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Background: Oral rotavirus vaccine efficacy is lower in low- and middle-income countries (LMICs) than in
high-income countries. The degree to which antibiotic use impacts rotavirus vaccine immunogenicity in
LMICs is unknown. Using data from a multisite prospective birth cohort study of malnutrition and enteric
disease, MAL-ED, we examined the effect of early life antibiotic use on the immune response to rotavirus
vaccine.
Methods: We assessed whether antibiotic use from birth up to 7 days following rotavirus vaccine series
completion was associated with rotavirus seropositivity at 7 months of age in Brazil, Peru, and South
Africa using a modified Poisson regression. We then used parametric g-computation to estimate the
impact of hypothetical interventions that treated all children and alternatively prevented inappropriate
antibiotic treatments on seropositivity.
Results: Of 537 children, 178 (33%) received at least one antibiotic course during the exposure window.
Probability of seropositivity was 40% higher among children who had at least one course of antibiotics
compared with those with no antibiotic exposure (PR: 1.40, 95% CI: 1.04, 1.89). There was no significant
difference by the number of antibiotic courses received or total duration of antibiotics. Treating all chil-
dren with antibiotics would be associated with a 19% (95% CI: 18%, 21%) absolute increase in seropositiv-
ity at 7 months. In contrast, removing inappropriate antibiotics would result in a 4% absolute reduction
(95% CI: �5%, �2%) in seropositivity.
Conclusions: Early life antibiotic use was associated with increased seropositivity. However, a hypothet-
ical intervention to remove inappropriate antibiotics would have little effect on overall seropositivity.
Further investigation into the underlying mechanisms of antibiotic use on the infant gut microbiome
and immune response are needed.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Although the burden of rotavirus has steadily declined over the
past decade, rotavirus continues to be a leading cause of diarrhea
among children younger than five years of age. According to the
Global Burden of Diseases, Injuries, and Risk Factors Study, rota-
virus was the leading cause of diarrhea-associated illness, account-
ing for 258 million diarrhea episodes, 1.5 million hospitalizations,
and 128,500 deaths in 2016, with low- and middle-income coun-
tries (LMICs) experiencing disproportionate amounts of the world’s
rotavirus burden compared to high-income countries (HICs) [1–3].
The introduction and expanded use of oral rotavirus vaccines has
contributed greatly to the reduction in rotavirus burden. However,
rotavirus vaccine efficacy is greater in HICs compared to LMICs,
while the disease burden is greater in the latter [4].

A proposed biological mechanism for the variability in oral rota-
virus vaccine response is the composition of the gut microbiome,
which is important for infant immune development and can be
altered by antibiotic use [6–9]. Drug-related factors such as antibi-
otic class, timing of exposure, and route of administration have
been shown to influence patterns of microbiota alteration, or dys-
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biosis, because of their different spectrum and bacterial targets
[6,6,10]. The potential impact of antibiotics on early development
of the microbiota and immunity is particularly relevant among
children in LMICs because antibiotic use in these settings is highly
common even in the first months of life [11]. More frequent antibi-
otic use can be explained by a wide range of factors, including a
higher burden of disease, higher over-the-counter access [12,13],
varying influence of caregiver and clinician preferences [14,15],
and the limited availability of sensitive diagnostics to distinguish
between viral and bacterial infections [16].

To date, studies of the effect of antibiotic use on vaccine
response have focused on populations in HICs, despite the fact that
the vaccine performs well in these settings [17,18]. Given the lack
of studies in LMICs and the high use of antibiotics in early life, it is
important to understand any potential unintended consequences
of antibiotic administration that may affect the management of
other communicable diseases in these settings. The objective of
this analysis was to determine whether antibiotic use by children
prior to completion of the rotavirus vaccine series was associated
with vaccine response in three sites of the MAL-ED birth cohort
study where rotavirus vaccines were part of the national immu-
nization schedule [19]. We also estimated the expected effect of
hypothetical mass antibiotic administration interventions as well
as interventions to reduce inappropriate antibiotic use on rotavirus
vaccine response in these LMIC settings.
2. Methods

