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Abstract

Background: Sapoviruses are responsible for sporadic and epidemic acute gastroenteritis 

worldwide. Sapovirus typing protocols have a success rate as low as 43% and relatively few 

complete sapovirus genome sequences are available to improve current typing protocols.

Objective/study design: To increase the number of complete sapovirus genomes to better 

understand the molecular epidemiology of human sapovirus and to improve the success rate of 

current sapovirus typing methods, we used deep metagenomics shotgun sequencing to obtain the 

complete genomes of 68 sapovirus samples from four different countries across the Americas 

(Guatemala, Nicaragua, Peru and the US).
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Results: VP1 genotyping showed that all sapovirus sequences could be grouped in the four 

established genogroups (GI (n = 13), GII (n = 30), GIV (n = 23), GV (n = 2)) that infect humans. 

They include the near-complete genome of a GI.6 virus and a recently reported novel GII.8 

virus. Sequences of the complete RNA-dependent RNA polymerase gene could be grouped into 

three major genetic clusters or polymerase (P) types (GI.P, GII.P and GV.P) with all GIV viruses 

harboring a GII polymerase. One (GII.P-GII.4) of the new 68 sequences was a recombinant virus 

with the hotspot between the NS7 and VP1 regions.

Conclusions: Analyses of this expanded database of near-complete sapovirus sequences showed 

several mismatches in the genotyping primers, suggesting opportunities to revisit and update 

current sapovirus typing methods.
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1. Background

Since the introduction of rotavirus vaccines, norovirus has become the leading cause of 

medically-attended acute gastroenteritis (AGE) in many countries including the US [1,2]. 

Of the other viruses associated with AGE, sapoviruses have increasingly been detected in 

endemic and epidemic AGE [3–6]. Using real-time RT-PCR, studies from low-, middle-, and 

high-income countries have shown that the prevalence of sapovirus in children < 5 years of 

age ranges from 3.3 to 17% [7–13]. Although earlier reports described sapovirus infection 

as one with less severe clinical symptoms than norovirus and rotavirus [14], more recent 

studies have shown that infections with sapovirus can result in hospitalizations and severe 

dehydration [9,15]. Sapoviruses were first detected by electron microscopy in children of 

an infant home with acute gastroenteritis in October 1977 in Japan. The name sapovirus 

refers to the well-studied prototype strain, Sapporo virus, from another AGE outbreak 

in the Sapporo prefecture in Japan in 1982. Initially classified as typical caliciviruses or 

Sapporo-like viruses by electron microscopy, sequencing of the complete genome showed 

that these non-enveloped 30–35 nm viruses belong to a separate genus Sapovirus in the 

family Caliciviridae [16]. Sapoviruses have a positive-sense, single stranded RNA genome 

of 7.3–7.5 kb in length which contains two open reading frames (ORFs). Cleavage of the 

ORF1 polyprotein by the virus-encoded 3C-like cysteine proteinase yields the mature non-

structural (NS) proteins (NS1–NS7) including the RNA-dependent RNA polymerase (RdRp 

or NS7) as well as the major capsid protein VP1, whereas ORF2 encodes for a minor capsid 

protein VP2 [17]. The antigenic epitopes are in the hypervariable region of VP1, which is 

the most diverse region of the genome, likely in the predicted P2 domain [18]. Based on 

complete VP1 nucleotide sequences, sapoviruses can be divided into up to 19 genogroups 

(GI–GXIX) [19] of which viruses from 4 (GI, GII, GIV and GV) infect humans while 

viruses in the other genogroups have been detected in swine (GIII and GV-GXI), sea lions 

(GV), mink (GXII), dogs (GXIII), bats (GXIV, GXVI-GXIX) and rats (GXV). The human 

sapoviruses can be further classified into 17 genotypes [17], and an additional proposed 

GII.8 genotype [20]. GI and GII sapoviruses are the most frequently detected viruses in 

recent years. Although GIV viruses are relatively rare, in some studies they accounted for 
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up to one third of the cases [21]. They have been detected worldwide in stool samples 

from young children as early as 1992 in Pakistan [22]. GV viruses were first reported in 

stool samples from children in Argentina in 1995 [23] but in most studies viruses of this 

genogroup have been rarely reported [24]. GI.6 and GII.3 viruses became predominant 

in Japan, but these genotypes gradually disappeared in subsequent years [25]. Several 

recombinant sapovirus strains have been documented [26] and, like for noroviruses, such 

strains may have an altered virulence possibly leading to an increased disease burden [27]. 

