


ABSTRACT

Photon strength functions are some of the most important and useful properties of nuclei. Their

uses range from modeling the synthesis of light and heavy elements in supernovae to the production

of medical isotopes to be used in imaging and therapy. However, complete knowledge of all possible

decay modes of a nucleus is required before these functions can be calculated. Current methods of

probing nuclei, such as nuclear resonance fluorescence (NRF), often fail to find low-energy decays

due to exponentially increasing background radiation at low energies. As a result, current knowledge

of all possible decays of a nucleus results in a lower limit rather than a definitive value. I seek to

probe the reliability of Polarized Self Absorption, a new method proposed for probing nuclei that

takes advantage of the quasi-monochromatic and linearly polarized photon beam produced at the

High Intensity �-ray Source, by examining the 10.71-MeV excited state in 24Mg. Specifically, I

work towards finding the full and partial widths of this state in 24Mg. As a first result, this work

found new decay paths out of the 10.71-MeV state and determined its spin and parity to be 1+. The

di↵erence between the experimental asymmetry, ĀEx = 0.644(5), and the mass-weighed asymmetry,

ĀMW = 0.457(5), indicates that self absorption is taking place, as required for this method to work.

However, the final determination of the resonance width will have to await resolution of an issue

discussed further in the text.

I. INTRODUCTION

Modern nuclear-structure physics research is dominated by understanding the many characteristics of excited states

of nuclei, as such states provide physicists a window into explaining the forces that bind nucleons together to form a

nucleus. Today, this is done with a number of approaches among which figures nuclear resonance fluorescence (NRF)

experiments. NRF experiments involve resonantly exciting a nucleus to an excited state with a photon. After a short

period of time, the nucleus will decay to a lower state by emitting one or several additional gamma rays. By measuring

these emitted gamma rays, physicists can learn many properties of a nucleus’ excited state such as its spin, parity,

and resonance width. Further understanding of these properties allows theorists to test current models of the nuclear

force.

An accurate model of all decays of an isotope involves the photon strength function (PSF), which gives the average

�-ray transition probability at a given excitation energy, E [1]. At low energies, the nuclear level density of most

isotopes is low, allowing for physicists to probe one excited state at time. However, as the excitation energy increases,

the number of states rises rapidly to the extent that even the best detectors are unable to observe individual levels

[1]. Hence, a di↵erent approach in terms of �-ray transition probability as a function of excitation energy is required.

In astrophysics, the PSF is used for modeling the synthesis of light and heavy elements in supernovae or neutron-

star mergers [2, 3]. Other uses include a greater understanding of an isotope’s nuclear structure, medical isotope

production, the transmutation of nuclear waste, and fission and fusion reactors [3, 4].

The primary setback of the NRF method is a need for the total resonance width, �i, for a given state i. To derive

the PSF, two quantities are required. The first one is the energy-integrated elastic cross section. For a nucleus initially

in its 0+ ground state resonantly excited to one of its excited states i, then decaying back to its ground state, the

energy-integrated elastic cross section, I0!i!0, is proportional to

I0!i!0 / �i!0

�i!0

�i
(1)
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where �i!0 is the partial width for the ground-state decay, and �i is the total resonance width

�i =
X

j2J

�i!j (2)

where �i!j is the partial width for the decay from excited state i to final state j, and J contains all possible decays

from state i [5, 6]. Second is the energy-integrated photoabsorption cross section. For an excitation from the ground

state 0 to a generic excited state, i, the energy-integrated photoabsorption cross section, I0!i is:

I0!i / �i!0 (3)

where �i!0 is the partial width for the decay to the ground state [3, 6]. With Eqs. 1, 2, and 3, it can be seen that,

to properly know the PSF, knowledge of all possible decays from all excited states is required.

Absolute knowledge of the cross sections involved is primarily done with a bremsstrahlung beam, which generates

a beam of photons up to a desired energy, allowing for cross sections of multiple decay cascades to be measured

simultaneously [3]. While using a bremsstrahlung beam can save time, the wider energy range also contains photons

with nonresonant energies. As a result, NRF experiments have exponentially increasing background radiation at lower

energies, causing low-energy decays to often be overlooked in proper cross section evaluations. This means that any

I0!i!0 reported from such NRF experiments are, in fact, lower limits rather than definitive values [6].

Another issue inherent to NRF is the atomic absorption e↵ect. As the photon beam passes through a target,

photons of resonant energies are going to excite nuclei. This reduces the number of resonant photons within the

photon flux as the beam traverses through the target. Therefore, nuclei at the beginning of the target are more likely

to be excited than those deeper inside the material. This becomes a problem when needing the beam’s photon flux

to determine a cross section or an absolute excitation probability. If the photon flux can be found before it arrives at

the target, it is often used in calculations of the two quantities mentioned above. However, since it is dependent on

the distance traveled within a target, this value is often incorrect.

Here, I assess the reliability of a new, modified version of the self-absorption method called Polarized Self Absorption

(PSA) by determining the full and partial widths of the well-defined 1+ excited state at 10.71 MeV in 24Mg. In Section

II, I discuss the history of the self-absorption method, the advancements that inspired the PSA method, and how PSA

works. In Section III, I record the derivation for the equations used in PSA, explain why 24Mg was chosen for the

experiment, and state any corrections that need to be accounted for before a result is obtained. The new dual-target

setup for PSA is explained in Section IV. The overall process of calculating the full and partial widths of 24Mg, the

mass-weighted uncertainty, as well as the challenges I ran into, are detailed in Section V. In Section VI, I report the

branching ratios of the 10.71 MeV state, the mass-weighted asymmetry, and the experimental asymmetry and use

these results to assess the reliability of the PSA method in Section VII.

II. SELF ABSORPTION

A. Literature Review

Self absorption is another, less common, experimental method of examining excited states and was originally

introduced by Franz Metzger in 1956 [7]. It consisted in carrying out two separate measurements: a normal NRF

measurement and a second NRF one, but with the bremsstrahlung beam passing through an identical target before

hitting the primary target for a traditional NRF measurement. By passing the beam through a second, identical

absorbing target before reaching the primary NRF one, the beam will consist of fewer � rays with resonant energies

[7]. This results in fewer counts measured at resonant energies from the NRF target. Fig. 1 compares an energy

spectrum of a bremsstrahlung beam before and after resonating with an absorbing target. In the approximation that
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FIG. 1: Graphic which illustrates the gamma-ray energy spectrum with and without the absorbing target. Take note of how in the
spectrum with the absorber, there are fewer gamma rays with energies that resonate with the primary target. Graphic from [8].

the total width is small compared to the Doppler broadening, the di↵erence in the count rates is proportional to

�0!i [6]. Therefore, by comparing the two count rates, both �0!i and �i can be found without the knowledge of all

possible decay paths from the dependency described in Eqs. 1 and 3.

