
Threshold Moderation for End-to-End Encrypted Messaging
Max Christman
max@cs.unc.edu

University of North Carolina at Chapel Hill
Chapel Hill, North Carolina, USA

ABSTRACT
Encrypted messaging is used by billions of people daily to ensure
private communications. This privacy enables malicious uses, in-
cluding spam and other abusive or illegal content. Meta’s Messenger
service uses a system called message franking to moderate end-
to-end encrypted (E2EE) messages. This system gives Meta total
authority in moderation decisions as well as full responsibility for
moderating many millions of messages a day.

This paper modifies message franking to allow many users to
act as moderators, while maintaining the system’s original security
properties. The threshold moderation system uses small groups
of moderators responsible for each message, who vote on how to
act on each report. The protocol uses threshold secret sharing to
condition the undeniability of message reports on a majority vote of
the moderators. This decentralized protocol prevents the platform
from enforcing unpopular moderation policies while alleviating the
burden of moderating every message themselves.

1 INTRODUCTION
After the 2013 revelations that the NSA had been collaborating
with tech companies to perform widespread warrantless domestic
surveillance, many users had to reevaluate the privacy of their
internet communications. In the PRISM surveillance program [4],
user data was harvested en masse from corporate servers, often
without reference to a legitimate foreign adversary. As much, users
became increasingly wary of sharing their data directly with service
providers.

This distrust motivated the development of a messaging para-
digm under which direct government surveillance was impossible,
which came in the form of end-to-end encrypted (E2EE) messaging.
In E2EE messaging schemes, messages are encrypted such that the
content is only visible to the sender and their intended recipient.
This is achieved through ensuring that only the sender and the
recipient have the encryption keys, preventing the platform from
reading or modifying the messages that it relays.

Numerous E2EE messaging services operate today, allowing bil-
lions of people to communicate privately on a daily basis. While this
privacy allows users to resist government and corporate surveil-
lance programs, it also makes abuse significantly easier. With E2EE,
service providers cannot simply decrypt messages to determine if
they are illegal or otherwise objectionable. Instead, the onus is on
the recipient to report harmful messages. While this seems to work,
most messaging services to do not provide a way to prove that a
user sent you a message, in other words, they have deniability.

For the Secret Conversations feature in their Messenger service,
Meta designed a system called message franking [1] to solve this
problem.When a user sends amessage, they are required to send the
platform a value (called a commitment) which commits them to the
message they are sending. The platform then signs this commitment

so that it can later verify its authenticity. If a user comes to the
platform with a message, they also have to provide an authentic
commitment, which ties the accused user to themessage in question.
If the commitment verifies, then the platform is convinced that the
report is genuine, so long as the commitment scheme and signature
scheme are secure.

This system provides a measure of accountability to E2EE mes-
saging without sacrificing confidentiality. However, as the platform
is the only party that verifies commitments, they are the sole au-
thority in moderation decisions. This is undesirable for a number
of reasons, both practical and ethical. If the platform serves many
users, they may have to hire a large team to serve moderation
needs. More concerningly, if the platform operates in a country
with a repressive government, they may be forced to implement an
unpopular moderation policy.

To combat both undermoderation and censorship, we introduce a
threshold moderation system. In our system, users are still required
to commit to the messages they send. However, these commitments
are jointly signed by a group of moderators, using threshold secret
shares of a signing key. Upon reading a message report, moderators
then share their key shares with the platform, which can then
combine them to reconstruct the signing key. With the consensus
of a majority of the moderators, the platform is able to verify the
commitment and be convinced that the report is legitimate.

This system could enable ordinary users to moderate E2EE mes-
saging platforms, allowing decisions to be made by popular con-
sensus, not by arbitrary corporate policy. Provided reasonable qual-
ifications are required to be a moderator, this system would ensure
decisions are made in the interest of the community. Threshold
moderation provides a democratic approach to the practice, using
the size and wisdom of the community to ensure a safer platform
for all.

2 BACKGROUND
2.1 End-to-end encryption
End-to-end encryption, commonly referred to as E2EE, is the prac-
tice of only sharing encryption keys between the parties communi-
cating, rather than also sharing them with the platform facilitating
the communication. This practice has a number of security bene-
fits, including preventing the platform from reading or tampering
with messages, assuming the use of an authenticated encryption
scheme. E2EE is widely deployed today in services such as Signal,
WhatsApp, and iMessage.

2.2 Message franking
Most E2EE schemes do not provide a way of proving that a given
user sent a given message, giving them deniability. While deniable
E2EE messaging provides excellent privacy, it also allows users to

https://orcid.org/0000-0002-8090-2797

Max Christman

send harmful messages with impunity. To solve this problem, in
2016, Meta introduced a protocol called message franking to the
Secret Conversations [1] mode of their Messenger platform.

