 

based on a random seed.21 

 

Figure 5. Adapted from Dixon et. al. 2011.21 AutoQSAR workflow overview; Red box added to indicate which 

components of the workflow are manually determined by the researcher (selection of training set, and division of 

training set into training, testing, and validation components).  

 

QSAR Model Comparison and Selection  

Once the 3 models were built, they were compared on the basis of model predictive 

ability from an external evaluation set (Q2), root-mean-square error over the external test set 

(RMSE), area under the curve of a receiver operating characteristic curve (ROC-AUC score), 

and area under the curve of a precision-recall curve (PR-AUC score) to determine which model 

would be used for generating predictions. All statistical analysis was conducted using RStudio.34 
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Comparison of Q2 values provides information regarding the extent to which data can be 

predicted by each model, with the most favorable model being the one with the highest Q2 value. 

For Schrodinger AutoQSAR, Q2 is calculated as follows21:  

𝑄! =	 "#$%#&'(	%&	*$(+%',%-&	($$-$.	-"($	,(.,	.(,
"#$%#&'(	%&	,(.,/.(,	+(*(&+(&,	"#$%#01(.

   (1)  

Comparison of RMSE values gives information on the typical difference between 

predictions made by the model and the true values (the values provided in the training set) in the 

same units as the dependent variable (docking scores). The most favorable model is the one with 

the lowest RMSE. Direct comparisons of Q2 and RMSE values were made across models. A one-

way ANOVA was conducted for both Q2 and RMSE, to evaluate if there was any statistically 

significant difference between the models as well.  

AUC scores from ROC and PR curves were also used to compare models. ROC curves 

represent the tradeoff between specificity and sensitivity of a model, while PR curves represent 

the tradeoff between precision and sensitivity. AUC scores represent the probability that a 

randomly selected positive instance is ranked higher than a randomly selected negative instance. 

An AUC value close to 1 indicates a high predictive power/high discrimination between negative 

and positive cases, while an AUC value below 0.5 indicates that the model’s predictions are 

essentially due to random chance.  

ROC curves visualize how correctly classified positive cases vary with incorrectly 

classified negative cases. Graphically, 1 – specificity (or false positive rate) is plotted against 

sensitivity (or the true positive rate). The calculations for these values are as follows35: 

𝑡𝑟𝑢𝑒	𝑝𝑜𝑠. 𝑟𝑎𝑡𝑒	 = 	𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 = 	 ,$2(	*-.%,%"(.
,$2(	*-.%,%"(.	3	4#1.(	&(5#,%"(.

   (2)  

𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠. 𝑟𝑎𝑡𝑒	 = 	1	 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = 	1 − 4#1.(	&(5#,%"(.
4#1.(	&(5#,%"(.	3	,$2(	*-.%,%"(.

   (3)  
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ROC curves are most commonly used for representing, evaluating, and comparing 

machine learning models.36 However, PR curves give better information when outcomes are not 

balanced–that is, the positive class is a rare outcome.36 PR curves plot precision against recall, 

with the calculations for these values as follows:37  

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = ,$2(	*-.%,%"(.
,$2(	*-.%,%"(.	3	4#1.(	*-.%,%"(.

	  (4)  

𝑟𝑒𝑐𝑎𝑙𝑙	(= 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) 	= ,$2(	*-.%,%"(.
,$2(	*-.%,%"(.	3	4#1.(	&(5#,%"(.

   (5)  

While it was expected that the positive class of “hits” would be a rare outcome among the 

training data, both ROC and PR curves were created and evaluated. Construction of ROC and PR 

curves require a binary outcome variable. In this study, the outcome variable of docking scores 

itself was continuous, but as described earlier, the ultimate goal in calculating docking scores 

was to determine which compounds should be considered “hits” and which ones should not. 

Thus, outcomes were dichotomized into binary variables based on the predetermined threshold 

of docking scores–ligands with docking scores more negative than the threshold were considered 

“hits” and assigned a value of 1 to be placed in the positive outcome class. The remaining 

ligands were assigned a value of 0, and placed in the negative outcome class.  