Since 2006, most research groups have used the same protocols for the detection [28] and 

genotyping [29] of human sapoviruses. The real-time RT-PCR assay described by Oka et al. 

[28] is able to detect viruses from all 4 genogroups. However, reported genotyping success 

rates for sapovirus range from 43% to 100% [30,31] indicating the current hemi-nested PCR 

assays do not detect all circulating sapovirus strains.

2. Objective

With protocols for sequencing of the complete genome of enteric viruses directly from stool 

samples becoming more widely available [32], the aim of our study was to increase the 

number of complete sapovirus genomes especially for those genotypes for which currently 

no or only few complete genomic sequences are available in public databases. A larger 

sequence database will help to develop more broadly-reactive PCR assays with overall 

improved genotyping success to better understand the molecular epidemiology of human 

sapoviruses.

3. Study design

3.1. Fecal specimens

Sapovirus positive stool specimens used in this study were obtained from outbreaks or 

sporadic cases of AGE and collected between 2010 and 2016. CDC’s Internal Program for 

Research Determination deemed that this study is categorized as public health non-research 

and that human subject regulations did not apply. Specimens representing rare or uncommon 

genotypes, or strains for which no complete genomes were available in public databases 

were selected for whole genome sequencing. In addition, specimens that could not be 

amplified using the hemi-nested PCR assay were included [29]. All specimens, except 

four samples collected during an outbreak in a long-term care facility in 2016 in the 

United States, were collected from children under 5 years of age with sporadic AGE. 

Sapovirus positive specimens in the US were obtained from two sites (Nashville, Oakland) 

participating in New Vaccine and Surveillance Network [33] and from an all-age active 

surveillance study for medically–attended acute gastroenteritis in Oregon. The Peruvian 

specimens were obtained from children hospitalized at the Instituto Nacional de Salud del 

Niño in Lima, Peru. The specimens from Nicaragua were from a population-based study in 

2010 and had been tested for Shigella, Salmonella, E.coli, Campylobacter, Cryptosporidium, 

rotavirus, adenovirus, and norovirus [7]. The specimens from Guatemala had been collected 

as part of an AGE health facility-based surveillance in two Guatemalan departments 

(Santa Rosa and Quetzaltenango) from April 2010 to February 2016. Table 1 summarizes 

the number of complete sapovirus genomes (i.e., sequences containing the 5′ UTR, the 
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complete ORF1 and ORF2 and the 3′UTR regions) in public databases (as of April 1st, 

2018) and the complete genomes obtained in this study.

3.2. RNA extraction, sapovirus detection by RT-qPCR and VP1 genotyping

Clarified 10% stool suspensions were prepared in phosphate-buffered saline and centrifuged 

at 10,000 × g for 10 min. Viral nucleic acid was extracted using the MagMAX total nucleic 

acid isolation Kit (Thermo Fisher Scientific, Carlsbad, CA). Sapovirus RNA was detected 

by TaqMan-based quantitative RT-PCR as described previously [28]. VP1 subtyping was 

performed by hemi nested RT-PCR followed by Sanger sequencing of the 2nd round PCR 

positive products [29].

3.3. Full genome sequencing, de novo assembly, and U50 N50 metrics calculation

Viral metagenomics were performed according to a previously published protocol [34–36]. 

