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Abstract

Background: It is well-known that methylation changes occur as humans age, however, understanding how age-
related changes in DNA methylation vary by sex is lacking. In this study, we characterize the effect of age on DNA
methylation in a sex-specific manner and determine if these effects vary by genomic context. We used the lllumina
HumanMethylation 450 K array and DNA derived from whole blood for 400 adult participants (189 males and 211
females) from Bangladesh to identify age-associated CpG sites and regions and characterize the location of these
age-associated sites with respect to CpG islands (vs. shore, shelf, or open sea) and gene regions (vs. intergenic). We
conducted a genome-wide search for age-associated CpG sites (among 423,604 sites) using a reference-free
approach to adjust for cell type composition (the R package RefFreeEWAS) and performed an independent
replication analysis of age-associated CpGs.

Results: The number of age-associated CpGs (p <5 x 10~ %) were 986 among men and 3479 among women of
which 2027(63.8%) and 572 (64.1%) replicated (using Bonferroni adjusted p < 12x 10~ %). For both sexes, age-
associated CpG sites were more likely to be hyper-methylated with increasing age (compared to hypo-methylated)
and were enriched in CpG islands and promoter regions compared with other locations and all CpGs on the array.
Although we observed strong correlation between chronological age and previously-developed epigenetic age
models (r =0.8), among our top (based on lowest p-value) age-associated CpG sites only 12 for males and 44 for
females are included in these prediction models, and the median chronological age compared to predicted age
was 44 vs. 51.7 in males and 45 vs. 52.1 in females.

Conclusions: Our results describe genome-wide features of age-related changes in DNA methylation. The observed
associations between age and methylation were generally consistent for both sexes, although the associations
tended to be stronger among women. Our population may have unique age-related methylation changes that are
not captured in the established methylation-based age prediction model we used, which was developed to be
non-tissue-specific.
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Background

The epigenome is believed to have significant plasticity
throughout life and is likely influenced by a variety of fac-
tors including diet, inflammation, physical activity, smok-
ing, and aging [1, 2]. DNA (deoxyribonucleic acid)
methylation at CpG (5'—C—phosphate—G—3") sites
(DNA regions where a guanine nucleotide follows a cyto-
sine) is the most commonly studied epigenetic feature in
human populations. DNA methylation patterns are known
to be tissue specific, although some CpGs show similar
methylation levels across tissues [3—6]. Methylation pat-
terns of DNA extracted from blood have been associated
with gender [7-9], aging [10-18], embryonic growth re-
striction [19], and many age-related diseases, such as can-
cer and diabetes [20-23]. Additionally, variation in DNA
methylation has been suggested to explain disease pheno-
type differences between monozygotic twins [24-27] and
associations between in utero environment and diseases
during adult life [28, 29]. Mechanistically, variation in
DNA methylation likely reflects variation in histone modi-
fications, chromatin conformation, and gene expression
[30], with hypo-methylation of the promoter region and
hyper-methylation of the gene body often reflecting
increased expression [31].

Alterations in DNA methylation that occur as humans
age have been described [10, 11, 14, 32-35]. Analysis of
genome-wide DNA methylation in blood cells has demon-
strated that 15-30% of CpG sites are associated with age
[36—38]. In addition, DNA methylation has been used as a
measure of “epigenetic aging” (i.e., epigenetic clock) and
to investigate potential environmental factors that affect
biological aging [38—41]. An accelerated epigenetic clock
has been associated with higher mortality risk, as well as
reduced cognitive and physical health [42, 43].

Prior studies have conducted genome-wide searches
for age-associated CpG sites in humans. Most have been
conducted using data from individuals of European an-
cestry, and none have done so in a sex-specific manner
[44]. In this study, we used genome-wide methylation
data on 189 males and 211 females from Bangladesh to
identify age-associated CpG sites in a sex-specific man-
ner and characterize these CpG sites with respect to
genomic context. We chose to conduct a stratified ana-
lysis as there are many biological differences between
males and females that may impact how the epigenome
changes with age. Understanding how methylation
changes with age is critical for understanding biological
processes associated with human aging and the role of
epigenetics in susceptibility to aging-related diseases.