There are three primary setbacks to this method. First, the detection system around the NRF target needs to be

properly shielded from the scattering o↵ the absorber target. For proper results, the shielding needs to be infeasibly

perfect. Second, an absolute measurement of the photon flux of the beam between the two targets is required for

calculating the elastic cross section. Third, the approximation that the total width is small compared to the Doppler

broadening is not valid in most cases [6]. Regardless, the concept that �i can be found from comparing the count

rates of the two measurements still stands.

A modification to the original self-absorption method called Relative Self Absorption (RSA) was developed in 2015

by Christopher Romig [8]. RSA uses an additional normalization target, di↵erent from the primary one, placed

between the absorbing and NRF targets to monitor the photon flux. This normalization target needs to have few

excited states which do not interfere with the excited states of the original target, but also broadly cover the entire

energy spectrum [8]. For example, in his investigation of 6Li via RSA, C. Romig used 11B as the normalization target.

However, finding such a target for a bremsstrahlung beam can be quite di�cult when examining isotopes with many

decay cascades such as 24Mg.

In 2018, Savran and Isaak proposed a modified self-absorption method using a quasi-monochromatic photon beam

like the one produced at the High-Intensity Gamma-ray Source (HI�S) located at the Triangle Universities Nuclear

Laboratory [9]. In comparison to a bremsstrahlung beam which contains photons covering a very large energy range,

a quasi-monochromatic photon beam’s energy range is narrow. For reference, the beam produced at HI�S has a

full width half maximum (FWHM) of 300 keV at a beam energy of 10 MeV. Narrowing the FWHM of the photon

beam drastically reduces the background, as illustrated in Fig. 2, because there are fewer photons with nonresonant

energies.

Savran and Isaak also proposed a new experimental setup. In addition to the NRF and absorbing target, a third

target with its own gamma-ray detection system was added before the absorber. This allowed for both measurements

used in Franz Metzger’s self-absorption method to be done simultaneously, halving the total experiment time [6, 9].

There are, however, some setbacks. An absolute normalization of the photon flux is still required, the additional

detection system requires more, precise corrections for the relative e�ciencies and dead times of the gamma-ray

detectors, and the experimental setup can be di�cult to assemble [6]. As of right now, Savaran and Issak have

finished the first measurements and are currently analyzing data to assess the reliability of their method.
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FIG. 2: Comparison of the NRF spectra of the reaction 128Te(�,�’) measured at the Darmstadt High Intensity Photon Setup using a
bremsstrahlung beam (a) and a quasi-monochromatic beam (b). Take note of how the peaks in (b) are more visible due to the

background being significantly reduced. The blue lines in both graphs represent the energy distribution of the incoming photon beam [9].

FIG. 3: 3D representation of the radiation patterns for 0 ! 1± ! 0 decay cascade with the polarized beam directed along the x-axis,
polarized along the x-y plane. Both radiation patterns resemble a toroid [6, 10].
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B. Polarized Self Absorption

In 2021, Udo Friman-Gayer proposed the Polarized Self-Absorption method (PSA), which is a modified version of

Savran and Isaak’s self-absorption method. PSA takes advantage of both the quasi-monochromaticity and high degree

of linear polarization of the photon beams produced at HI�S to eliminate the necessity for two gamma-ray detector

systems. The linearly polarized beam allows for a definitive angular distribution for elastically scattered photons. An

example of the angular distribution for the decay cascade 0+ ! 1± ! 0 can be seen in Fig. 3. Without a perfectly

linearly polarized beam, the radiation would not exhibit the angular distributions described in Ref. [10].

At HI�S, the simplest gamma-ray detector configuration is cross-like, as seen in Fig. 4. There are four well-

positioned detectors around the beam: two parallel and two perpendicular to the polarization axis of the beam. This

cross-like configuration allows for a maximum of the count-rate asymmetry, A, as defined in [6, 11]

A =
Nk �N?

Nk +N?
(4)

in which Nk and N? are the numbers of counts detected in the parallel and perpendicular detectors, respectively.

For instance, in the 0+ ! 1+ ! 0 cascade seen in Fig. 3, the perpendicular detectors should see little to no emitted

radiation, resulting in A ⇡ 1.

PSA’s experimental setup di↵ers from Savran and Isaak’s by repositioning the two NRF targets and removing the

absorber target. The first NRF target is placed at the center of the detection system, while the second is placed

slightly downstream from the first. The central target is used for the first NRF measurement as well as an absorber

for the downstream target. If the targets are excited to a 1+ level which results in the decay cascade 0+ ! 1+ ! 0,

the radiation pattern shown in Fig. 3 will be present. At the first, central, target, the perpendicular detectors will

not observe � rays. They will, however, observe � rays from the second, downstream target. In contrast, the parallel

detectors detect radiation emitted from both targets. This is depicted in Fig. 5. The foundation of the PSA method

relies on the two targets having di↵erent count-rate asymmetries to distinguish between them. The placement of the

targets in Fig. 5 indicates the central target’s count-rate asymmetry is 1, while the downstream target’s count-rate

asymmetry is much lower.

The experimental e↵ective asymmetry, ĀEx, when both targets are present, is given by

ĀEx =
(N c

k +Nd
k )� (N c

? +Nd
?)

(N c
k +Nd

k ) + (N c
? +Nd

?)
(5)

where N⌧
p is the number of counts observed by a parallel detector, p =k, or perpendicular detector, p =?, for the

central target, ⌧ = c, or downstream target, ⌧ = d [12]. Via Monte-Carlo simulations, a run in which only the central

target is present, and a run in which both targets are present, an e↵ective asymmetry, Ā can be calculated which is

dependent on the total width �i of the observed decay. By equating the asymmetries and using a root finder, �i can

be found without knowledge of all decays from an excited state.

