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Abstract

IMPORTANCE Histologic classification of colorectal polyps plays a critical role in screening for
colorectal cancer and care of affected patients. An accurate and automated algorithm for the
classification of colorectal polyps on digitized histopathologic slides could benefit practitioners and
patients.

OBJECTIVE To evaluate the performance and generalizability of a deep neural network for
colorectal polyp classification on histopathologic slide images using a multi-institutional data set.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study used histopathologic slides
collected from January 1, 2016, to June 31, 2016, from Dartmouth-Hitchcock Medical Center,
Lebanon, New Hampshire, with 326 slides used for training, 157 slides for an internal data set, and 25
for a validation set. For the external data set, 238 slides for 179 distinct patients were obtained from
24 institutions across 13 US states. Data analysis was performed from April 9 to November 23, 2019.

MAIN OUTCOMES AND MEASURES Accuracy, sensitivity, and specificity of the model to classify 4
major colorectal polyp types: tubular adenoma, tubulovillous or villous adenoma, hyperplastic polyp,
and sessile serrated adenoma. Performance was compared with that of local pathologists’ at the
point of care identified from corresponding pathology laboratories.

RESULTS For the internal evaluation on the 157 slides with ground truth labels from 5 pathologists,
the deep neural network had a mean accuracy of 93.5% (95% CI, 89.6%-97.4%) compared with local
pathologists’ accuracy of 91.4% (95% CI, 87.0%-95.8%). On the external test set of 238 slides with
ground truth labels from 5 pathologists, the deep neural network achieved an accuracy of 87.0%
(95% CI, 82.7%-91.3%), which was comparable with local pathologists’ accuracy of 86.6% (95% CI,
82.3%-90.9%).

CONCLUSIONS AND RELEVANCE The findings suggest that this model may assist pathologists by
improving the diagnostic efficiency, reproducibility, and accuracy of colorectal cancer screenings.

JAMA Network Open. 2020;3(4):e203398. doi:10.1001/jamanetworkopen.2020.3398

Introduction

In the US, colorectal cancer was estimated to cause 51 020 deaths in 2019, making it the second most
common cause of death due to cancer.1 This death rate, however, has decreased in the past several
decades, likely because of successful cancer screening programs.2-5 Colonoscopy is the most
common test in these screening programs in the US.6 During colonoscopies, practitioners excise
colorectal polyps and visually examine them on histopathologic slides for neoplasia. Early detection
of cancer at an early, curable stage and removal of preinvasive adenomas or serrated lesions during
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this procedure are associated with a reduced mortality rate.7-9 Furthermore, the numbers and types
of polyps detected are associated with the risk of malignant tumors and are therefore used as the
basis for subsequent screening recommendations.6 An algorithm for automated classification of
colorectal polyps could potentially benefit cancer screening programs by improving efficiency,
reproducibility, and accuracy as well as reducing the access barrier to pathological services.10

In recent years, a class of computational models known as deep neural networks has driven
substantial advances in the field of artificial intelligence. Comprising many processing layers, deep
neural networks take a data-driven approach to automatically learn the most relevant features of
input data for a given task, markedly improving the state of the art in computer vision,11 natural
language processing,12 and speech recognition.13 For medical image analysis in particular, deep
learning has achieved considerable performance in classification of images, including chest
radiographs,14 retinal fundus photographs,15 head computed tomography scans,16 lung
histopathologic slides,17 and skin cancer images.18

This study evaluated the performance and generalizability of a deep neural network for
colorectal polyp classification on histopathologic slide images using a multi-institutional data set. To
our knowledge, this study is the first to comprehensively evaluate a deep learning algorithm for
colorectal polyp classification and assess the generalizability of this model across multiple
institutions.