In message franking, when Alice wants to send a message𝑚 to
Bob, she generates a random nonce 𝑛 and computes a franking tag
𝑇𝐹 as follows:

𝑇𝐹 = HMAC (𝑛,𝑚 | |𝑛)
Alice sends the franking tag 𝑇𝐹 , the encryption 𝑐 of the message

and randomness, and the conversation context to the platform,
who computes the reporting tag 𝑅𝐹 under its reporting key 𝐾𝑅 as
follows:

𝑅𝐹 = HMAC (𝐾𝑅,𝑇𝐹 | |context)
The platform sends 𝑐 , 𝑇𝐹 , and 𝑅𝐹 to Bob, who decrypts 𝑐 to get

𝑚 and 𝑛. Bob recomputes the franking tag and checks that it agrees
with 𝑇𝐹 , discarding the message otherwise. When the platform
receives a message report, consisting of the message, randomness,
conversation context, and reporting tag𝑅𝐹 , they are able to confirm
its authenticity as follows:

• The platform recomputes the franking tag from themessage
and randomness.

• The platform checks if the franking tag and the conver-
sation context verify under the reporting tag, under their
MAC key.

2.2.1 Security properties. Facebook claims the following security
properties for their message franking system:

• Confidentiality: No computationally efficient adversary
learns anything about𝑚 or 𝑛 from 𝑇𝐹 .

• Authenticity: No computationally efficient adversary can
produce a𝑚, 𝑛, conversation context, and 𝑅𝐹 which verifies
under 𝐾𝑅 , unless the platform computes and publishes:

𝑅𝐹 = HMAC(𝐾𝑅,HMAC(𝑛,𝑚 | |𝑛) | |context)
• Third-party deniability: Even if 𝑅𝐹 was computed as

before, no adversary without 𝐾𝑅 can produce a𝑚, 𝑛, and
conversation context such that the above holds.

2.2.2 Shortcomings of message franking. While message franking
allows for effective message moderation in E2EE systems, it intro-
duces several problems, particularly when used on a large scale (as
it is for Meta’s Messenger).

In the original message franking scheme, the platform is the sole
moderating party. As such, it is their responsibility to review all
message reports and make the corresponding moderation decisions.
For a platform with billions of monthly active users, this would
require a dedicated moderation team to make sure every message
report can be viewed and dealt with. A modified message franking
scheme that distributes the burden of moderation across many,
potentially independent moderators would be preferable, especially
for platforms that lack the resources to hire a dedicated team.

Another consequence of centralizing moderation authority is
that it forces the platform to decide on a moderation policy. If the
platform is the only one reviewing message reports, this could force
them to take a side on political or otherwise contentious issues. This
is also undesirable for users, who would prefer that the platform not

enforce arbitrary or opaque moderation policies. Both the platform
and users would benefit from a system that distributes the authority
of moderation across many independent parties.

3 SYSTEM OVERVIEW
3.1 Notation
3.1.1 Message authentication codes (MACs).

• HMAC(𝑘,𝑚) → 𝑡 is a secure many-time hash-based MAC
• PolyMAC(𝑘,𝑚) → 𝑡 is a secure one-time multilinear MAC

More details on the multilinear MAC are given in Appendix 1.1.

3.1.2 Ciphers. AuthEnc(𝑘,𝑚) → 𝑐 and AuthDec(𝑘, 𝑐) →𝑚 or ⊥
will respectively refer to the encryption and decryption functions
which together provide authenticated encryption. PKEnc(𝑘,𝑚) →
𝑐 and PKDec(𝑘, 𝑐) → 𝑚 will respectively refer to public key en-
cryption and decryption algorithms that provide semantic security
against a chosen-ciphertext attack (IND-CCA).

3.1.3 Interactive protocols. As in [6], we use the following notation
to represent an interactive protocol between Alice and Bob:

(𝑂𝐴,𝑂𝐵) ← ⟨𝐴(𝐼𝐴), 𝐵(𝐼𝐵)⟩(𝐼𝑃)
In the above, 𝐼𝐴 and 𝐼𝐵 are the private inputs for Alice and Bob,
𝑂𝐴 and 𝑂𝐵 are their private outputs. 𝐼𝑃 is the public input for
both parties. This notation is also extended to interactive protocols
between many parties.

3.2 Threshold moderation system
This paper modifies message franking to distribute the modera-
tion authority, allowing the platform to crowdsource moderation
while preventing them from applying unpopular moderation poli-
cies. This could be done through enlisting users of the platform as
volunteer moderators. These users would then be deemed eligible
for membership in moderation pools, i.e. groups of moderators who
are responsible for each message.

When Alice sends a message, moderators in her pool generate
shares of a MAC key and collectively compute a reporting tag
under the sum of these shares. When a message is reported, the
moderators can reconstruct the reporting tag and check if it verifies.
In this scheme, messages now have deniability for all parties except
coalitions of more than the threshold number of moderators.

Once a message report is received, moderators vote by sending
their MAC key share to the platform. If enough of them vote in the
affirmative, the platform can aggregate these shares to reconstruct
the MAC key, recompute the reporting tag, and check that it verifies.
If this verifies, the platform is convinced that the message report is
valid, and they can take action.