There are a few advantages of the PSA method over the traditional self-absorption and Savraan and Isaak’s

method. Compared to the traditional self-absorption method, time is greatly reduced as both the NRF and absorber

measurements are done together rather than individually. Compared to the Savran and Isaak’s method, the use of

only one detection system means it is easier to setup and align. As stated by U. Friman-Gayer, the compactness of

the system reduces the “spreading of the transversal beam profile between the two targets to a negligible amount”

[6]. Since both measurements are done in one detection system, strong shielding is also not required. The biggest

disadvantage of the PSA method is that it has limited usefulness in odd-even and odd-odd nuclei. The non-zero

ground state results in emission with more complex angular distribution patterns, reducing the asymmetry of the

cascade(s) of interest. As a result, considerably longer run times are needed to properly distinguish the origin of the
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FIG. 4: Depiction of the cross-like detector configuration. The polarized beam is coming out of the page, with its polarization indicated
the orange arrows. The parallel detectors as shaded black and white, while the perpendicular detectors are shaded white and gray. [6]

emitted photons.

III. THEORY

A. Why 24Mg?

I used 24Mg to show the strengths and e↵ectiveness of the PSA method. Current knowledge of the low-spin

resonances of 24Mg is poor, with uncertainties for the full and partial widths being up to 20%. These large uncertainties

are a result of the many significant decay branches found in 24Mg which complicate the determination of �i and the

photoabsorption cross section when probed with NRF [6, 13]. As stated above, this complication can be bypassed

using the PSA method.

In most photon-scattering experiments, 11B is used as the standard photon-flux calibration. The large decay widths,

the few strong dexcitations distributed over a wide energy range, and the reliable knowledge of the multipole mixing

ratios all make 11B a strong calibration standard [14, 15]. In addition, its high natural abundance of 80.1% makes
11B the industry standard for NRF measurements [6, 16].

Although 11B is most-commonly used for photon-flux calibrations, physicists are always looking for new calibration

standards to refine their measurements. In particular, 24Mg has been identified as a promising calibration on par

with 11B for multiple reasons. It has a few, well-spaced, strong 1± resonances at high energies up to the proton

separation energy of 11.7 MeV. It has a low proton number, indicating minimal nonresonant scattering. Finally, it

has a high natural abundance of 78.99%, making it a prime candidate for a new calibration standard [6, 16]. Despite

its promise, little is known of 24Mg’s high-energy, low-spin resonances due to these states having strong, many-state

decay cascades that are often overlooked or hard to characterize due to background.

This e↵ect can be seen in the discrepancy of recorded decay cascades between the ENSDF data sheets [17] and
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FIG. 5: Depiction of the polarized self absorption principle. Sections a) and b) depict a side view of the configuration and the targets’
interactions with a perpendicular detector. Sections c) and d) depict a top view of the configuration and the targets’ interactions with a

parallel detector. The central target is placed at the center of the detector configuration, �x and �y away from the parallel and
perpendicular detectors, respectively. The downstream target is placed a distance �z downstream from the central target. The beam is
incoming from the left, with its polarization indicated by the orange arrows. As seen in a) and b), the perpendicular target should only
detect emission from the downstream target. Sections c) and d) depict the parallel detector detecting emissions from both the central

and downstream targets. [6]

an investigation done by J. Deary et al. [18]. For the 1+ excited state at 10.71 MeV, Wang et al. lists no other

decay branch other than to the ground state [17]. However, [18] lists four other decay paths with relative intensities

of 19.9%, 2.4%, 0.9%, and 0.6% relative to the ground state decay [18].

A MgO target was used due to its well-known phonon density of states [6, 19]. Since the PSA method depends

on the resonance width of excited states, a nucleus’ motion within the atomic lattice structure must be considered

as a correction [6, 20, 21]. As stated in [6], this can be done with the Debeye approximation; unfortunately, it is

challenging to use when working with a highly reactive material such as 24Mg. However, the Debeye approximation

can be bypassed by using the phonon density of states to calculate the resonance broadening [22]. Due to MgO

being both readily available and having a well-known phonon density of states, it was chosen as the target for this

experiment.

B. Mass-weighted Asymmetry

To establish that self absorption is taking place within the experiment, the mass-weighted asymmetry is used:

ĀMW =
mc ⇥ ĀEx,c +md ⇥ ĀEx,d ⇥ ✏corr

mc +md ⇥ ✏corr
(6)
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TABLE I: Definitions of variables used in the text

Variable Definition

N⌧
p,sim number of simulated counts with a target in po-

sition ⌧ and detector p with isotropic emission
N⌧

p,sim,w number of simulated counts, with angular cor-
relation e↵ects, with a target in position ⌧ and
detector p

�t⌧ live time of the measurement for target in posi-
tion ⌧

N⌧,⌧
p number of counts of a given decay for a target in

position ⌧ and detector p
h�⌧�⇢⌧Ai the integral of the resonance absorption density,

over the spatial extent of the target, symbolized
by the product of the normalized photon flux
�⌧ at the target position ⌧ , the scattering cross
section �, and the areal density of the target ⇢⌧A
with a target area A

in which m⌧ is the mass of the target in position ⌧ , which corresponds ⌧ = c for a target in the central position and

⌧ = d for the downstream, while Āex,⌧ is the experimental asymmetry when just the target in position ⌧ is present,

✏corr is the correction for the di↵erence in e�ciencies of the downstream and upstream targets given as:

✏corr =
Nd ⇥�tc

Nc ⇥�td
(7)

in which N⌧ is the number of counts recorded when just the target in position ⌧ is present, and �t⌧ is the live time

of the measurement for when just target ⌧ is present.

Without the central target, there is no absorption of the photon beam before it reaches the downstream one. This

would result in more counts being detected from the downstream target; consequently, Ad is weighed more in Eq. 6

as compared to Eq. 5. Therefore, a di↵erence in the asymmetries for Eq. 6 and Eq. 5 would show that self absorption

is truly taking place and PSA has practical potential.

C. E↵ective Asymmetry

In this experiment, the primary observable is the e↵ective count-rate asymmetry. The equation below is a result of

a derivation given to me in a private communication by Udo Friman-Gayer [12]:

Āeff =

✓
h�c�⇢cAi+

Nd
k,sim,w

Nd
k,sim

Nc
k,sim

Nc
k,sim,w

Nd
k,cal�tc

Nc
k,cal�td h�

d�⇢dAi
◆
�
✓

Nc,c
?

Nc,c
k

h�c�⇢cAi+
Nc,c

?
Nc,c

k

Nd
?,sim,w

Nd
?,sim

Nc
?,sim

Nc
?,sim,w

Nd
?,cal�tc

Nc
?,cal�td h�

d�⇢dAi
◆

✓
h�c�⇢cAi+

Nd
k,sim,w

Nd
k,sim

Nc
k,sim

Nc
k,sim,w

Nd
k,cal�tc

Nc
k,cal�td h�d�⇢dAi

◆
+

✓
Nc,c

?
Nc,c

k
h�c�⇢cAi+

Nc,c
?