Methods

Data Collection
This prognostic study used histopathologic slides from Dartmouth-Hitchcock Medical Center
(DHMC), a tertiary academic care center in Lebanon, New Hampshire, to train a deep neural network
for colorectal polyp classification. Internal and external data sets of hematoxylin and eosin–stained,
formalin-fixed, paraffin-embedded colorectal polyp, whole-slide images were collected. Each of
these slides could contain 1 or more tissue section or polyp. This study and the use of human
participant data in this project were approved by the Dartmouth-Hitchcock Health Institutional
Review Board with a waiver of informed consent. The conducted research reported in this article is
in accordance with this approved Dartmouth-Hitchcock Health Institutional Review Board protocol
and the World Medical Association Declaration of Helsinki on Ethical Principles for Medical Research
Involving Human Subjects.19 In addition, the study followed the Standards for Reporting of
Diagnostic Accuracy (STARD) reporting guideline.20

The internal data set was collected from January 1, 2016, to June 31, 2016, at DHMC. This data
set included 508 slides from the 4 most common polyp types according to local diagnoses parsed
from pathology reports: tubular adenoma, tubulovillous or villous adenoma, hyperplastic polyp, and
sessile serrated adenoma. The slides were scanned (Aperio AT2, Leica Biosystems) at 40× resolution
(0.25-μm pixel−1) at DHMC. In this internal data set, each whole-slide image was from a different
patient and colonoscopy procedure. We partitioned these slides into a training set of 326 slides, a
validation set of 25 slides, and an internal test set of 157 slides. The distribution of polyp types was
balanced in the validation and internal test sets, whereas slides were oversampled for hyperplastic
polyps and sessile serrated adenomas in the training set to improve model training for these classes
(Figure 1).

For the external data set, we collaborated with investigators from a randomized clinical trial on
the effect of supplementation with calcium and/or vitamin D for the prevention of colorectal
adenomas21 as well as their network of laboratories. Through this collaboration, we were given access
to 1182 whole-slide images along with their diagnoses given by local pathologists. These slides were
borrowed from various US pathology laboratories (eTable 1 in the Supplement) by one of us (E.L.B.)
from January 1, 2016, to December 31, 2017, and digitized by scanners (Aperio AT2, Leica Biosystems)
at 40× resolution at DHMC (similar to the internal data set) before they were returned to the original
laboratories. We randomly sampled up to 95 of these slides for each of 4 polyp types as diagnosed
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by the local pathologist. Of note, 15 of these randomly selected slides were removed because of poor
slide quality as determined by our study’s lead expert pathologist (A.A.S.). In total, the final external
validation set comprised 238 slides from 24 different institutions in 13 US states. In this external test
set, some of the slides corresponded to the same patients because the 238 slides came from 179
distinct patients. All slides from the internal and external test sets were excluded from model
development until final evaluation of the model. Each slide in the data set was the most diagnostic
slide for the corresponding patient, and slides from the same patient were not from the same lesion.

We did not include any slides with the diagnosis of high-grade dysplasia or adenocarcinoma
because we did not have enough samples from these cases in the external validation set. We also did
not include normal as a class for whole slides in our study because normal slides are not routinely
scanned in the internal or multi-institutional data sets. Moreover, we also did not distinguish
regeneration epithelial hyperplasia and inflammatory polyps from hyperplastic polyps and tubular
adenomas because of the small number of these cases in our training set. All diagnoses made by
DHMC pathologists were based on World Health Organization criteria as of April 2019.22

Data Annotation
The annotation process involved 5 gastrointestinal pathologists (A.A.S., L.J.V., B.R., X.L., M.L.) from
the Department of Pathology and Laboratory Medicine at DHMC: 3 (A.A.S., B.R., M.L.) with
gastrointestinal pathology fellowship training and 2 (L.J.V., X.L.) who gained gastrointestinal
pathology expertise through years of gastrointestinal pathology service. For 157 whole-slide images
in the training set, 2 of the gastrointestinal pathologists (A.A.S. and L.J.V.) identified the polyps on the
slides and used the Rectlabel23 annotation tool to manually annotate rectangular bounding boxes
around polyps and normal tissue as regions of interest for model training. In total, 3848 regions of
interest were identified and labeled as 1 of the 4 polyp classes.

We also collected a smaller number of annotations from 25 separate whole-slide images as the
validation set for hypermetric tuning of the model. In this validation set, the same 2 pathologists
(A.A.S. and L.J.V.) annotated nonoverlapping patches of 224 × 224 pixels (or 448 × 448 μm) of
classic examples for each polyp type. Because this data set was used to guide model development,
all fixed-size patches were confirmed with high confidence by both pathologists, and patches with
disagreements were discarded.

