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1 Introduction

Radon is a naturally occurring radioactive gas and an intermediate product of the decay of

uranium. Exposure to radon is the second leading cause of lung cancer in the United States

and is hypothesized to cause strokes [10] and other cardiovascular events such as clonal

hematopoiesis of indeterminate potential [6], also known as CHIP. Additionally, radon levels

appear to be rising across North America [5] and may be linked to climate change [13]. Thus,

it is in our interest to model radon levels at a granular level to assess the epidemiological

risks associated with radon exposure based on geographic location.

One attempt at fitting such a model occurred in the late 1980’s and early 1990’s, when the

US Environmental Protection Agency created a map of three distinct radon zones. The zones

were constructed using indoor radon measurement data as well as atmospheric, geologic and

residential factors. This map is known as the EPA Map of Radon Zones but was also called

the Geologic Radon Potential map by the US Geologic Survey [14], and sought to assign a

metric to each county for the relative risk of harmful radon exposure. The primary weakness

of this map is that it has fairly low spatial resolution, with one of three distinct levels assigned

to each county. In 1996, researchers at Lawrence Berkeley labs used Bayesian hierarchical

modeling on short term mean indoor radon measurement data to develop a more granular

picture of radon levels [8]. But, the short-term data on indoor radon concentrations used

in this study is highly variable and resulted in high predictive error estimates. In 1999,

Gelman et al. used a survey of long-term mean indoor radon measurements to fit a similar

hierarchical model with improved predictive accuracy [3]. However, this model could likely

be improved by accounting for the other factors used in the EPA’s radon zones map. Progress

on statistical modeling of radon exposure using these data sets in the US has stagnated since

the late 1990s, but a recent study by Li et al. used a comprehensive data set with over 500,000

observations and 68 covariates to develop a two-stage ensemble learning model with highly

promising results [7]. However, we believe that there is still quite a bit of valuable information
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that can extracted from the EPA’s short-term survey and geologic radon potential data.

The goal of this analysis is to pursue the aforementioned areas for improvement and create a

refined spatial model for the geographic distribution of indoor radon with some quantification

of uncertainty accounting for geologic, atmospheric, and residential factors. Hence, we will

provide more granular, improved estimates of radon exposure. To achieve this, we leverage

kriging, latent process modeling and other spatial modeling techniques to analyze the State

Residential Radon Survey and Geologic Radon Potential data.

2 Data

2.1 State residential radon survey (SRRS) data

The State Residential Radon Survey is a series of household-level short-term mean surveys

of the lowest residential level of 63,291 homes in 42 US states and 6 native American territo-

ries conducted between 1986 and 1992 [2]. To collect the radon measurement data, a radon

measurement device called a charcoal canister (shown in Figure 1) was placed in the home

of each participant for two days, thus measuring the daily average indoor radon concentra-

tion. It is worth noting that the location of the measurement device within the home is a

confounding variable here since some homes have basements, so the altitude of the sensor

with respect to the home may vary.

This survey used a fairly complex sampling methodology. More specifically, researchers par-

titioned the United States into 22 strata across 10 regions to ensure that the survey provided

coverage to areas that were expected to have differing levels of radon. More specifically, re-

gions with higher expected radon measurements were biased in the sample. The effect of this

sampling methodology is that the data is more densely packed in areas with high expected

radon and more sparse in areas with low expected radon. The reason behind this seems to

be that, in an epidemiological context, it may be better to overestimate radon in the interest
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Figure 1: Charcoal canister from Radon Testing Corporation of America, similar to those
used in the State Residential Radon Survey

of mitigating negative health effects as often as possible. We will take account of this when

interpreting the final results of the analysis. The strata were constructed based on limited

radon testing data available circa 1988 [2].

2.2 Geologic radon potential (GRP) and radon index (RI) data

The EPA’s Geologic Radon Potential map (Figure 2) from 1993 was constructed using indoor

radon measurements (pCi/L) from the State Residential Radon Survey, aerial radioactivity

(ppm eU), geologic composition, soil permeability and architecture type and classified each

county into one of three levels:

• “high” (estimated indoor radon concentration > 4 picocuries per liter, or pCi/L) –

zone 1

• “moderate/variable” (2–4 pCi/L) – zone 2

• “low” (< 2 pCi/L) – zone 3

Notably, the GRP classification is a trichotimization of the radon index (RI) classification.

With 15 distinct levels, the radon index provides a more granular but also somewhat less

robust view of variability in geologic, atmospheric and residential features across the United

States. This set of measures and classifications was selected since each of them has demon-
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Figure 2: Map of Geologic Radon Potential (GRP) zones from the EPA, 1993

strated a strong correlation with radon measurements. The radon index and geologic radon

potential values were computed for each county using the method outlined in Figure 3.

3 Methods

3.1 Transformation of the response

Before I begin describing the models used in this project, it is important to address the use

of the transformed radon measurement values in the coming analyses. Across all of these

methods, the models will be fit on the transformed radon values Z = log(log(Y + 4)) where

Y is the vector of SRRS values in pCi/L and transformed back to the standard scale after

prediction. We use this transformation to coerce the response to more closely follow a normal

distribution according to a Kolmogorov-Smirnov test [15].

3.2 Kriging

Kriging, also known as Gaussian process modeling [18], is the most popular technique in spa-

tial statistics and was created in 1979 by Noel Cressie [12]. The basic model is a Gaussian
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Figure 3: Construction methodology for Radon Index (RI) values

process whose mean is defined as a linear function of covariates, and whose covariance is a

nonlinear function of the spatial coordinates; the latter feature gives the model its distinc-

tive spatial structure [16]. As an aside, we will first discuss restricted maximum likelihood

(REML) estimation since it is commonly used to obtain estimates for the parameters of this

model.

3.2.1 Restricted maximum likelihood estimation

Restricted maximum likelihood or REML estimation is generally considered the best method

for point estimation in Gaussian spatial models. While this is a computationally complex

technique, the natural correspondence of maximum likelihood methods with Bayesian proce-

dures allows for quantification of uncertainty in parameter estimates. Additionally, maximum

likelihood methods are flexible in the sense that many models can be formulated and then

compared using likelihood ratio tests or model selection criteria such as AIC or BIC. The

purpose of using REML estimation as opposed to standard maximum likelihood estimation

in this case is that it allows for approximately unbiased estimation of the kriging parameters.

This description of REML estimation follows from Smith [16].
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To illustrate this process, begin with n elements of data and q covariates in the model and

let W = ATZ be a vector of n− q linearly independent contrasts. The n− q columns of A

are linearly independent and ATX = 0, so we find that

W ∼ N [0, ATΣA].

Thus, with Σ = αV (θ), the joint density of W is given by

(2π)−(n−q)/2α−(n−q)/2|ATV (θ)A|−1/2e−
1
2α

WT (ATV (θ)A)−1W

and the negative log likelihood is given by

lW (α, θ) =
n− q

2
log(2π) +

n− q

2
log(α) +

1

2
|ATV (θ)A|+ 1

2α
W T (ATV (θ)A)−1W.