2.1. Study population

The MAL-ED study design, descriptions of sites, surveillance,
and microbiologic methods have been described previously in
detail [19]. In summary, healthy infants from Dhaka (Bangladesh),
Fortaleza (Brazil), Vellore (India), Bhaktapur (Nepal), Naushahro
Feroze (Pakistan), Loreto (Peru), Venda (South Africa), and Haydom
(United Republic of Tanzania) were enrolled within 17 days of
birth between November 2009 and February 2012 and followed
until 24 months of age – through February 2014. For this study,
we included participants enrolled in 3 sites (Brazil, Peru, and South
Africa) where the Rotarix� (GlaxoSmithKline, Rixensart, Belgium;
RV1) vaccine was introduced nationally prior to the start of the
study. The RV1 schedule was 6 and 14 weeks in South Africa com-
pared to 8 and 16 weeks in Peru and Brazil. The original study was
approved by local institutional review boards and ethical approval
for our analysis was obtained through the University of North Car-
olina at Chapel Hill Institutional Review Board (IRB #: 20-1672).
2.2. Gastroenteritis and antibiotic use surveillance

Surveillance for illnesses and antibiotic use was conducted dur-
ing twice weekly home visits by fieldworkers throughout the study
period. Caregivers were asked a standardized questionnaire to
assess symptoms of cough, fever, vomiting, diarrhea, and medica-
tion use. Stool samples were collected during diarrheal episodes
(defined as � 3 loose stools in a 24-hour period) and during routine
monthly home visits [20]. All stool samples were preserved, trans-
ported, and then tested for rotavirus by enzyme immunoassay
(EIA) using ProSpecT kits (Oxoid Ltd, Ely, United Kingdom) [21].
A subset of children with complete follow-up were assessed for
rotavirus by reverse-transcriptase quantitative polymerase chain
reaction (RT-qPCR) using custom-designed TaqMan Array Cards
(Thermo Fisher Scientific, Carlsbad, CA) and previously described
methods [22].

Rotavirus diarrhea prior to vaccination completion was
detected among diarrheal stools at an RT-qPCR [22,28] cycle
2581
threshold value < 35. If RT-qPCR data were unavailable, rotavirus
was identified by EIA [21].

2.3. Data and definitions

Household demographics, maternal characteristics, and anthro-
pometric measurements were collected at enrollment. Household
socioeconomic status (SES) was assessed at 6, 12, 18, and
24 months using an index validated by the study team based on
water and sanitation, eight household assets, maternal education,
and monthly household income (WAMI) [23]. Anthropometric
measurements and vaccination history were collected monthly.

The primary exposure was caregiver-reported oral or injected
antibiotic treatment administered for any reason prior to or up
to 7 days after the second dose of RV1, regardless of completion
of the antibiotic course. Antibiotic name and class were verified
by medication packaging or paperwork from a healthcare provider,
and distinct antibiotic courses were separated by at least two
antibiotic-free days [24]. We used a binary classification of antibi-
otic exposure, comparing at least one antibiotic course received to
no courses received. Antibiotic exposures were categorized accord-
ing to antibiotic class; if more than one antibiotic class was pre-
scribed, then the exposure was attributed to more than one
antibiotic class. We also measured the duration of antibiotic expo-
sure as the total number of days during which antibiotics were
received and the total number of antibiotic courses during the
same exposure period.

We characterized inappropriate antibiotic use based on illness
surveillance. If antibiotics were taken during any day of the illness,
the illness was classified as treated with antibiotics; illnesses were
separated by at least two symptom-free days. Illness definitions
were based on the Integrated Management of Childhood Illness
guidelines, as previously described [24,25]. Antibiotics taken for
diarrhea without a caregiver report of at least one loose stool with
visible blood (i.e., non-bloody diarrhea) were characterized as
"inappropriate". Respiratory illness was defined as cough or short-
ness of breath. Acute lower respiratory tract illness was defined as
cough or shortness of breath with a rapid respiratory rate deter-
mined by fieldworkers (defined by the average of two measure-
ments per day that were: > 60 breaths per minute for
infants < 2 months old; > 50 breaths per minute for ages 2 months
to 1 year; and > 40 breaths per minute for age � 1 year). Respira-
tory illnesses that did not meet the criteria for acute lower respira-
tory infections were considered upper respiratory infections
(URIs). Antibiotics taken for URIs or vomiting only (i.e., vomiting
not accompanied by diarrhea) were classified as "likely inappropri-
ate". All other antibiotic use was considered appropriate.