Figure 1. Data Flow Diagram for the Study
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We trained the model on an internal training and validation set and then evaluated it on internal and external test sets with multipathologist ground truth diagnoses. Annotated
regions of interest in the training set varied in length and width, whereas patches in the validation set were of fixed size and represented classic examples of each polyp type.
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For the internal test set, the 5 gastrointestinal pathologists independently and retrospectively
made a diagnosis based on each slide as 1 of the 4 polyp types. For this internal set, the local
diagnoses given at DHMC may have been from 1 of the 5 study gastrointestinal pathologists, but the
original diagnosis and identity of the pathologist at the point of care were hidden during the
retrospective annotation phase.

For the external test set, the 5 gastrointestinal pathologists from DHMC also retrospectively
made diagnoses based on all slides in the test set in the same fashion as for the internal test set. In
total, 5 complete sets of diagnoses from gastrointestinal pathologists and the diagnoses given by
local pathologists at the point of care were recorded. For both the internal and the external test sets,
ground truth diagnoses were assigned by taking the majority vote of the 5 gastrointestinal
pathologists. Figure 1 depicts the data flow for the study design. eFigure 1 in the Supplement shows
the statistics on polyp types, number of patches, and slide sizes for the internal and external test sets.

Deep Learning Model
In this study, we implemented the deep residual network (ResNet), a neural network architecture
that significantly outperformed all other models on the ImageNet and Common Objects in Context
image recognition benchmarks.24 For model training, we applied a sliding window method to the
3848 variable-size regions of interest labeled by pathologists in the training set, extracting
approximately 7000 fixed-size 224 × 224-pixel patches per polyp type. Then, we initialized ResNet
with the MSRA (Microsoft Research Asia) weight initialization11 and trained the neural network for
200 epochs with an initial learning rate of 0.001, which decayed by a factor of 0.9 every epoch.
Throughout training, we applied standard image augmentation techniques, including rotations and
flips as well as color jittering on the brightness, contrast, saturation, and hue of each image. For our
final model, we used an ensembled model that comprised 5 ResNets of 18, 34, 50, 101, and 152 layers.
Overall, training these networks took approximately 96 hours using a single graphics processing unit
(NVIDIA Tesla K40c). Once the model was trained, there was no further modification of the model
based on the pathologists’ examination of the results.

Slide-Level Inference
For the deep learning model to infer the overall diagnosis of a whole-slide image, we designed a
hierarchical classification algorithm to match the nature of the classification task. Each slide was
initially broken down into many patches using a sliding window algorithm, and each patch was
classified by the neural network.

Using the predicted diagnoses by the neural network for all patches in a given slide, the model
first determined whether a polyp was adenomatous (tubular, tubulovillous, or villous) or serrated
(hyperplastic or sessile serrated) by comparing the number of predicted patches for the
adenomatous and serrated types. Adenomatous polyps with more than a certain amount of
tubulovillous or villous tissue (>30%) were classified as overall tubulovillous or villous adenoma,
whereas the remaining polyps were classified as tubular adenoma. For serrated polyps, the algorithm
classified polyps with above a certain amount of sessile serrated patches (>1.5%) as overall sessile
serrated adenomas and the remaining polyps as hyperplastic. All thresholds were determined using
a grid search over the internal training set. The hierarchical nature of the inference heuristic allowed
us to imitate the schema used by pathologists for this classification task without training a separate
machine learning classifier.

Evaluation
For final evaluation, we compared the performance of the model with that of local pathologists
originally made at the point of care on the internal test set and the multi-institutional external test
set. Local pathologist performance measures were averaged over all samples because information
about individual pathologists’ performances were anonymized. To assess the quality of annotations
in our study, we measured the agreement of our gastrointestinal pathologists in terms of multiclass
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Cohen κ. The application of the final model on a whole-slide image in the test sets took less than a
mean of 60 seconds using a single graphics processing unit (NVIDIA Tesla K40c). For the model’s
classifications, we calculated accuracy, sensitivity, and specificity in comparison with ground truth
diagnoses and compared these metrics with those of local pathologists. Furthermore, we calculated
confusion matrixes for local pathologists and the model and conducted appropriate error analysis.