From here, we must minimize lW (α, θ) with respect to α. It can be shown that this is

achieved in setting α̃ = G2(θ)/(n− q). Hence, with some simplification, we have

l∗W (θ) =
n− q

2
log(2π) +

n− q

2
log(

G2(θ)

n− q
)− 1

2
log|XTX|+

1

2
|XTV (θ)−1X|+ 1

2
log|V (θ)|+ n− q

2

Now that we have simplified the restricted likelihood and given an overview of REML esti-

mation, we can apply it to the specific case of spatial models constructed via a technique

known as kriging.

3.2.2 Overview and derivation of the kriging estimators

The generalized problem we attempt to solve via kriging [12] is as follows: given observations

of a vector field z(s1), ..., z(sn), predict the value of z(s0) for some s0 ̸∈ {s1, ..., sn}.

To begin the derivation of the kriging estimators, let Z = (z(s1), ..., z(sn))
T and z0 = z(s0).
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From this we need to know the joint covariance matrix of Z and z0; let’s suppose

Cov

Z

z0

 =

Σ τ

τT σ2
0

 ,

where Σ is the covariance matrix of Z, σ2
0 is the variance of z0 and τ is the vector of cross-

covariances between Z and z0. In terms of the common scale parameter α and functions

V, ω, and ν0 of a finite-dimensional parameter θ, we can write

Σ = αV (θ), τ = αω(θ), σ2
0 = αν0(σ)

The model in this case will be of the form Z = Xβ + η for some matrix of covariates X and

we also assume that z0 = xT
0 β + η0 with x0 known and both η and η0 representing random

errors with mean 0. This is called the universal kriging problem. We consider predictors of

the form

ẑ0 = λTZ

subject to the constraint

λTX = xT
0 .

The reason for this constraint is so that the procedure will work without assuming β is

known. The prediction error can be written as

z0 − ẑ0 = xT
0 β + η0 − λT (Xβ + η)

= η0 − λTη.

The mean squared prediction error then becomes

E{(z0 − ẑ0)
2} = σ2

0 − 2λT τ + λTΣλ.
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Thus we must solve the constrained optimization problem of minimizing the mean squared

prediction error subject to λTX = xT
0 . To do this, we will consider the Lagrangian

L = σ2
0 − 2λT τ + λTΣλ− 2(λTX − xT

0 )γ

where 2γ is a vector of Lagrange multipliers. According to Lagrange multiplier theory, the

optimal λ is achieved at some stationary point of L. Differentiating with respect to λ yields

γ = (XTΣ−1X)−1(x0 −XTΣ−1τ)

with the final result being

λ = Σ−1τ + Σ−1X(XTΣ−1X)−1(x0 −XTΣ−1τ)

and the predictor

ẑ0 = λTZ = (x0 −XTΣ−1τ)T β̂ + τTΣ−1Z

where β̂ = (XTΣ−1X)−1XTΣ−1Z from the method of generalized least squares. As a final

point of this section, the mean squared prediction error can be written as

E{(z0 − ẑ0)
2} = σ2

0 − 2λT τ + λTΣλ.

= σ2
0 − τTΣ−1τ + (x0 −XTΣ−1τ)T (XTΣ−1X)−1(x0 −XTΣ−1τ).

3.2.3 Model specification for SRRS analysis

For this analysis, I will only be using the EPA’s State Residential Radon Survey (SRRS)

data.

To take advantage of the SRRS data’s zip-code level spatial resolution, we consider a model
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of the form

Zi =

q∑
k=1

xikβk +
m∑
j=1

aijWj + ϵi

where

• Zi is the transformed radon value at home i, i ∈ {1, ..., n};

• xik, k ∈ {1, ..., q} are the values of q covariates (needed for later analyses involving

atmospheric and geologic factors as well as other surveys);

• β1, ..., βq are the regression parameters, but note that currently we only have one β

since there are no linear covariates used for this analysis;

• Wj is the value of an unobserved latent process at sampling point (zipcode) j;

• aij is 1 if home i is in zipcode j and 0 otherwise;

• ϵi is the random error.

The values {aij} comprise an m × n incidence matrix A. We assume that {Wj} form a

Gaussian process with mean 0 and covariances

Cov{Wj,Wj′} = σ2
W cjj′

where σ2
W is the variance of the latent process and cjj′ , j, j

′ ∈ {1, ...,m} are spatial correla-

tions. We use an exponential structure for the correlations such that cjj′(ρ) = exp (−djj′/ρ),

where djj′ is the Euclidean distance between sampling points j and j′ and ρ is the spatial

range parameter, which characterizes the extent of spatial autocorrelation in the data.

The final assumption of the model is that

ϵi ∼ N [0, σ2
ϵ ].

11



Thus, we can represent the model in matrix notation as

Z = Xβ + AW + E,

W ∼ Nm[0, σ
2
WC(ρ)],

E ∼ Nn[0, σ
2
ϵ In]

such that the covariance matrix of Z is

Σ = σ2
WAC(ρ)AT + σ2

ϵ In.

If we separate out a common scale parameter α such that Σ = αV (θ), α = σ2
W , θ1 = σ2

ϵ/σ
2
W

and θ2 = ρ, then we have

V (θ) = AC(θ2)A
T + θ1In.

From here, we use the Sherman-Morrison-Woodbury formulas [9] to evaluate V (θ)−1 and

det(V (θ)) as needed for the kriging algorithm. In general, the Sherman-Morrison-Woodbury

identities are

(A+BCD)−1 = A−1 − A−1C(B−1 +DA−1C)−1DA−1

and

det(A+BCD) = det(B−1 +DA−1C) det(B) det(A)

assuming that the matrices A,B,C, and D have suitable dimensions for the associated

matrix products. Notably, these are used since they allow for much faster computation of

the determinant and inverse of the spatial covariance matrix [9].

To obtain the predicted values for the maps and model validation statistics, we will reverse

the loglog transformation.
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3.2.4 Integration of GRP data, model specification for SRRS+GRP integrated

analysis

Before I describe this analysis in further detail, it is worth noting that it was eventually

discarded and was an ad-hoc procedure used to handle the incorporation of the GRP values.

However, it is important to describe the methodology because it influenced the development

of the corresponding latent process model and allows us to compare the two approaches to

integrating the GRP values.

For this analysis, I will be using the EPA’s Geologic Radon Potential (GRP) data in con-

junction with the SRRS data. Each coordinate observed in the SRRS data was assigned the

GRP value for its respective county.

To properly specify this model, we note that the GRP data was formulated using the SRRS

data and that their respective values agree about 45% of the time [9] at the level of individual

observations and 72% of the time at the county level [1]. Hence, there is some very clear

overlap between these measures so our methodology for combining the data sources will not

treat the SRRS and GRP data as independent and will instead focus on the conditional

distributions of SRRS on GRP and vice versa.

As in the original kriging analysis, we write Z = log(log(Y + 4)) where Y is the measured

value from SRRS. Notably, GRP is a classification of the assumed background level of radon.