3.3 System definition
A threshold moderation scheme is defined with respect to the fol-
lowing parameters:

• M, the set of all possible moderators
• 𝑛, the number of moderators per moderation pool
• 𝑡 , the threshold value for each moderation pool

Given the above parameters, a threshold moderation scheme is
defined as follows:

Threshold Moderation for End-to-End Encrypted Messaging

• SendMessage is an interactive protocol between Alice and
a group of moderators, represented by the following pair
of interactive algorithms:

(⊥, (𝑐,𝐶, 𝑜𝑖 , 𝑡𝑖 , 𝜇𝑠 , 𝜇𝑟)) ← ⟨𝐴(𝑠𝑘), {𝑀𝑖 }⟩

Before the protocol, Alice has access to a shared secret key
𝑠𝑘 . After the protocol, all moderators have a ciphertext 𝑐 ,
a commitment 𝐶 , a sender identifier 𝜇𝑠 , and a recipient
identifier 𝜇𝑟 . Additionally, each moderator 𝑖 has access to
an opening share 𝑜𝑖 and a MAC share 𝑡𝑖 .

• ReceiveMessage is an interactive protocol between Bob
and a group of moderators, represented by the following
pair of interactive algorithms:

((𝑚,𝑛, context,𝐶, {𝑒𝑖 }) or ⊥,⊥) ← ⟨𝐵(𝑠𝑘), {𝑀𝑖 (𝑘𝑖)}⟩

Before the protocol, Bob has access to a shared secret key 𝑠𝑘 ,
while each moderator 𝑖 has access to a personal symmetric
key 𝑘𝑖 . After the protocol, Bob has a message𝑚, nonce 𝑛,
conversation context, commitment 𝐶 , and encrypted open-
ings {𝑒𝑖 }.

• ReportMessage is an interactive protocol between Bob
and a group of moderators, represented by the following
pair of interactive algorithms:

(⊥, 𝑜𝑖) ← ⟨𝐵(𝑚,𝑛, context,𝐶, {𝑒𝑖 }), {𝑀𝑖 (𝑘𝑖)}⟩

Before the protocol, Bob has access to a message𝑚, nonce 𝑛,
conversation context, commitment 𝐶 , and encrypted open-
ings {𝑒𝑖 }, while each moderator 𝑖 has access to a personal
symmetric key 𝑘𝑖 . After the protocol, each moderator each
has access to an opening 𝑜𝑖 or nothing.

• VerifyReport is an interactive protocol between a group of
moderators and the platform, represented by the following
pair of interactive algorithms:

(⊥, 𝑜 or ⊥) ← ⟨{𝑀𝑖 (𝑜𝑖)}, 𝑃 (𝑘𝑝𝑟𝑖𝑣)⟩(𝑘𝑝𝑢𝑏)

Before the protocol, each moderator 𝑖 has access to an open-
ing 𝑜𝑖 , the platform has access to a private key 𝑘𝑝𝑟𝑖𝑣 , while
both parties have access to a public key 𝑘𝑝𝑢𝑏 . After the
protocol, the platform either has an opening 𝑜 or nothing.

3.4 Design goals
3.4.1 Deployment scenarios. The threshold moderation system is
optimal for either (or both) of the following scenarios:

(1) An E2EE platform is unable to employ or recruit enough
moderators to effectively handle all message reports.

(2) An E2EE platform faces pressure to apply a particular mod-
eration policy, either internally or externally, e.g. from an
oppressive government.

The protocol allows for an arbitrary number of moderators, each
placed in many (likely intersecting) moderation pools. As such,
it is effective in handling the large volume of message reports
inevitably generated from a large platform. Additionally, allowing
open participation in moderation makes it highly difficult to enforce
an unpopular moderation policy globally.

3.4.2 Functionality goals. As most E2EE messaging systems are
low-latency, a threshold moderation system system should not add
significant latency on top of the standardmessage franking protocol.
Additionally, such a system should strike a balance between fast
turnaround times on message reports and reasonable workloads
for participating moderators.

3.4.3 Security goals. The threshold moderation system intends
to retain the confidentiality and authenticity of standard message
franking, as well as a stronger notion of deniability enabled by
threshold reporting tags. The following security goals define secu-
rity for the threshold moderation system:

(1) Confidentiality: If not reported, only the sender and in-
tended recipient learn anything about the contents of the
message.

(2) Authenticity: If the moderators verify a message report,
they must have previously MACed it.

(3) Threshold deniability: If fewer than 𝑡 moderators vote for
a message report, the platform should not be able to verify
an associated reporting tag. If at least 𝑡 moderators vote for
a message report, the platform should be able to verify if
and only if it is legitimate, i.e. if it was in fact MACed by
the moderators.

3.4.4 Security assumptions. Only under the following assumptions
does the threshold moderation scheme meet the aforementioned
security goals:

(1) Moderators follow the protocol, although all may try to
learn more than is desired.

(2) HMAC is a secure commitment scheme, meaning that it
has computational binding and computational hiding.

(3) PolyMAC is a secure MAC scheme, meaning that it has
existential unforgeability against a chosen message attack.

(4) (AuthEnc, AuthDec) provide authenticated encryption,mean-
ing that they have indistinguishability under a chosen plain-
text attack (IND-CPA) as well as ciphertext integrity (INT-
CTXT).

Note that the first assumption leaves a number of scenarios on
the table. For example, it is fine for the platform to save all franking
tags, reporting tags, and conversation contexts it receives. Users
are also allowed to modify message reports as they please, but this
is defended by the platform keeping track of reporting tags.