Statistical Analysis
The algorithms in this study were implemented in Python software, version 3.6 (Python Software
Foundation). We used OpenSlide software, version 3.4.1 (Carnegie Mellon University School of
Computer Science) to convert the digitized image format and PyTorch software, version 0.4
(Facebook’s AI Research Lab) for training the deep neural network models. The statistical analysis
and 95% CIs were calculated using the Statistics, version 3.4 library in Python. The source code for
this study is publicly available.25

We used a 2-tailed t test for proportions with a significance level of 2-sided P � .05 to compare
the performance of local pathologists and the model on the internal and external test sets. R, version
3.3.3 (R Foundation for Statistical Computing) was used for the statistical analysis in this study. Data
analysis was performed from April 9 to November 23, 2019.

Results

Internal Evaluation
The Table gives the per-class and mean performance metrics of local pathologists and the proposed
model for internal and external test sets. For the internal test set from DHMC, interobserver
agreement, measured by Cohen κ, was in the substantial range of 0.61 to 0.80, with the 5 study
gastrointestinal pathologists achieving a mean multiclass Cohen κ of 0.72 (95% CI, 0.64-0.80). The
model achieved a mean accuracy (the unweighted mean of individual polyp type accuracies) of
93.5% (95% CI, 89.6%-97.4%) compared with local pathologists’ accuracy of 91.4% (95% CI, 87.1%-
95.8%) on the internal data set. A 2-tailed t test for proportions revealed, however, that the
differences in performance were not significant (pathologist, 91.4%; deep neural network, 93.5%;
P = 0.50 for accuracy; pathologist, 80.7%; deep neural network, 86.8%; P = .14 for sensitivity; and
pathologist, 95.1%; deep neural network, 95.7%; P = .80 for specificity).

Multi-institutional External Evaluation
The external data set had less agreement for pathologists and the model. The 5 study gastrointestinal
pathologists achieved a mean multiclass Cohen κ of 0.67 (95% CI, 0.60-0.75). With an accuracy of
87.0% (95% CI, 82.7%-91.3%) on the external test set, the model performed at a similar level of
accuracy, sensitivity, and specificity as local pathologists on this data set (pathologist, 86.6%; deep
neural network, 87.0%; P = .90 for accuracy; pathologist, 78.4%; deep neural network, 77.7%;
P = .86 for sensitivity; and pathologist, 91.6%; deep neural network, 91.6%; P = .99 for specificity).

Table. Per-Class Comparison Between Local Pathologists and the Deep Neural Network Model in Classifying Colorectal Polyps on Internal and External Test Sets

Polyp type

Internal test set (n = 157) External test set (n = 238)

Local pathologists Deep neural network Local pathologists Deep neural network
Accuracy,
%

Sensitivity,
%

Specificity,
%

Accuracy,
%

Sensitivity,
%

Specificity,
%

Accuracy,
%

Sensitivity,
%

Specificity,
%

Accuracy,
%

Sensitivity,
%

Specificity,
%

TA 89.8 76.1 95.5 93.0 89.1 94.6 79.8 53.7 97.2 84.5 73.7 91.6

TVA 94.3 88.2 95.8 95.5 97.1 95.1 81.5 100 77.7 89.5 97.6 87.8

HP 89.8 76.9 94.1 92.4 82.1 95.8 91.6 80.8 96.8 85.3 60.3 97.5

SSA 91.7 81.6 95.0 93.0 78.9 97.5 93.3 79.2 94.8 88.7 79.2 89.7

Mean 91.4 80.7 95.1 93.5 86.8 95.7 86.6 78.4 91.6 87.0 77.7 91.6

Abbreviations: HP, hyperplastic polyp; SSA, sessile serrated adenoma; TA, tubular adenoma; TVA, tubulovillous or villous adenoma.
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The Table gives the performance metrics for local pathologists and deep neural network for each
polyp class on the internal and external test sets. eTable 2 in the Supplement gives the performance
of local pathologists and the deep learning model stratified by the agreement of DHMC pathologists
in determining ground truth labels.

Confusion Matrices and Error Analysis
Moreover, in Figure 2, we calculated confusion matrixes for local pathologists and the model on the
external test set to determine which polyp types were the most challenging to diagnose. Local
pathologists often classified tubular adenomas as tubulovillous or villous adenomas (46.3%) and
hyperplastic polyps as sessile serrated adenomas (12.9%). The deep neural network similarly
classified many tubular adenomas as tubulovillous or villous adenomas (23.2%) and hyperplastic
polyps as sessile serrated adenomas (27.3%). For further analysis of the model’s errors, eFigure 2 in
the Supplement shows violin plots for predicted percentage areas of each polyp type on slides.