We will call the true transformed background level of radon T . Thus, in this phase of

analysis, we must allow for random variation between the background level and the SRRS

observations. The model assumed here is

T | Z ∼ N [Z, σ2]
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GRP =


1 if T > t∗1

2 if t∗2 < T < t∗1

3 if T < t∗2

where σ2 is an additional variance parameter and t∗1 and t∗2 are the transformed values of

the interval endpoints for the GRP ranges, or log(log(8)) = 0.7321 and log(log(6)) = 0.5832

respectively.

In this model, we require an estimate of the standard deviation σ, which we will obtain via

maximum likelihood estimation. The probability mass function of GRP given a Z value is

P (Z|GRP ) =


1− Φ

(
t∗1−Z

σ

)
if GRP = 1

Φ
(

t∗1−Z

σ

)
− Φ

(
t∗2−Z

σ

)
if GRP = 2

Φ
(

t∗2−Z

σ

)
if GRP = 3

where Φ is the standard normal cumulative distribution function. The likelihood function is

given by taking the product

L(σ) =
3∏

i=1

P (GRP = i|Z, σ)

and the MLE is derived using a simple one-dimensional optimization of logL(σ). For Ten-

nessee, this procedure yields an MLE of σ̂ = 0.2997.

Now, we consider the conditional expectation of T given Z and GRP . Given T ∼ N [µ, σ2],

we want E{T | a < T < b}. For µ = 0, σ = 1, we have

E{T | a < T < b} =

1√
2π

∫ b

a
te−t2/2dt

Φ(b)− Φ(a)
=

ϕ(a)− ϕ(b)

Φ(b)− Φ(a)
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where ϕ(t) is the standard normal density. We can extend this to general µ, σ with

E{T | a < T < b} = µ+ σ ·
ϕ(a−µ

σ
)− ϕ( b−µ

σ
)

Φ( b−µ
σ
)− Φ(a−µ

σ
)

Applying this to each of the cases a = −∞, b = t∗2; a = t∗2, b = t∗1; a = t∗1, b = ∞ for

GRP = 1, 2, and 3 respectively with µ = Z and σ = σ̂, we can obtain Z∗ = E{T | Z,GRP}

for each pair of (Z,GRP ) in the data set and repeat the kriging algorithm using the newly

constructed Z∗ values.

To obtain the predicted values for the maps and model validation statistics, we will reverse

the loglog transformation.

3.3 Latent process modeling

Also known as latent variable models or Gaussian process models, latent process models are

a flexible Bayesian modeling technique that relate observed data to some set of unobservable

parameters. Notably, in the SRRS+GRP kriging analysis, we condition the background

indoor radon concentration on the observed values. However, it seems somewhat more

rational to reverse this conditioning. The latent process modeling approach and associated

computational tools will allow us to structure our model such that the observed radon values

will be conditioned on the background indoor radon concentration. Conceptually, we are

treating the observed radon values as noisy samples from the true distribution of radon.

3.3.1 Bayesian hierarchical models

Latent process models are often represented in a Bayesian hierarchical formulation, the

general form of which can be described as follows: Let yi be an observation and θi be

a parameter that dictates the generating process for yi. Assume also that each θi is iid
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according to a hyperparameter ϕ. Thus, the model can be expressed as

yi|θi, ϕ ∼ P (yi|θi, ϕ)

θi|ϕ ∼ P (θi|ϕ)

ϕ ∼ P (ϕ)

Thus according to Bayes’ theorem, we note that P (θi, ϕ|y) ∝ P (yi|θi)P (θi|ϕ)P (ϕ). The most

common techniques used for this sort of sampling problem are called Markov Chain Monte

Carlo (MCMC) methods.

3.3.2 Model specification for SRRS analysis

Let Z ∈ Rm be the vector of transformed latent process values for each zipcode. Additionally,

let the Gaussian spatial process have the covariance matrix K ∈ Rm×m defined such that

K(x|α, ρ, σ)i,j = α2 exp (− 1

2ρ2
d2ij) + δi,jσ

2

where dij is the Euclidean distance between sampling locations i and j in terms of their

coordinates, as defined in the kriging analysis. Further, α is the marginal or spatial standard

deviation, σ is the random standard deviation, and ρ is the spatial range parameter and

δi,j = 1 if i = j and 0 otherwise. Note that this is known as the Kronecker delta function

and is adds the fixed random variance to the diagonal of K to ensure that it is positive

definite. Now, let Z̃ ∈ Rm×d be a matrix of transformed SRRS values where m is the

number of zip codes and d is the maximum number of SRRS samples amongst the zip

codes. Hence, each row is the vector of transformed SRRS observations at the corresponding

zipcode. Note that we will ignore the empty cells of this matrix since the number of SRRS

samples is not constant across zipcodes in the data set. Thus, we consider a model of the
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form

Z̃i|Zi
iid∼ N(Zi, σ

2)

where Z̃i is a vector of transformed radon values at zipcode i and Zi ∈ R is the value of the

latent process on the loglog scale at zipcode i with Z = LKη ∈ Rm where η is a vector of iid

standard normal random variables. Here, LK is the Cholesky decomposition of the spatial

covariance matrix K where dij is the Euclidean distance between sampling locations i and j

in terms of their coordinates, as defined in the kriging analysis. The Cholesky decomposition

is a decomposition of a positive definite matrix into the product of a lower triangular matrix

and its transpose. The use of this decomposition is what allows us to simulate a spatial

process with the desired covariance structure according to the kernel function K(x|α, ρ, σ).

It is also worth noting that K corresponds to Σ in the kriging analysis. The difference here

is that K uses the quadratic exponential covariance function and Σ uses the exponential

covariance function. The reason for this distinction is related to our use of STAN, which I

will describe in more detail in the coming sections. More specifically, STAN does not include

the exponential covariance function as a precoded option. Additionally, the two functions

seem to be near enough equivalent at this spatial scale for practical estimation and prediction

problems.

Prior distributions for the associated model parameters are given by

σ ∼ Γ(1, 1)

η1, ..., ηm
iid∼ N(0, 1)

α ∼ Γ−1(1, 1)

ρ ∼ Γ−1(101, 0.5)

One choice to note is that we place a strict prior on ρ to ensure convergence of the MCMC
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on a numerical scale consistent with the range of interpolation. The other prior distributions

are quite commonly used for this sort of analysis and are provided in various examples of

similar models in the STAN manual [17], but could be subject to further tuning in the future.

In general, we seek to select prior distributions that ensure a well-behaved MCMC.

To compute predicted values for new coordinate values, we will use the algorithm outlined

in the appendix titled Algorithm for predictions from latent process models. At a high level,

we use the kriging formula for predicted values in each iteration of the MCMC and take

a simple average over the iterations for each new set of coordinates. Then we reverse the

original loglog transformation to obtain the predicted values.

3.3.3 Model specification for SRRS+GRP integrated analysis

For this analysis, I will be using the EPA’s Geologic Radon Potential (GRP) map in con-

junction with the SRRS data. For use in this analysis, each coordinate observed in the SRRS

data was assigned the GRP value for its respective county.

We start with the same model specifications as in the latent process model for the SRRS

data. In addition, G ∈ {1, 2, 3}m where each value of G is the geologic radon potential of

the associated zipcode.