Importantly, moderators are allowed to disclose the franking tags,
reporting tags,MACkeys, and evenmessage plaintext frommessage
reports to any party. If fewer than a threshold of moderators in a
moderation pool do this, they will fail to convince anyone of the
validity of their claims.

4 PROTOCOL SETUP
4.1 Initializing the platform
The platform generates an asymmetric keypair 𝑘𝑝𝑢𝑏 and 𝑘𝑝𝑟𝑖𝑣 , as
well as a MAC key 𝑘𝑚 .

Max Christman

4.2 Initializing moderators
Users interested in being moderators indicate this desire to the
platform, which records their public key in a list of all moderators
M. Moderators also each generate a personal many-time key 𝑘𝑖 .

4.3 Generating moderation pools
Note: in this section, 𝑖 indexes moderation pools within the set of all
moderation pools whereas 𝑗 indexes moderators within a moderation
pool.

4.3.1 Platform initialization. To generate a pool, the platform:
(1) Chooses one public key uniformly at random from T , the

set of highly-trusted moderators. This user is designated as
the head moderator.

(2) Chooses 𝑛 − 1 public keys uniformly at random fromM.
(3) The platform sends each of these 𝑛 public keys to the other

𝑛 − 1 public keys, as well as a unique pool identifier 𝜇𝑖 .

4.4 Storing moderation pools
Once all keys are generated, the platform stores the moderation
pool with the following representation:

(1) Unique identifier 𝜇𝑖
(2) Pool parameters 𝑛𝑖 and 𝑡𝑖
(3) A pool tag 𝑝𝑖 = HMAC(𝑘𝑚, Serialize((𝜇𝑖 , 𝑛𝑖 , 𝑡𝑖)))
Each moderator additionally stores these values in their repre-

sentation.
The platform can keep a queue of pre-generated moderation

pools, ordered by their generation time. They can opt to make this
a priority queue as determined by some metric on the pool.

4.5 Public parameters
For the following interactive protocol definitions, all parties are
working in the group Z𝑝 , which is the integers modulo a large
prime 𝑝 .

5 THRESHOLD MODERATION SYSTEM
In the following section, we give a decentralized moderation proto-
col that uses threshold secret sharing to distribute trust.

5.1 SendMessage
When Alice wants to send Bob a message𝑚, they establish a shared
secret key 𝑠𝑘 and participate in the following interactive protocol:

(1) Alice computes ciphertext 𝑐 as follows:

𝑐 = AuthEnc(𝑠𝑘,𝑚 | |𝑛)

(2) Alice generates a nonce 𝑛 uniformly at random and com-
putes a franking tag as:

𝑇𝐹 = HMAC(𝑛,𝑚 | |𝑛)

(3) Alice sends ciphertext 𝑐 , franking tag 𝑇𝐹 , her sender ID 𝜇𝑠 ,
and the recipient ID 𝜇𝑟 to the moderators.

(4) The moderators save the timestamp 𝜏 , the sender ID 𝜇𝑠 , and
the recipient ID 𝜇𝑟 as the conversation context (𝜏, 𝜇𝑠 , 𝜇𝑟).

(5) The moderators each generate a threshold share of a MAC
key𝑚𝑘𝑖 .

(6) The moderators each compute a share 𝑟𝑖 of the reporting
tag:

𝑟𝑖 = PolyMAC(𝑚𝑘𝑖 ,𝑇𝐹 | |context)
(7) The moderators aggregate 𝑟 =

∑
𝑖 𝑟𝑖 and save 𝑐 , 𝑇𝐹 , 𝑟 , and

the conversation context for use in ReceiveMessage.

5.2 ReceiveMessage
Immediately after SendMessage finishes, Alice’s moderators engage
in the following interactive protocol with the user corresponding
to 𝜇𝑟 (henceforth referred to as Bob):

(1) The moderators each compute encryptions 𝑒𝑖 of their MAC
keys:

𝑒𝑖 = AuthEnc(𝑘𝑖 ,𝑚𝑘𝑖)
(2) The moderators each send the ciphertext 𝑐 , franking tag𝑇𝐹 ,

reporting tag 𝑟 , encrypted MAC key shares {𝑒𝑖 }, and the
conversation context to Bob.

(3) Bob decrypts the ciphertext to get the message𝑚 and nonce
𝑛:

𝑚 | |𝑛 = AuthDec(𝑠𝑘, 𝑐)
(4) Bob checks if 𝑇𝐹 = HMAC(𝑛,𝑚 | |𝑛), dropping out of the

protocol if it does not match.
(5) Bob saves the message𝑚, nonce 𝑛, conversation context,

reporting tag 𝑟 , and encrypted MAC key shares {𝑒𝑖 } in case
he needs to make a report.

5.3 ReportMessage
If Bob feels that the message is abusive, illegal, or otherwise against
platform rules, he sends the message 𝑚, nonce 𝑛, conversation
context, reporting tag 𝑟 , and encrypted MAC key shares {𝑒𝑖 } to
Alice’s moderators, who then perform the following interactive
protocol with the platform:

(1) The moderators read the message and context and decide if
the message is illegal or otherwise violates platform rules.
Each moderator who feels so decrypts their MAC key share
as follows:

𝑚𝑘𝑖 = AuthDec(𝑘𝑖 , 𝑒𝑖)

Each moderator who feels otherwise drops out of the pro-
tocol.