We defined seropositivity as rotavirus-specific immunoglobulin
A (IgA) antibody titer � 20 U/mL, which has been established as a
useful correlate of protection for rotavirus vaccines by Cheuvart
et al. and Baker et al. [26,27]. IgA antibodies against rotavirus were
measured by enzyme-linked immunosorbent assay (ELISA) of
blood samples collected at 7 months of age from each child and
stored at �20 �C.

2.4. Statistical analysis

Because the proportion of missing data for baseline covariates
was 5% or less for all variables, we imputed the mean values of
variables by site for individuals with missing data. We used mod-
ified Poisson regression with robust standard errors [29] to com-
pare the prevalence of seropositivity at 7 months between those
with and without antibiotic exposure up to 7 days after RV1 vacci-
nation completion. We present comparisons in the form of crude
(i.e., adjusted by site only) and adjusted prevalence ratios (PRs)
and 95% confidence intervals (CIs). The following confounding vari-



Table 1
Exposure contrasts for each hypothetical intervention.

Contrast Referent Index

Inappropriate
antibiotics
prevented

The observed
exposure distribution
among all children

The counterfactual exposure
distribution after all
inappropriate antibiotics are
removed.

Likely
inappropriate
antibiotics also
prevented

The observed
exposure distribution
among all children

The counterfactual exposure
distribution after all
inappropriate and likely
inappropriate antibiotics are
removed.

ass drug
administration
(MDA)

The observed
exposure distribution
among all children

The counterfactual exposure
distribution had all children
been treated with antibiotics.
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ables were identified for inclusion in our analysis using a causal
directed acyclic graph based on the substantive literature [30]
(Supplementary Fig. 1): child sex, child age (in weeks) at vaccine
completion, low birthweight (defined as birthweight < 2.5 kg),
SES based on the WAMI Index [23], maternal education, maternal
age, improved water and sanitation according to World Health
Organization (WHO) definitions [31], number of diarrhea episodes
prior to vaccine series completion, total number of days with diar-
rhea prior to vaccine series completion, presence of dehydration
during diarrhea prior to vaccine series completion, underweight
status (average weight-for-age Z score < �2 standard deviations
(SD) from the WHO Child Growth Standards median [32]), and
stunting status (average height-for-age Z score < �2 SD). We
explored modeling continuous covariates as categorical, linear,
quadratic, and restricted cubic splines, and optimal coding was
determined by likelihood ratio tests at a significance level of 0.1
and Akaike’s information criterion.

To estimate the impact of interventions to prevent antibiotic
use, we used parametric g-computation to estimate counterfactual
scenarios of antibiotic use [33,34]. We considered the following
three interventions: treating all children with antibiotics, prevent-
ing all inappropriate antibiotic use within 7 days after vaccine
completion, and additionally preventing likely inappropriate
antibiotic courses within 7 days after vaccine completion (Table 1).
We constructed 95% CIs by bootstrap with 1,000 replicates. We
also estimated the number needed to treat (NNT), or the number
of children who would need to receive the specified intervention
prior to completing the vaccination series to observe a one-
person change in RV1 seropositivity over 7 months.

In sensitivity analyses we re-estimated the PRs at 7 months
under three different scenarios. First, we excluded children with
natural rotavirus infections up to 7 days after RV1 vaccination
completion from the analysis. In a second analysis, we recoded nat-
ural rotavirus infections as competing events (i.e., categorized chil-
dren with natural rotavirus infections as seronegative at
7 months). Finally, given that a majority (80%) of antibiotic expo-
Fig. 1. Type of antibiotic used by site (n = 300 co
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sures occurred in Peru, we estimated the association between
antibiotic use and seropositivity at that site only.

All statistical analysis was performed in R statistical software,
version 4.1.0 [35].
3. Results

We included 537 of 850 children (63%) enrolled in the Brazil,
Peru, and South Africa sites who received both doses of RV1 and
had blood samples collected at 7 months of age. Of the 313 chil-
dren who were excluded from analyses, 135 (43%) infants dropped
out prior to blood collection, 81 (26%) were missing a 7-month
blood sample collection, 60 (19%) received only one RV1 dose, 16
(5%) were unvaccinated, 16 (5%) had blood samples collected but
not assessed for rotavirus-specific IgA, and 5 (2%) had blood sam-
ples collected prior to completing the vaccine series. Most children
(n = 237; 44%) were from Peru, compared to 35% from South Africa
(n = 186) and 21% from Brazil (n = 114; Table 2).