Briefly, virus particles were filtered using 0.45 μm centrifugal filters (Millipore, Billerica, 

MA), followed by a nuclease treatment consisting of a cocktail of RNase A and TURBO™ 

DNase (Thermo Fisher Scientific, Carlsbad, CA), Baseline-ZERO™ (Epicentre, Madison, 

WI), and Benzonase (Sigma-Aldrich, St. Louis, MO). Viral nucleic acids were extracted 

using QIAamp® Viral RNA Mini Kit (QIAGEN, Hilden, Germany). Complementary DNA 

(cDNA) synthesis and random amplification were performed by sequence-independent 

single primer amplification (SISPA) [35–37]. PCR products were purified using Agencourt® 

AMPure® XP beads (Beckman Coulter, Brea, CA). An approximate 200-bp fragment library 

was constructed using the Nextera® XT DNA Library Preparation Kit (Illumina, San Diego, 

CA). The Nextera® product was purified using Agencourt® AMPure® XP beads (Beckman 

Coulter, Brea, CA) and quality of the purified library was assessed on an Agilent HS D1000 

ScreenTape System (Agilent Technologies, Santa Clara, CA). Library concentration for 

pooling was determined with a KAPA Library Quantification Kit for Illumina® platforms 

(Roche, Wilmington, MA). Samples were sequenced on an Illumina MiSeq using MiSeq 

Reagent Kits v2 (250-cycle paired-end). Full-length sapovirus genomic sequences were 

generated using a custom bioinformatics pipeline as described previously [38,39]. Briefly, 

sequences were trimmed/filtered to remove adapters and low quality bases, sequences 

shorter than 50 nt, and human (host) sequences identified through mapping of reads to 

the human reference genome hg19 using bowtie2 [40]. Sapovirus were first assembled using 

SPAdes [41], a de novo assembler, followed by reference mapping and gene annotation 

using Geneious version 9.1.4 [Biomatters] [42] to verify assembled sequences. For all de 
novo assembled sequences the new metric U50 was calculated which is circumventing the 

limitations of N50 by identifying unique, target-specific contigs using a reference sequence 

as a baseline [43].

3.4. Phylogenetic and genome similarity analyses

Sequences alignment was performed with MUSCLE [44] and phylogenetic trees were 

constructed using the maximum-likelihood method with 100 bootstraps replications 

to assess phylogenetic robustness using MEGA version 6 [45]. Using the Sequence 

Demarcation tool [46] we aligned every unique pair of sequences and calculated the 

sequence pairwise identity among sequences from this study and published references. 

Possible recombination events were analyzed using SimPlot [47].
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4. Results

Of the 108 sapovirus positive samples that were tested by deep metagenomics shotgun 

sequencing, we successfully obtained near-complete genome sequences for 68 (63%) strains 

of which 44 had UG50% values of over 99% indicating that they were successfully obtained 

during de novo assembly by the bioinformatics pipeline [43] (Table 2). Of the remaining 

40 samples, 26 sequences were incomplete and/or had gaps and/or had too few reads by 

NGS to be confidently assembled and assigned. The other 14 samples had a complete VP1 

sequence which allowed genotyping, but since no complete genomes was obtained, they 

were not further analyzed in this study. All 68 (near-)complete genomes belonged to the 

four established sapovirus genogroups (GI, GII, GIV and GV) and included 13 GI, 30 

GII, 23 GIV and 2 GV sequences were typed based on VP1 sequences. They included 12 

sequences from rare sapovirus genotypes, GI.6 [n = 1], GII.3 [n = 6], GII.4 [n = 1] and 

GII.5 [n = 4]. In addition, based on a pairwise distance cut-off value of ≤0.169 to distinguish 

different genotypes and ≤0.488 to distinguish different genogroups [17], four sequences 

could be classified into a recently reported new genotype, GII.8 (Figs. 1 and 2B) [20]. These 

sequences shared only 75% nucleotide identity with its closest neighbor, GII.7 viruses.

Phylogenetic analyses of the complete RdRp gene (approximately 1550 nucleotides) [17] of 

99 sapovirus strains, including 68 from this study, showed that they can be grouped into 3 

main clusters or polymerase types (P-types: GI.P, GII.P and GV.P) which are distinguished 

by having less than 43% nucleotide identity (Fig. 2A). GI.P includes all GI viruses based on 

VP1, GII.P includes all GII and GIV viruses including the new GII.8 and GV.P includes all 

GV viruses.