Methods

Study sample

The Bangladesh Vitamin E and Selenium Trial (BEST) is
a 2x2 factorial randomized chemoprevention trial
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evaluating the long-term effects of vitamin E and selen-
ium supplementation on non-melanoma skin cancer risk
and has been described in detail elsewhere [45]. Partici-
pants were eligible for BEST if they resided in select
rural communities in central Bangladesh, were between
ages 25 and 65years old, had arsenic-induced skin
lesions, and no prior cancer history. Between April 2006
and August 2009, a total of 7000 individuals were
enrolled. In-person interviews, clinical evaluations, and
urine and blood sample collection were performed by
trained study physicians, blinded to participants’ arsenic
exposure using structured protocols. For the present
study, 413 participants with baseline specimens collected
prior to the intervention were randomly sampled.

The study protocol was approved by the relevant insti-
tutional review boards in the United States (The
University of Chicago and Columbia University) and
Bangladesh (Bangladesh Medical Research Council).
Informed consent was provided by participants prior to
the original BEST study.

Measurement of methylation

Details on methylation measurement in this population
have been given in detail elsewhere [46]. Briefly, DNA
was extracted using DNeasy Blood kits (Qiagen, Valen-
cia, CA, USA), and bisulfite conversion was performed
using the EZ DNA Methylation Kit (Zymo Research,
Irvine, CA, USA). DNA methylation was measured in
500 ng of bisulfite-converted DNA per sample using the
[llumina HumanMethylation 450 K (485,577 CpQG sites)
BeadChip kit (Illumina, San Diego, CA, USA) according
to the manufacturer’s protocol. The average methylation
at each CpG site is represented as a continuous score (f
value) between O (unmethylated) and 1 (completely
methylated). From the 413 participants, we excluded 6
samples for inconsistency between self-reported and
methylation-derived sex, and 7 samples with >5% of
CpGs either having p for detection >0.05 or missing
values. This resulted in 400 samples used for analyses
(189 males and 211 females). We excluded 416 probes
on the Y chromosome, probes lacking chromosome data
(mostly control probes; n = 65), probes mapping to mul-
tiple locations (n = 41,937), probes with target CpG sites
containing SNPs (n =20,869), and probes with >10%
missing data across samples (n = 1932). This resulted in
a total of 423,188 probes included in this analysis. Based
on 11 samples run in duplicate across two different
plates, the average inter-assay Spearman correlation
coefficient was 0.987 (range, 0.974—0.993).

Measurement of gene expression

Sample processing for gene expression analysis has been
described previously in detail [46]. Briefly, RNA (ribo-
nucleic acid) was extracted from stored Mononuclear cells
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using RNeasy Micro Kit from QIAGEN (Valencia, CA,
USA). Nanodrop 1000 spectro-photometer (Thermo
Scientific, Wilmington, DE, USA) was used to check RNA
concentration and quality and the Illumina TotalPrep 96
RNA Amplification kit was used for cDNA synthesis. The
Mlumina HumanHT-12-v4 BeadChip (47,231 probes
covering 31,335 genes) was used to measure transcript
abundance according to manufacturer’s protocol.