Additionally, a new variable to represent docking scores was created, scaling the original 

value by (-1). Glide docking scores are represented as negative numbers, with values that are 

more negative representing stronger binding. However, calculations for ROC and PR curves 

assume greater values of the outcome variable to be associated with the positive class. Following 

this data cleaning and preparation, ROC and PR calculations (and calculations of associated 

AUC scores) were made using R software packages plotROC and ROCR respectively, and 

plotted using ggplot2.35,37,38 Finally a one-way ANOVA was also conducted for the ROC-AUC 
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scores across the 3 sets of models, and the PR-AUC scores across the 3 sets of models, to 

determine if there was a statistically significant difference across the models. 

Finally, a one-way ANOVA was conducted for each measure across all models at a 

significance level of 0.05, to determine if the differences between models was statistically 

significant. Following the results of the comparisons and statistical analysis, one data splitting 

ratio would be selected for remaining analysis. Priority was given to factors with statistically 

significant differences across models in deciding which model setup was the most favorable.  

Additional Verification of Models: Inclusion Dependency 

Once a data splitting ratio was selected, a second round of model building was conducted 

to test the robustness of the models against the inclusion or exclusion of certain ligands from the 

training set. 5 models were built, all using the selected data splitting method, varying only the 

random seed used to allocate specific ligands to training, testing, and external validation sets.   

Following the construction of 5 such models, a one-way ANOVA was conducted on the 

Q2 values, to test for a statistically significant difference in the models dependent on ligand 

inclusion/exclusion. A statistically significant difference would indicate that the models change 

significantly based on small changes in the inclusion of certain ligands, indicating a weak model. 

Sample Predictions 

Next, sample docking score predictions were generated using the selected and verified 

QSAR model for the initial ligand library used to build the model (the combination of the NCI 

DTP compound set and Enamine Hit Locator Library). These predictions were aimed to be a 

final validation of the model’s predictive ability, aimed specifically at the ability for the model to 

accurately predict information about 2D ligands, since this would be the structure of any larger-
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scale screening performed with the selected QSAR models. For this reason, predictions were 

generated using 2D structures of the ligand library, rather than 3D structures.  

The predictions were analyzed using RMSE and capture of top scorers. RMSE was 

calculated over the difference between predicted scores and scores from the preliminary docking 

study, to quantify the average difference between predicted and “true” values. RMSE values 

were calculated overall, as well as by outcome classification in the preliminary study (separately 

ligands classified as positive, or “hits,” and for ligands classified as negative, or “misses”).  

Capture of top scorers refers to the percentage of ligands that were classified as hits in the 

preliminary study that would also be classified as hits based on predictive values. This serves as 

a practicality check on the models–even if a small degree of error exists between the specific 

docking scores outputted by the model, the model would still be practically effective if it 

captures a sufficient number of hits. Similar QSAR models and applications of AutoQSAR have 

achieved 90-95% capture of top scorers, which will serve as a standard for comparison.21,39 

Excluded methods: Larger-Scale Predictions 

Had the previous methods been successful, the next steps would have been to generate 

docking score predictions on larger-scale libraries, to use the finalized QSAR models to explore 

a wider segment of chemical space. The library of choice would have been the ZINC20 library, 

offering 230 million ready-to-dock ligand structures.19 Predictions would have initially been 

generated for the 13 million compound subset of ready-to-purchase compounds, to enable easy 

purchase and in-vitro verification of predicted hits. Depending on success, the screen could be 

scaled up to include a greater portion of the ready-to-synthesize library.  

Results 
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The following results are from the 4 distinct analyses conducted throughout the study 

methods: (1) preliminary docking study (2) analysis of varying data splitting ratios in QSAR 

model building; (3) analysis of overfitting and inclusion/exclusion dependency; (4) test 

predictions.  

Preliminary Docking Study  

The preliminary docking study resulted in the outputted docking scores for the top 

scoring compounds among the NCI DTP and Enamine Hit Locator Libraries. The calculated 

docking scores range from -5.2931 to -13.569. Based on the preliminary docking data, a 

threshold of -10 was selected as the cutoff for outcomes that were considered “hits”–if a ligand 

had a docking score ≤ -10, it was included in the positive outcome of hits; otherwise, it was 

included in the negative outcome class of misses. Based on this threshold, only 4.1% of 

compounds included in the preliminary dataset are counted as hits.  