Nc,c
k

Nd
?,sim,w

Nd
?,sim

Nc
?,sim

Nc
?,sim,w

Nd
?,cal�tc

Nc
?,cal�td h�d�⇢dAi

◆

(8)

for which the variable definitions are given in Table I.

The simulated count rates, N⌧
p,sim and N⌧

p,sim,w are found with the GEANT4 simulation software, which uses Monte

Carlo methods to simulate radioactive decay. The live time of the measurements, �t⌧ , is related to how long those

respective measurements take, and can be found by looking through a log of prior experiments. The number of counts

of a given decay, N⌧,⌧
p , is found with calibration measurements with isotropic emission for the e�ciency, and N c

k +Nd
k

is found with measurements of targets in both the central, (c), and downstream, (d), positions.
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The resonance absorption density, as defined by the supplemental materials in [6, 22]:

↵0!x,⌧ (E, z⌧ ,
A
Z X) ⇡ �̃0!x,⌧ (E,AZ X)

�(E, z⌧ )

�(E, 0)
(9)

where � is the photon flux, z⌧ is the distance into the target, and �̃(E;�i!0,�i, Te↵) is the Doppler-broadened cross

section. In Ref. [22], the scattering cross section � is used rather than �̃, this is because using �̃ corrects for the

thermal motion of a nuclei in an atomic lattice.

The photon flux, given in the supplemental materials in [6, 22], is:

�(E, z) = �(E, 0)e�[µ⌧ (E)+�̃0!i(E;
A
ZX)n⌧ (

A
ZX)]z (10)

in which µ⌧ is the nonresonant attenuation coe�cient for MgO for target ⌧ :

µ⌧ (E) =
ma,Mg

ma,Mg +ma,O
µMg(E) +

ma,O

ma,Mg +ma,O
µO(E) (11)

where ma,X is the atomic mass of element X and µX is the x-ray attenuation coe�cient for element X found in the

Ries python package created by Udo Friman-Gayer [23]. nt is the mass distribution inside the nucleus given by

n⌧ = nMgc24MgcMgO (12)

in which nMg is the fraction of magnesium atoms in MgO, c24Mg is the enrichment of 24Mg in MgO, and cMgO is the

enrichment of MgO in the magnesia.

By inputting Eq. 10 into Eq. 9 and analytically taking the spatial integral over z,

h�⌧�⇢⌧Ai =
ˆ

�̃0!i

µ⌧ (E) + �̃0!i(E;AZ X)n⌧ (AZX)
⇥ (1� e�[µ⌧ (Ex)+�̃0!i(E;

A
ZX)n⌧ (

A
ZX)]⇢⌧

A)dE (13)

where ⇢⌧A is the areal density of target ⌧ .

In total, calculating h�c�⇢⌧Ai requires knowledge of the:

• areal densities, ⇢⌧A of both targets, given by the measurable mass m⌧ divided by the target areas A⌧

• enrichment, cMgO, of the target material in magnesia

• enrichment, c24Mg, of the target material in 24Mg

• mass attenuation coe�cient of µ of magnesia

• e↵ective temperature Te↵ of magnesia

• mass m24Mg of the isotope of interest

• excitation energy Ex of the state of interest

• ground-state branching ratio �0/�

• total width �

The calculation of h�c�⇢⌧Ai requires prior knowledge of both �0/� and �, which, at first glance, appears to contradict

the purpose of the PSA to find the total width without prior knowledge. However, by using the quasi-monochromaticity

of the photon beam at HI�S, a good estimate of the ground-state branching ratio can be found. Therefore, by equating

Eq.’s 4 and 8, a root finder can be used to obtain the total width.

The additional measurement required to find an estimate of the ground state branching ratio does slightly o↵set

the time benefit of using PSA. However, for isotopes in which the ground state branching ratio is well known, this

additional run is not required and can still be used to find a proper value for �.
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TABLE II: High-Purity Germanium Detector Positions

Detector Type ✓ � Distance (inch)

1 Clover HPGe 90� 0� 8.0± 0.0625
3 Clover HPGe 90� 90� 7.9375± 0.0625
5 Clover HPGe 90� 180� 8.0625± 0.0625
7 Clover HPGe 90� 270� 8.0± 0.0625

FIG. 6: Picture of the clover-array setup for this experiment. All detectors are labeled. There are three additional HPGe detectors in the
picture; these were present during the experiment, but were not used in the analysis. Photo courtesy of David Gribble.

IV. EXPERIMENTAL SETUP

A. The Clover Array

The clover-array setup consisted of eight high-purity Germanium detectors, of which I only used the four surrounding

the beam in a cross-like configuration as in Fig. 4. Each of the detectors is equipped with four crystals arranged

in the cryostat as seen in Fig. 6. Detector 1 is an exception, as one of its crystals was not working at the time

of the experiment. These detectors and their positions are described in Table II. The four detectors were of the

high-purity Germanium type. They had absorbers on them so to not overwhelm the crystals with too many � rays of

low energy. In total, one 0.04 inch Cu, one 0.08 inch Cu, one 0.0450 Pb, and one 0.100 inch Pb filter were placed on

each detector. The other, unused, high-purity Germanium detectors were placed at backwards angles. The physical

clover configuration can be seen in Fig. 6.

B. Dual-Target Configuration

The dual-target configuration of PSA is presented in Fig. 7. When determining a proper distance between the

targets, two components were considered. As the distance between the targets increases, the e↵ective asymmetry for

the downstream target decreases, which is the desired e↵ect. However, this also means the detectors will detect fewer
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FIG. 7: Top-down view of the dual-target pipe setup. Both targets are outlined in black, with the central target being on the left. Photo
courtesy of Udo Friman-Gayer.

� ray emissions from the downstream target. A distance of 11.75 inch was chosen as a good compromise between

e↵ective asymmetry and radiation detected from the downstream target [6].