The median time between birth and completion of the vaccina-
tion series was 19 weeks (interquartile range [IQR]: 17, 20).
urses) up to 7 days after vaccine completion.



Table 2
Demographic characteristics of 537 children in the MAL-ED study with both RV1 vaccine doses.

Characteristic No antibiotics up to 7 days after last vaccine
dose (n = 359)

Antibiotics up to 7 days after last vaccine
dose (n = 178)

Total (n = 537)

N (%) or median [IQR] N (%) or median [IQR] N (%) or median [IQR]
Site
Fortaleza, Brazil 105 (29.2) 9 (5.1) 114 (21.2)
Loreto, Peru 93 (25.9) 144 (80.9) 237 (44.1)
Venda, South Africa 161 (44.8) 25 (14.0) 186 (34.6)
Socioeconomic Characteristics
Maternal age (in years)
<20 71 (19.8) 46 (25.8) 117 (21.8)
20–25 82 (22.8) 43 (24.2) 125 (23.3)
26–30 80 (22.3) 43 (24.2) 123 (22.9)
31–35 60 (16.7) 23 (12.9) 83 (15.5)
36–40 28 (7.8) 7 (3.9) 35 (6.5)
>40 38 (10.6) 16 (9.0) 54 (10.1)
Maternal education
No education 2 (0.6) 1 (0.6) 3 (0.6)
Primary education (1–8 years) 109 (30.4) 92 (51.7) 201 (37.4)
Secondary or higher (�9 years) 248 (69.1) 85 (47.8) 333 (62.0)
WAMI Index* 0.75 [0.59, 0.86] 0.59 [0.48, 0.70] 0.70 [0.55, 0.81]
Crowding (�2.5 people/ bedroom) 37 (10.3) 29 (16.3) 66 (12.3)
Monthly income in USD 195.3 [108.2, 351.7] 146.6 [108.1, 182.4] 168.9 [108.1, 307.8]
� 5 priority assetsy 287 (79.9) 120 (67.4) 407 (75.8)
Child characteristics
Male sex 188 (52.4) 99 (55.1) 286 (53.3)
Age (in weeks) at vaccine completion 19.0 [16.0, 20.0] 19.0 [19.0, 20.0] 19.0 [17.0, 20.0]
Low birthweight 25 (7.0) 11 (6.2) 36 (6.7)
Underweight in the first 3 months 11 (3.1) 6 (3.4) 17 (3.2)
Stunting in the first 3 months 54 (15.0) 34 (19.1) 88 (16.4)
Wasting in the first 3 months 1 (0.3) 0 (0) 1 (0.2)
Water, Sanitation & Hygiene
Improved sanitation� (2 missing) 283 (79.3) 70 (39.3) 353 (65.0)
Improved drinking water§ (3 missing) 329 (92.4) 163 (91.6) 492 (92.0)
Antibiotics
Age at first antibiotic exposure
None – 0 (0.0) 0 (0.0)
<6 months – 176 (98.9) 176 (98.9)
6 months – 1 year – 2 (1.1) 2 (1.1)
>1 year – 0 (0.0) 0 (0.0)
Total antibiotic courses
1 – 103 (57.9) 103 (57.9)
2+ – 75 (42.1) 75 (42.1)
Antibiotic class
Penicillins – 128 (71.9) 128 (71.9)
Cephalosporins – 25 (14.0) 25 (14.0)
Sulfonamides – 23 (12.9) 23 (12.9)
Macrolides – 38 (21.3) 38 (21.3)
Tetracyclines – 2 (1.1) 2 (1.1)
Metronidazole – 1 (0.6) 1 (0.6)
Other – 6 (3.4) 6 (3.4)
Unknown – 5 (2.8) 5 (2.8)
Rotavirus
Age at first rotavirus episode
None 240 (66.9) 83 (46.6) 323 (60.1)
<6 months 25 (7.0) 23 (12.9) 48 (8.9)
6 months – 1 year 50 (13.9) 29 (16.3) 79 (14.7)
>1 year 44 (12.3) 43 (24.2) 87 (16.2)
Rotavirus infection up to 7 days after 2nd

vaccine dose
24 (6.7) 21 (11.8) 45 (8.4)

Rotavirus-specific IgA titer (U/mL) 5.0 [1.0, 25.0] 6.0 [1.0, 33.8] 5.0 [1.0, 32.0]
Seropositive (rotavirus-specific IgA � 20 U/

mL)
102 (28.4) 59 (33.1) 161 (30.0)