Statistical analysis

For each CpG site, a sex-stratified linear regression
model was used to assess the association between age in
years (independent variable) and the logit-transformed
methylation B value (ratio of methylated to unmethy-
lated alleles; dependent variable). Coefficients and stand-
ard errors (SEs) from the regression models correspond
to a 1-year age increase. To increase our chances of find-
ing truly significant results and account for multiple
testing in both sex-specific models, we use a significance
threshold (p <5 x 10~ ®) slightly more stringent than the
Bonferroni-corrected value (p <6x10"% =0.05/(423,
188*2)). For differentially methylated probes with p <
5x10°% we used sex-stratified linear regressions to
examine the association of methylation with correspond-
ing RNA transcript levels of the gene assigned to the
methylation locus (based on Illumina’s annotation file).
To control for the potential confounder, cell type com-
position, we used the RefFreeEWAS method [47]. In a
separate analysis, we used the reference-based method,
MethylSpectrum [48], a reference-based adjustment for
blood cell type, but the resulting volcano plot (not
shown) was asymmetric toward hyper-methylation of
sites; potentially representing the effects of unmeasured
confounding. Therefore, we present results from the
analysis using the RefFreeEWAS method. This method
empirically establishes the top d number (user setting;
we used d =5) of latent variables for which to adjust. An
additional covariate in our models adjusted for batch (or
plating) effect. For the enrichment analyses, we used a
Fisher exact test to determine if a higher proportion of sig-
nificant (p < 0.05) CpGs were found in a specific genomic
region compared to all analyzed CpGs. We conducted a
second set of tests to compare the number of significant
CpGs found within a specific genome region between male
and female to see if there was a difference by sex. Among
the top 100 CpGs within each sex, we used a linear regres-
sion model with logit-transformed CpG beta values and
cell type composition matrix (set of 6 blood cell type vari-
ables estimated using methyl spectrum) as the independ-
ent variables and the expression levels for the Illumina
assigned gene as the dependent variable to identify signifi-
cant methylation-expression associations. For those CpG-
gene expression sets found to have a significant associ-
ation, we reran the regression model with an additional
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age and age-CpG interaction term. A Bonferroni corrected
p (males: 0.05/417 and females: 0.05/538) was considered
to be statistically significant. We used the R Statistical
package v3.2.5 [49] to run all analyses.

Results

Demographics

Comparing participant characteristics by sex (Table 1), we
observed significant differences among most variables. On
average, males had a higher proportion who smoked and a
higher proportion of T-helper (CDA4T) cells. A lower
proportion of males compared to females had high urinary
arsenic levels and had a lower proportion of circulating
natural killer (NK), monocytes (Mono), and granulocytes
(Gran) cells. The mean age was 43.1 (standard deviation
(SD) =9.1) for males and 44.3 (SD = 11.1) for females and
there was a significant difference in the age distribution
between sexes (Additional file 1).

Sex-specific age-associated CpG sites

At p threshold of 5 x 10~ %, we observed 3479 CpG sites
at which methylation was associated with age among
women and 986 among men (Fig. 1). Focusing only on
these significant sites, there is some overlap between the
sexes (530 in common between women and men signifi-
cant sets). However, among the 3479 age-associated
methylation sites among women, 3048 (87.6%) are age-
associated methylation sites among men at a p <0.05
and likewise, among the 986 age-associated methylation
sites among men, 946 (95.9%) are age-associated methy-
lation sites among women at a p <0.05. The 50 most
significant CpGs for each sex are reported in Add-
itional file 2 with 32 age-associated CpGs in common
among the top 100 male and female RefFreeEWAS re-
sults (Additional file 3). Additional file 4 shows a com-
parison between several RefFreeEWAS models some of
which are sex-specific and some adjust for smoking.
Interestingly, the overlap in top 100 CpGs when com-
paring male only to female only models is 31; while the
same comparison for models that adjust for smoking
produces only 28 overlapping CpGs.

We used an independent validation set consisting of
400 Bangladeshi individuals (167 males) participating in
the Health Effects of Arsenic Longitudinal Study
(HEALS) [50] to assess overlap of significant age-associ-
ated CpGs identified in this current study. In this sample
90% of females reported never smoking compared with
74% of males reporting ever smoked. The mean age was
41.1 (SD =10.1) for males and 34.4 (SD = 8.8) for females
with a significant difference in the age distribution be-
tween sexes (Additional file 5). For BEST the 450K
(CpGs) Illumina chip was used while the EPIC array (~
850K CpGs) was used in HEALS. Because 47,780/
423604 (11.3%) CpGs where not present on the 850 K
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Table 1 Characteristics of study participants, by sex
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Males (N =189) Females (N =211)
N % N % P value*
Age 0.0099*
<35 36 190 50 23.7
235-<45 61 323 53 251
245-<55 67 354 57 270
255 25 13.2 51 242
BMI 0.2527%
<185 65 344 87 412
218.5-<245 99 524 106 50.2
2245 25 13.2 18 85
Smoking <0.0001*
Never 7 37 102 483
Ever 182 96.3 109 51.7
Urinary Total Arsenic Concentration (ug/g) 0.0004*
<15 62 328 36 17.1
215-<375 48 254 54 256
2375-<104.2 46 24.3 54 256
2104.2 33 17.5 67 318
mean range mean range P value*
Average Blood Cell Percentages (estimated by MethylSpectrum)
cDb8T 0.22 0.07-0.38 0.2 0.05-0.42 0.0437*
CDAaT 0.07 0-025 0.05 0-023 0.0016*
NK 0.02 0-0.09 0.03 0-0.09 <0.0001*
Beell 0.08 0.03-0.20 0.08 0.02-0.15 0.8230*
Mono 0.07 0-0.14 0.08 0-0.15 0.0046*
Gran 048 0.34-0.63 049 0.31-0.70 0.0909*