Let B = (b1, b2, b3) represent the group mean observed transformed radon values associated

with each level of GRP. Based on the EPA’s indoor radon concentration ranges associated

with each GRP zone, we expect that b3 ∈ [0, 2], b2 ∈ [2, 4], and b1 ∈ [4,∞]. In practice, we

will transform the endpoints of these intervals to the loglog scale.

We construct the prior distribution for bi as

bi ∼ N [log(log(2 ∗ (3− i) + 5)), 0.01], i = 3, 2, 1

where 0.01 is a common fixed variance across the GRP levels. This choice was made to
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constrain the latent process values to more closely follow the ranges associated with the

GRP values. Note that these distributions are formulated such that the group means lie at

the minimum of the ranges associated with each GRP level. We could choose the midpoint

of these intervals, but then selecting the prior group mean for b1 is not so straightforward.

To incorporate these group means into our estimation of the latent process, we define Φ ∈

Rm×3 where m is the number of zip codes. We define

Φi,j = −1000|Zi − bj|

where Zi is the transformed value of the latent process at zipcode i and bj is the radon

value associated with the jth GRP group mean. The reason for scaling Φi,j by 1000 is to

ensure that the latent process values more closely follow the ranges associated with the GRP

values. For each zipcode let Gi follow a categorical logit distribution with the probability

that an observation belongs to GRP level w, πw computed using the softmax formulation of

multi-class probabilities [17] such that

πw =
exp(Φi,w)∑
j exp(Φi,j)

.

To compute predicted values for new coordinate values, we will use the algorithm outlined

in the appendix titled Algorithm for predictions from latent process models. At a high level,

we use the kriging formula for predicted values in each iteration of the MCMC and take

a simple average over the iterations for each new set of coordinates. Then we reverse the

original loglog transformation to obtain the predicted values.
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3.3.4 Overview of STAN

One concern with conditioning the transformed response on the true indoor radon concen-

tration is the computational capacity required to conduct the downstream analysis [9]. More

specifically, a naive coding of the latent process model in R where we iteratively update each

individual data point would be far beyond our computational capacity. To remedy this,

we will use a software platform for Bayesian inference called STAN, authored by Andrew

Gelman and the STAN development group. At a high level, STAN utilizes a C++ back-end

to run MCMC simulations to fit or simulate from a wide array of user-specified models [17]

with the added benefit that it is much faster than any routine we would implement directly

in R.

More specifically, STAN has the capacity to fit a latent process model as shown in section

10.3 of [17] with highly flexible model specifications including a wide variety of built-in prior

and conditional distributions. Additionally, the covariance functions available in STAN can

be readily used with our coordinate-oriented data to construct spatial covariance matrices,

making STAN a strong tool for spatial analyses and highly suitable for our needs.

3.4 Alternative methods

3.4.1 Locally estimated scatterplot smoothing (LOESS)

LOESS or locally estimated scatterplot smoothing, is a non-parametric regression technique

commonly used for interpolation [11]. It is a local method due to its decaying weight structure

in which more distant data factors less into the estimated value than nearby data for a given

station.

Notably, LOESS uses the tri-cube weight function specified by

w(x) = (1− |d|3)3
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where

|d| = ||x− z||2
maxy∈D ||y − z||2

∈ [0, 1]

is the scaled Euclidean distance between a station x and prediction location z. Observe

that maxy∈D ||y − z||2 is the maximum distance between the prediction location z and the

elements of D, so |d| is at most 1. The result of LOESS in the context of longitude-latitude

coordinates is a smoothed surface which is locally linear or quadratic with respect to the

coordinates at each location in the data. At a high level, each point on the interpolated

surface can be thought of as a weighted average of a local subset of the data.

In R, the implementation of LOESS requires specification of a span parameter, which repre-

sents the proportion of nearest data that is considered when interpolating at a given station

and is thus used to construct the aforementioned local subset D. We choose a span of 0.3,

since it roughly corresponds to the magnitude of the spatial range parameter estimates we

have seen in prior analyses. For the sake of simplicity we will stick with a span of 0.3 since

it results in smoothness that is consistent with our other analyses. However, in principle we

could use a cross-validation approach to tune this parameter

3.4.2 Ensemble estimation

As an initial attempt at a multistage model, I took a simple mean of the fitted values from

each model excluding the the kriging analysis with the SRRS and GRP values. The reason

for this exclusion is that the model has an extremely strong positive bias and significantly

worse accuracy than the other candidate models.

This approach could be improved by using a more complex modeling approach in the second

stage, with the kriging, latent process and LOESS models being the base learning model of

the two-stage approach as referenced by Li [7].

21



3.5 Model validation

When modeling based on spatial data, it is not so obvious what the most effective method

for model validation is since spatial data typically demonstrates a tendency for nearby data

to be more similar than distant data [4]. This is more or less an obvious property, but it is

one that must be addressed when validating a spatial model since this dependence structure

can violate the assumption of independence between training and testing data if not handled

appropriately. Some methods for mitigating the effects of the spatial dependence structure

on evaluations of model performance are spatial blocking and buffered leave-one-out cross-

validation [4]. However, these methods are quite computationally intensive and could be used

at a later stage of the project. Still though, we must address the potential issues regarding

independence of the training and test sets.

To validate our set of spatial models while limiting the computational burdens of a full cross-

validation, we will used an 80/20 split between the training and testing data. To mitigate

concerns with the effect of spatial dependence in our training and testing sets, the split will

be conducted on the zipcode level rather than the individual observation level. This will

ensure that we are predicting to locations for which we do not have any information within

the training set. Thus, our test error metrics should closely mirror those we could expect

in practice when applying this model to unobserved stations. For repeatability purposes,

we set a seed of 1 for the sample function in R. Moving forward, we will want to repeat

this analysis using different seeds for the sample function or with a full cross-validation to

ensure that we more robustly evaluate these models. The metrics we will use to evaluate

these models are mean absolute error (MAE) which is given by

MAE =
1

n

n∑
i=1

|ŷi − yi|
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and mean bias which is given by

Bias =
1

n

n∑
i=1

(ŷi − yi)

where n is the number of observations in the test set, ŷi is the estimated indoor radon

concentration at the zipcode associated with observation i, and yi is the measured indoor

radon concentration for observation i. Notably, a positive mean bias indicates that the model

tends to overestimate the indoor radon concentration.

Conversely, the heat maps for each method will be constructed using all available data since

our goal is construct maps that use the available data to the best effect possible for use in

epidemiological risk assessment.

4 Results

For the primary case study in this dissertation, each model described above will be fit to

a 3 by 3 coordinate region centered approximately on Nashville, TN specified by latitudes

34.5 − 37.5◦N and longitudes 85.5 − 88.5◦W. I selected this region due to the presence of

several bands of varying GRP, suggesting greater variability in potential radon exposure

across the state. This subset of the data contains 1247 observations across 256 zip codes,

so it is relatively dense when compared with the entire United States [9]. Notably, the

training data contains 1038 observations while the test data contains 209 observations. As

mentioned in the description of the methods, we will fit all models on the transformed data

Z = log(log(Y + 4)) where Y is the observed indoor radon concentration in the SRRS data.