* WAMI Index = improved Water and sanitation, eight selected Assets, Maternal education, and household Income.
y Assets measured were mattress, chair, table, TV, refrigerator, bank account, kitchen, < 2 people per room.
� Improved sanitation, based on WHO definitions, includes sanitation facilities that hygienically separate human excreta from human contact, such as those with sewer
connections, septic system connections, pour-flush latrines, and pit latrines with a covered pit.
§ Improved drinking water, based on WHO definitions, is a source that adequately protects water from outside contamination and fecal matter by nature of its construction.
Examples include piped household water, public standpipe, borehole, and protected spring.
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Approximately one-third of children (n = 178, 33%) received at
least one antibiotic course up to 7 days after their final vaccine
dose. Among children with antibiotic exposures, 42% (n = 75)
2583
received two or more antibiotic courses. Of those, 60% (n = 45)
received multiple antibiotic classes; 5 children received three dif-
ferent antibiotic classes. The most common antibiotic class pre-
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scribed across all three sites was penicillins, accounting for 72%
(n = 128) of caregiver-reported antibiotics (Fig. 1). Roughly one
quarter (26%, n = 46) of children received antibiotics inappropri-
ately, and an additional 17% (n = 30) of children had likely inappro-
priate antibiotic exposures. Nine percent (n = 17) of children had
both inappropriate and likely inappropriate antibiotic exposures
(Fig. 2).

Overall, the prevalence of seropositivity at 7 months was 30%.
The crude association between antibiotic exposure up to 7 days fol-
lowing vaccine completion and 7-month RV1 seropositivity was
small (Table 3). Seropositivity was higher among children exposed
to antibiotics within 7 days of vaccine completion (n = 59, 33%)
compared to those unexposed to antibiotics (n = 103, 28%). Despite
the fact that a higher number of children receiving antibiotics were
seropositive, the overall median IgA titer among children without
antibiotic exposure (median: 5.0, IQR: 1.0, 15.0) was similar to
those with antibiotic exposure (median: 6.0, IQR: 1.0, 33.8). After
multivariable adjustment, the prevalence of seropositivity was
40% higher among children who had at least one course of antibi-
otics up to 7 days following vaccine completion compared with
those who did not (Adjusted PR: 1.40, 95% CI: 1.04, 1.89). There
was no significant difference in the association by the number of
antibiotic courses received nor total duration of antibiotics. There
were also no differences in prevalence of seropositivity based on
antibiotic class.

We estimated that seropositivity at 7 months would have been
19 percentage points higher had all participants received antibi-
otics compared to the observed exposure distribution (prevalence
difference [PD]: 0.19, 95% CI: 0.18, 0.21; Table 4). Exposing six chil-
dren to antibiotics before vaccination completion would be
expected to result in one additional child who was RV1 seroposi-
tive at 7 months (NNT: 6, 95% CI: 5, 6). The prevention of inappro-
priate antibiotics, or antibiotic treatment for non-bloody diarrhea,
would result in a 2 percentage point reduction in seropositivity
Fig. 2. Appropriateness of antibiotic courses received up to 7 days after vaccine comp
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from the observed seroprevalence (PD: �0.02, 95% CI: �0.03,
�0.01). Preventing likely inappropriate antibiotics, or antibiotics
taken for URI and vomiting only, in addition to antibiotics taken
for non-bloody diarrhea would result in a 4 percentage point
reduction in 7-month seropositivity compared to seroprevalence
under the observed antibiotic exposure distribution (PD: �0.04,
95% CI: �0.05, �0.02).

3.1. Sensitivity analyses

Excluding the 45 (8%) children with natural rotavirus infections
up to 7 days after the second vaccine dose from the analysis, the
prevalence of seropositivity was 41% higher among children who
had at least one course of antibiotics compared with those who
did not (Adjusted PR: 1.41, 95% CI: 1.02, 1.97; Supplementary
Table 1). Though similar to the estimate in the main analysis, this
estimate was slightly less precise. Considering natural rotavirus
infection as a competing risk further increased the strength of
the association between antibiotic use and prevalence of seropos-
itivity among children who had at least one course of antibiotics
(Adjusted PR: 1.52, 95% CI: 1.09, 2.13). Within Peru only, where
80% of antibiotic exposures occurred, the prevalence of seropositiv-
ity was 28% higher among children who had received at least one
course of antibiotics (Adjusted PR: 1.28, 95% CI: 0.99, 2.89).