Abreviations: N Number, % Percent

*Chi-squared test used for categorical variable and t-test used for continuous variables

chip, we were unable to validate observed significant re-
sults for 93/986 (9.4%) CpGs among males, 301/3479
(8.7%) among females, and 9/100 (9%) of the top 100
CpGs among both sexes. Using the 3178 overlapping
age-associated CpGs observed as significant (p <5 x 10~
%) among females in BEST, 2027(63.8%) (using bonfer-
roni adjusted p < 1.2 x 10™°) were also significantly asso-
ciated with age in HEALS. Likewise for males, among
the 893 overlapping and significant (p <5 x 10~ ®) age-as-
sociated CpGs observed in BEST, 572 (64.1%) (using
bonferroni adjusted p <1.2x10°°) were also signifi-
cantly associated with age in HEALS. In the model
adjusting for smoking status, the corresponding numbers
and percentages among females were 1781/3294 or
54.1% and among males were 449/716 or 62.7%.
Additional file 6 shows the beta values and p-values
for the top 100 age-associated CpGs identified in BEST
of which 68/91 (74.7%) among males and 81/91 (89.0%)

among females are significantly associated with age in
HEALS using a p <5 x 10" % while all overlapping CpGs
are significant at p <0.05 among both sexes. Overlap-
ping number of CpGs across additional sex stratified
and sex adjusted models and significant sets can be
observed in the Additional file 7a and b.

We examined associations with age for the 354 CpGs
included in the Horvath methylation age predictor [40] .
The predicted age based on the calculator showed a
strong correlation (r) with chronological age among both
women (r = 0.89) and men (r = 0.81) (Fig. 2). While only
12 of our age-associated methylated loci among men
and 44 among women were included in the 354 Horvath
CpGs (Additional file 3), 140 of the Horvath CpG sites
were differentially methylated among women in the ex-
pected direction (p <0.05), while 111 were differentially
methylated among men (p <0.05 and expected direc-
tion). The median chronological age was younger for
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both sexes compared to the predicted methylation age
and was 44 vs. 51.7 in males and 45 vs. 52.1 in females.
Potential reasons for this discrepancy are mentioned in
the discussion section.

Characterization age-associated CpG sites with respect to
genomic region

In order to determine if proximity to CpG islands was
related to age-related differences in CpG methylation,
we used categories defined by Illumina (i.e., island,

shore, shelf, open sea) to estimate the proportion of age-
associated CpGs that were hyper- vs. hypo-methylated
within each category (Fig. 3). Across all CpGs, we ob-
served a higher proportion of hyper-methylated vs.
hypo-methylated sites, with a > 2-fold difference for both
sexes. This difference was largely driven by CpGs in is-
land regions, which were almost exclusively hyper-meth-
ylated with increasing age, with > 97% of CpGs showing
hyper-methylation among both sexes. In contrast, in
shelf and open sea regions, there were substantially more

Fig. 2 Correlation between chronological age and predicated age using Horvath [40] identified age-related CpG markers among 211 women and
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age-associated CpGs that were hypometylated with in-
creasing age among both sexes (Fig. 3). Shore regions
had a higher proportion of hyper-methylation among
women, but higher proportion of hypo-methylation
among men (Fisher exact test p =0.0001). We also
wanted to determine if age-associated CpGs were
enriched in any of these categories. Compared to all
CpG probes analyzed, age-associated CpG sites were
strongly (all test p < 1 x 10~ ") enriched in island regions
and depleted in shelf and open sea regions (Fig. 4).
Approximately two-fold enrichment/depletion was ob-
served in these categories. We found evidence for slight
enrichment in shore regions among women only (p = 3.8
x 10°7).