(2) Each remaining moderator sends their MAC key𝑚𝑘𝑖 to the
platform.

(3) If they received at least 𝑡 MAC key shares, the platform ag-
gregates them into a MAC key𝑚𝑘 . Otherwise, they discard
the threshold MAC key shares and drop out of the protocol.

5.4 VerifyReport
If the platform receives enough MAC key shares to reconstruct
a MAC key, they participate in the following interactive protocol
with message recipient Bob:

(1) Bob sends the platform the message𝑚, nonce 𝑛, conversa-
tion context, and reporting tag 𝑟 .

(2) The platform recomputes the franking tag 𝑇𝐹 as follows:

𝑇𝐹 = HMAC(𝑛,𝑚 | |𝑛)

Threshold Moderation for End-to-End Encrypted Messaging

(3) The platform recomputes the reporting tag as follows:

𝑟 = PolyMAC(𝑚𝑘,𝑇𝐹 | |context)
(4) If 𝑟 = 𝑟 , the platform is convinced the message report is

legitimate, otherwise they are not convinced.
If the platform successfully verifies the report, they can then

proceed with the necessary legal and/or disciplinary action.

6 SECURITY
6.1 Confidentiality
If a message is not reported, neither the moderators nor the plat-
form will learn anything about the message. First, consider that
the ciphertext 𝑐 and franking tag 𝑇𝐹 together can be viewed as a
compactly commiting authenticated encryption [5] to a message
𝑚.

By the confidentiality of a ccAE scheme, and thus the hiding of
the included commitment, computationally efficient moderators
will learn nothing about 𝑚 from seeing 𝑐 or 𝑇𝐹 . However, this
property will clearly not hold if a message is reported.

6.2 Authenticity
Assume for the sake of contradiction that Bob can generate a false
message report. This means Bob can produce a message𝑚, nonce 𝑛,
conversation context, reporting tag 𝑟 , and encrypted MAC keys 𝑒𝑖
such that the reporting tag verifies under the MAC keys, but Alice
never sent message𝑚 with the given context.

First, assume that the moderators indeed MACed the franking
tag and context which Bob provides. For this to be a false report,
Bob would have had to find a message𝑚′ and nonce 𝑛′ such that:

HMAC(𝑛′,𝑚′ | |𝑛′) = HMAC(𝑛,𝑚 | |𝑛)
where 𝑚′ ≠ 𝑚. However, as HMAC has computational binding,
such an (𝑚′, 𝑛′) should be impossible for any efficient adversary to
compute.

Thus, if Bob can produce an𝑚,𝑛, context, 𝑟 , and {𝑒𝑖 } that verifies,
he will have produced a franking tag and context which verify
under the moderator’s MAC keys, despite them never MACing it.
However, as PolyMAC has existential unforgeability, this should
be impossible for any efficient adversary. Thus, Bob is not able to
generate a false message report that verifies.

6.3 Threshold deniability
First, assume that fewer than 𝑡 moderators vote for a message
report. Without loss of generality, we assume that the platform has
𝑡 − 1 threshold shares of𝑚𝑘 . Assume that Bob sends the platform a
message report, with message𝑚, nonce 𝑛, context, and reporting
tag 𝑟 .

Furthermore, assume that the platform can produce inputs𝑚𝑘′,
𝑡 | |𝑐 to PolyMAC such that 𝑟 = PolyMAC(𝑚𝑘′, 𝑡 | |𝑐). By the existen-
tial unforgeability of the one-time multilinear MAC, we must have
that𝑚𝑘′ =𝑚𝑘 . However, as they had only 𝑡 − 1 shares of𝑚𝑘 , the
information-theoretic security of threshold secret sharing implies
that they should know nothing about𝑚𝑘 . Thus, it is impossible for
the platform to produce𝑚𝑘 .

Next, assume that at least 𝑡 moderators vote for a message report.
This implies that the platform has (at least) 𝑡 threshold shares of

𝑚𝑘 . If Bob sends them a message report, they also have𝑚, 𝑛, 𝑐 , and
𝑟 as before.

Here, the platform can perform polynomial interpolation on𝑚𝑘𝑖
to get 𝑚𝑘 . Assume they then compute 𝑡 = HMAC(𝑛,𝑚 | |𝑛) and
𝑟 = PolyMAC(𝑚𝑘, 𝑡 | |𝑐). By authenticity, this report should verify
if and only if it is genuine.

7 CHOOSING PARAMETERS
Every implementation of the threshold moderation system is de-
fined with respect to a moderation pool size𝑛, and a threshold value
𝑡 . Platforms are free to set these based on the number available
moderators and the level of consensus they expect for moderation
decisions.

7.1 Moderation pool metaparameters
Additionally, the platform should set the following parameters
which correspond to the generation of moderation pools for sent
messages. Platforms wishing to implement threshold moderation
should arrive at estimates of the expected number of messages
sent per second and number of CPU threads to dedicate to pool
generation, denoting the former as 𝜌 and the latter as 𝜒 .

From these two estimates, the platform can derive the batch size
𝛽 as a function of 𝜒 and the period 𝜏 as a function of 𝜌 . 𝛽 determines
how many pools are generated at once while 𝜏 is the time between
batches.