3.2. Discussion

Our study is one of the first to find that antibiotic treatment
early in life among children living in LMICs may be associated with
increased RV1 immunogenicity. Results did not differ based on the
duration of antibiotic treatment or antibiotic class. Based on these
results, further exploration of the relationship between antibiotic
use, the gut microbiome, and rotavirus vaccine response is
warranted.
letion by age among 178 children who received at least one course of antibiotics.



Table 3
Association between antibiotic exposure up to 7 days after vaccination and RV1 seropositivity at 7 months among 537 children in the MAL-ED study.

Prevalence ratio (95% CI)

‘ Number of children Prevalence of seropositivity Crude* Adjustedy

Antibiotics up to 7 days after vaccination No 359 0.28 1. 1.
Yes 178 0.33 1.22 (0.90, 1.65) 1.40 (1.04, 1.89)

Number of antibiotic courses 0 359 0.28 1. 1.
1 103 0.34 1.20 (0.86, 1.69) 1.40 (1.01, 1.95)
2 75 0.32 1.25 (0.82, 1.90) 1.39 (0.88, 2.19)

Total days of antibiotics 0 359 0.28 1. 1.
1–7 days 97 0.34 1.24 (0.88, 1.76) 1.46 (1.04, 2.05)
> 7 days 81 0.32 1.18 (0.80, 1.76) 1.31 (0.86, 1.68)

Penicillins No antibiotics 359 0.28 1. 1.
Any penicillins� 128 0.36 1.18 (0.84, 1.65) 1.29 (0.92, 1.80)
Non-penicillin antibiotics 50 0.32 1.31 (0.86, 2.00) 1.73 (1.10, 2.72)

Macrolides No antibiotics 359 0.28 1. 1.
Any macrolides 38 0.32 1.17 (0.69, 1.99) 1.47 (0.83, 2.62)
Non-macrolide antibiotics 140 0.34 1.23 (0.90, 1.68) 1.39 (1.02, 1.90)

Cephalosporins No antibiotics 359 0.28 1. 1.
Any cephalosporins 25 0.33 1.18 (0.63, 2.20) 1.42 (0.76, 2.65)
Non-cephalosporin antibiotics 153 0.32 1.22 (0.89, 1.67) 1.40 (1.02, 1.91)

Sulfonamides No antibiotics 359 0.28 1. 1.
Any sulfonamides 23 0.33 1.28 (0.70, 2.36) 1.60 (0.78, 3.29)
Non-sulfonamide antibiotics 155 0.35 1.21 (0.88, 1.65) 1.38 (1.01, 1.89)

* Crude prevalence ratio adjusted for site
y Prevalence ratio adjusted for covariates described in the Methods section
� ‘Any’ of a drug class combines that class only and multiple classes including that class

Table 4
Estimated population-level impact of potential interventions to vary antibiotic exposure on 7-month RV1 seropositivity among 537 children in the MAL-ED birth cohort.

Contrast # Exposed to antibiotics Prevalence of seropositivity PD* (95% CI) NNT (95% CI)

Removal of inappropriate antibiotics
Observed 178 0.49 0
Inappropriate antibiotics removed 132 0.46 �0.02 (�0.03, �0.01) 45 (31, 85)
Likely inappropriate antibiotics also removed 102 0.45 �0.04 (�0.05, �0.02) 29 (22, 42)
MDA
Observed 178 0.49 0
All exposed 537 0.68 0.19 (0.18, 0.21) 6 (5, 6)

Abbreviations: MDA, mass drug administration; NNT, number needed to treat; PD, prevalence differenec
* PD adjusted for covariates described in the Methods section
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Although we hypothesized that antibiotics might disrupt the
gut microbiome and blunt the immune response to the rotavirus
vaccine, we did not observe negative impacts of antibiotics on
seropositivity following rotavirus vaccination. In fact, antibiotics
may have improved the response to the live oral vaccine. Our find-
ings of an improved immune response to the rotavirus vaccine
after antibiotic exposure are similar to what was found in a mouse
model by Uchiyama et al. [36]. In contrast, a recent analysis of data
from a randomized controlled study of healthy infants in the Uni-
ted States receiving RotaTeq� (Merck and Co, Westpoint, Pennsyl-
vania) and RV1 did not identify any effect of antibiotic use on
serologic response to oral rotavirus vaccine [18]. No other clinical
studies have demonstrated a positive effect of antibiotic use on
oral rotavirus immunogenicity [17]. However, there are other
potential impacts of early life antibiotic use on the gut microbiome
and child health that were not measured in our study.