Note that this transformation was used to ensure that normality assumptions of our models

were not too harshly violated. Note also that when we observe the results of these methods,

we will reverse the transformation to formulate predicted values.
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m n θ̂1 θ̂2 α̂ µ̂
256 1247 5.103 0.187 0.00602 0.530

Table 1: Key parameter estimates from the SRRS kriging analysis

Figure 4: Map of predicted radon exposure (pCi/L) over the 3 by 3 coordinate region in
Tennessee

4.1 Kriging

4.1.1 Kriging for SRRS data

Table 1 shows estimates for the kriging model parameters. These estimates seem reasonable

and numerically stable, since the optimization function gives results consistent to 3 decimal

places after multiple attempts. Hence, these parameter estimates should allow for relatively

robust predictions.

The resulting heat-maps generated from kriging on the Tennessee SRRS data are shown in

Figure 4.

The test MAE of this model is 2.112 pCi/L and the bias on the test set of this model is

-0.397 pCi/L.
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m n θ̂1 θ̂2 α̂ µ̂
256 1247 0.0208 1.459 0.1911 0.572

Table 2: Key parameter estimates from the SRRS+GRP kriging analysis

Figure 5: Map of predicted radon exposure (pCi/L) over the 3 by 3 coordinate region in
Tennessee

4.1.2 Kriging for SRRS and GRP data

Table 2 shows estimates for the kriging model parameters. These estimates seem reasonable

and numerically stable, since the optimization function gives results consistent to 3 decimal

places after multiple attempts. Hence, these parameter estimates should allow for relatively

robust predictions.

The resulting heat-maps generated from kriging on the Tennessee SRRS and GRP data are

shown in Figure 5.

The test MAE of this model is 9.941 pCi/L and the bias on the test set of this model is

+4.325 pCi/L.
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m n σ α ρ
256 1247 0.1806 0.3649 0.2415

Table 3: Key parameter estimates from the SRRS latent process model

4.2 Latent process modeling

4.2.1 LPM for SRRS data

The resulting posterior mean parameter estimates for σ, α and ρ can be seen in Table 3 with

posterior distributions shown in Figure 6.

(a) Density plot for σ (b) Density plot for α (c) Density plot for ρ

Figure 6: Posterior densities for (a) σ, (b) α and (c) ρ from the latent process model based
on SRRS data

The heat-map generated from the latent process modeling approach on the Tennessee SRRS

data can be seen in Figure 7.

The test MAE of this model is 2.209 pCi/L and the bias on the test set of this model is

-0.416 pCi/L.

4.2.2 LPM for SRRS and GRP data

The resulting posterior mean parameter estimates for σ, α and ρ can be seen in Table 4 with

posterior distributions shown in Figure 8.

The heat-map generated from the latent process modeling approach on the Tennessee SRRS

data can be seen in Figure 9.
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Figure 7: Map of mean predicted radon exposure (pCi/L) over a 3 by 3 coordinate grid in
central Tennessee from latent process model based on SRRS data

m n σ α ρ
256 1247 0.1953 0.2984 0.4728

Table 4: Key parameter estimates from the SRRS+GRP latent process model

(a) Density plot for σ (b) Density plot for α (c) Density plot for ρ

Figure 8: Posterior densities for (a) σ, (b) α and (c) ρ from the latent process model based
on SRRS data
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Figure 9: Map of mean predicted radon exposure (pCi/L) over a 3 by 3 coordinate grid in
central Tennessee from latent process model based on SRRS and GRP data

The test MAE of this model is 2.071 pCi/L and the bias on the test set of this model is

-0.462 pCi/L.

4.3 LOESS for SRRS data

The heatmap resulting from LOESS can be seen in Figure 10.

The test MAE of this model is 2.329 pCi/L and the bias on the test set of this model is

-1.044 pCi/L.

4.4 Ensemble estimation

The heatmap resulting from the ensemble estimation approach can be seen in Figure 11.

The test MAE of this model is 2.059 pCi/L and the bias on the test set of this model is

-0.579 pCi/L.
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Figure 10: Map of radon exposure (pCi/L) over a 3 by 3 coordinate grid in central Tennessee
interpolated using LOESS regression

Figure 11: Map of radon exposure (pCi/L) over a 3 by 3 coordinate grid in central Tennessee
interpolated using ensemble estimation
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Model Test MAE (pCi/L) Test Set Bias (pCi/L)
Kriging (SRRS) 2.112 -0.397

Kriging (SRRS+GRP) 9.941 +4.325
LPM (SRRS) 2.209 -0.416

LPM (SRRS+GRP) 2.071 -0.462
LOESS 2.329 -1.044

Ensemble estimation 2.059 -0.579

Table 5: Model validation results: MAE (pCi/L) and bias (pCi/L) calculated on test set
(n=209)

4.5 Summary of model validation results

For comparison purposes, I have displayed all of the model validation results in Table 5.

5 Discussion

There are several points worth discussing based on this regional case study. I will begin by

commenting on the model validation results and move into a discussion of the maps generated

from each analysis along with the key parameter estimates associated with each model. Then

I will discuss some practical considerations regarding the strengths and weaknesses of this

project as a whole.

The best model in terms of absolute accuracy on the test set is the ensemble estimation

approach (2.059 pCi/L). Notably, all of the models aside from the kriging analysis using the

SRRS and GRP data have comparable accuracy on the test set (< 2.4 pCi/L).

The best model in terms of testing set bias is the kriging model using only the SRRS data

(-0.397 pCi/L). Notably, the test set bias of both latent process models and the kriging

model using only the SRRS data are comparable. However, the LOESS model and kriging

model with SRRS and GRP data have significantly stronger bias. All of the models besides

the kriging model using the SRRS and GRP data have a negative bias on the test set. This

tendency to underestimate radon levels is expected due to the presence of some extreme

positive outliers in the SRRS data. Even though a positive bias is somewhat more desirable
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than a negative bias in this context, the accuracy of this model (9.941 pCi/L) is significantly

worse relative to the others in this case study.

Another observation to make from the model validation results is that the MAE of the latent

process model marginally decreased upon the integration of the GRP values, while the MAE

of the kriging analysis drastically increased. Thus, it seems that the latent process modeling

approach more rigorously integrates the GRP values than the modified kriging analysis.

One potential drawback of the ensemble estimation method is that while is is the most

accurate model, it may lack some interpretability. More specifically, we can not capture

estimates of the spatial range parameter or within-zipcode variance as we can in the kriging

or latent process modeling approaches. On a related note, the LOESS regression approach is

fairly interpretable but is not as explicitly spatial as the kriging or latent process modeling

approaches. However, interpretability is likely much less important than accuracy in this

context.

Notably, the latent process modeling and kriging approaches seem to result in fairly differ-

ent radon maps. The source of this discrepancy is unclear since the latent process model

using only the SRRS values is conceptually a similar model to the analogous kriging model.

However, the estimates of the key model parameters are similar in scale for the two models.

Additionally, the effect of including the GRP values was similar for the two approaches.