7.2 Choosing pool size and threshold
Through careful choice of moderation pool size, the platform can
leverage the democratic nature of thresholdmoderation and achieve
representation of diverse viewpoints in moderation pools.

Each moderation pool is parameterized by two values: the num-
ber of moderators per pool 𝑛 and a threshold value 𝑡 < 𝑛. These
values should be the same for every moderation pool in an instance
of the threshold moderation system. The values of these parame-
ters should be determined as a function of two parameters and two
estimates:

(1) 𝛼 : Any given binary opinion with this frequency or greater
will be represented in a given moderation pool with likeli-
hood 𝜙 .

(2) 𝜙 : The likelihood that views of frequency 𝛼 or greater will
be represented in a given moderation pool.

(3) 𝜓 : The expected likelihood of a moderator responding to
any given message report.

(4) |M|: The expected number of moderators.
The lower that the platform chooses 𝛼 , the more they will ensure

non-majority opinions are represented in moderation pools. It is
suggested for this value to be lower than 0.5, so as to incorporate
some minority opinions.
𝜓 can be thought of as the platform’s tolerance of the occasional

moderation pool which doesn’t meet their 𝛼 standard. This value
is suggested to be less than 0.01.

7.2.1 Combinatorial method for 𝑛. Once these parameters are cho-
sen and estimates made, 𝑛 can be computed with the following
combinatorial method. If 𝛼 is the portion of people inM holding a
certain binary opinion, we would like to determine the probability

Max Christman

of choosing a pool of size 𝑛 at random which contains at least one
person with each opinion.

Performing the combinatorial calculation, we arrive at the fol-
lowing probability:

𝑝 = 1 −

∏𝑛−1
𝑖=0

(
|M | ·𝛼−𝑖
|M |−𝑖

)
+∏𝑛−1

𝑖=0

(
|M | · (1−𝛼)−𝑖
|M |−𝑖

)
𝑛!

We then take the smallest value 𝑡 which satisfies the following:

𝑝 (𝑡) = 1 −

∏𝑡−1
𝑖=0

(
|M | ·𝛼−𝑖
|M |−𝑖

)
+∏𝑡−1

𝑖=0

(
|M | · (1−𝛼)−𝑖
|M |−𝑖

)
𝑡 !

> 𝜙

This 𝑡 should be used as the threshold value for our scheme.
The total pool size 𝑛 can be computed from the estimate 𝜙 of the
proportion of message reports to which a given moderator will
respond as follows:

𝑛 =
𝑡

𝜓

Now that 𝑡 and 𝑛 have been determined, each subsequent mod-
eration pool should be generated with this same threshold value
and pool size.

7.3 Reviewing message reports
Given a shared secret key, the moderators can discuss the message
report. It is important that such a discussion occur, especially if the
platform has chosen an 𝛼 < 0.5. This discussion provides an oppor-
tunity for minority voices to express their concerns and potentially
convince other moderators to change their mind.

8 FUTUREWORK
While the threshold moderation system improves user privacy by
distributing message deniability across several moderators, it is not
resistant to actively malicious moderators. In future work, we hope
to develop a threshold protocol that uses proofs on threshold secret-
shared data to hide the franking tag and context from moderators.
Preliminary exploration suggests that the SNIP techniques from [3]
can be adapted to the threshold setting without significant difficulty.

A CRYPTOGRAPHIC PRIMITIVES
To understand the foundation on which the threshold moderation
system is built, this section gives an overview of some of the un-
derlying cryptographic protocols and primitives, along with the
associated notions of security.

A.1 Message authentication codes
A message authentication code or MAC scheme is a triple of algo-
rithms:

• KeyGen(1𝜆) → 𝑘 : takes the security parameter 𝜆 and re-
turns a key of 𝜆 bits.

• Sign(𝑘,𝑚) → 𝑡 : takes a key 𝑘 and a message𝑚 and returns
a MAC 𝑡 .

• Verify(𝑘,𝑚, 𝑡) → Accept or reject: takes a key 𝑘 , a message
𝑚, a MAC 𝑡 , and either accepts or rejects.

A MAC scheme is considered secure if it is existentially un-
forgeable under a chosen message attack. Consider the following
security game:

• The challenger picks a key uniformly at random from the
key space.

• The adversary provides a message𝑚, and the challenger
computes 𝑡 = HMAC(𝑘,𝑚), returning it to the challenger.
They also add (𝑚, 𝑡) to their set 𝑆 of seen message-tag pairs.
• The adversary repeats the previous step as many times as

they desire.
• The adversarywins the game iff they can produce amessage-

tag pair (𝑚′, 𝑡 ′) such that HMAC(𝑘,𝑚′) = 𝑡 ′ and (𝑚′, 𝑡 ′) ∉
𝑆 .

A MAC scheme is existentially unforgeable under a chosen mes-
sage attack if there exists no computationally efficient attacker who
wins this game with non-negligible probability.

A.1.1 Multilinear MAC. For computing reporting tags, we will
instead use a multilinear MAC. First, consider a finite field F, often
the integers modulo a large prime 𝑝 (Z𝑝). We assume without loss
of generality that an 𝑙-block message can be represented as as 𝑙
elements from F.