These findings suggest that antibiotic receipt does modulate the
enteric immune response, though the mechanisms of action are
not fully understood. A proposed explanation for our results, based
on a recent study by Gozalbo-Rovira et al., is the presence of histo-
blood group antigen (HBGA)-like ‘‘decoys” on the surface of intesti-
nal bacteria [37]. The bacterial HBGAs could serve as decoy recep-
tors preventing rotavirus or the attenuated vaccine strain from
binding to HBGAs on the intestinal epithelial cells; if the intestinal
bacteria are not present, the virus is unable to bind and replicate
[36,38].
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The varied diversity and composition of the gut microbiome
between children in LMICs and HICs has been suggested as a
potential explanation for observed differences in oral rotavirus
vaccine performance [39–41]. In high pathogen exposure settings,
antibiotic use may decrease dysbiosis of the intestinal microbiota,
and by ‘‘resetting” the microbiota, improve the enteric immune
response. Antibiotics appear to play a role in the complex interplay
between the gut microbiome, vaccine, virus, and host’s immune
system, and mechanistic studies are needed to further understand
this relationship.

We also observed that more children with antibiotic exposures
(53%) experienced rotavirus gastroenteritis compared to those
with no antibiotic exposure (23%). Notably, a greater proportion
of infants with antibiotic exposures experienced rotavirus gas-
troenteritis later, after one year of age. This could indicate that
despite being associated with increased RV1 seropositivity in our
study, antibiotic receipt decreases the duration of vaccine-
induced immunity. Alternatively, it is possible that children who
received antibiotics had more exposure to enteric pathogens than
children who did not receive antibiotics, resulting in more diar-
rheal episodes later in life.

Estimates of the potential impact of interventions to reduce
antibiotic use among children prior to vaccine completion are rel-
evant to public health policy. The intervention exposing all chil-
dren to antibiotics is similar to proposed mass drug
administration (MDA) interventions in LMICs [42–44]. For exam-
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ple, a randomized controlled trial in India determined that a three-
day course of azithromycin prior to receipt of oral poliovirus vac-
cine (OPV) found no effect on subsequent OPV immunogenicity
[42]. Unlike traditional MDA interventions, antibiotic exposure in
our study was mixed in terms of timing, antibiotic class, and dura-
tion, all of which can affect seropositivity. While the estimates of
interventions to remove inappropriate and likely inappropriate
antibiotics were small in magnitude, they correspond to antimicro-
bial stewardship interventions. In settings with a higher incidence
of inappropriate antibiotic use, the magnitude of impact could be
higher.

A strength of the study was the twice weekly frequency of
antibiotic surveillance to capture antibiotic usage. The study was
limited by our inability to definitively distinguish between appro-
priate and inappropriate antibiotic treatment. Only self-reported
information regarding the indication for antibiotics was available,
and other unknown symptoms or co-infections may have war-
ranted antibiotic treatment. Also, antibiotic use did not occur
equally among the three sites in the analysis. Nearly 80% of antibi-
otic use occurred in Peru, where a sensitivity analysis showed no
significant difference in seropositivity between those with and
without antibiotic exposure. However, reduced power and preci-
sion due to a smaller analytic sample likely contributes to this find-
ing. Another limitation is the potential for misclassification due to
natural rotavirus infections that occurred during the 7-month
exposure window. We addressed this by exploring the re-
classification of seropositivity in sensitivity analyses. Also, a 7-
month time point rather than the standard 28 days post-
vaccination time point was used to measure seropositivity due to
data availability. Finally, we were unable to account for asymp-
tomatic rotavirus infections not captured during routine monthly
stool collection.

Despite these limitations, these data should reassure parents
and healthcare providers that if antibiotics are needed around
the time of rotavirus vaccination, serologic responses will not be
adversely affected. However, by providing evidence that antibiotic
use may positively impact vaccine response, these findings support
further investigation into the effects of antibiotic use on the infant
gut microbiome and immune response. The possibility that antibi-
otics may boost rotavirus vaccination performance should be fur-
ther explored and weighed against the growing threat of
antibiotic resistance and the potential long-term consequences of
antibiotic use.
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