More specifically, inclusion of the GRP values resulted in a larger spatial range parameter

estimate for both approaches (0.2415 to 0.4728 in the latent process model and 0.187 to

1.459 in the kriging model). This is reasonable since the GRP classification is discrete and

is thus subject to less spatial variability than the continuous SRRS values.

Another note to make regarding the parameter estimates for these models is that they seem to

be quite numerically stable. After fitting each of these models several times on the Tennessee

data, we observed very little fluctuation in the parameter estimates across the iterations.

Based on the results of this analysis, the ensemble estimation approach seems to be the best
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among these six choices for the estimation of radon levels since it has the lowest test MAE

and reasonably small negative bias on the testing set. This model is also highly flexible

since its individual components allow for the integration of more data sets. Additionally, the

multi-stage approach allows for further flexibility in model selection and has the potential

to increase predictive accuracy with further development.

There are few notable limitations of these modeling approaches as they have been imple-

mented. First, there is an unaccounted for effect from the sampling design of the SRRS data.

Since the original survey over-sampled areas of high population density and high suspected

indoor radon concentration, we expect that estimates of radon concentration in these areas

will be greater than those in other geographic regions. Thus, the accuracy of the models

may fluctuate across the range of interpolation. Additionally, the sampling weights were

not accounted for in these models because our selected region was not contained within the

borders of a single state. If we were to account for these weights, we would likely see that

the effect of large positive outliers in the data is reduced. Second, the observations are given

as zipcode centroid coordinates rather than residential rooftop coordinates. This results in

a jittering of the predicted radon surface and lessens the accuracy of estimates in terms of

the exact location of coordinate regions with high indoor radon concentration. This effect

worsens in rural areas since homes sampled within a rural zipcode may be quite far from the

zipcode centroid. With access to residential rooftop coordinates, we could greatly increase

the performance and specificity of these models.

Furthermore, there is a set of issues related to the computational constraints of this project.

Notably, this data is stored on the Cardiovascular Epidemiology Research System, or CERES.

Hence, the computation speed and storage limits are significantly more imposing than what

we might see on another system, such as UNC’s Longleaf computing cluster. Because of

these computational limits, we were unable to fit all of the models on the entire state of

Tennessee and elected to use a smaller 3 by 3 coordinate region for the case study. Notably,
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this means we were unable to properly account for the differences in sampling weights by

state. This likely affected our estimated indoor radon concentrations and may explain the

discrepancy between the kriging and latent process model maps as they appear. With access

to stronger computational tools outside of CERES, we could more easily fit these models

on entire states or groups of states and account for the sampling weights accordingly. After

making these improvements, we would expect that our maps will be more consistent with

what is known about the distribution of radon in Tennessee and also more consistent with

one another.

6 Future Work

Some of the original paths for future analysis outlined by Smith [9] remain. These include

• Integration of additional data sets: Now that we have established a base for the la-

tent process and have a proof of concept with respect to incorporation of additional

data sets, it would not be too difficult to bring in other data sources. Specifying the

conditional distributions for the latent process is non-trivial but certainly doable.

• Temporal component: More recent radon measurement data exist, such as the US

EPA’s National Residential Radon Survey. Accurate forecasting of radon levels is

obviously desirable, so it is worth investigating how we might integrate some temporal

component into our models in the future.

• Bias in the sampling design, sampling weights: One piece of this analysis that we

have not yet corrected for is the effect of the sampling design on our model fitting

and predicted values. It is important to recall that areas with high expected radon

exposure were biased in the SRRS.

• Other modeling approaches: Nearest neighboring measure and inverse distance weighted

mean models could also be used to predict indoor radon concentrations. However, the
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issue with these approaches is that they may be more drastically affected by us only

having access to zipcode centroid coordinates rather than residential rooftop coordi-

nates.

• More robust cross-validation of existing models: Due to the computational limitations

of CERES, we did not implement a full cross-validation and opted for a training-

validation set approach for model validation. Access to more powerful computational

systems would grant us the capability to validate our models more rigorously.

An additional route for future work is to further develop the ensemble estimation approach.

Li et al. use several second-stage models to improve their base learning model resulting in

a weighted cross-validation RMSE of approximately 0.6 pCi/L. Notably, Li et al. also use

a much larger data set than ours with over 500,000 observations [7]. However, this figure

is still quite promising and suggests that a two-stage model could drastically improve our

results on the SRRS data.

A Appendix

A.1 Training/test split in R

1 # get coordinate matrix by selecting unique coordinate pairs

2 # (these correspond to zipcodes in the data set)

3 coordinates_by_zipcode <- data %>%

4 select(LAT , LON) %>%

5 unique ()

6

7 # define training and testing split

8 # (80/20 on zipcode level)

9 set.seed (1)

10 train <- sample (1: nrow(coordinates_by_zipcode),

11 0.8* nrow(coordinates_by_zipcode))
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12 test <- (-train)

13 train_zips <- coordinates_by_zipcode[train ,]

14 test_zips <- coordinates_by_zipcode[test ,]

15

16 # reset indices

17 rownames(train_zips) <- NULL

18 rownames(test_zips) <- NULL

19 # use right join to filter for observations from training zipcodes

20 train_data <- data %>%

21 right_join(train_zips)

22 # use right join to filter for observations from testing zipcodes

23 test_data <- data %>%

24 right_join(test_zips)

A.2 Kriging analysis for SRRS data in R

1 # Set up for likelihood calculation

2 n <- nrow(train_data)

3 X <- matrix(rep(1,n), ncol =1)

4 q <- ncol(X)

5 z <- log(log(4+ train_data$ACTIVITY))

6 data_zip <- unique(train_data [ ,2:3])

7 index <- rep(0,nrow(train_data))

8 m <- nrow(data_zip)

9 for(i in 1:nrow(train_data)) {

10 index[i] <- which(train_data[i,2] == data_zip [,1] & train_data[i,3] ==

data_zip [,2])

11 }

12 num <- rep(0, nrow(data_zip))

13 for(j in 1:nrow(data_zip)) {

14 num[j] <- sum(index == j)

15 }

16 C0 <- matrix(0, nrow=nrow(data_zip), ncol=nrow(data_zip))
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17 V <- matrix(0, ncol=n, nrow=n)

18 par <- rep(0,2)

19 # Set initial values for parameter estimates for use in optim function

20 par [1] <- 0.5

21 par [2] <- 0.5

22

23 # Likelihood calculation helper function

24 helper <- function(par){

25 diag(C0) <- 1

26 for(j1 in 2:nrow(data_zip)){

27 for(j2 in 1:(j1 -1)){

28 # What should I use for alpha here??