The non-structural (NS) protein sequences in ORF1, contained previously recognized 

conserved motifs in the first five amino acids of NS1 (MASKP) and around the RdRp-

VP1 junction region [NS7-VP1] cleavage site (FEME/G, the slash indicates the putative 

cleavage site by viral protease NS6) in all strains [48]. The rest of non-structural proteins 

biological functions are not yet experimentally determined, but NS3 and NS5 have typical 

calicivirus NTPase and VPg motifs, respectively. Conserved amino acids motifs including 

(G(A/P)PGIGKT) in NS3, (KGKTK and DDEYDE) in NS5, (GDCG) in NS6, (WKGL, 

KDEL, DYSKDST, GLPSG and YGDD) in NS7 and (PPG and GWS) in VP1 were, with 

some minor variations, present in all 68 sapovirus sequences obtained in this study. These 

minor variations were found in the NS3 and NS5 genes. In NS3, the GAPGIGKT motif 

was present only in GI.1 sequences whereas all other strains, irrespective of genogroup, had 

the GPPGIGKT motif. In NS5, all sequences had the common KGKTK motif while GI.2 

viruses had KGKSK and the novel GII.8 strains had a KGKNK motif.

We identified an RdRp-VP1 recombinant (GII.P-GII.4_Lima_1873) (Fig. 3) with the 

recombination break point at the RdRp-VP1 junction. No other recombinant viruses were 

identified throughout ORF1.

We identified several mismatches between the widely used genotyping primers published a 

decade ago [29] and 134 VP1 sequences including 68 sequences from this study. Several GII 
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viruses, including the new GII.8, and GIV viruses had multiple mismatches in the primers 

used in the hemi-nested typing PCR (Fig. 4).

4.1. Nucleotide sequence accession numbers

The sapovirus nucleotide sequences determined in this study have been deposited in 

GenBank under the accession numbers MG012397-MG012400; MG012402-MG012463 and 

MG674583- MG674584.

5. Discussion

To better understand the magnitude of genetic variability of human sapoviruses and to 

increase the available sequences to improve the success rate of current genotyping protocols, 

we sequenced (near-) complete genomes of 68 sapovirus strains from four different 

countries including several rare genotypes. We used the complete VP1 nucleotide sequences 

to classify strains into established sapovirus genogroups and genotypes [17,23]. Samples 

from an AGE outbreak in a long-term care facility in the US and from two hospitalized 

children in Peru could be typed as GII.8, a new genotype which was recently reported 

[20,49]. Due to the limited number of samples from adults (2 samples from an outbreak in 

a long term care facility), we cannot conclude if adults are infected by different genotypes 

then young children which is an important research area to be addressed in future studies. 

A major contribution of the current study is the addition of 68 near-complete genome 

sequences to the current 41 complete sapovirus genomes in GenBank. Two types of 

recombination events have been described including inter-genogroup and intra-genogroup 

[17]. In the current study one intra-genogroup recombinant (GII.1/GII.4) event was observed 

among the 68 complete sapovirus genomes analyzed, similar to previously described 

recombinant viruses in Vietnam [50] and in the Philippines [26]. Other intra-genogroup 

recombinations have also been also described in sapovirus GI (GI.1/GI.8) in Japan [51] 

consistently with the breakpoint located between the RdRp and the VP1 genes. Among 

caliciviruses, RdRp is the most conserved region of the genome and coinfection with 

multiple sapovirus strains may lead to the emergence of recombinant strains [52,53]. 

Nevertheless, the frequency of recombination observed in sapovirus is lower than in viruses 

in the closely related genus Norovirus, in which this phenomenon occurs frequently [27]. 

This can be partially explained because of the relatively few number of RdRp sequences 

available for sapovirus compared to norovirus. Thus, the large number of sequences 

provided in this study allow for a better assessment of the frequency of recombination 

among sapoviruses.