Data Splitting Ratios  

3 sets of QSAR models were constructed using 3 different data splitting ratios, to 

determine if the optimal 64:16:20 data splitting ratio for machine learning held true for 

AutoQSAR models as well. Table 1 includes a summary of measures used to compare and assess 

the predictive ability of the models. Table 2 contains the results of one-way ANOVAs for each 

of these measures. At a predetermined significance level of 0.05, only the measures of Q2 and 

RMSE had statistically significant differences across models, and were thus given priority in 

selecting the most favorable model.  

The AUC scores of the PR models were ignored in determining the most favorable 

model, since scores below 0.5 indicate that there is less than a 50% chance that a randomly 

selected positive instance is ranked higher than a randomly selected negative instance, and model 
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predictions are due to random chance. Because all models had scores below 0.5, this served as an 

initial indicator of the poor predictive power of the models.  

Based on these considerations, While Model B had the smallest RMSE value, Model A 

had a Q2 value closest to 1.0 and an ROC-AUC score closest to 1.0 as well. Model A, the model 

built using a 64:16:20 data splitting ratio, was selected for further analysis.  

 

Table 1. Summary of model comparison metrics across all 3 data splitting ratios. 

 Q2 RMSE ROC-AUC PR-AUC 

Model A (64:16:20) 0.87106 0.59421 0.92435 0.38665 

Model B (70:15:15) 0.87029 0.58852 0.92219 0.40152 

Model C (60:20:20) 0.85689 0.61476 0.91984 0.39659 

 

Table 2. One-way ANOVA results for comparison metrics across 3 different data splitting ratios. 

  Df Sum Sq Mean Sq F value Pr (>F) 

Q^2 Model 2 0.001270 0.0006349 16.63  1.96e-05 

 Residuals 27 0.001031 0.0000382     
       

RMSE Model 2 0.003811 0.0019054 9.097 0.000955 
 Residuals 27 0.005655 0.0002094   

       
ROC-AUC Model 2 0.0001018 5.088e-05 1.755 0.192 

 Residuals 27 0.0007828 2.899e-05   
       

PR-AUC Model 2 0.001147 0.0005737 1.347 0.277 
 Residuals 27 0.011503 0.0004261   
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The ROC curves and PR curves also provide valuable information regarding the models. 

The ROC curves for all 3 model setups are shown in figure 6. The curves appear to be closely 

approaching the point of a perfect test (100% sensitivity and 100% specificity) and are 

graphically far from the line of random performance, with AUC scores close to 1.0, indicating 

strong predictive power of the models.  

However, given that the outcomes in the study were imbalanced, with positive class 

outcomes being rare, PR curves should be given precedence as an indicator of model predictive 

ability. Figure 7 shows the PR curves for each of the 3 models. The curves appear far from the 

point of a perfect test and below the line of random chance, with AUC scores for each version of 

each model falling below 0.5. Not only does this indicate that the model has a poor predictive 

ability, but also is indicative of potential overfitting due to inflated Q2 values.  

 

Figure 6. ROC Curves for each set of QSAR models, trained using different data splitting ratios. Black dotted line 

indicates the line of random chance. Color-coded ROC curves are associated with particular AUC scores shown in 

graph legends.  
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Figure 7. PR curves for each set of QSAR models, trained using different data splitting ratios. Black dotted line 

indicates the line of random chance. Color-coded ROC curves are associated with particular AUC scores shown in 

graph legends.  

 

Overfitting and Inclusion/Exclusion Dependency 

Following the selection of the 64:16:20 data splitting ratio, 5 QSAR models were then 

built using this same ratio, with 5 different random seeds used to categorize ligands from the 

training set into training, test, and external validation subsets. Table 3 includes the results of a 

one-way ANOVA on the Q2 values for these models. At a significance level of 0.05, there is a 

significance difference between the predictive powers of each model. This demonstrates that the 

models change significantly depending on small changes in the inclusion or exclusion of certain 

ligands. This is characteristic of model overfitting, and further reduces the validity of the 

generated QSAR models and their predictions.  
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Table 3. One-way ANOVA results of Q2 across models created to test inclusion dependency   

 Df Sum Sq Mean Sq F value Pr (>F) 

Model 4 0.003238 0.0008096 12.79 2.52e-05 

Residuals 20 0.001266 0.0000633     

 