29 distance <- sqrt(( data_zip[j1 ,1] - data_zip[j2 ,1])^2 + (data_zip[j1

,2] - data_zip[j2 ,2]) ^2)

30 C0[j1 ,j2] <- exp(-distance / par [2])

31 C0[j2 ,j1] <- C0[j1 ,j2]

32 }

33 }

34 B <- solve(par [1]* solve(C0)+diag(num))

35 VI <- diag(rep(1,nrow(train_data)))

36 for(i1 in 1:nrow(train_data)) {

37 for(i2 in 1:nrow(train_data)) {

38 VI[i1 ,i2] <- VI[i1 ,i2] - B[index[i1],index[i2]]

39 }

40 }

41 VI <- VI / par [1]

42 logdetV <- as.numeric(0- determinant(B)$modulus+

43 determinant(C0)$modulus+

44 (nrow(data)-nrow(data_zip))*log(par [1]))

45 HVI <- solve (t(X) %*% VI %*% X)

46 betahat <- as.numeric(HVI %*% t(X) %*% VI %*% z)

47 H <- VI-VI %*% X %*% HVI %*% t(X) %*% VI

48 G2 <- as.numeric(z %*% H %*% z)
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49 return(list(VI=VI,HVI=HVI ,logdetV=logdetV ,G2=G2 ,betahat=betahat))

50 }

51

52 # Compute likelihood for current values of parameter estimates

53 likelihood <- function(par) {

54 if(par[1]<0 | par [1] >50 | par [2] <0.1 | par [2] >50) {

55 lh <- 1e10

56 return(lh)

57 }

58 lh_helper <- helper(par)

59 lh <- as.numeric (0.5*(n-q)*log(lh_helper$G2) +

60 0.5* determinant(t(X) %*% lh_helper$VI %*% X)$modulus

+

61 0.5* lh_helper$logdetV)

62 return(lh)

63 }

64

65 # Restricted maximum likelihood estimation for kriging parameters

66 T1 <- Sys.time()

67 out <- optim(par , likelihood , method=’BFGS ’, hessian=T,

68 control=list(maxit =10000 , ndeps=rep(1e-6, length(par))))

69 par <- out$par

70 T2 <- Sys.time()

71 print(T2 -T1)

72 # Time difference of

73 lh_helper <- helper(par)

74 print(c(m,n,par ,lh_helper$G2 /(n-q),lh_helper$betahat))

75 likelihood(out$par)

76

77 # Define target coordinate sets for maps

78 y_pred <- latitude_s + 0.05*0:(( latitude_n -latitude_s)/0.05)

79 x_pred <- longitude_w + 0.05*0:(( longitude_e -longitude_w)/0.05)

80
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81 pred <- function(y,par ,testcoord ,lh_helper){

82 alf <- lh_helper$G2 /(n-q)

83 theta1 <- par [1]

84 n <- nrow(y)

85 tau <- rep(0,n)

86 for(i in 1:n) {

87 distance <- sqrt((y[i,2]- testcoord [1]) ^2+(y[i,3]- testcoord [2]) ^2)

88 tau[i] <- alf * exp(-distance / par [2])

89 }

90 x0 <- 1

91 X <- matrix(1,nrow=n,ncol =1)

92 yhat <- as.numeric ((x0 -t(X) %*% as.matrix(lh_helper$VI) %*% as.numeric(

tau)/alf) %*%

93 lh_helper$betahat + t(as.numeric(tau)) %*%

94 as.matrix(lh_helper$VI) %*% z/alf)

95 return(list(yhat=yhat))

96 }

97 # Compute predictions for map

98 krig_srrs <- matrix(nrow=length(x_pred),ncol=length(y_pred))

99 T1 <- Sys.time()

100 for(i in 1: length(x_pred)){

101 for(j in 1: length(y_pred)){

102 testcoord <- c(x_pred[i],y_pred[j])

103 krig_srrs[i,j] <- pred(train_data ,out$par ,testcoord ,lh_helper)$yhat

104 }

105 }

106 krig_srrs <- exp(exp(krig_srrs)) -4

A.3 Integration of GRP data for kriging analysis in R

1 # Construct GRP -transformed response

2 sigma <- 1

3 grp <- train_data$GRP
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4 z <- log(log(train_data$ACTIVITY +4))

5 aa <- z

6 bb <- z

7 # Applying log transformation to the endpoints

8 zz1 <- log(log (5.999))

9 zz2 <- log(log (8.001))

10 aa[grp ==1] <- zz2

11 aa[grp ==2] <- zz1

12 aa[grp ==3] <- -1000

13 bb[grp ==1] <- 1000

14 bb[grp ==2] <- zz2

15 bb[grp ==3] <- zz1

16

17 pnormdiff <- function(a,b){

18 pp <- pnorm(b) - pnorm(a)

19 pp[a>0 & b>0] <- pnorm(b[a>0 & b>0]) - pnorm(a[a>0 & b>0])

20 return(pp)

21 }

22

23 transform <- function(a,b){

24 pp <- pnormdiff(a,b)

25 g0 <- (exp(-a^2/2) - exp(-b^2/2))/(sqrt (2*pi)*pnormdiff(a,b))

26 u1 <- pnormdiff(a,b)<1e-20 & a>0 & b>0

27 u2 <- pnormdiff(a,b)<1e-20 & a<0 & b<0

28 g0[u1] <- pmin(a[u1],b[u1])

29 g0[u2] <- pmax(a[u2],b[u2])

30 return(g0)

31 }

32

33 sigma_helper <- function(sigma){

34 return(-sum(log(pnormdiff ((aa -z)/sigma ,(bb -z)/sigma))))

35 }

36
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37 # Find optimal value of sigma for use in transformation

38 sigma_helper_optim <- optimize(sigma_helper ,lower =0.001 , upper =10)

39

40 # preserve old z as z0 and construct transformed z

41 # for use in kriging analysis

42 z0 <- z

43 sigma <- sigma_helper_optim$minimum

44 z <- z0 + sigma*transform ((aa-z0)/sigma ,(bb-z0)/sigma)

A.4 Latent process model for SRRS data in STAN

1 data {

2 int <lower=1> num_srrs;

3 int <lower=1> num_zipcodes;

4 int <lower=1> srrs_counts[num_zipcodes ];

5 vector [2] coordinates[num_zipcodes ];

6 vector[num_srrs] log_log_srrs;

7 }

8 parameters {

9 real <lower=0,upper=50> rho;

10 real <lower=0> alpha;

11 real <lower=0> sigma;

12 vector[num_zipcodes] eta;

13 }

14 model {

15 int position = 1;

16 real sq_sigma = square(sigma);

17 vector[num_zipcodes] z;

18 {

19 matrix[num_zipcodes , num_zipcodes] L_K;

20

21 matrix[num_zipcodes , num_zipcodes] K = cov_exp_quad(coordinates , alpha

, rho);
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22 for (n in 1: num_zipcodes) {

23 K[n, n] = K[n, n] + sq_sigma;

24 }

25 L_K = cholesky_decompose(K);

26 z = L_K * eta;

27 }

28

29 rho ~ inv_gamma (101, 0.5);

30 alpha ~ inv_gamma(1, 1);

31 sigma ~ gamma(1, 1);

32 eta ~ normal(0, 1);

33

34 for (i in 1: num_zipcodes) {

35 segment(log_log_srrs , position , srrs_counts[i]) ~ normal(z[i], sigma);

36 position = position + srrs_counts[i];

37 }

38 }

39 generated quantities {

40 vector[num_zipcodes] lp_vals;

41 real sq_sigma = square(sigma);

42 vector [1] Beta_hat;

43 matrix[num_zipcodes ,num_zipcodes] K_inv;