The MgO targets were contained within polyethylene cylindrical target capsules with an inner radius of 0.5 inch. A

diagram of the capsule can be found in Fig. 8. The radius was chosen such that it would be larger than the collimator

radius of 0.375 inch. Doing so ensured the beam would not hit the container walls, only the end caps and the MgO

target. Note that, the downstream target was larger than the central target to compensate for the lower detector

e�ciency due to the larger source-crystal distance [6]. Thus, the downstream target was chosen to be about twice as

long as the central target. The central target had a mass of 16.3691± 3⇥ 10�4 g and the downstream one had a mass

of 38.5734± 3⇥ 10�4 g. Finally, to ensure a safe vacuum a 1.0 mm diameter hole was drilled into both capsules.

V. METHODS

I analyzed data from 7 sets of runs. These runs, their target configurations, and their run times are listed in Table

III. Going forward, the target configuration of each run will be referenced as Central Target + Downstream Target.

If one of the positions was empty for a given run, it is listed as ’Nothing.’ There were two sets of runs involving

MgO with the beam at 10.71 MeV: a run in which only the central target was present, and another with both the

central and downstream targets present. There were three sets of calibration runs that used a radioactive source with

isotropic emission in the central target position. Those sources were 56Co, 152Eu, and a mixed source provided by

HI�S.

A. Fitting 24Mg Transitions

For a given run, each �-ray detector developed a histogram of the number of counts detected per energy. If a

given nucleus experiences a decay of energy E� , there will be a Gaussian peak at E� in the resultant histogram. I

fit these peaks by loading the resultant histograms into the nuclear spectrum analysis software HDTV. In HDTV, I
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FIG. 8: Diagram of the target container used to hold the MgO target.

can specify the region of which there is a peak, a sample of background radiation, and the location peak’s centroid to

fit a Gaussian curve. By fitting a Gaussian to these peaks, I can determine their position, area, and width. Within

my resultant spectra, there were many peaks that were not from 24Mg. The impure MgO target resulted in peaks

that belonged to other isotopes such as 26Mg. Thankfully, a prior Research Experiences for Undergraduates (REU)

student, Arlee Shelby, had told me in a private communication that she already determined the origin of the peaks

and calibrated the spectra [24]. As in Ref. [18] of J. Deary et. al., Arlee had found four more decay branches from

the 10.71 MeV state as shown in Fig. 9. Thanks to Arlee, I saved time by focusing my e↵orts on fitting only 24Mg

decay peaks.

Before I began fitting 24Mg peaks for the so-called MgO + Nothing runs, I found that there was a problem in some

of the runs involving MgO in which germanium crystal 2 in detector 1 had gain problems, resulting in poor �-ray

energy identification. This problem can be seen in Fig. 10 where gain shifts result in double-peaking. As a result, I

was unable to properly fit a Gaussian to the parallel detectors’ summed spectra. Instead, I used the integrate function

within HDTV, the nuclear spectra analysis software I used, to find the area of these peaks. This was only found for

the runs with MgO. The integration function relies heavily on properly identifying background radiation, a small error

could easily change the reported value. As a result, I did not use this feature for the spectra from the perpendicular

detectors.

Fitting peaks within the perpendicular detectors’ spectra became a problem when working with low intensity peaks.

TABLE III: Runs analyzed in this work. Column 1 states the target arrangement. Column 2 shows the energy of the beam for a given
run; if no beam was used it is listed as ‘Radioactive Decay.’ Column 3 lists the runtimes.

Target 1 + Target 2 Energy (MeV) Runtime

MgO + Nothing 10.71 6 Hours 36 Min.
MgO + MgO 10.71 9 Hours 8 Min.

Nothing + MgO 10.71 7 Hours 20 Min.
56Co + Nothing Radioactive Decay 32 Hours 23 Min.

152Eu + Nothing Radioactive Decay 17 Hours 20 Min.
Nothing + 152Eu Radioactive Decay 14 Hours 46 Min.

Mixed Source + Nothing Radioactive Decay 16 Hours 44 Min.



14

FIG. 9: Diagram of the decay branches from the 10.71 MeV state in 24Mg.

FIG. 10: The 10.71 MeV peak for crystals 0, 2, and 3 in detector 1. Crystals 0, 2, and 3 correspond to the red, purple, and yellow
histograms respectively. The double peaking from crystal 2 was due to a problem in the gain factor, and is found in every peak from this

crystal.
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FIG. 11: The E� = 2964 keV decay peak for the parallel detectors, red histogram, and perpendicular detectors, green histogram. Due to
the transition’s strong angular distribution, the parallel detectors see practically no peak.

However unlikely, randomized nonresonant scattering can result in peaks appearing in spectra and can lead physicists

to wrongly believe that there is a decay with a specific energy when there is not. As a result, it is said that if the

uncertainty of the peak’s area is around 1/3 of the area, then the peak is due to statistical chance and not a real

decay.

This was not a problem for Arlee. When she had determined which peaks in the spectra were from 24Mg, she did

so from spectra summed up from seven detectors, meaning peaks of low intensity could still be identified. However,

because I used spectra from only two detectors at a time, those low-intensity peaks were sometimes not visible either

due to few counts or to the decay’s angular distribution providing few counts in a certain direction, resulting in a poor

Gaussian fit with large uncertainties. For example, a comparison of the E� = 2964 keV peak in both the parallel and

perpendicular detectors’ spectra can be found in Fig. 11. This decay’s angular distribution did not provide enough �

rays to be seen amongst the background radiation in the parallel detectors. Another example is in Fig. 12, where the

E� = 4277 keV peak in the perpendicular detectors’ spectra is practically nonexistent due to the associate angular

distribution. A Gaussian fit resulted in a nonphysical volume of �28±15. To achieve a proper fit, width manipulation

was used.

For a given spectra, as decay peaks increase in energy, their width, �w, also increases by the formula:

�w =
q
A+B ⇥ E� + C ⇥ E2

� (14)

in which A, B, and C are parameters depending on the specific detector. To find these parameters, I fit well-defined

peaks in the spectra, consisting of both background and 24Mg peaks, and fit their widths to Eq. 14. Figure 13 shows

the resultant fits of Eq. 14 for the perpendicular detectors.

While fitting a Gaussian is useful in finding the yield for peaks from the MgO + Nothing runs, the same could not

be done for MgO + MgO ones. This is because of the Doppler shift of the emitted gamma rays from the downstream

target. This resulted in a widening of the peaks, and in some instances, a double-peaked decay. Figure 14 provides a
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FIG. 12: The E� = 4277 keV decay peak for the parallel detectors, red histogram, and perpendicular detectors, green histogram. Due to
the transition’s strong angular distribution, the perpendicular detectors see practically no peak.