Visualization
The results of the model were visualized on digitized slides by highlighting the regions that
contributed to the whole-slide classification. Figure 3 shows examples of slides with the lead
gastrointestinal pathologist’s (A.A.S.) annotations, the heat map detected by the model, and the
visualization of our model’s results.

Discussion

To our knowledge, this study is the first to evaluate a deep neural network for colorectal polyp
classification on a large multi-institutional data set with comparison with local diagnoses made at the
point of care. On a test set of 238 images from 24 external institutions, the model achieved an
accuracy of 87.0%, which was on par with the local pathologists’ accuracy of 86.6% at the α = .05
level. With regard to annotation agreement, the 5 study gastrointestinal pathologist annotators had
a mean Cohen κ of 0.72 on the internal test set and 0.67 on the external test set, which were higher
than the previously reported Cohen κ scores of 0.46,26 0.31,27 0.55,28 and 0.54.29 This difference in
performance is likely attributable to differences in polyp type distributions in various data sets,
interlaboratory variations in tissue processing and staining, and institutional biases in the polyp

Figure 2. Confusion Matrixes for Local Pathologists’ Diagnoses Given at the Point of Care and the Model’s
Predicted Diagnoses in Comparison With Multipathologist Ground Truth Diagnoses for the External Test Set

TA

TVA

HP

SSA

SSA

Gr
ou

nd
 tr

ut
h 

di
ag

no
se

s

Predicted diagnoses
HPTVATA

Local pathologistsA

TA

TVA

HP

SSA

SSA

Gr
ou

nd
 tr

ut
h 

di
ag

no
se

s

Predicted diagnoses
HPTVATA

0.000.000.460.54 0.000.030.230.74

0.000.001.000.00 0.000.000.980.02

0.140.810.000.051 0.280.600.030.09

0.790.210.000.00 0.790.040.000.17

ModelB

0 0.2 0.4 0.6 0.8 1.0

Each cell in the confusion matrix is the agreement ratio
between multipathologist ground truth labels and local
pathologists’ or the model’s diagnoses. HP indicates
hyperplastic polyp; SSA, sessile serrated adenoma; TA,
tubular adenoma; and TVA, tubulovillous or
villous adenoma.

JAMA Network Open | Health Informatics Deep Neural Network for Automated Classification of Colorectal Polyps on Histopathologic Slides

JAMA Network Open. 2020;3(4):e203398. doi:10.1001/jamanetworkopen.2020.3398 (Reprinted) April 23, 2020 6/11

Downloaded From: https://jamanetwork.com/ on 06/26/2023

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.3398&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.3398
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.3398&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.3398


classification criteria. Of note, although including the external slides for training would likely improve
the performance of the model on the external test set, the deep neural network was intentionally
trained only on the internal data set to examine its generalizability to external institutions.

In terms of error analysis, the deep neural network made similar misclassifications as local
pathologists, as shown by the similarities in their confusion matrixes. Both the model and the local
pathologists distinguished adenomatous (tubular, tubulovillous, or villous) and serrated (hyperplastic
or sessile serrated) polyps with high accuracy, whereas the model had a higher number of mistakes
within those 2 categories. Of note, the model used a simple hierarchical heuristic based on the
number of predicted patches to distinguish adenomatous and serrated polyps on a whole slide,
which is not as nuanced as a pathologist’s line of thought in real-world settings. Further
subclassification of adenomatous and serrated polyps was relatively more challenging for the model.
We hypothesize that many of the mistakes occurred because thresholds for detection of
tubulovillous or villous growths and of sessile serrated crypts vary among pathologists because the
lead gastrointestinal pathologist’s manual inspection of discordances found that many of the errors
made by the deep neural network were similar to mistakes made by pathologists in practice. For

Figure 3. Visualization of the Classifications of the Deep Neural Network Model

Original imageA Pathologist’s annotationB Model’s detected heat mapC Model’s final outputD

Tubular Tubulovillous or villous Hyperplastic Sessile serrated Benign

In the model’s detected heat map, the higher confidence predictions are shown in darker color. The model’s final output highlights precancerous lesions that can potentially be used
to aid pathologists in clinical practice.