Test Predictions 

Although the previous results already present two indicators of poor predictability from 

the QSAR models, the third and final planned analysis was carried out as confirmation. Test 

predictions were generated using 2D structures of the same ligands used to build the selected 

QSAR model. Table 4 contains a summary of relevant results from these predictions. While the 

overall RMSE value is deceptively low (an average error of 0.6 for a metric ranging from 

roughly -5 to -13), RMSE values separated by positive and negative class outcomes (hits and 

misses) paint a clearer picture. The RMSE was 1.4 for compounds that should have been 

classified as hits at a predetermined threshold of -10, while RMSE was only 0.5 for compounds 

that should have been classified as misses. This demonstrates that the model has difficulty 

discerning positive cases, and has a greater error in predicting hits.  

Further, the percent of hits captured in the predictive screen was only 64%, meaning only 

64% of compounds labeled as hits based on the preliminary docking study were identified as hits 

based on the QSAR predictions. Compared to other models cited in industry use which achieve 

90-95% capture of top scorers, this provides further evidence that the generated QSAR models 

would not serve a practical predictive purpose.21,39 
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Table 4. Measures of accuracy of sample prediction; RMSE values of predicted docking scores 

versus preliminary docking scores using QSAR Model A, and percent capture of top-scorers  

RMSE 

Overall “Hits” “Misses” 

0.59614 1.4309 0.52398 

Percent Hits Captured (%) 

64.8148 

 

Discussion 

Ultimately, AutoQSAR modeling for this particular protein system was unsuccessful at 

this time. The low AUC-PR scores, susceptibility of the models to change on the basis of 

randomized ligand inclusion or exclusion, high error upon external verification in predicted 

docking scores for compounds that should have been labeled hits, and low ability to capture top 

scorers all indicate a low predictive ability and low practical application of the models. 

Several factors may have factored into the failure of these specific AutoQSAR model, 

many of which do not directly relate to the inapplicability of automated QSAR, but rather other 

factors throughout the study. First, the starting structure of the target protein (MYND domain of 

ETO2), was obtained from NMR data as opposed to crystallography with a co-crystallized 

ligand. While NMR data is an acceptable form of structural information for target proteins under 

Schrödinger’s protocol, crystallography based structures are more commonly seen in literature 

on in-silico docking. The use of an NMR structure may have introduced a degree of uncertainty 

in foundational information regarding the binding pocket.  

Additionally, the binding pocket was non-traditional when compared to binding pockets 

on other drug targets. The binding pocket of MYND is more shallow than most, and natively 
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binds to a peptide. This study was specifically exploring drug-like compounds as binders for 

future pharmaceutical or therapeutic use, but the binding pocket may not have been best suited 

for these interactions.  

Likely even more significantly, no drug-like binders were known or verified at any point 

during the study. This meant that the training set used to build the models may have been flawed, 

and compounds that were listed as hits may not have been true binders of the MYND domain. 

Between the non-traditional binding pocket and lack of verification of preliminary docking data, 

it is possible that scores from the preliminary docking study were falsely driven by excessive 

weight given to factors such as pi-stacking or hydrogen, which would not have been present to 

the same degree in an in-vitro interaction of the same ligand and target. This would further 

interfere with the AutoQSAR calculated descriptors and patterns found in these descriptors, since 

many ligands included in the model may not have truly been hits and should not be contributing 

to this pattern. Finally, the high variability and susceptibility of the models to change depending 

on the inclusion and exclusion of certain ligands serves as further confirmation that the 

descriptor patterns found across ligands were not very robust.  

 The use of fully automated QSAR modeling may have also imposed further limitations 

on the study. While it can be argued that machine learning/artificial intelligence-based models 

and software have a better predictive power and are able to discern a greater number of the 

descriptors to be factored into a QSAR model, it is possible that structural chemists with greater 

field experience may have been able to discern more relevant information regarding the chemical 

descriptors that should have been factored into the model. Low predictability of docking scores 

for the same ligands used to build the model when using a 2D ligand format as opposed to the 

original 3D format the model was built from further highlights potential issues in AutoQSAR’s 
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descriptor calculations. It is possible that these calculated descriptors are overly reliant on 

characteristics of the 3D posed ligands, as opposed to inherent molecular characteristics.  