The heminested PCR for typing of sapoviruses was also designed in 2006 based on the 

limited number of sequences available at that time. Genotypes such as GII.3, and GII.8 

have up to 5 mismatches with the SV-R2 reverse primer but design of more broadly-reactive 

typing primers is compromised by the large genetic variability of GII strains.

In summary, we obtained full and near-complete sapovirus genome sequences of 68 human 

stool samples from four different countries in the Americas using deep metagenomics 

shotgun sequencing. Further optimizations of the metagenomics shotgun protocol may be 

needed to consistently obtain complete genomes from samples with a lower viral load either 
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by using virus-specific RNA baits to enrich sapovirus nucleic acids prior to sequencing or 

sequence-specific amplification of complete sapovirus genomes. We showed that the current 

oligonucleotide primers used for genotyping of human sapoviruses [29] have mismatches 

that are less likely to be successful for amplifying GII sapoviruses, but optimization 

of amplification conditions of the current protocol may increase the success rate (data 

not shown). Continued surveillance of sapovirus from different geographic regions using 

improved detection and typing protocols will help to better determine the disease burden and 

genotype diversity of these, until recently, underappreciated viral gastrointestinal infections.
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Fig. 1. 
Pairwise sequence comparison of novel sapovirus strains (GII.8 Monterey6283, GII.8 

Monterey6284, GII.8 Lima1859, and GII.8 Lima1867) with sapovirus GII.1-GII.7reference 

sequences. In the color-coded pairwise identity matrix each cell includes the percentage 

identity among two sequences (horizontally to the left and vertically at the bottom). 

The colored key indicates the correspondence between pairwise identities and the colors 

displayed in the matrix.
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Fig. 2. 
Phylogenetic analysis of 99 sapovirus RdRp (A) and 70 VP1 (B) sequences using Maximum 

Likelihood method. The tree was inferred by using the Maximum Likelihood method based 

on the Tamura-Nei model. The trees with the highest log likelihood are shown, on the basis 

of nucleotide sequence of the complete RdRp (A) and VP1 (B) genes. The trees are drawn to 

scale with branch lengths measured in the number of substitutions per site. Bootstrap values 

(100 replicates) are shown next to each branch. Branches have been compressed for clarity 

and only the GII branch is partially expanded to show how the four samples of GII.8 branch 

out from the closest GII.7 sapovirus.
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Fig. 3. 
Evidence of recombination for sapovirus GII.4 Lima1873 compared to previous sequenced 

GII.1 and GII.4 genomes. Sapovirus genomes were analyzed by SimPlot and similarity 

scores using a 200 nt sliding window are plotted. Three reference strains (A, B and C) 

were analyzed against the query sequence GII.4_Lima1873. Similarity scores of all three 

references (two GII.1 and one GII.4) were almost > 85% in the entire NS region, with 

a notable drop in similarity scores over the capsid region and ORF2 (VP2). The query 

sequence most closely related to previously described sapovirus recombinant strain with 

a GII.P polymerase and GII.4 capsid (KP067444). Red boxes indicate the approximate 

location of the hemi nested genotyping primers [29].
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Fig. 4. 
Alignment of 68 near complete genome sequences obtained in this study and the primers 

used for hemi-nested PCR [29]. Mismatches between individual strains and the primer 

binding regions are highlighted in yellow.
aNucleotide positions based on Manchester strain (Accesion number X86560).
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Table 1

Distribution of near-complete sapovirus genomes sequenced in this study compared to complete genomes 

available in NCBI.

Genotype This study NCBI
a

n n

GI.1 9 10

GI.2 3 3

GI.3 0 1

GI.4 0 1

GI.5 0 1

GI.6 1 1

GI.7 0 1

GII.1 10 2

GII.2 4 1

GII.3 6 3

GII.4 1 1

GII.5 5 1

GII.6 0 1

GII.7 0 1

GII.8
b 4 4

GIV.1 23 5

GV.1 2 2

GV.2 0 2

total 68 41

a
NCBI = National Center of Biotechnology Information, complete genomes available on April 1st 2018.

b
Proposed new genotype.
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