FIG. 13: Fit of Eq. 14 for strong � ray peaks in the perpendicular detectors, 3 and 7. The coe�cients and their uncertainties are listed
in the top left corner. The blue line is the fit and the red signifies the area of uncertainty. Only peaks with well-defined widths were

used. Other than the 1368-keV � ray, all others with E� < 3000 keV are background lines.

comparison of the E� = 9336 keV decay peak with just the central target present and when both targets are present.

As a result, the yield of these peaks was also found using the integrate function in HDTV.
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FIG. 14: Comparison of the E� = 9336 keV peak in the perpendicular detectors’ spectra when the central target is present, green
histogram, and with both targets, purple histogram. When both targets are present, there is an obvious widening of the decay peak due

to a Doppler shift in the �-ray energy for transitions from the downstream target.

B. Detector E�ciencies

A �-ray detector is not going to be perfect; it will allow some � rays to pass through it without detection or will

only collect partial information. A detector’s e�ciency at a given energy is used to compensate for this properly. At

the most basic level, a detector’s e�ciency, ✏, for an isotropic source is:

✏ = Ni/Ii (15)

in which Ni is the number of counts detected for decay i, and Ii is the intensity of decay i. A detector’s e�ciency

depends on the energy of the incoming � ray, with the relationship:

✏(E�) = (A/E� +B ⇥ E�)e
C/E�+D⇥E� (16)

in which A,B,C, andD are parameters for a given detector [25]. By measuring isotropic radioactive decay from

calibration sources with known intensities, an e�ciency curve for a detector can be fit to Eq. 16.

To find the detectors’ e�ciencies, three calibration sources were used: 56Co, 152Eu, and a mixed source commonly

used at HI�S. These radioactive sources were placed in the central target position and allowed the detectors to

measure isotropic emission. Originally, only the 56Co was going to be used for these calibrations due to it having

many transitions up to about 3400 keV. Unfortunately, the source was weak. According to the Nuclear Data Sheets,
56Co has a half life 77.236 days, but the source was used 894 days after it was made, resulting in the transitions

being of very low intensity. In some instances, the peaks were too close to a background peak and the two became

indistinguishable from each other. As a result, the 152Eu and mixed source calibrations were also used for determining
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FIG. 15: Linear fits were applied to relative e�ciencies, for the parallel detectors, above 800 keV. 56Co and mixed source were scaled
such that their linear fit would cross the 152Eu linear fit at 1000 keV. The 56Co was scaled up by 295 (left). The mixed source target was

scaled down by 0.69 (right).

the e�ciency curves. Unfortunately, the 152Eu source does not have any transitions with � rays above 1500 keV, and

the mixed source only has one transition above 1200 keV, making it di�cult to fit an expression such as Eq. 16 above

these energies.

Using multiple calibration sources for e�ciency curves is not desirable as e�ciency is dependent on the absolute

intensity of each source. Which is relative to the most intense decay for a given isotope. Unfortunately, in our

application, only relative intensities were known for the three sources. For example, while a decay from 56Co may

give a relative e�ciency of 0.5, a decay from 152Eu may give a relative e�ciency of 50. Both are true relative to that

isotope’s most intense decay, but fail to reflect the true nature of the detector when compared.

To compensate, I scaled the 56Co and mixed source relative e�ciencies to 152Eu. Above about 800 keV, the

e�ciencies follow a somewhat linear trend. I fit a line through the points above this energy for three sources. To

determine the scaling factor for the 56Co and mixed source relative e�ciencies, I scaled the points such that the 56Co

and mixed source lines would cross the 152Eu line at 1000 keV. This process can be seen in Fig. 15.

The resultant relative e�ciency curves for both the parallel and perpendicular detectors can be found in Fig. 16.

Obviously, the overall fit by Eq. 16 is very poor. This is due to having only a few data points available in the high

energy region, a poor model for the relative e�ciency dependence on energy, and using three calibration sources rather

than one.

To lower the uncertainty, I needed a better model to fit the e�ciency of the detectors. My advisor, Dr. Janssens,

informed me of how RADWARE, a software package developed for �-ray spectroscopy over many years, had found

the e�ciency to be best modeled by:

✏(E�) = EXP[(A+B ⇥ x+ C ⇥ x2)�G + (D + E ⇥ y + F ⇥ y2)�G]�1/G (17)

in which x = log(E�/100 keV), y = log(E�/1000 keV), while A, B, C, D, E, F , and G are parameters specific to a

detector [26]. RADWARE suggested C = 0 and that G be between 1 and 20 depending on how sharp the initial rise

in e�ciency at low energy is. After some trial and error, I found that G = 12.5 resulted in the best fit for both the

parallel and perpendicular detectors. The new e�ciency curves fit to Eq. 17 can be seen in Fig. 17.
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FIG. 16: Relative e�ciency curve fits of Eq. 16 for the parallel detectors (left) and the perpendicular detectors (right). The relative
e�ciency curve is in yellow, while the area of uncertainty is marked in pink. In both detectors, the uncertainty is large due to only
having few data points at higher energies, a poor model for the relative e�ciency dependence on energy, and using three calibration

sources rather than one.

FIG. 17: Relative e�ciency curve fits of Eq. 17 for the parallel detectors (left) and the perpendicular detectors (right). The relative
e�ciency curve is in yellow, while the area of uncertainty is marked in pink. Compared to the relative e�ciency curves fit to Eq. 16, the

uncertainty in these fits are much improved. The parameters to Eq. 17 is provided in the top right corners.

C. Branching Ratios

The branching ratios for the decay from the 10.71-MeV excited state in 24Mg were found using data from the MgO

+ Nothing runs. A single partial width for a given decay from state i to state j, �i!j , is:

�i!j =
Nk,i!j

W0!i!j✏k(E�,i!j)
+

N?,i!j

W0!i!j✏?(E�,i!j)
(18)

in which Np,i!j is the number of counts for decay i ! j in detector p and W0!i!j is the angular distribution of the

excitation and decay cascade.

The angular distribution for a decay is dependent on the decay mode, which is dependent on the spins and polarities
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TABLE IV: List of the energy of the emitted � ray, the spin and parity of their initial state J⇡i and final state J⇡f , and the decay’s mixing
ratio �.

E�(keV) J⇡i J⇡f � Transition

10703.71(4) 1+ 0+ 0 Pure M1
9336.15(28) 1+ 2+ 0 Pure M1
6468.6(4) 1+ 2+ 0 Pure M1
4277.4(4) 1+ 0+ 0 Pure M1
2960.1(9) 1+ 1+ 1 Equal mixture of M1 and E2

TABLE V: The table presents the energy of the initial excited state, Ei, as well its the spin and parity J⇡i . It also lists the energy of the
emitted � ray, E� , the energy of the final level after decay, Ef , and its spin and parity J⇡f . Finally, the branching ratios are listed in the

final column.