44

45 {

46 matrix[num_zipcodes , num_zipcodes] K_lp = cov_exp_quad(coordinates ,

alpha , rho);

47 matrix[num_zipcodes , num_zipcodes] L_K_lp;

48 for (n in 1: num_zipcodes) {

49 K_lp[n, n] = K_lp[n, n] + sq_sigma;

50 }

51 L_K_lp = cholesky_decompose(K_lp);

52 lp_vals = L_K_lp * eta;

53 K_inv = inverse(K_lp);
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54 }

55

56 {

57 matrix[num_zipcodes ,1] X;

58 X = rep_matrix (1.0, num_zipcodes , 1);

59 Beta_hat = inverse(X’*K_inv*X)*X’*K_inv*lp_vals;

60 }

61 }

A.5 Latent process model for SRRS+GRP data in STAN

1 data {

2 int <lower=1> num_srrs;

3 int <lower=1> num_zipcodes;

4 int <lower=1> srrs_counts[num_zipcodes ];

5 vector [2] coordinates[num_zipcodes ];

6 vector[num_srrs] log_log_srrs;

7 int <lower=1> grp[num_zipcodes ];

8 }

9 parameters {

10 real <lower=0,upper=50> rho;

11 real <lower=0> alpha;

12 real <lower=0> sigma;

13 vector[num_zipcodes] eta;

14 vector [3] b;

15 }

16 model {

17 int position = 1;

18 real sq_sigma = square(sigma);

19 vector[num_zipcodes] z;

20 {

21 matrix[num_zipcodes , num_zipcodes] L_K;

22
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23 matrix[num_zipcodes , num_zipcodes] K = cov_exp_quad(coordinates , alpha

, rho);

24 for (n in 1: num_zipcodes) {

25 K[n, n] = K[n, n] + sq_sigma;

26 }

27 L_K = cholesky_decompose(K);

28 z = L_K * eta;

29 }

30

31 rho ~ inv_gamma (101, 0.5);

32 alpha ~ inv_gamma(1, 1);

33 sigma ~ gamma(1, 1);

34 eta ~ normal(0, 1);

35

36 for (i in 1:3) {

37 b[4-i] ~ normal(log(log (2*(i-1)+5)), 0.01);

38 }

39

40 {

41 matrix[num_zipcodes , 3] phi;

42 for (j in 1: num_zipcodes) {

43 for (k in 1:3) {

44 phi[j,k] = -1000 * fabs(z[j] - b[k]);

45 }

46 grp[j] ~ categorical_logit(phi[j]’);

47 }

48 }

49

50 for (i in 1: num_zipcodes) {

51 segment(log_log_srrs , position , srrs_counts[i]) ~ normal(z[i], sigma);

52 position = position + srrs_counts[i];

53 }

54 }
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55 generated quantities {

56 vector[num_zipcodes] lp_vals;

57 vector [1] Beta_hat;

58 real sq_sigma = square(sigma);

59 matrix[num_zipcodes ,num_zipcodes] K_inv;

60

61 {

62 matrix[num_zipcodes , num_zipcodes] K_lp = cov_exp_quad(coordinates ,

alpha , rho);

63 matrix[num_zipcodes , num_zipcodes] L_K_lp;

64 for (n in 1: num_zipcodes) {

65 K_lp[n, n] = K_lp[n, n] + sq_sigma;

66 }

67 L_K_lp = cholesky_decompose(K_lp);

68 lp_vals = L_K_lp * eta;

69 K_inv = inverse(K_lp);

70 }

71

72 {

73 matrix[num_zipcodes ,1] X;

74 X = rep_matrix (1.0, num_zipcodes , 1);

75 Beta_hat = inverse(X’*K_inv*X)*X’*K_inv*lp_vals;

76 }

77 }

A.6 Algorithm for predictions from latent process models

1 fit_stan <- stan(file = "", data = stan_list , iter = 2000, warmup = 1000,

chains = 2, cores = 13)

2 T2 <- Sys.time()

3

4 # Formulation of predicted values for latent process

5 T1 <- Sys.time()
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6 rownames(coordinates_by_zipcode) <- seq(from=1,to=nrow(

coordinates_by_zipcode))

7 lpm <- matrix(0,nrow=length(x_pred),ncol=length(y_pred))

8 # Pull samples of parameters estimates and generated quantities from the

MCMC

9 post_lp_stan <- extract(fit_stan , pars=c(’lp_vals ’))

10 post_bh_stan <- extract(fit_stan , pars=c(’Beta_hat ’))

11 post_Kinv_stan <- extract(fit_stan , pars=c(’K_inv ’))

12 post_alpha_stan <- extract(fit_stan , pars=c(’alpha ’))

13 post_rho_stan <- extract(fit_stan , pars=c(’rho ’))

14 X <- matrix(rep(1,nrow(train_zips)), ncol =1)

15 test_data$lpm_srrsgrp_pred <- 0

16 for (i in 1:2000) {

17 beta_hat <- post_bh_stan$Beta_hat[i,]

18 alpha <- post_alpha_stan$alpha[i]

19 Sigma_inv <- post_Kinv_stan$K_inv[i,,]

20 Z <- post_lp_stan$lp_vals[i,]

21 rho <- post_rho_stan$rho[i]

22 for(j in 1: length(x_pred)){

23 for(k in 1: length(y_pred)){

24 pred_coordinate <- c(x_pred[j], y_pred[k])

25 tau <- matrix(rep(0, nrow(train_zips)), ncol =1)

26 for(l in 1:nrow(train_zips)) {

27 distance <- sqrt(( pred_coordinate [1] - train_zips[l,2])^2 +

28 (pred_coordinate [2] - train_zips[l,1]) ^2)

29 tau[l,] <- alpha ^ 2 * exp(-(distance ^2) / (2*rho^2))

30 }

31 x_0 <- 1

32 current_pred <- t(x_0 - t(X) %*% Sigma_inv %*% tau) %*% beta_hat +

33 t(tau) %*% Sigma_inv %*% Z

34 current_pred <- as.numeric(current_pred)

35 lpm[j,k] <- lpm[j,k] + current_pred

36 }
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37 }

38 for (m in 1:nrow(test_data)) {

39 pred_coordinate <- as.numeric(test_data[m, 2:3])

40 tau <- matrix(rep(0, nrow(train_zips)), ncol =1)

41 for(b in 1:nrow(train_zips)) {

42 distance <- sqrt(( pred_coordinate [1] - train_zips[b,2])^2 +

43 (pred_coordinate [2] - train_zips[b,1]) ^2)

44 tau[b,] <- alpha ^ 2 * exp(-(distance ^2) / (2*rho^2))

45 }

46 x_0 <- 1

47 current_pred <- t(x_0 - t(X) %*% Sigma_inv %*% tau) %*% beta_hat +

48 t(tau) %*% Sigma_inv %*% Z

49 current_pred <- as.numeric(current_pred)

50 test_data[m,11] <- test_data[m,11] + current_pred

51 }

52 }

53 T2 <- Sys.time()

54 print(T2 -T1)

55 lpm <- lpm / 2000

56 lpm <- exp(exp(lpm))-4
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