Sign(𝑚) is defined as follows:

• Choose 𝑙 elements 𝑘1, . . . , 𝑘𝑙 uniformly at random from F,
making 𝑘 the one-time key.

• Compute the MAC as 𝑡 =
∑
𝑖 𝑘𝑖 ·𝑚𝑖 where · is the operation

in F.

Verify(𝑘,𝑚, 𝑡) is defined as follows:

• Compute 𝑡 =
∑
𝑖 𝑘𝑖 ·𝑚𝑖 .

• If 𝑡 = 𝑡 , output accept, otherwise reject.

This MAC is of interest as it can be easily represented as an
arithmetic circuit. In particular, this MAC has one multiplication
gate for each block of the message. The results of the multiplications
are then summed to get the final MAC value. Thus, if we view the
message and key as inputs to the circuit, we can use SNIPs to learn
the MAC without knowing the message or the key. We will refer to
this MAC (its signing algorithm) as PolyMAC(𝑘,𝑚).

This multilinear MAC scheme is existentially unforgeable when
used as a one-time MAC. Consider the security game for existential
unforgeability:

• The challenger picks a key uniformly at random from F𝑙 .
• As this is a one-time MAC, the adversary gets only one

MAC query. They then submit a (𝑚, 𝑡) to the challenger.
• The adversary wins the security game iff MAC(𝑘,𝑚) = 𝑡 .

However, consider what is implied if an adversary can produce
such a (𝑚, 𝑡). For this to verify, it must be the case thatMAC(𝑘,𝑚) =
𝑡 , which implies that

∑
𝑖 𝑘𝑖 ·𝑚𝑖 = 𝑡 , or equivalently that 𝑡 −∑𝑖 𝑘𝑖 ·

𝑚𝑖 = 0. If we define 𝑓 (𝑚1, . . . ,𝑚𝑙) = 𝑡 − ∑
𝑖 𝑘𝑖 ·𝑚𝑖 , we can see

that finding a (𝑚, 𝑡) that verifies is equivalent to finding a root of
𝑓 (𝑚). Here,𝑚 is a multilinear polynomial of degree one, so by the
Schwartz-Zippel lemma [7], the probability of a randomly chosen
𝑟 ∈ F𝑙 being a root of 𝑓 is at most 1/| |F| |. Thus, an adequately large
finite field can provide arbitrary levels of existential unforgeability
for this MAC scheme.

Threshold Moderation for End-to-End Encrypted Messaging

A.2 Authenticated encryption
An authenticated encryption scheme is a triple of algorithms:

• KeyGen(1𝜆) → 𝑘 : takes the security parameter 𝜆 and re-
turns a key of 𝜆 bits.

• AuthEnc(𝑘,𝑚) → (𝑐, 𝑡): takes a key 𝑘 , a message𝑚, and
generates a ciphertext 𝑐 and a MAC 𝑡 .

• AuthDec(𝑘, 𝑐, 𝑡) → 𝑚 or ⊥: takes a key 𝑘 , a ciphertext 𝑐 ,
and a MAC 𝑡 , and returns either a message𝑚 or⊥, meaning
invalid.

For a scheme to have authenticated encryption, it must pro-
vide both semantic security from a chosen-plaintext attack and
ciphertext integrity [2].

Indistinguishability under a chosen-plaintext attack (IND-CPA)
is achieved when no efficient adversary has non-negligible advan-
tage in the following security game:

• The challenger randomly chooses a key 𝑘 from the key
space, as well as a random bit 𝑏.

• The adversary provides a pair of messages (𝑚0,𝑚1) to the
challenger, who then gives back 𝑐 as the encryption of the
message corresponding to bit 𝑏.

• The adversary can repeat this step with as many message
pairs as they want.

• The adversary then outputs a bit 𝑏′, indicating its guess of
the true bit 𝑏.

• The advantage of the adversary is defined as how much
better than random chance they are at guessing the bit 𝑏.

Ciphertext integrity (INT-CTXT) is achieved when no efficient
adversary can win the following security game with non-negligible
probability:

• The challenger randomly chooses a key 𝑘 from the key
space.

• The adversary provides a message 𝑚 and the challenger
returns the encryption 𝑐 of𝑚 under key𝑘 . They additionally
keep a record of having seen 𝑐 .

• The adversary can make as many encryption queries as
they want.

• The adversary then submits a ciphertext 𝑐 , which the chal-
lenger decrypts.

• If the ciphertext successfully decrypts (doesn’t return ⊥)
and the challenger hasn’t seen 𝑐 before, the adversary wins
the game.

We will refer to a generic authenticated encryption scheme by
the function signatures given above, with one modification. We
will combine the ciphertext and MAC together for simplicity. Thus,
the ciphertext will contain the message information while simul-
taneously allowing for authenticity. The function signatures are
given as follows:

AuthEnc(𝑘,𝑚) → 𝑐

AuthDec(𝑘, 𝑐) →𝑚 or ⊥

A.3 Threshold secret sharing
Consider a secret that Alice wants to share with 𝑛 parties. With
threshold secret sharing [8], Alice can require that at least 𝑡 of the

parties discuss with each other to recover the secret. The procedure
is as follows:

(1) Alice represents the secret as an element 𝑠 ∈ Z𝑝 , where 𝑝
is a large prime.