This being said, there are several limitations to generalizing the results of this study. Drug 

discovery is so highly system-specific that the results and issues encountered in this study may 

be entirely different to those encountered by another study following an identical protocol with a 

new protein system. Several variables played a role in the outcomes of the study–the non-

traditional binding pocket, the lack of existing drug-like binders, the use of an NMR structure, to 

name a few–and without independently testing changes in each of them, it is impossible to say 

which ones or if all played a role in the outcomes of the study.  

Future studies may be conducted to continue the exploration of AutoQSAR with this 

protein system, with some modifications. Verification of hits from preliminary in-silico docking, 

using traditional methods such as NMR, may be useful prior to building QSAR models. This 

would allow the use of a smaller number of verified hits as opposed to a larger number of 

unverified hits, providing a stronger foundation for the model. The patterns picked up by the 

AutoQSAR descriptors may have a greater degree of accuracy and precision given this. 

Additionally, beginning with an x-ray crystallography structure of the target protein with a co-

crystallized ligand may provide more robust information regarding the binding pocket, which 

may be especially essential given the shallow and non-traditional nature of the pocket.   

While the results of this study did not produce a successful QSAR model for future use in 

generating docking predictions, it did reveal many limitations of the protein system that may 

need to be overcome before future in-silico experiments are conducted with this system. It also 

demonstrated some of the reasons that, while in-silico drug discovery may serve as a supplement 
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to traditional methods, it is not yet advanced enough to become a complete replacement for 

traditional methods of drug discovery.  

 

References 

1.  Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-
mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res. 2021;40(1):355. 
doi:10.1186/s13046-021-02157-5 

2.  Guo X, Plank-Bazinet J, Krivega I, Dale RK, Dean A. Embryonic erythropoiesis and 
hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin 
organization. Nucleic Acids Res. 2020;48(18):10226-10240. doi:10.1093/nar/gkaa736 

3.  Sickle cell anemia - Symptoms and causes - Mayo Clinic. Accessed January 27, 2022. 
https://www.mayoclinic.org/diseases-conditions/sickle-cell-anemia/symptoms-causes/syc-
20355876 

4.  What is Sickle Cell Disease? | CDC. Accessed January 27, 2022. 
https://www.cdc.gov/ncbddd/sicklecell/facts.html 

5.  Kato GJ, Piel FB, Reid CD, et al. Sickle cell disease. Nat Rev Dis Primers. 2018;4:18010. 
doi:10.1038/nrdp.2018.10 

6.  How Common Is Sickle Cell Disease? Accessed January 27, 2022. https://sickle-
cell.com/statistics 

7.  The State of Sickle Cell Disease: 2016 Report. The American Society of Hemotology; 
2016:1-31. 

8.  Akinsheye I, Alsultan A, Solovieff N, et al. Fetal hemoglobin in sickle cell anemia. Blood. 
2011;118(1):19-27. doi:10.1182/blood-2011-03-325258 

9.  Demirci S, Leonard A, Essawi K, Tisdale JF. CRISPR-Cas9 to induce fetal hemoglobin 
for the treatment of sickle cell disease. Mol Ther Methods Clin Dev. 2021;23:276-285. 
doi:10.1016/j.omtm.2021.09.010 

10.  Díaz-Eufracio BI, Naveja JJ, Medina-Franco JL. Protein-Protein Interaction Modulators 
for Epigenetic Therapies. Adv Protein Chem Struct Biol. 2018;110:65-84. 
doi:10.1016/bs.apcsb.2017.06.002 

11.  Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J 
Pharmacol. 2011;162(6):1239-1249. doi:10.1111/j.1476-5381.2010.01127.x 

12.  Zhou S-F, Zhong W-Z. Drug design and discovery: principles and applications. 
Molecules. 2017;22(2). doi:10.3390/molecules22020279 



 Agrawal 30 

13.  Nazarova AL, Katritch V. It all clicks together: In silico drug discovery becoming 
mainstream. Clin Transl Med. 2022;12(4):e766. doi:10.1002/ctm2.766 

14.  Brogi S, Ramalho TC, Kuca K, Medina-Franco JL, Valko M. Editorial: In silico Methods 
for Drug Design and Discovery. Front Chem. 2020;8:612. doi:10.3389/fchem.2020.00612 

15.  Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. 
Comput Biol Med. 2021;137:104851. doi:10.1016/j.compbiomed.2021.104851 