Ei J⇡i E� Ef J⇡f Branching Ratio
[keV] [keV] [keV]

10712 1+ 10703.71(4) 0.0 0+ 0.733(49)
9336.15(28) 1368.667(5) 2+ 0.205(41)
6468.6(4) 4238.35(4) 2+ 0.0392(77)
4277.4(4) 6432.2(10) 0+ 0.0149(32)
2960.1(9) 7747.7(2) 1+ 0.0076(16)

of the initial, excited, and final states. For the cascades I am examining, the decay to the final state could be dipole,

quadrupole, or mixed in character. The ratio between the dipole and quadrupole decays is characterized by the mixing

ratio �, but is unknown for the decays in Fig. 9. I used the spins and polarities of the decay states given in Ref [18], the

resultant counts for those decays in the parallel and perpendicular detectors, and the angular distributions for decay

cascades in [10] to provide an estimate of the decay mixing ratios. These can be found in Table. IV. The E� = 10703

keV and E� = 4277 keV transitions must be pure dipoles, � = 0, since these are associated with 1+ ! 0+ transitions.

I assumed the E� = 9336 keV and E� = 6468 keV transitions were also pure dipole ones because the excited states

involved are known to correspond to neutron excitations whose decays are dominated by M1 mulitpolarities. The

E� = 2960 keV transition was a bit trickier to determine. With the knowledge that the decay produced few emissions

in the parallel detectors, from Fig. 11, I used Ref. [10] to find that this would happen for this transition when � = 1.

Implementation of these angular distributions was carried out with the alpaca python package on GitHub made by

Udo Friman-Gayer.

VI. RESULTS

After fitting and integrating Gaussian peaks from the parallel and perpendicular detector histograms in the MgO

+ Nothing runs, I calculated the branching ratios of the 10.71-MeV state with Eq. 18. These branching ratios are

listed in Table V.

From the values of Table V, it makes sense why the E� = 9336, 6468, 4277, and 2960 keV transitions were not

seen in experiments done with a bremmsstrahlung beam. If a photon excites 24Mg to its 10.71-MeV excited state,

it has a 20.5%, 3.92%, 2.49%, and 0.76% chance of decaying through those unseen transitions, respectively. This

highlights the power of using the quasi-monochromatic photon beam, produced at HI�S, to better define the various

decay modes of a given state.

The full level scheme of the transitions from the 10.71-MeV excited state are illustrated in Fig. 18. Cascades

denoted by a black arrow are present in my spectra and listed in the NNDC data sheets. Cascades denoted by a

dashed gray line were not present in my spectra, but were listed in the NNDC data sheets. While I did see the

E� = 6.38 MeV transition from the 7.74-MeV excited state, I did not observe the E� = 7.746 MeV and 3.509 MeV
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FIG. 18: The level scheme of the 10.71-MeV excited state in 24Mg. The transitions from the 10.71-MeV state are colored, the cascades
to the ground state that were found are black, and the ones that are listed in the NNDC that were not found are gray and striped.

ones. According to the NNDC, these states have relative intensities of 100(3)%, 39(3)%, and 12.9(9)% respectively

[13]. It makes sense that I would not see the lowest intensity transitions, from the 7.74-MeV state, cascading from

the least intense decay, from the 10.71-MeV level.

Using the MgO + Nothing run, I found the experimental asymmetry, for the elastic decay to ground state, to be

Āex,c = 0.941(2). This supports the claim that this cascade has the toroid-like angular distribution seen in Fig. 3,

resulting in an experimental asymmetry Āex,c ⇡ 1. This experimental asymmetry measured when just the central

target is present being close to one also supports the reliability of my formula for the experimental asymmetry, Eq.

4. More importantly, this value of Āex,c confirms the spin and parity of the 10.71 MeV state to be 1+, an important

result of this work.

I found the experimental asymmetry of the MgO + MgO runs to be ĀEx = 0.644(5) while the mass-weighted

asymmetry to be ĀMW = 0.457(5). Thus, this analysis clearly shows that self-absorption is taking place.

As of right now, I cannot confidently finalize a result for the full and partial widths of the 10.71 MeV state due

to my results of Eq. 8 not aligning with predicted values. Currently, I find that Āeff = 0.330(21), which is lower

than expected and does not equal AEx, no matter how large my total resonance width is. This alarms me because

increasing the total resonance width of the 10.71 MeV state results in the central target experiencing more resonant

scattering, reducing the scattering o↵ the downstream one and increasing Āeff . However, when increasing the total

resonance width, Āeff levels o↵ too quickly, indicating that this e↵ect is not being seen.

There are two possible issues which could account for the discrepancy. These are currently being investigated. The

first is that the calculation of h�⌧�⇢⌧Ai is not properly accounting for the reduced photon flux of the beam before

reaching at the downstream target. This would explain why increasing the total resonance width does not have

the expected e↵ect on Āeff . The second is that there was an inconsistency in the simulations. My experimental

asymmetry when just the downstream target was present is ĀEx,d = 0.246(7), which di↵ers greatly from my e↵ective

asymmetry for the downstream target alone by a factor of about 2.2. However, the same behavior is not observed

in the experimental and e↵ective asymmetries when only the central target is present, indicating an error lies in

the calculation of the downstream target’s asymmetry. When scaling the e↵ective asymmetry when both targets

are present upwards by 2.2, the full width is found to be about 2 eV. This discrepancy could come from improper

simulations. Unfortunately, no definitive reason has yet been found as to why Āeff is not following expected trends.
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VII. DISCUSSION AND CONCLUSIONS

In determining the asymmetry coe�cients, I obtained important results regarding the decay properties of the 10.71-

MeV state such as confirming its spin and parity, as well as observing five decay branches and their branching ratios.

This was made possible with the linearly polarized quasi-monochromatic photon beam produced at HI�S. The reduced

background, as compared to a bremmsstrahlung beam, allowed me to confidently observe the low-intensity transitions

to the Ef = 1368, 4238, 6432, and 7747 keV states. The linear polarization resulted in angular distributions that

I could compare to Ref [10] and herewith confirm spins and parities of the involved states. This alone shows the

immense power and potential HI�S has in probing states in other isotopes.