(2) Alice chooses 𝑡 − 1 values uniformly at random from Z𝑝 ,
calling them 𝑎1, . . . , 𝑎𝑡−1.

(3) She then constructs the 𝑡 − 1 degree polynomial 𝑞(𝑥) as
follows:

𝑞(𝑥) = 𝑠 +
𝑡−1∑︁
𝑖=1

𝑎𝑖 · 𝑥𝑖

(4) Alice computes 𝑛 "shares" of her secret as 𝑞(𝑖) for 𝑖 ∈
{1, . . . , 𝑛}, distributing (𝑖, 𝑞(𝑖)) to the 𝑖-th party.

With this scheme, if 𝑡 of the parties convence and exchange
shares, they can reconstruct the coefficients of 𝑞(𝑥), and thus the
secret, using polynomial interpolation. If fewer than 𝑡 parties coop-
erate, there is a still a uniform prior on the coefficients, making this
scheme secure even for a computationally unbounded adversary.
This scheme is particularly useful for a setting where Alice expects
some, but not all parties to be malicious.

A.4 Secret-shared non-interactive proofs
(SNIPs)

Prio [3] introduces the idea of secret-shared non-interactive proofs
for the computation of aggregate statistics. In particular, they use
SNIPs to prove that individual data values are well formed before
aggregating them.

In this scenario, there is a single prover and multiple verifiers. All
parties have access to a validation function Valid(𝑥), the verifiers
hold additive (not threshold) secret shares of an input 𝑥 , while the
prover has the entire 𝑥 . The goal of the prover is to convince the
verifiers that Valid(𝑥) = 0, where 𝑥 is value reconstructed from all
of the verifiers’ shares.

The authors give three security properties for a SNIP:
• Completeness: If all verifiers are honest, an honest prover

should convince them that Valid(𝑥) = 0.
• Soundness: If all verifiers are honest and Valid(𝑥) ≠ 0,

each verifier will reject 𝑥 with overwhelming probability.
• Zero knowledge: If the prover and at least one verifier are

honest, then the verifiers will learn nothing about 𝑥 other
than that Valid(𝑥) = 0.

Prio describes a SNIP protocol which satisifes completeness,
soundness, and zero knowledge, the details of which are given in
the paper [3].

REFERENCES
[1] 2016. Messenger Secret Conversations Technical Whitepaper. Technical Report.

Facebook. Accessed: 2023-03-22.
[2] Mihir Bellare and Chanathip Namprempre. 2008. Authenticated Encryption:

Relations among Notions and Analysis of the Generic Composition Paradigm.
Journal of Cryptology 21, 4 (July 2008), 469–491. https://doi.org/10.1007/s00145-
008-9026-x

[3] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scal-
able Computation of Aggregate Statistics. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 259–282. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/corrigan-gibbs

[4] Barton Gellman and Laura Poitras. 2013. U.S., British intelligence mining
data from nine U.S. internet companies in Broad secret program. https:
//www.washingtonpost.com/investigations/us-intelligence-mining-data-from-

https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/s00145-008-9026-x
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html

Max Christman

nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-
cebf-11e2-8845-d970ccb04497_story.html

[5] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. 2017. Message Franking via
Committing Authenticated Encryption. In Advances in Cryptology – CRYPTO
2017. Springer International Publishing, 66–97. https://doi.org/10.1007/978-3-
319-63697-9_3

[6] Charlotte Peale, Saba Eskandarian, and Dan Boneh. 2021. Secure Complaint-
Enabled Source-Tracking for Encrypted Messaging. In Proceedings of the 2021

ACM SIGSAC Conference on Computer and Communications Security. ACM. https:
//doi.org/10.1145/3460120.3484539

[7] J. T. Schwartz. 1980. Fast Probabilistic Algorithms for Verification of Polynomial
Identities. Journal of the ACM 27, 4 (Oct. 1980), 701–717. https://doi.org/10.1145/
322217.322225

[8] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (Nov. 1979),
612–613. https://doi.org/10.1145/359168.359176

https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1145/3460120.3484539
https://doi.org/10.1145/3460120.3484539
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/359168.359176

	Abstract
	1 Introduction
	2 Background
	2.1 End-to-end encryption
	2.2 Message franking

	3 System Overview
	3.1 Notation
	3.2 Threshold moderation system
	3.3 System definition
	3.4 Design goals

	4 Protocol setup
	4.1 Initializing the platform
	4.2 Initializing moderators
	4.3 Generating moderation pools
	4.4 Storing moderation pools
	4.5 Public parameters

	5 Threshold moderation system
	5.1 SendMessage
	5.2 ReceiveMessage
	5.3 ReportMessage
	5.4 VerifyReport

	6 Security
	6.1 Confidentiality
	6.2 Authenticity
	6.3 Threshold deniability

	7 Choosing parameters
	7.1 Moderation pool metaparameters
	7.2 Choosing pool size and threshold
	7.3 Reviewing message reports

	8 Future work
	A Cryptographic primitives
	A.1 Message authentication codes
	A.2 Authenticated encryption
	A.3 Threshold secret sharing
	A.4 Secret-shared non-interactive proofs (SNIPs)

	References