16.  Liu Y, Chen W, Gaudet J, et al. Structural basis for recognition of SMRT/N-CoR by the 
MYND domain and its contribution to AML1/ETO’s activity. Cancer Cell. 
2007;11(6):483-497. doi:10.1016/j.ccr.2007.04.010 

17.  Bender BJ, Gahbauer S, Luttens A, et al. A practical guide to large-scale docking. Nat 
Protoc. 2021;16(10):4799-4832. doi:10.1038/s41596-021-00597-z 

18.  Neumann A, Marrison L, Klein R. Relevance of the Trillion-Sized Chemical Space 
“eXplore” as a Source for Drug Discovery. ACS Med Chem Lett. Published online March 
16, 2023. doi:10.1021/acsmedchemlett.3c00021 

19.  Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to 
discover chemistry for biology. J Chem Inf Model. 2012;52(7):1757-1768. 
doi:10.1021/ci3001277 

20.  Soares TA, Nunes-Alves A, Mazzolari A, Ruggiu F, Wei G-W, Merz K. The (Re)-
Evolution of Quantitative Structure-Activity Relationship (QSAR) Studies Propelled by 
the Surge of Machine Learning Methods. J Chem Inf Model. 2022;62(22):5317-5320. 
doi:10.1021/acs.jcim.2c01422 

21.  Dixon SL, Duan J, Smith E, Von Bargen CD, Sherman W, Repasky MP. AutoQSAR: an 
automated machine learning tool for best-practice quantitative structure-activity 
relationship modeling. Future Med Chem. 2016;8(15):1825-1839. doi:10.4155/fmc-2016-
0093 

22.  Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand 
preparation: parameters, protocols, and influence on virtual screening enrichments. J 
Comput Aided Mol Des. 2013;27(3):221-234. doi:10.1007/s10822-013-9644-8 

23.  Schrödinger, LLC. Schrödinger Release 2022-3: Protein Preparation Wizard. 
Schrödinger, LLC; 2021. 

24.  Schrödinger, LLC. Schrödinger Release 2022-3: LigPrep. Schrödinger, LLC; 2021. 

25.  Schrödinger, LLC. Schrödinger Release 2022-3: Glide. Schrödinger, LLC; 2021. 

26.  Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring 
incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med 
Chem. 2006;49(21):6177-6196. doi:10.1021/jm051256o 



 Agrawal 31 

27.  Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate 
docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 
2004;47(7):1739-1749. doi:10.1021/jm0306430 

28.  NCI Database Download Page. Accessed April 2, 2023. 
https://cactus.nci.nih.gov/download/nci/ 

29.  Hit Locator Library - Enamine. Accessed April 2, 2023. https://enamine.net/compound-
libraries/diversity-libraries/hit-locator-library-200 

30.  Warr WA, Nicklaus MC, Nicolaou CA, Rarey M. Exploration of ultralarge compound 
collections for drug discovery. J Chem Inf Model. 2022;62(9):2021-2034. 
doi:10.1021/acs.jcim.2c00224 

31.  Schrödinger, LLC. Schrödinger Release 2022-3: AutoQSAR. Schrödinger, LLC; 2021. 

32.  Schrödinger, LLC. Schrödinger Release 2022-3: Canvas. Schrödinger, LLC; 2021. 

33.  Joseph VR. Optimal ratio for data splitting. Statistical Analysis and Data Mining: The 
ASA Data Science Journal. Published online April 4, 2022. doi:10.1002/sam.11583 

34.  RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC; 2020. 

35.  Sachs MC. plotROC: A Tool for Plotting ROC Curves. J Stat Softw. 2017;79. 
doi:10.18637/jss.v079.c02 

36.  Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. In: 
Proceedings of the 23rd International Conference on Machine Learning  - ICML ’06. 
ACM Press; 2006:233-240. doi:10.1145/1143844.1143874 

37.  Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier 
performance in R. Bioinformatics. 2005;21(20):3940-3941. 
doi:10.1093/bioinformatics/bti623 

38.  Wickham H. Ggplot2: Elegant Graphics for Data Analysis (Use R!). 2nd ed. Springer; 
2016:276. 

39.  Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N, et al. A review on 
machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J. 
2021;19:4538-4558. doi:10.1016/j.csbj.2021.08.011 