Characterization the top CpG sites for each sex in
relationship to gene location
In order to determine if proximity to genes was related
to methylation at age-related CpGs, we examined the
proportion of hyper- vs. hypo-methylation at age-related
CpGs within categories defined by Illumina (i.e., within
1500 basepairs (bp) of a transcription start site
(TSS1500), within 200 bp of a TSS (TSS200), in a 5" un-
translated region (UTR), in the first exon, in the gene
body, in the 3" UTR, and Intergenic). In all categories,
the proportion of age-associated CpGs that were hyper-
methylated was greater than the hypo-methylated pro-
portion (Fig. 5). This difference was most pronounced in
the first exon and the TSS200 categories (p < 0.0001 for
both categories, in both sexes). The gene body category
showed evidence of depleted for hyper-methylated sites
in both sexes (p <0.005), when compared to all sites.
We examined the proportions of age-associated CpGs
in each category, and observed that enrichment/

depletion compared to all 450 K CpGs varied across cat-
egories with the strongest enrichment occurring in the
first exon category (p <5 x 10°) and the strongest deple-
tion occurring in the gene body category (p <0.0003)
(Fig. 6). While the observed enrichment/depletion fea-
tures appeared to be quite consistent across sexes, a
slightly higher proportion of the age-associated CpGs
were observed among men in the TSS200 (p =0.0016)
and first exon (p = 0.0419) locations.

Expression of genes assigned to top 100 age-associated
CpG sites

In an attempt to understand the potential gene-regula-
tory implications of the top 100 (lowest p-values) age-as-
sociated CpGs within each sex, we estimated the
association using a regression model between our top
age-associated CpGs and expression values for the gene
assigned (by Illumina) to each CpG along with all genes
in the region +/-200 basepairs around each CpG.
Among the 100 top age-associated CpGs in each set,
there were 417 CpG-gene associations tested among
males and 538 associations tested among females.
Among the 417 in the male set, we observed 3 signifi-
cant (p <0.0001) associations between methylation and
expression; 2 of these (66%) were inverse associations.
Among the 538 in the female set, 11 showed significant
associations (p <0.00009), and 8(73%) were inverse.
Based on these significant associations, we looked for
evidence that a CpG-expression relationship varied
with age by adding an age interaction term to the re-
gression model which may suggest there are functional
changes to the way the CpG and gene expression asso-
ciate with age. We observed 1/3 significant interactions
with age among males and 3/11 among females and
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Discussion

In this study of the relationship between age and gen-
ome-wide DNA methylation patterns in whole blood
samples collected from a Bangladeshi population, we

observed differentially methylated CpGs with respect to
age across the entire genome. More age-associated CpGs
were observed among women compared to men, but the
presence of association with age was consistent across
sexes for most age-associated CpGs and the amount of
overlap in top CpG remained relatively consistent re-
gardless of the regression model and confounders in-
cluded. There was a strong correlation between
chronological age and the Horvath methylation age
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prediction model [40] among both sexes. However, we
observed limited overlap between the most significant
(p <5 x 107®) age-associated CpGs identified in this
work and the CpGs used in the Horvath calculator
which is expected as explained in a recent review [51].
Alternative explanations include that there are differ-
ences in epigenetic aging features due to tissue type and/
or population between our data and the data used to
train existing DNA methylation aging models.

We observed similar enrichment in genomic features
for age-associated CpGs between sexes. When compar-
ing all CpGs to age-associated CpGs, islands were
strongly enriched for age-associated sites, with weaker
enrichment for age-associated CpGs in shore regions.
Age-associated CpGs were depleted in shelf and open
sea regions. We observed enrichment for age-associated
CpGs in intergenic regions, with general depletion in
gene regions.