As seen in Section VI, values of ĀEx = 0.644(5) and ĀMW = 0.457(5) were found. The di↵erence between the two

asymmetries indicates that self absorption is taking place in the MgO + MgO runs. The ĀMW coe�cient is essentially

a weighted average between the ĀEx,c and ĀEx,d ones. As stated earlier, due to the position of the the downstream

target compared to the central one, the coe�cient ĀEx,d is going to be less than the ĀEx,c one. However, since the

central target is not present in the run used in calculating the ĀEx,d value, there is no absorption of the photon

beam, resulting in more excitations, emissions, and detected � rays from the downstream target as compared to when

both are present. Therefore, the lesser ĀEx,d coe�cient is weighted more in the calculation of the ĀMW value. If

absorption was not taking place between the targets, the ĀEx coe�cient would be approximately equal to the ĀMW

one. This proves that self absorption is taking place between the central and downstream targets, and validates the

use of this technique. While it may seem obvious that this would be true, there was no guarantee that the central

target would absorb a number of resonant photons su�cient to make a noticeable di↵erence in the emissions from the

downstream target. Nor could one assume that the increased mass of the downstream target would not completely

o↵set the lower count rate caused by the reduced photon flux. Since there is a noticeable di↵erence between the ĀEx

and ĀMW values, these assumptions can now be made with confidence. Therefore, there is su�cient grounds for the

PSA method to work.

As stated above, current calculations for the Āeff coe�cient indicate that the value asymptotically levels o↵ as

the total resonance width of the 10.71-MeV state is increased indefinitely. At first, this seemed contrary to theory,

as increasing the total resonance width �i should result in more photons resonantly scattering o↵ the central target;

therefore, the downstream one should experience fewer excitations. This, however, is not fully correct.

Due to the thermal motion of the nucleus within the crystal lattice, there will be a Doppler shift in the energy of

the emitted photons. This results in a widening of the resonance width, denoted by the Doppler width, �, in Ref. [3]:

� =

r
2kBTeff

Mc2
Er (19)

in which kB is the Boltzmann constant, Teff is the e↵ective temperature of the sample, M is the mass of the sample,

c is the speed of light, and Er is the resonance energy. In the short lifetime limit, when condensed matter e↵ects are

not present, �i >> �, the on-resonance absorption cross section, as defined by Ref. [3], is:

�0 / �0

�i
(20)

In the calculation of the Āeff asymmetry, � is being increased such that the Āeff and ĀEx coe�cients equate.

However, from Eq. 20, it can be seen that simultaneously increasing �0 and �i has no e↵ect on the on-resonance

absorption cross section. This can best be explained with Fig. 1. Increasing the total resonance width results in more

photons that can resonantly excite a nucleus; so, the dips in the photon flux at resonant energies in Fig. 1 would get

wider, but not deeper. Therefore, the downstream target would experience the same number of resonant excitations

with respect to the central target. Since the e↵ective asymmetry is a ratio of two energy integrals, this would explain
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why the Āeff coe�cient levels o↵ rather than approach 1 as the total resonance width is increased indefinitely.

In the long lifetime limit when condensed matter e↵ects are present, �i << �, the e↵ective absorption cross section,

as defined by Ref. [3], is:

�a / �0 (21)

indicating that the increasing �i, and thus �0, would deepen the resonance, resulting in more photons being absorbed

by the central target. This would explain why the e↵ective asymmetry does not exhibit the asymptotic leveling when

decreasing the total resonance width. Therefore, equations 20 and 21 show that the asymptotic leveling of the e↵ective

asymmetry is predicted by theory.

The branching ratios given in Table V are a good indication of why over half the decay modes from the 10.71-MeV

level were not previously known. The E� = 4277.4 keV and E� = 2960.1 keV decays were, respectively, 50 and

96 times less likely to occur, compared to the previously known ground state decay. It would make sense that these

low-intensity decay modes were not seen in experiments done with a bremsstrahlung beam. There were some instances

in which these peaks were di�cult for me to find, even with the reduced background from the quasi-monochromatic

photon beam. They were most likely drowned out by the large nonresonant background radiation demonstrated in

Fig. 2, explaining why these decay modes were not found in prior investigations.

After completing the data analysis, there are a few changes that I would make if PSA was to be used again. First,

fitting the peaks for the three calibration sources and scaling the relative e�ciencies to each other took a significant

amount of time that could have been avoided if a stronger source was used. Samantha Johnson, a colleague of mine,

used the same 56Co source as her calibration standard, but her experiment was about a year prior to mine. Unlike

my spectra, in which I could only use three peaks from the 56Co spectra, Samantha was able to maximize 56Co and

use fifteen peaks. Not only would using one calibration source save time, it would also eliminate the error associated

with scaling the other calibration sources’ relative e�ciency curves.

Another modification I would make would be to actively watch and keep track of the gain of the detectors during

the experiment to ensure that disfigurement of decay peaks, as seen in Fig. 10, would not permeate a portion of the

experiment. Consequently, I would not have had to use the less desirable integrate function to find the volume of

peaks within the parallel detectors for the runs involving MgO.

Finally, to find the branching ratios for an excited state, I would have done a MgO + Nothing run with circular

beam polarization to avoid having to estimate mixing ratios. The original author of the PSA method had intended to

use current models and knowledge to get the branching ratios rather than calculate them in the experiment. However,

in situations where current knowledge lacks for all decays from a state, such as the case for the 10.71-MeV excited

state in 24Mg, this approach fails. The MgO + Nothing run done in the experiment used a linearly polarized beam,

which, of course, results in a well defined angular correlation associated with the emission. When calculating the

branching ratios, I needed to know the mixing ratios of the examined transitions, but if the decay has not yet been

determined, I needed to evaluate a mixing ratio based on the number of counts found in the detectors. By completing

a run with a circularly polarized beam, those angular correlations, and therefore the mixing ratios, would not have

been required.

VIII. ACKNOWLEDGEMENTS

I would like to thank Samantha Johnson for her immense guidance throughout this entire project. Her insight

and help were invaluable, and I’m incredibly grateful for the time she gave me. I would also like to thank Udo

Friman-Gayer for his patience in answering my many questions and for his prior work on the project. I thank Robert

Janssens for being my principle investigator and mentor throughout my time at TUNL. Finally, I would like to thank

the Chancellor’s Science Scholars Program at UNC-Chapel Hill for not only encouraging me, but also giving me the



24

resources to complete a senior honors thesis.
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