JAMA Network Open | Health Informatics Deep Neural Network for Automated Classification of Colorectal Polyps on Histopathologic Slides

JAMA Network Open. 2020;3(4):e203398. doi:10.1001/jamanetworkopen.2020.3398 (Reprinted) April 23, 2020 7/11

Downloaded From: https://jamanetwork.com/ on 06/26/2023



example, a common mistake made by both the model and the local pathologists was distinguishing
hyperplastic polyps and sessile serrated adenomas, potentially reflecting the data imbalance of the
sessile serated adenoma class in the training set.

This study not only showed the utility of a deep learning model for classification of colorectal
polyps but also advances previous literature14-18,30-33 in terms of model evaluation and study design.
A previous study on deep learning for colorectal polyp classification30,31 demonstrated good
performance on an internal data set but used a simpler approach and did not include pathologist-
level performance or local diagnoses. The present study, on the other hand, evaluated a deep neural
network on a multi-institutional external data set and demonstrated a comparable diagnostic
performance of deep neural networks compared with local pathologists at the point of care. Many
previous studies14-18,32,33 demonstrated practitioner-level performance of deep neural networks on
various medical classification tasks. All these studies,14-18,30-33 however, measured practitioner-level
performance on a predetermined number of practitioners from a few medical institutions in a
controlled setting. Although it is important to measure retrospective practitioner performance on
classification tasks, we used diagnoses by local pathologists in clinical practice at the point of care in
24 external institutions for comparison against the deep neural network.

A deep learning model for colorectal polyp classification, if validated through clinical trials, has
potential for widespread application in clinical settings. Our model could be implemented in
laboratory information systems to guide pathologists by identifying areas of interest on digitized
slides, which could improve work efficiency, reproducibility, and accuracy for colorectal polyp
classification. Although expert practitioner confirmation of diagnoses will still be required, the model
could help triage slides indicating diagnoses that are more likely to be preinvasive for subsequent
review by pathologists. Because the US Preventive Services Task Force recommends that all adults
aged 50 to 75 years undergo screening for colorectal cancer, an automated model for classification
could be useful in relieving pathologists’ burden in slide review and ultimately reduce the barrier of
access for colorectal cancer screening.

Moving forward, further work can be performed in deep learning for analysis of colorectal polyp
images. Foremost, we plan to implement the model prospectively in a clinical setting to measure its
ability to enhance pathologists’ classification of colorectal polyps and improve outcomes in a clinical
trial. In terms of technical improvements to the model, more data can be collected and used for
training to increase the model’s performance, especially for sessile serrated adenomas, and new less
common classes, such as high-grade dysplasia, adenocarcinoma, regeneration epithelial hyperplasia,
and inflammatory polyps. Moreover, related work has found that deep learning can identify hidden
features in histopathologic images that can be used to detect gene mutations17 and predict patient
survival,34-36 tasks that pathologists do not perform. To this end, we plan to collect more patient
outcome data to train the model to predict polyp recurrence and patient survival in colorectal cancer.

Limitations
This study has limitations. Although the model performed on par with local pathologists on the
external test set, it did not perform as well as the internal evaluation. The results suggest that there
is a higher level of variability among slides from various institutions and the model could be further
improved by training on larger, diverse data sets. Furthermore, although the model identified the
most common polyp types, the study was performed on well-sectioned, clearly stained slides and did
not include less common classes, such as traditional serrated adenoma or sessile serrated adenoma
with cytologic dysplasia. In addition, the model was not evaluated on entirely normal slides. Our team
plans to collect further data and extend the model and its evaluation to these additional cases as
future work. In addition, local pathologists might have had access to additional slides and patient
information, such as patient colonoscopy history and polyp biopsy location, that may have
influenced their diagnoses. Access to this additional information might explain some of the
discrepancies between local diagnoses and ground truth labels, which were only based on
digitized slides.

JAMA Network Open | Health Informatics Deep Neural Network for Automated Classification of Colorectal Polyps on Histopathologic Slides

JAMA Network Open. 2020;3(4):e203398. doi:10.1001/jamanetworkopen.2020.3398 (Reprinted) April 23, 2020 8/11

Downloaded From: https://jamanetwork.com/ on 06/26/2023



Conclusions

In this study, the performance of the deep learning model was similar to that of local pathologists on
the internal and external test sets. If confirmed in clinical trials, this model could improve the
efficiency, reproducibility, and accuracy of colonoscopy.
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