Among age-associated CpGs, islands contained sites
that were almost exclusively hyper-methylated with in-
creasing age, while shelf and open sea regions contained
more hypo- as compared to hyper-methylated sites.
Among all age-associated CpGs on the 450K array,
hyper-methylation was approximately twice as common
as hypo-methylation, and enrichment for hyper-methyl-
ated sites was present in all categories defined according
to proximity to gene/TSS. The observation that age-as-
sociated hyper-methylation tends to occur in islands and
promoter regions [52] while hypo-methylation tends to

occur in shelf, shore, and open sea regions is consistent
with previous literature [53]. The observed enrichment
of age-associated CpGs in island regions (with depletion
in open sea and body regions) is also consistent with
previous literature [53].

Sex differences in methylation patterns have been ob-
served in studies of both newborns and adults and in dif-
ferent tissue types (e.g., blood and saliva) [54—60].
During preimplantation embryo development, the
demethylation process is much faster in males than in
females [61], and several prior studies have demon-
strated that most age-associated CpG sites showed a
higher methylation in females compared to males [9, 32,
62, 63]; however, our results based on our top 100 age-
associated CpGs do not support this conclusion (data
not shown).

To our knowledge, there are no genome-wide epide-
miologic studies that have characterized the association
between age and DNA methylation in blood among
males and females separately. There are at least 5
studies which specifically investigated sex-specific
methylation changes with age. However, these studies,
have focused on specific genome locations or were con-
ducted within other tissue types [64—67]. Sex-based
differences in the epigenetic aging process could be re-
lated to the observation that females and males have
different rates of disease incidence for many age-related
diseases and different risk thresholds for susceptibility
factors to those diseases.
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Some of the specific age-associated CpGs identified using
blood within the current study are likely to be observed
when evaluated in other tissues, however, important con-
siderations include the tissue type and all samples coming
from same individuals. A recent paper by Zhu et al. 2018
[68], evaluated age-associated DNA methylation from
multiple large publicly available datasets and were able to
conduct sub-analyses using methylation across different
tissues from the same set of individuals. These authors
demonstrated that many age-associated methylation sites
are shared across tissue types (as much as 70% or more),
however, the pattern is dependent on the specific CpG site
and the specific tissues that are being compared [68]. They
highlight matching on individual is a key condition when
looking at age-related methylation across tissues. Future
studies should assess the tissue-independence of our re-
sults using methylation data from studies of diverse tissues
types obtained from multi-tissue donors, such as the
Genotype-Tissue Expression (GTEx) project [69].

The association between increasing methylation in
promoter regions and decreasing corresponding gene ex-
pression levels has been widely observed in blood, and is
believed to reflect epigenetic silencing of promoters [30,
53, 70]. Likewise, a negative association between gene ex-
pression and gene body methylation has been demon-
strated in blood of various populations [71, 72], but the
functional importance of non-promoter region methylation
associations with expression are not well understood.
Hypothesized mechanisms including modulation of chro-
matin structure, regulation of alternative promoters, or
nucleosome positioning. In an attempt to understand the
potential gene-regulatory roles of our top 100 age-associ-
ated CpGs within each sex, we examined those CpGs that
were assigned to a gene and observed a significant associ-
ation with expression in 3/417 in the male set and 11/538
in the female set. Thus, the potential regulatory roles for
the vast majority of these age-associated CpGs are unclear
since they generally are not associated with expression
which has been observed with other age-related CpGs [51].
However, these CpGs still tend to occur in promoter re-
gions (TSS1500 or TSS200) (Additional file 4) and a poten-
tial difference in age-related variably methylated positions
(aVMPs) in males compared to females may explain why
we have observed a higher number of CpG sites correlated
with gene expression compared with previous studies [53],
but, none of our top 100 age-associated CpG sites were
contained in that list [73]. Of the 276 CpGs determined to
be different based on sex at birth [65] using a p of 5 x 1078
(like in our paper), we find that only 2 CpGs are signifi-
cantly associated with age in our model which adjusted for
sex and smoking, but in the same model we observe that
methylation for 180 out of these 276 are significantly differ-
ent based on the sex p-value. The regression coefficient for
age ranges from - 0.197 to 0.143 (not shown).
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Age prediction models using methylation at CpGs (i.e.,
epigenetic clock or biological aging) have been shown to
predict aging-related outcomes, such as all-cause mortal-
ity [43], cognitive and physical functions [42], Down syn-
drome [74], and cancers of the lung, breast, kidney, and
blood [75]. These studies demonstrate that a surrogate
tissue (blood) is useful for detecting accelerated aging
effects that predispose to aging-related diseases of other
tissues and that implementation of screening and subse-
quent early diagnosis could help improve the effective-
ness of targeted interventions and prognoses for at-risk
populations [51]. There is also the potential for risk
assessment in an individual’'s family members by
investigating key disease-associated methylation markers
that demonstrate similar features inter-generationally
[76, 77]. However, this research is complex and at a very
early stage [78]. Poor correlation has been observed
between epigenetic clock predictors (Hannum [38] or
Horvath [40] methylation age) and telomere length,
however, both have been observed to have significant in-
dependent associations with age and mortality [79]. This
suggests different pathways/mechanisms are being repre-
sented by telomere and DNA methylation markers [79].
Developing methods to combine information from these
and other biomarkers of biological aging could provide
predictions regarding which patients to target for inter-
ventions to improve overall quality of life and survival.

All epigenome-wide associations studies need to con-
sider adjustment for cell type composition. When DNA
methylation is assessed in whole blood we need to adjust
for leukocyte subtypes, which are known to be heteroge-
neous with respect to methylation patterns [59, 60].
Different proportions of blood cell types exist between
females and males; therefore, addressing cell-type pro-
portions related to sex impacts the number of significant
CpGs observed [62, 80]. Therefore, we utilized a statis-
tical method to infer cell type fractions in our samples;
the assumptions of the statistical method have been
described elsewhere [81, 82]. There were two methods
we considered. The first is MethylSectrum [48], which
estimates cellular proportions using a reference data set
of cell-type specific DNA methylation. The second
method, and the primary method used in our work, is a
reference-free method [47] that estimates latent variables
(including cell type composition factors) using a statis-
tical formula based on an empirical test of the variance
explained; hence, this method is not restricted to estima-
tion of only 6 cell-types and can capture additional
variables such as experimental batch. In our study, we
observed a pattern of asymmetry (much larger number
of significant beta values above 0 compared to below 0)
while using the MethylSectrum method which was not
observed when using the reference-free method. This
observation may suggest that the estimates produced by
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the reference-based MethylSpectrum method, often used
in other studies [48, 57] could be affected by unmeas-
ured confounders, and the reference data used may not
be ideal for all population world-wide.

There are several reasons we may have observed a lar-
ger number of significant age-associated CpGs among
females compared to males. There was a larger sample
of females compared with males which means there is a
power difference between the sex-stratified analyses. The
age distribution is more variable (i.e, wider range of
ages) among females potentially contributing to the
small p-values observed among females. There were
many more males who were current or former smokers
compared with females, thus an additional analysis
adjusting for smoking was conducted and is included in
the additional files.

Strengths of this study include the relatively large sam-
ple size and the availability of genome-wide DNA
methylation and expression data from a population-
based sample. In addition, very few studies of DNA
methylation have been conducted in South Asian indi-
viduals. While previous studies have demonstrated asso-
ciations between age and DNA methylation markers, we
were also able to evaluate expression of genes residing
near our age-associated CpQG sites.

Conclusions

Our results suggest a similar feature of age-associated
CpGs across the genome for males and females. Consist-
ent with prior studies, age-associated CpG sites residing in
island and promoter regions tend to be hyper-methylated
with increasing age, while age-related CpGs residing in
shelf and open sea, regions tend to be hypo-methylated
with increasing age. Enrichment of age-associated CpGs
occurs in island regions while depletion of age-associated
CpGs is observed in open sea, shelf, and gene body re-
gions. Additional studies need to confirm the associations
observed in this study and assess potential differences
across populations. Future work utilizing multiple epigen-
etic datasets will likely lead to an enhanced understanding
of the role epigenetic factors play in the development of
age-associated diseases. In addition, utilizing methylation-
based age-prediction models (i.e., biological age) may
allow a more accurate categorization of individual disease-
specific risks compared with the traditional use of chrono-
logical age.
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